1 /*
2 * Versatile Express Serial Power Controller (SPC) support
3 *
4 * Copyright (C) 2013 ARM Ltd.
5 *
6 * Authors: Sudeep KarkadaNagesha <sudeep.karkadanagesha@arm.com>
7 * Achin Gupta <achin.gupta@arm.com>
8 * Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
15 * kind, whether express or implied; without even the implied warranty
16 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #include <linux/clk-provider.h>
21 #include <linux/clkdev.h>
22 #include <linux/cpu.h>
23 #include <linux/delay.h>
24 #include <linux/err.h>
25 #include <linux/interrupt.h>
26 #include <linux/io.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_opp.h>
29 #include <linux/slab.h>
30 #include <linux/semaphore.h>
31
32 #include <asm/cacheflush.h>
33
34 #include "spc.h"
35
36 #define SPCLOG "vexpress-spc: "
37
38 #define PERF_LVL_A15 0x00
39 #define PERF_REQ_A15 0x04
40 #define PERF_LVL_A7 0x08
41 #define PERF_REQ_A7 0x0c
42 #define COMMS 0x10
43 #define COMMS_REQ 0x14
44 #define PWC_STATUS 0x18
45 #define PWC_FLAG 0x1c
46
47 /* SPC wake-up IRQs status and mask */
48 #define WAKE_INT_MASK 0x24
49 #define WAKE_INT_RAW 0x28
50 #define WAKE_INT_STAT 0x2c
51 /* SPC power down registers */
52 #define A15_PWRDN_EN 0x30
53 #define A7_PWRDN_EN 0x34
54 /* SPC per-CPU mailboxes */
55 #define A15_BX_ADDR0 0x68
56 #define A7_BX_ADDR0 0x78
57
58 /* SPC CPU/cluster reset statue */
59 #define STANDBYWFI_STAT 0x3c
60 #define STANDBYWFI_STAT_A15_CPU_MASK(cpu) (1 << (cpu))
61 #define STANDBYWFI_STAT_A7_CPU_MASK(cpu) (1 << (3 + (cpu)))
62
63 /* SPC system config interface registers */
64 #define SYSCFG_WDATA 0x70
65 #define SYSCFG_RDATA 0x74
66
67 /* A15/A7 OPP virtual register base */
68 #define A15_PERFVAL_BASE 0xC10
69 #define A7_PERFVAL_BASE 0xC30
70
71 /* Config interface control bits */
72 #define SYSCFG_START BIT(31)
73 #define SYSCFG_SCC (6 << 20)
74 #define SYSCFG_STAT (14 << 20)
75
76 /* wake-up interrupt masks */
77 #define GBL_WAKEUP_INT_MSK (0x3 << 10)
78
79 /* TC2 static dual-cluster configuration */
80 #define MAX_CLUSTERS 2
81
82 /*
83 * Even though the SPC takes max 3-5 ms to complete any OPP/COMMS
84 * operation, the operation could start just before jiffie is about
85 * to be incremented. So setting timeout value of 20ms = 2jiffies@100Hz
86 */
87 #define TIMEOUT_US 20000
88
89 #define MAX_OPPS 8
90 #define CA15_DVFS 0
91 #define CA7_DVFS 1
92 #define SPC_SYS_CFG 2
93 #define STAT_COMPLETE(type) ((1 << 0) << (type << 2))
94 #define STAT_ERR(type) ((1 << 1) << (type << 2))
95 #define RESPONSE_MASK(type) (STAT_COMPLETE(type) | STAT_ERR(type))
96
97 struct ve_spc_opp {
98 unsigned long freq;
99 unsigned long u_volt;
100 };
101
102 struct ve_spc_drvdata {
103 void __iomem *baseaddr;
104 /*
105 * A15s cluster identifier
106 * It corresponds to A15 processors MPIDR[15:8] bitfield
107 */
108 u32 a15_clusid;
109 uint32_t cur_rsp_mask;
110 uint32_t cur_rsp_stat;
111 struct semaphore sem;
112 struct completion done;
113 struct ve_spc_opp *opps[MAX_CLUSTERS];
114 int num_opps[MAX_CLUSTERS];
115 };
116
117 static struct ve_spc_drvdata *info;
118
cluster_is_a15(u32 cluster)119 static inline bool cluster_is_a15(u32 cluster)
120 {
121 return cluster == info->a15_clusid;
122 }
123
124 /**
125 * ve_spc_global_wakeup_irq()
126 *
127 * Function to set/clear global wakeup IRQs. Not protected by locking since
128 * it might be used in code paths where normal cacheable locks are not
129 * working. Locking must be provided by the caller to ensure atomicity.
