1 /*
2  * Versatile Express Serial Power Controller (SPC) support
3  *
4  * Copyright (C) 2013 ARM Ltd.
5  *
6  * Authors: Sudeep KarkadaNagesha <sudeep.karkadanagesha@arm.com>
7  *          Achin Gupta           <achin.gupta@arm.com>
8  *          Lorenzo Pieralisi     <lorenzo.pieralisi@arm.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
15  * kind, whether express or implied; without even the implied warranty
16  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19 
20 #include <linux/clk-provider.h>
21 #include <linux/clkdev.h>
22 #include <linux/cpu.h>
23 #include <linux/delay.h>
24 #include <linux/err.h>
25 #include <linux/interrupt.h>
26 #include <linux/io.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_opp.h>
29 #include <linux/slab.h>
30 #include <linux/semaphore.h>
31 
32 #include <asm/cacheflush.h>
33 
34 #include "spc.h"
35 
36 #define SPCLOG "vexpress-spc: "
37 
38 #define PERF_LVL_A15		0x00
39 #define PERF_REQ_A15		0x04
40 #define PERF_LVL_A7		0x08
41 #define PERF_REQ_A7		0x0c
42 #define COMMS			0x10
43 #define COMMS_REQ		0x14
44 #define PWC_STATUS		0x18
45 #define PWC_FLAG		0x1c
46 
47 /* SPC wake-up IRQs status and mask */
48 #define WAKE_INT_MASK		0x24
49 #define WAKE_INT_RAW		0x28
50 #define WAKE_INT_STAT		0x2c
51 /* SPC power down registers */
52 #define A15_PWRDN_EN		0x30
53 #define A7_PWRDN_EN		0x34
54 /* SPC per-CPU mailboxes */
55 #define A15_BX_ADDR0		0x68
56 #define A7_BX_ADDR0		0x78
57 
58 /* SPC CPU/cluster reset statue */
59 #define STANDBYWFI_STAT		0x3c
60 #define STANDBYWFI_STAT_A15_CPU_MASK(cpu)	(1 << (cpu))
61 #define STANDBYWFI_STAT_A7_CPU_MASK(cpu)	(1 << (3 + (cpu)))
62 
63 /* SPC system config interface registers */
64 #define SYSCFG_WDATA		0x70
65 #define SYSCFG_RDATA		0x74
66 
67 /* A15/A7 OPP virtual register base */
68 #define A15_PERFVAL_BASE	0xC10
69 #define A7_PERFVAL_BASE		0xC30
70 
71 /* Config interface control bits */
72 #define SYSCFG_START		BIT(31)
73 #define SYSCFG_SCC		(6 << 20)
74 #define SYSCFG_STAT		(14 << 20)
75 
76 /* wake-up interrupt masks */
77 #define GBL_WAKEUP_INT_MSK	(0x3 << 10)
78 
79 /* TC2 static dual-cluster configuration */
80 #define MAX_CLUSTERS		2
81 
82 /*
83  * Even though the SPC takes max 3-5 ms to complete any OPP/COMMS
84  * operation, the operation could start just before jiffie is about
85  * to be incremented. So setting timeout value of 20ms = 2jiffies@100Hz
86  */
87 #define TIMEOUT_US	20000
88 
89 #define MAX_OPPS	8
90 #define CA15_DVFS	0
91 #define CA7_DVFS	1
92 #define SPC_SYS_CFG	2
93 #define STAT_COMPLETE(type)	((1 << 0) << (type << 2))
94 #define STAT_ERR(type)		((1 << 1) << (type << 2))
95 #define RESPONSE_MASK(type)	(STAT_COMPLETE(type) | STAT_ERR(type))
96 
97 struct ve_spc_opp {
98 	unsigned long freq;
99 	unsigned long u_volt;
100 };
101 
102 struct ve_spc_drvdata {
103 	void __iomem *baseaddr;
104 	/*
105 	 * A15s cluster identifier
106 	 * It corresponds to A15 processors MPIDR[15:8] bitfield
107 	 */
108 	u32 a15_clusid;
109 	uint32_t cur_rsp_mask;
110 	uint32_t cur_rsp_stat;
111 	struct semaphore sem;
112 	struct completion done;
113 	struct ve_spc_opp *opps[MAX_CLUSTERS];
114 	int num_opps[MAX_CLUSTERS];
115 };
116 
117 static struct ve_spc_drvdata *info;
118 
cluster_is_a15(u32 cluster)119 static inline bool cluster_is_a15(u32 cluster)
120 {
121 	return cluster == info->a15_clusid;
122 }
123 
124 /**
125  * ve_spc_global_wakeup_irq()
126  *
127  * Function to set/clear global wakeup IRQs. Not protected by locking since
128  * it might be used in code paths where normal cacheable locks are not
129  * working. Locking must be provided by the caller to ensure atomicity.
