1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Mips Jazz DMA controller support
4 * Copyright (C) 1995, 1996 by Andreas Busse
5 *
6 * NOTE: Some of the argument checking could be removed when
7 * things have settled down. Also, instead of returning 0xffffffff
8 * on failure of vdma_alloc() one could leave page #0 unused
9 * and return the more usual NULL pointer as logical address.
10 */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/export.h>
14 #include <linux/errno.h>
15 #include <linux/mm.h>
16 #include <linux/bootmem.h>
17 #include <linux/spinlock.h>
18 #include <linux/gfp.h>
19 #include <linux/dma-direct.h>
20 #include <linux/dma-noncoherent.h>
21 #include <asm/mipsregs.h>
22 #include <asm/jazz.h>
23 #include <asm/io.h>
24 #include <linux/uaccess.h>
25 #include <asm/dma.h>
26 #include <asm/jazzdma.h>
27 #include <asm/pgtable.h>
28
29 /*
30 * Set this to one to enable additional vdma debug code.
31 */
32 #define CONF_DEBUG_VDMA 0
33
34 static VDMA_PGTBL_ENTRY *pgtbl;
35
36 static DEFINE_SPINLOCK(vdma_lock);
37
38 /*
39 * Debug stuff
40 */
41 #define vdma_debug ((CONF_DEBUG_VDMA) ? debuglvl : 0)
42
43 static int debuglvl = 3;
44
45 /*
46 * Initialize the pagetable with a one-to-one mapping of
47 * the first 16 Mbytes of main memory and declare all
48 * entries to be unused. Using this method will at least
49 * allow some early device driver operations to work.
50 */
vdma_pgtbl_init(void)51 static inline void vdma_pgtbl_init(void)
52 {
53 unsigned long paddr = 0;
54 int i;
55
56 for (i = 0; i < VDMA_PGTBL_ENTRIES; i++) {
57 pgtbl[i].frame = paddr;
58 pgtbl[i].owner = VDMA_PAGE_EMPTY;
59 paddr += VDMA_PAGESIZE;
60 }
61 }
62
63 /*
64 * Initialize the Jazz R4030 dma controller
65 */
vdma_init(void)66 static int __init vdma_init(void)
67 {
68 /*
69 * Allocate 32k of memory for DMA page tables. This needs to be page
70 * aligned and should be uncached to avoid cache flushing after every
71 * update.
72 */
73 pgtbl = (VDMA_PGTBL_ENTRY *)__get_free_pages(GFP_KERNEL | GFP_DMA,
74 get_order(VDMA_PGTBL_SIZE));
75 BUG_ON(!pgtbl);
76 dma_cache_wback_inv((unsigned long)pgtbl, VDMA_PGTBL_SIZE);
77 pgtbl = (VDMA_PGTBL_ENTRY *)KSEG1ADDR(pgtbl);
78
79 /*
80 * Clear the R4030 translation table
81 */
82 vdma_pgtbl_init();
83
84 r4030_write_reg32(JAZZ_R4030_TRSTBL_BASE, CPHYSADDR(pgtbl));
85 r4030_write_reg32(JAZZ_R4030_TRSTBL_LIM, VDMA_PGTBL_SIZE);
86 r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
87
88 printk(KERN_INFO "VDMA: R4030 DMA pagetables initialized.\n");
89 return 0;
90 }
91 arch_initcall(vdma_init);
92
93 /*
94 * Allocate DMA pagetables using a simple first-fit algorithm
95 */
vdma_alloc(unsigned long paddr,unsigned long size)96 unsigned long vdma_alloc(unsigned long paddr, unsigned long size)
97 {
98 int first, last, pages, frame, i;
99 unsigned long laddr, flags;
100
101 /* check arguments */
102
103 if (paddr > 0x1fffffff) {
104 if (vdma_debug)
105 printk("vdma_alloc: Invalid physical address: %08lx\n",
106 paddr);
107 return VDMA_ERROR; /* invalid physical address */
108 }
109 if (size > 0x400000 || size == 0) {
110 if (vdma_debug)
111 printk("vdma_alloc: Invalid size: %08lx\n", size);