130 *
131 * @set: if true, global wake-up IRQs are set, if false they are cleared
132 */
ve_spc_global_wakeup_irq(bool set)133 void ve_spc_global_wakeup_irq(bool set)
134 {
135 u32 reg;
136
137 reg = readl_relaxed(info->baseaddr + WAKE_INT_MASK);
138
139 if (set)
140 reg |= GBL_WAKEUP_INT_MSK;
141 else
142 reg &= ~GBL_WAKEUP_INT_MSK;
143
144 writel_relaxed(reg, info->baseaddr + WAKE_INT_MASK);
145 }
146
147 /**
148 * ve_spc_cpu_wakeup_irq()
149 *
150 * Function to set/clear per-CPU wake-up IRQs. Not protected by locking since
151 * it might be used in code paths where normal cacheable locks are not
152 * working. Locking must be provided by the caller to ensure atomicity.
153 *
154 * @cluster: mpidr[15:8] bitfield describing cluster affinity level
155 * @cpu: mpidr[7:0] bitfield describing cpu affinity level
156 * @set: if true, wake-up IRQs are set, if false they are cleared
157 */
ve_spc_cpu_wakeup_irq(u32 cluster,u32 cpu,bool set)158 void ve_spc_cpu_wakeup_irq(u32 cluster, u32 cpu, bool set)
159 {
160 u32 mask, reg;
161
162 if (cluster >= MAX_CLUSTERS)
163 return;
164
165 mask = BIT(cpu);
166
167 if (!cluster_is_a15(cluster))
168 mask <<= 4;
169
170 reg = readl_relaxed(info->baseaddr + WAKE_INT_MASK);
171
172 if (set)
173 reg |= mask;
174 else
175 reg &= ~mask;
176
177 writel_relaxed(reg, info->baseaddr + WAKE_INT_MASK);
178 }
179
180 /**
181 * ve_spc_set_resume_addr() - set the jump address used for warm boot
182 *
183 * @cluster: mpidr[15:8] bitfield describing cluster affinity level
184 * @cpu: mpidr[7:0] bitfield describing cpu affinity level
185 * @addr: physical resume address
186 */
ve_spc_set_resume_addr(u32 cluster,u32 cpu,u32 addr)187 void ve_spc_set_resume_addr(u32 cluster, u32 cpu, u32 addr)
188 {
189 void __iomem *baseaddr;
190
191 if (cluster >= MAX_CLUSTERS)
192 return;
193
194 if (cluster_is_a15(cluster))
195 baseaddr = info->baseaddr + A15_BX_ADDR0 + (cpu << 2);
196 else
197 baseaddr = info->baseaddr + A7_BX_ADDR0 + (cpu << 2);
198
199 writel_relaxed(addr, baseaddr);
200 }
201
202 /**
203 * ve_spc_powerdown()
204 *
205 * Function to enable/disable cluster powerdown. Not protected by locking
206 * since it might be used in code paths where normal cacheable locks are not
207 * working. Locking must be provided by the caller to ensure atomicity.
208 *
209 * @cluster: mpidr[15:8] bitfield describing cluster affinity level
210 * @enable: if true enables powerdown, if false disables it
211 */
ve_spc_powerdown(u32 cluster,bool enable)212 void ve_spc_powerdown(u32 cluster, bool enable)
213 {
214 u32 pwdrn_reg;
215
216 if (cluster >= MAX_CLUSTERS)
217 return;
218
219 pwdrn_reg = cluster_is_a15(cluster) ? A15_PWRDN_EN : A7_PWRDN_EN;
220 writel_relaxed(enable, info->baseaddr + pwdrn_reg);
221 }
222
standbywfi_cpu_mask(u32 cpu,u32 cluster)223 static u32 standbywfi_cpu_mask(u32 cpu, u32 cluster)
224 {
225 return cluster_is_a15(cluster) ?
226 STANDBYWFI_STAT_A15_CPU_MASK(cpu)
227 : STANDBYWFI_STAT_A7_CPU_MASK(cpu);
228 }
229
230 /**
231 * ve_spc_cpu_in_wfi(u32 cpu, u32 cluster)
232 *
233 * @cpu: mpidr[7:0] bitfield describing CPU affinity level within cluster
234 * @cluster: mpidr[15:8] bitfield describing cluster affinity level
235 *
236 * @return: non-zero if and only if the specified CPU is in WFI
237 *
238 * Take care when interpreting the result of this function: a CPU might
239 * be in WFI temporarily due to idle, and is not necessarily safely
240 * parked.