130  *
131  * @set: if true, global wake-up IRQs are set, if false they are cleared
132  */
ve_spc_global_wakeup_irq(bool set)133 void ve_spc_global_wakeup_irq(bool set)
134 {
135 	u32 reg;
136 
137 	reg = readl_relaxed(info->baseaddr + WAKE_INT_MASK);
138 
139 	if (set)
140 		reg |= GBL_WAKEUP_INT_MSK;
141 	else
142 		reg &= ~GBL_WAKEUP_INT_MSK;
143 
144 	writel_relaxed(reg, info->baseaddr + WAKE_INT_MASK);
145 }
146 
147 /**
148  * ve_spc_cpu_wakeup_irq()
149  *
150  * Function to set/clear per-CPU wake-up IRQs. Not protected by locking since
151  * it might be used in code paths where normal cacheable locks are not
152  * working. Locking must be provided by the caller to ensure atomicity.
153  *
154  * @cluster: mpidr[15:8] bitfield describing cluster affinity level
155  * @cpu: mpidr[7:0] bitfield describing cpu affinity level
156  * @set: if true, wake-up IRQs are set, if false they are cleared
157  */
ve_spc_cpu_wakeup_irq(u32 cluster,u32 cpu,bool set)158 void ve_spc_cpu_wakeup_irq(u32 cluster, u32 cpu, bool set)
159 {
160 	u32 mask, reg;
161 
162 	if (cluster >= MAX_CLUSTERS)
163 		return;
164 
165 	mask = BIT(cpu);
166 
167 	if (!cluster_is_a15(cluster))
168 		mask <<= 4;
169 
170 	reg = readl_relaxed(info->baseaddr + WAKE_INT_MASK);
171 
172 	if (set)
173 		reg |= mask;
174 	else
175 		reg &= ~mask;
176 
177 	writel_relaxed(reg, info->baseaddr + WAKE_INT_MASK);
178 }
179 
180 /**
181  * ve_spc_set_resume_addr() - set the jump address used for warm boot
182  *
183  * @cluster: mpidr[15:8] bitfield describing cluster affinity level
184  * @cpu: mpidr[7:0] bitfield describing cpu affinity level
185  * @addr: physical resume address
186  */
ve_spc_set_resume_addr(u32 cluster,u32 cpu,u32 addr)187 void ve_spc_set_resume_addr(u32 cluster, u32 cpu, u32 addr)
188 {
189 	void __iomem *baseaddr;
190 
191 	if (cluster >= MAX_CLUSTERS)
192 		return;
193 
194 	if (cluster_is_a15(cluster))
195 		baseaddr = info->baseaddr + A15_BX_ADDR0 + (cpu << 2);
196 	else
197 		baseaddr = info->baseaddr + A7_BX_ADDR0 + (cpu << 2);
198 
199 	writel_relaxed(addr, baseaddr);
200 }
201 
202 /**
203  * ve_spc_powerdown()
204  *
205  * Function to enable/disable cluster powerdown. Not protected by locking
206  * since it might be used in code paths where normal cacheable locks are not
207  * working. Locking must be provided by the caller to ensure atomicity.
