1 /*
2 * Based on arch/arm/mm/context.c
3 *
4 * Copyright (C) 2002-2003 Deep Blue Solutions Ltd, all rights reserved.
5 * Copyright (C) 2012 ARM Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <linux/bitops.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 #include <linux/mm.h>
24
25 #include <asm/cpufeature.h>
26 #include <asm/mmu_context.h>
27 #include <asm/smp.h>
28 #include <asm/tlbflush.h>
29
30 static u32 asid_bits;
31 static DEFINE_RAW_SPINLOCK(cpu_asid_lock);
32
33 static atomic64_t asid_generation;
34 static unsigned long *asid_map;
35
36 static DEFINE_PER_CPU(atomic64_t, active_asids);
37 static DEFINE_PER_CPU(u64, reserved_asids);
38 static cpumask_t tlb_flush_pending;
39
40 #define ASID_MASK (~GENMASK(asid_bits - 1, 0))
41 #define ASID_FIRST_VERSION (1UL << asid_bits)
42
43 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
44 #define NUM_USER_ASIDS (ASID_FIRST_VERSION >> 1)
45 #define asid2idx(asid) (((asid) & ~ASID_MASK) >> 1)
46 #define idx2asid(idx) (((idx) << 1) & ~ASID_MASK)
47 #else
48 #define NUM_USER_ASIDS (ASID_FIRST_VERSION)
49 #define asid2idx(asid) ((asid) & ~ASID_MASK)
50 #define idx2asid(idx) asid2idx(idx)
51 #endif
52
53 /* Get the ASIDBits supported by the current CPU */
get_cpu_asid_bits(void)54 static u32 get_cpu_asid_bits(void)
55 {
56 u32 asid;
57 int fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64MMFR0_EL1),
58 ID_AA64MMFR0_ASID_SHIFT);
59
60 switch (fld) {
61 default:
62 pr_warn("CPU%d: Unknown ASID size (%d); assuming 8-bit\n",
63 smp_processor_id(), fld);
64 /* Fallthrough */
65 case 0:
66 asid = 8;
67 break;
68 case 2:
69 asid = 16;
70 }
71
72 return asid;
73 }
74
75 /* Check if the current cpu's ASIDBits is compatible with asid_bits */
verify_cpu_asid_bits(void)76 void verify_cpu_asid_bits(void)
77 {
78 u32 asid = get_cpu_asid_bits();
79
80 if (asid < asid_bits) {
81 /*
82 * We cannot decrease the ASID size at runtime, so panic if we support
83 * fewer ASID bits than the boot CPU.
84 */
85 pr_crit("CPU%d: smaller ASID size(%u) than boot CPU (%u)\n",
86 smp_processor_id(), asid, asid_bits);
87 cpu_panic_kernel();
88 }
89 }
90
flush_context(unsigned int cpu)91 static void flush_context(unsigned int cpu)
92 {
93 int i;
94 u64 asid;
95
96 /* Update the list of reserved ASIDs and the ASID bitmap. */
97 bitmap_clear(asid_map, 0, NUM_USER_ASIDS);
98
99 for_each_possible_cpu(i) {
100 asid = atomic64_xchg_relaxed(&per_cpu(active_asids, i), 0);
101 /*
102 * If this CPU has already been through a
103 * rollover, but hasn't run another task in
104 * the meantime, we must preserve its reserved
105 * ASID, as this is the only trace we have of
106 * the process it is still running.
107 */
108 if (asid == 0)
109 asid = per_cpu(reserved_asids, i);
110 __set_bit(asid2idx(asid), asid_map);
111 per_cpu(reserved_asids, i) = asid;
112 }
113
114 /*
115 * Queue a TLB invalidation for each CPU to perform on next
116 * context-switch
117 */
118 cpumask_setall(&tlb_flush_pending);
119 }
120
check_update_reserved_asid(u64 asid,u64 newasid)121 static bool check_update_reserved_asid(u64 asid, u64 newasid)
122 {
123 int cpu;
124 bool hit = false;
125
126 /*
127 * Iterate over the set of reserved ASIDs looking for a match.
128 * If we find one, then we can update our mm to use newasid
129 * (i.e. the same ASID in the current generation) but we can't
130 * exit the loop early, since we need to ensure that all copies
131 * of the old ASID are updated to reflect the mm. Failure to do
132 * so could result in us missing the reserved ASID in a future
133 * generation.
134 */
135 for_each_possible_cpu(cpu) {
136 if (per_cpu(reserved_asids, cpu) == asid) {
137 hit = true;
138 per_cpu(reserved_asids, cpu) = newasid;
139 }
140 }
141
142 return hit;
143 }
144
new_context(struct mm_struct * mm,unsigned int cpu)145 static u64 new_context(struct mm_struct *mm, unsigned int cpu)
146 {
147 static u32 cur_idx = 1;
148 u64 asid = atomic64_read(&mm->context.id);
149 u64 generation = atomic64_read(&asid_generation);
150
151 if (asid != 0) {
152 u64 newasid = generation | (asid & ~ASID_MASK);
153
154 /*
155 * If our current ASID was active during a rollover, we
156 * can continue to use it and this was just a false alarm.