241 */
ve_spc_cpu_in_wfi(u32 cpu,u32 cluster)242 int ve_spc_cpu_in_wfi(u32 cpu, u32 cluster)
243 {
244 int ret;
245 u32 mask = standbywfi_cpu_mask(cpu, cluster);
246
247 if (cluster >= MAX_CLUSTERS)
248 return 1;
249
250 ret = readl_relaxed(info->baseaddr + STANDBYWFI_STAT);
251
252 pr_debug("%s: PCFGREG[0x%X] = 0x%08X, mask = 0x%X\n",
253 __func__, STANDBYWFI_STAT, ret, mask);
254
255 return ret & mask;
256 }
257
ve_spc_get_performance(int cluster,u32 * freq)258 static int ve_spc_get_performance(int cluster, u32 *freq)
259 {
260 struct ve_spc_opp *opps = info->opps[cluster];
261 u32 perf_cfg_reg = 0;
262 u32 perf;
263
264 perf_cfg_reg = cluster_is_a15(cluster) ? PERF_LVL_A15 : PERF_LVL_A7;
265
266 perf = readl_relaxed(info->baseaddr + perf_cfg_reg);
267 if (perf >= info->num_opps[cluster])
268 return -EINVAL;
269
270 opps += perf;
271 *freq = opps->freq;
272
273 return 0;
274 }
275
276 /* find closest match to given frequency in OPP table */
ve_spc_round_performance(int cluster,u32 freq)277 static int ve_spc_round_performance(int cluster, u32 freq)
278 {
279 int idx, max_opp = info->num_opps[cluster];
280 struct ve_spc_opp *opps = info->opps[cluster];
281 u32 fmin = 0, fmax = ~0, ftmp;
282
283 freq /= 1000; /* OPP entries in kHz */
284 for (idx = 0; idx < max_opp; idx++, opps++) {
285 ftmp = opps->freq;
286 if (ftmp >= freq) {
287 if (ftmp <= fmax)
288 fmax = ftmp;
289 } else {
290 if (ftmp >= fmin)
291 fmin = ftmp;
292 }
293 }
294 if (fmax != ~0)
295 return fmax * 1000;
296 else
297 return fmin * 1000;
298 }
299
ve_spc_find_performance_index(int cluster,u32 freq)300 static int ve_spc_find_performance_index(int cluster, u32 freq)
301 {
302 int idx, max_opp = info->num_opps[cluster];
303 struct ve_spc_opp *opps = info->opps[cluster];
304
305 for (idx = 0; idx < max_opp; idx++, opps++)
306 if (opps->freq == freq)
307 break;
308 return (idx == max_opp) ? -EINVAL : idx;
309 }
310
ve_spc_waitforcompletion(int req_type)311 static int ve_spc_waitforcompletion(int req_type)
312 {
313 int ret = wait_for_completion_interruptible_timeout(
314 &info->done, usecs_to_jiffies(TIMEOUT_US));
315 if (ret == 0)
316 ret = -ETIMEDOUT;
317 else if (ret > 0)
318 ret = info->cur_rsp_stat & STAT_COMPLETE(req_type) ? 0 : -EIO;
319 return ret;
320 }
321
ve_spc_set_performance(int cluster,u32 freq)322 static int ve_spc_set_performance(int cluster, u32 freq)
323 {
324 u32 perf_cfg_reg;
325 int ret, perf, req_type;
326
327 if (cluster_is_a15(cluster)) {
328 req_type = CA15_DVFS;
329 perf_cfg_reg = PERF_LVL_A15;
330 } else {
331 req_type = CA7_DVFS;
332 perf_cfg_reg = PERF_LVL_A7;
333 }
334
335 perf = ve_spc_find_performance_index(cluster, freq);
336
337 if (perf < 0)
338 return perf;
339
340 if (down_timeout(&info->sem, usecs_to_jiffies(TIMEOUT_US)))
341 return -ETIME;
342
343 init_completion(&info->done);
344 info->cur_rsp_mask = RESPONSE_MASK(req_type);
345
346 writel(perf, info->baseaddr + perf_cfg_reg);
347 ret = ve_spc_waitforcompletion(req_type);
348
349 info->cur_rsp_mask = 0;
350 up(&info->sem);
351
352 return ret;
353 }
354
ve_spc_read_sys_cfg(int func,int offset,uint32_t * data)355 static int ve_spc_read_sys_cfg(int func, int offset, uint32_t *data)
356 {
357 int ret;
358
359 if (down_timeout(&info->sem, usecs_to_jiffies(TIMEOUT_US)))
360 return -ETIME;