208  *
209  * @cluster: mpidr[15:8] bitfield describing cluster affinity level
210  * @enable: if true enables powerdown, if false disables it
211  */
ve_spc_powerdown(u32 cluster,bool enable)212 void ve_spc_powerdown(u32 cluster, bool enable)
213 {
214 	u32 pwdrn_reg;
215 
216 	if (cluster >= MAX_CLUSTERS)
217 		return;
218 
219 	pwdrn_reg = cluster_is_a15(cluster) ? A15_PWRDN_EN : A7_PWRDN_EN;
220 	writel_relaxed(enable, info->baseaddr + pwdrn_reg);
221 }
222 
standbywfi_cpu_mask(u32 cpu,u32 cluster)223 static u32 standbywfi_cpu_mask(u32 cpu, u32 cluster)
224 {
225 	return cluster_is_a15(cluster) ?
226 		  STANDBYWFI_STAT_A15_CPU_MASK(cpu)
227 		: STANDBYWFI_STAT_A7_CPU_MASK(cpu);
228 }
229 
230 /**
231  * ve_spc_cpu_in_wfi(u32 cpu, u32 cluster)
232  *
233  * @cpu: mpidr[7:0] bitfield describing CPU affinity level within cluster
234  * @cluster: mpidr[15:8] bitfield describing cluster affinity level
235  *
236  * @return: non-zero if and only if the specified CPU is in WFI
237  *
238  * Take care when interpreting the result of this function: a CPU might
239  * be in WFI temporarily due to idle, and is not necessarily safely
240  * parked.
241  */
ve_spc_cpu_in_wfi(u32 cpu,u32 cluster)242 int ve_spc_cpu_in_wfi(u32 cpu, u32 cluster)
243 {
244 	int ret;
245 	u32 mask = standbywfi_cpu_mask(cpu, cluster);
246 
247 	if (cluster >= MAX_CLUSTERS)
248 		return 1;
249 
250 	ret = readl_relaxed(info->baseaddr + STANDBYWFI_STAT);
251 
252 	pr_debug("%s: PCFGREG[0x%X] = 0x%08X, mask = 0x%X\n",
253 		 __func__, STANDBYWFI_STAT, ret, mask);
254 
255 	return ret & mask;
256 }
257 
ve_spc_get_performance(int cluster,u32 * freq)258 static int ve_spc_get_performance(int cluster, u32 *freq)
259 {
260 	struct ve_spc_opp *opps = info->opps[cluster];
261 	u32 perf_cfg_reg = 0;
262 	u32 perf;
263 
264 	perf_cfg_reg = cluster_is_a15(cluster) ? PERF_LVL_A15 : PERF_LVL_A7;
265 
266 	perf = readl_relaxed(info->baseaddr + perf_cfg_reg);
267 	if (perf >= info->num_opps[cluster])
268 		return -EINVAL;
269 
270 	opps += perf;
271 	*freq = opps->freq;
272 
273 	return 0;
274 }
275 
276 /* find closest match to given frequency in OPP table */
ve_spc_round_performance(int cluster,u32 freq)277 static int ve_spc_round_performance(int cluster, u32 freq)
278 {
279 	int idx, max_opp = info->num_opps[cluster];
280 	struct ve_spc_opp *opps = info->opps[cluster];
281 	u32 fmin = 0, fmax = ~0, ftmp;
282 
283 	freq /= 1000; /* OPP entries in kHz */
284 	for (idx = 0; idx < max_opp; idx++, opps++) {
285 		ftmp = opps->freq;
286 		if (ftmp >= freq) {
287 			if (ftmp <= fmax)
288 				fmax = ftmp;
289 		} else {
290 			if (ftmp >= fmin)
291 				fmin = ftmp;
292 		}
293 	}