157 */
158 if (check_update_reserved_asid(asid, newasid))
159 return newasid;
160
161 /*
162 * We had a valid ASID in a previous life, so try to re-use
163 * it if possible.
164 */
165 if (!__test_and_set_bit(asid2idx(asid), asid_map))
166 return newasid;
167 }
168
169 /*
170 * Allocate a free ASID. If we can't find one, take a note of the
171 * currently active ASIDs and mark the TLBs as requiring flushes. We
172 * always count from ASID #2 (index 1), as we use ASID #0 when setting
173 * a reserved TTBR0 for the init_mm and we allocate ASIDs in even/odd
174 * pairs.
175 */
176 asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, cur_idx);
177 if (asid != NUM_USER_ASIDS)
178 goto set_asid;
179
180 /* We're out of ASIDs, so increment the global generation count */
181 generation = atomic64_add_return_relaxed(ASID_FIRST_VERSION,
182 &asid_generation);
183 flush_context(cpu);
184
185 /* We have more ASIDs than CPUs, so this will always succeed */
186 asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, 1);
187
188 set_asid:
189 __set_bit(asid, asid_map);
190 cur_idx = asid;
191 return idx2asid(asid) | generation;
192 }
193
check_and_switch_context(struct mm_struct * mm,unsigned int cpu)194 void check_and_switch_context(struct mm_struct *mm, unsigned int cpu)
195 {
196 unsigned long flags;
197 u64 asid, old_active_asid;
198
199 asid = atomic64_read(&mm->context.id);
200
201 /*
202 * The memory ordering here is subtle.
203 * If our active_asids is non-zero and the ASID matches the current
204 * generation, then we update the active_asids entry with a relaxed
205 * cmpxchg. Racing with a concurrent rollover means that either:
206 *
207 * - We get a zero back from the cmpxchg and end up waiting on the
208 * lock. Taking the lock synchronises with the rollover and so
209 * we are forced to see the updated generation.
210 *
211 * - We get a valid ASID back from the cmpxchg, which means the
212 * relaxed xchg in flush_context will treat us as reserved
213 * because atomic RmWs are totally ordered for a given location.
214 */
215 old_active_asid = atomic64_read(&per_cpu(active_asids, cpu));
216 if (old_active_asid &&
217 !((asid ^ atomic64_read(&asid_generation)) >> asid_bits) &&
218 atomic64_cmpxchg_relaxed(&per_cpu(active_asids, cpu),
219 old_active_asid, asid))
220 goto switch_mm_fastpath;
221
222 raw_spin_lock_irqsave(&cpu_asid_lock, flags);
223 /* Check that our ASID belongs to the current generation. */
224 asid = atomic64_read(&mm->context.id);
225 if ((asid ^ atomic64_read(&asid_generation)) >> asid_bits) {
226 asid = new_context(mm, cpu);
227 atomic64_set(&mm->context.id, asid);
228 }
229
230 if (cpumask_test_and_clear_cpu(cpu, &tlb_flush_pending))
231 local_flush_tlb_all();
232
233 atomic64_set(&per_cpu(active_asids, cpu), asid);
234 raw_spin_unlock_irqrestore(&cpu_asid_lock, flags);
235
236 switch_mm_fastpath:
237
238 arm64_apply_bp_hardening();
239
240 /*
241 * Defer TTBR0_EL1 setting for user threads to uaccess_enable() when
242 * emulating PAN.
243 */
244 if (!system_uses_ttbr0_pan())
245 cpu_switch_mm(mm->pgd, mm);
246 }
247
248 /* Errata workaround post TTBRx_EL1 update. */
post_ttbr_update_workaround(void)249 asmlinkage void post_ttbr_update_workaround(void)
250 {
251 asm(ALTERNATIVE("nop; nop; nop",
252 "ic iallu; dsb nsh; isb",
253 ARM64_WORKAROUND_CAVIUM_27456,
254 CONFIG_CAVIUM_ERRATUM_27456));
255 }
256
asids_init(void)257 static int asids_init(void)
258 {
259 asid_bits = get_cpu_asid_bits();
260 /*
261 * Expect allocation after rollover to fail if we don't have at least
262 * one more ASID than CPUs. ASID #0 is reserved for init_mm.
263 */
264 WARN_ON(NUM_USER_ASIDS - 1 <= num_possible_cpus());
265 atomic64_set(&asid_generation, ASID_FIRST_VERSION);
266 asid_map = kcalloc(BITS_TO_LONGS(NUM_USER_ASIDS), sizeof(*asid_map),
267 GFP_KERNEL);
268 if (!asid_map)
269 panic("Failed to allocate bitmap for %lu ASIDs\n",
270 NUM_USER_ASIDS);
271
272 pr_info("ASID allocator initialised with %lu entries\n", NUM_USER_ASIDS);
273 return 0;
274 }
275 early_initcall(asids_init);
276