361
362 init_completion(&info->done);
363 info->cur_rsp_mask = RESPONSE_MASK(SPC_SYS_CFG);
364
365 /* Set the control value */
366 writel(SYSCFG_START | func | offset >> 2, info->baseaddr + COMMS);
367 ret = ve_spc_waitforcompletion(SPC_SYS_CFG);
368
369 if (ret == 0)
370 *data = readl(info->baseaddr + SYSCFG_RDATA);
371
372 info->cur_rsp_mask = 0;
373 up(&info->sem);
374
375 return ret;
376 }
377
ve_spc_irq_handler(int irq,void * data)378 static irqreturn_t ve_spc_irq_handler(int irq, void *data)
379 {
380 struct ve_spc_drvdata *drv_data = data;
381 uint32_t status = readl_relaxed(drv_data->baseaddr + PWC_STATUS);
382
383 if (info->cur_rsp_mask & status) {
384 info->cur_rsp_stat = status;
385 complete(&drv_data->done);
386 }
387
388 return IRQ_HANDLED;
389 }
390
391 /*
392 * +--------------------------+
393 * | 31 20 | 19 0 |
394 * +--------------------------+
395 * | m_volt | freq(kHz) |
396 * +--------------------------+
397 */
398 #define MULT_FACTOR 20
399 #define VOLT_SHIFT 20
400 #define FREQ_MASK (0xFFFFF)
ve_spc_populate_opps(uint32_t cluster)401 static int ve_spc_populate_opps(uint32_t cluster)
402 {
403 uint32_t data = 0, off, ret, idx;
404 struct ve_spc_opp *opps;
405
406 opps = kcalloc(MAX_OPPS, sizeof(*opps), GFP_KERNEL);
407 if (!opps)
408 return -ENOMEM;
409
410 info->opps[cluster] = opps;
411
412 off = cluster_is_a15(cluster) ? A15_PERFVAL_BASE : A7_PERFVAL_BASE;
413 for (idx = 0; idx < MAX_OPPS; idx++, off += 4, opps++) {
414 ret = ve_spc_read_sys_cfg(SYSCFG_SCC, off, &data);
415 if (!ret) {
416 opps->freq = (data & FREQ_MASK) * MULT_FACTOR;
417 opps->u_volt = (data >> VOLT_SHIFT) * 1000;
418 } else {
419 break;
420 }
421 }
422 info->num_opps[cluster] = idx;
423
424 return ret;
425 }
426
ve_init_opp_table(struct device * cpu_dev)427 static int ve_init_opp_table(struct device *cpu_dev)
428 {
429 int cluster;
430 int idx, ret = 0, max_opp;
431 struct ve_spc_opp *opps;
432
433 cluster = topology_physical_package_id(cpu_dev->id);
434 cluster = cluster < 0 ? 0 : cluster;
435
436 max_opp = info->num_opps[cluster];
437 opps = info->opps[cluster];
438
439 for (idx = 0; idx < max_opp; idx++, opps++) {
440 ret = dev_pm_opp_add(cpu_dev, opps->freq * 1000, opps->u_volt);
441 if (ret) {
442 dev_warn(cpu_dev, "failed to add opp %lu %lu\n",
443 opps->freq, opps->u_volt);
444 return ret;
445 }
446 }
447 return ret;
448 }
449
ve_spc_init(void __iomem * baseaddr,u32 a15_clusid,int irq)450 int __init ve_spc_init(void __iomem *baseaddr, u32 a15_clusid, int irq)
451 {
452 int ret;
453 info = kzalloc(sizeof(*info), GFP_KERNEL);
454 if (!info)
455 return -ENOMEM;
456
457 info->baseaddr = baseaddr;
458 info->a15_clusid = a15_clusid;
459
460 if (irq <= 0) {
461 pr_err(SPCLOG "Invalid IRQ %d\n", irq);
462 kfree(info);
463 return -EINVAL;
464 }
465
466 init_completion(&info->done);
467
468 readl_relaxed(info->baseaddr + PWC_STATUS);
469
470 ret = request_irq(irq, ve_spc_irq_handler, IRQF_TRIGGER_HIGH
471 | IRQF_ONESHOT, "vexpress-spc", info);
472 if (ret) {
473 pr_err(SPCLOG "IRQ %d request failed\n", irq);
474 kfree(info);
475 return -ENODEV;
476 }
477
478 sema_init(&info->sem, 1);
479 /*
480 * Multi-cluster systems may need this data when non-coherent, during
481 * cluster power-up/power-down. Make sure driver info reaches main
482 * memory.