294 	if (fmax != ~0)
295 		return fmax * 1000;
296 	else
297 		return fmin * 1000;
298 }
299 
ve_spc_find_performance_index(int cluster,u32 freq)300 static int ve_spc_find_performance_index(int cluster, u32 freq)
301 {
302 	int idx, max_opp = info->num_opps[cluster];
303 	struct ve_spc_opp *opps = info->opps[cluster];
304 
305 	for (idx = 0; idx < max_opp; idx++, opps++)
306 		if (opps->freq == freq)
307 			break;
308 	return (idx == max_opp) ? -EINVAL : idx;
309 }
310 
ve_spc_waitforcompletion(int req_type)311 static int ve_spc_waitforcompletion(int req_type)
312 {
313 	int ret = wait_for_completion_interruptible_timeout(
314 			&info->done, usecs_to_jiffies(TIMEOUT_US));
315 	if (ret == 0)
316 		ret = -ETIMEDOUT;
317 	else if (ret > 0)
318 		ret = info->cur_rsp_stat & STAT_COMPLETE(req_type) ? 0 : -EIO;
319 	return ret;
320 }
321 
ve_spc_set_performance(int cluster,u32 freq)322 static int ve_spc_set_performance(int cluster, u32 freq)
323 {
324 	u32 perf_cfg_reg;
325 	int ret, perf, req_type;
326 
327 	if (cluster_is_a15(cluster)) {
328 		req_type = CA15_DVFS;
329 		perf_cfg_reg = PERF_LVL_A15;
330 	} else {
331 		req_type = CA7_DVFS;
332 		perf_cfg_reg = PERF_LVL_A7;
333 	}
334 
335 	perf = ve_spc_find_performance_index(cluster, freq);
336 
337 	if (perf < 0)
338 		return perf;
339 
340 	if (down_timeout(&info->sem, usecs_to_jiffies(TIMEOUT_US)))
341 		return -ETIME;
342 
343 	init_completion(&info->done);
344 	info->cur_rsp_mask = RESPONSE_MASK(req_type);
345 
346 	writel(perf, info->baseaddr + perf_cfg_reg);
347 	ret = ve_spc_waitforcompletion(req_type);
348 
349 	info->cur_rsp_mask = 0;
350 	up(&info->sem);
351 
352 	return ret;
353 }
354 
ve_spc_read_sys_cfg(int func,int offset,uint32_t * data)355 static int ve_spc_read_sys_cfg(int func, int offset, uint32_t *data)
356 {
357 	int ret;
358 
359 	if (down_timeout(&info->sem, usecs_to_jiffies(TIMEOUT_US)))
360 		return -ETIME;
361 
362 	init_completion(&info->done);
363 	info->cur_rsp_mask = RESPONSE_MASK(SPC_SYS_CFG);
364 
365 	/* Set the control value */
366 	writel(SYSCFG_START | func | offset >> 2, info->baseaddr + COMMS);
367 	ret = ve_spc_waitforcompletion(SPC_SYS_CFG);
368 
369 	if (ret == 0)
370 		*data = readl(info->baseaddr + SYSCFG_RDATA);
371 
372 	info->cur_rsp_mask = 0;
373 	up(&info->sem);
374 
375 	return ret;
376 }
377 
ve_spc_irq_handler(int irq,void * data)378 static irqreturn_t ve_spc_irq_handler(int irq, void *data)
379 {
380 	struct ve_spc_drvdata *drv_data = data;
381 	uint32_t status = readl_relaxed(drv_data->baseaddr + PWC_STATUS);
382 
383 	if (info->cur_rsp_mask & status) {
384 		info->cur_rsp_stat = status;
385 		complete(&drv_data->done);
386 	}
387 
388 	return IRQ_HANDLED;
389 }
390 
391 /*
392  *  +--------------------------+
393  *  | 31      20 | 19        0 |
394  *  +--------------------------+
395  *  |   m_volt   |  freq(kHz)  |
396  *  +--------------------------+
397  */
398 #define MULT_FACTOR	20
399 #define VOLT_SHIFT	20
400 #define FREQ_MASK	(0xFFFFF)
ve_spc_populate_opps(uint32_t cluster)401 static int ve_spc_populate_opps(uint32_t cluster)
402 {
403 	uint32_t data = 0, off, ret, idx;
404 	struct ve_spc_opp *opps;
405 
406 	opps = kcalloc(MAX_OPPS, sizeof(*opps), GFP_KERNEL);
407 	if (!opps)
408 		return -ENOMEM;
409 
410 	info->opps[cluster] = opps;
411 
412 	off = cluster_is_a15(cluster) ? A15_PERFVAL_BASE : A7_PERFVAL_BASE;
413 	for (idx = 0; idx < MAX_OPPS; idx++, off += 4, opps++) {
414 		ret = ve_spc_read_sys_cfg(SYSCFG_SCC, off, &data);
415 		if (!ret) {
416 			opps->freq = (data & FREQ_MASK) * MULT_FACTOR;
417 			opps->u_volt = (data >> VOLT_SHIFT) * 1000;
418 		} else {
419 			break;
420 		}
421 	}
422 	info->num_opps[cluster] = idx;
423 
424 	return ret;
425 }
426 
ve_init_opp_table(struct device * cpu_dev)427 static int ve_init_opp_table(struct device *cpu_dev)
428 {
429 	int cluster;
430 	int idx, ret = 0, max_opp;
431 	struct ve_spc_opp *opps;
432 
433 	cluster = topology_physical_package_id(cpu_dev->id);
434 	cluster = cluster < 0 ? 0 : cluster;
435 
436 	max_opp = info->num_opps[cluster];
437 	opps = info->opps[cluster];
438 
439 	for (idx = 0; idx < max_opp; idx++, opps++) {
440 		ret = dev_pm_opp_add(cpu_dev, opps->freq * 1000, opps->u_volt);
441 		if (ret) {
442 			dev_warn(cpu_dev, "failed to add opp %lu %lu\n",
443 				 opps->freq, opps->u_volt);
444 			return ret;
445 		}
446 	}
447 	return ret;
448 }
449 
ve_spc_init(void __iomem * baseaddr,u32 a15_clusid,int irq)450 int __init ve_spc_init(void __iomem *baseaddr, u32 a15_clusid, int irq)
451 {
452 	int ret;
453 	info = kzalloc(sizeof(*info), GFP_KERNEL);
454 	if (!info)
455 		return -ENOMEM;
456 
457 	info->baseaddr = baseaddr;
458 	info->a15_clusid = a15_clusid;
459 
460 	if (irq <= 0) {
461 		pr_err(SPCLOG "Invalid IRQ %d\n", irq);
462 		kfree(info);
463 		return -EINVAL;
464 	}
465 
466 	init_completion(&info->done);
467 
468 	readl_relaxed(info->baseaddr + PWC_STATUS);
469 
470 	ret = request_irq(irq, ve_spc_irq_handler, IRQF_TRIGGER_HIGH
471 				| IRQF_ONESHOT, "vexpress-spc", info);
472 	if (ret) {
473 		pr_err(SPCLOG "IRQ %d request failed\n", irq);
474 		kfree(info);
475 		return -ENODEV;
476 	}
477 
478 	sema_init(&info->sem, 1);
479 	/*
480 	 * Multi-cluster systems may need this data when non-coherent, during
481 	 * cluster power-up/power-down. Make sure driver info reaches main
482 	 * memory.