483 */
484 sync_cache_w(info);
485 sync_cache_w(&info);
486
487 return 0;
488 }
489
490 struct clk_spc {
491 struct clk_hw hw;
492 int cluster;
493 };
494
495 #define to_clk_spc(spc) container_of(spc, struct clk_spc, hw)
spc_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)496 static unsigned long spc_recalc_rate(struct clk_hw *hw,
497 unsigned long parent_rate)
498 {
499 struct clk_spc *spc = to_clk_spc(hw);
500 u32 freq;
501
502 if (ve_spc_get_performance(spc->cluster, &freq))
503 return -EIO;
504
505 return freq * 1000;
506 }
507
spc_round_rate(struct clk_hw * hw,unsigned long drate,unsigned long * parent_rate)508 static long spc_round_rate(struct clk_hw *hw, unsigned long drate,
509 unsigned long *parent_rate)
510 {
511 struct clk_spc *spc = to_clk_spc(hw);
512
513 return ve_spc_round_performance(spc->cluster, drate);
514 }
515
spc_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)516 static int spc_set_rate(struct clk_hw *hw, unsigned long rate,
517 unsigned long parent_rate)
518 {
519 struct clk_spc *spc = to_clk_spc(hw);
520
521 return ve_spc_set_performance(spc->cluster, rate / 1000);
522 }
523
524 static struct clk_ops clk_spc_ops = {
525 .recalc_rate = spc_recalc_rate,
526 .round_rate = spc_round_rate,
527 .set_rate = spc_set_rate,
528 };
529
ve_spc_clk_register(struct device * cpu_dev)530 static struct clk *ve_spc_clk_register(struct device *cpu_dev)
531 {
532 struct clk_init_data init;
533 struct clk_spc *spc;
534
535 spc = kzalloc(sizeof(*spc), GFP_KERNEL);
536 if (!spc)
537 return ERR_PTR(-ENOMEM);
538
539 spc->hw.init = &init;
540 spc->cluster = topology_physical_package_id(cpu_dev->id);
541
542 spc->cluster = spc->cluster < 0 ? 0 : spc->cluster;
543
544 init.name = dev_name(cpu_dev);
545 init.ops = &clk_spc_ops;
546 init.flags = CLK_GET_RATE_NOCACHE;
547 init.num_parents = 0;
548
549 return devm_clk_register(cpu_dev, &spc->hw);
550 }
551
ve_spc_clk_init(void)552 static int __init ve_spc_clk_init(void)
553 {
554 int cpu, cluster;
555 struct clk *clk;
556 bool init_opp_table[MAX_CLUSTERS] = { false };
557
558 if (!info)
559 return 0; /* Continue only if SPC is initialised */
560
561 if (ve_spc_populate_opps(0) || ve_spc_populate_opps(1)) {
562 pr_err("failed to build OPP table\n");
563 return -ENODEV;
564 }
565
566 for_each_possible_cpu(cpu) {
567 struct device *cpu_dev = get_cpu_device(cpu);
568 if (!cpu_dev) {
569 pr_warn("failed to get cpu%d device\n", cpu);
570 continue;
571 }
572 clk = ve_spc_clk_register(cpu_dev);
573 if (IS_ERR(clk)) {
574 pr_warn("failed to register cpu%d clock\n", cpu);
575 continue;
576 }
577 if (clk_register_clkdev(clk, NULL, dev_name(cpu_dev))) {
578 pr_warn("failed to register cpu%d clock lookup\n", cpu);
579 continue;
580 }
581
582 cluster = topology_physical_package_id(cpu_dev->id);
583 if (init_opp_table[cluster])
584 continue;
585
586 if (ve_init_opp_table(cpu_dev))
587 pr_warn("failed to initialise cpu%d opp table\n", cpu);
588 else if (dev_pm_opp_set_sharing_cpus(cpu_dev,
589 topology_core_cpumask(cpu_dev->id)))
590 pr_warn("failed to mark OPPs shared for cpu%d\n", cpu);
591 else
592 init_opp_table[cluster] = true;
593 }
594
595 platform_device_register_simple("vexpress-spc-cpufreq", -1, NULL, 0);
596 return 0;
597 }
598 device_initcall(ve_spc_clk_init);
599