483 	 */
484 	sync_cache_w(info);
485 	sync_cache_w(&info);
486 
487 	return 0;
488 }
489 
490 struct clk_spc {
491 	struct clk_hw hw;
492 	int cluster;
493 };
494 
495 #define to_clk_spc(spc) container_of(spc, struct clk_spc, hw)
spc_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)496 static unsigned long spc_recalc_rate(struct clk_hw *hw,
497 		unsigned long parent_rate)
498 {
499 	struct clk_spc *spc = to_clk_spc(hw);
500 	u32 freq;
501 
502 	if (ve_spc_get_performance(spc->cluster, &freq))
503 		return -EIO;
504 
505 	return freq * 1000;
506 }
507 
spc_round_rate(struct clk_hw * hw,unsigned long drate,unsigned long * parent_rate)508 static long spc_round_rate(struct clk_hw *hw, unsigned long drate,
509 		unsigned long *parent_rate)
510 {
511 	struct clk_spc *spc = to_clk_spc(hw);
512 
513 	return ve_spc_round_performance(spc->cluster, drate);
514 }
515 
spc_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)516 static int spc_set_rate(struct clk_hw *hw, unsigned long rate,
517 		unsigned long parent_rate)
518 {
519 	struct clk_spc *spc = to_clk_spc(hw);
520 
521 	return ve_spc_set_performance(spc->cluster, rate / 1000);
522 }
523 
524 static struct clk_ops clk_spc_ops = {
525 	.recalc_rate = spc_recalc_rate,
526 	.round_rate = spc_round_rate,
527 	.set_rate = spc_set_rate,
528 };
529 
ve_spc_clk_register(struct device * cpu_dev)530 static struct clk *ve_spc_clk_register(struct device *cpu_dev)
531 {
532 	struct clk_init_data init;
533 	struct clk_spc *spc;
534 
535 	spc = kzalloc(sizeof(*spc), GFP_KERNEL);
536 	if (!spc)
537 		return ERR_PTR(-ENOMEM);
538 
539 	spc->hw.init = &init;
540 	spc->cluster = topology_physical_package_id(cpu_dev->id);
541 
542 	spc->cluster = spc->cluster < 0 ? 0 : spc->cluster;
543 
544 	init.name = dev_name(cpu_dev);
545 	init.ops = &clk_spc_ops;
546 	init.flags = CLK_GET_RATE_NOCACHE;
547 	init.num_parents = 0;
548 
549 	return devm_clk_register(cpu_dev, &spc->hw);
550 }
551 
ve_spc_clk_init(void)552 static int __init ve_spc_clk_init(void)
553 {
554 	int cpu, cluster;
555 	struct clk *clk;
556 	bool init_opp_table[MAX_CLUSTERS] = { false };
557 
558 	if (!info)
559 		return 0; /* Continue only if SPC is initialised */
560 
561 	if (ve_spc_populate_opps(0) || ve_spc_populate_opps(1)) {
562 		pr_err("failed to build OPP table\n");
563 		return -ENODEV;
564 	}
565 
566 	for_each_possible_cpu(cpu) {
567 		struct device *cpu_dev = get_cpu_device(cpu);
568 		if (!cpu_dev) {
569 			pr_warn("failed to get cpu%d device\n", cpu);
570 			continue;
571 		}
572 		clk = ve_spc_clk_register(cpu_dev);
573 		if (IS_ERR(clk)) {
574 			pr_warn("failed to register cpu%d clock\n", cpu);
575 			continue;
576 		}
577 		if (clk_register_clkdev(clk, NULL, dev_name(cpu_dev))) {
578 			pr_warn("failed to register cpu%d clock lookup\n", cpu);
579 			continue;
580 		}
581 
582 		cluster = topology_physical_package_id(cpu_dev->id);
583 		if (init_opp_table[cluster])
584 			continue;
585 
586 		if (ve_init_opp_table(cpu_dev))
587 			pr_warn("failed to initialise cpu%d opp table\n", cpu);
588 		else if (dev_pm_opp_set_sharing_cpus(cpu_dev,
589 			 topology_core_cpumask(cpu_dev->id)))
590 			pr_warn("failed to mark OPPs shared for cpu%d\n", cpu);
591 		else
592 			init_opp_table[cluster] = true;
593 	}
594 
595 	platform_device_register_simple("vexpress-spc-cpufreq", -1, NULL, 0);
596 	return 0;
597 }
598 device_initcall(ve_spc_clk_init);
599