112 return VDMA_ERROR; /* invalid physical address */
113 }
114
115 spin_lock_irqsave(&vdma_lock, flags);
116 /*
117 * Find free chunk
118 */
119 pages = VDMA_PAGE(paddr + size) - VDMA_PAGE(paddr) + 1;
120 first = 0;
121 while (1) {
122 while (pgtbl[first].owner != VDMA_PAGE_EMPTY &&
123 first < VDMA_PGTBL_ENTRIES) first++;
124 if (first + pages > VDMA_PGTBL_ENTRIES) { /* nothing free */
125 spin_unlock_irqrestore(&vdma_lock, flags);
126 return VDMA_ERROR;
127 }
128
129 last = first + 1;
130 while (pgtbl[last].owner == VDMA_PAGE_EMPTY
131 && last - first < pages)
132 last++;
133
134 if (last - first == pages)
135 break; /* found */
136 first = last + 1;
137 }
138
139 /*
140 * Mark pages as allocated
141 */
142 laddr = (first << 12) + (paddr & (VDMA_PAGESIZE - 1));
143 frame = paddr & ~(VDMA_PAGESIZE - 1);
144
145 for (i = first; i < last; i++) {
146 pgtbl[i].frame = frame;
147 pgtbl[i].owner = laddr;
148 frame += VDMA_PAGESIZE;
149 }
150
151 /*
152 * Update translation table and return logical start address
153 */
154 r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
155
156 if (vdma_debug > 1)
157 printk("vdma_alloc: Allocated %d pages starting from %08lx\n",
158 pages, laddr);
159
160 if (vdma_debug > 2) {
161 printk("LADDR: ");
162 for (i = first; i < last; i++)
163 printk("%08x ", i << 12);
164 printk("\nPADDR: ");
165 for (i = first; i < last; i++)
166 printk("%08x ", pgtbl[i].frame);
167 printk("\nOWNER: ");
168 for (i = first; i < last; i++)
169 printk("%08x ", pgtbl[i].owner);
170 printk("\n");
171 }
172
173 spin_unlock_irqrestore(&vdma_lock, flags);
174
175 return laddr;
176 }
177
178 EXPORT_SYMBOL(vdma_alloc);
179
180 /*
181 * Free previously allocated dma translation pages
182 * Note that this does NOT change the translation table,
183 * it just marks the free'd pages as unused!
184 */
vdma_free(unsigned long laddr)185 int vdma_free(unsigned long laddr)
186 {
187 int i;
188
189 i = laddr >> 12;
190
191 if (pgtbl[i].owner != laddr) {
192 printk
193 ("vdma_free: trying to free other's dma pages, laddr=%8lx\n",
194 laddr);
195 return -1;
196 }
197
198 while (i < VDMA_PGTBL_ENTRIES && pgtbl[i].owner == laddr) {
199 pgtbl[i].owner = VDMA_PAGE_EMPTY;
200 i++;
201 }
202
203 if (vdma_debug > 1)
204 printk("vdma_free: freed %ld pages starting from %08lx\n",
205 i - (laddr >> 12), laddr);
206
207 return 0;
208 }
209
210 EXPORT_SYMBOL(vdma_free);
211
212 /*
213 * Map certain page(s) to another physical address.
214 * Caller must have allocated the page(s) before.
215 */
vdma_remap(unsigned long laddr,unsigned long paddr,unsigned long size)216 int vdma_remap(unsigned long laddr, unsigned long paddr, unsigned long size)
217 {
218 int first, pages;
219
220 if (laddr > 0xffffff) {
221 if (vdma_debug)
222 printk
223 ("vdma_map: Invalid logical address: %08lx\n",
224 laddr);
225 return -EINVAL; /* invalid logical address */
226 }
227 if (paddr > 0x1fffffff) {
228 if (vdma_debug)
229 printk
230 ("vdma_map: Invalid physical address: %08lx\n",
231 paddr);
232 return -EINVAL; /* invalid physical address */
233 }
234
235 pages = (((paddr & (VDMA_PAGESIZE - 1)) + size) >> 12) + 1;
236 first = laddr >> 12;
237 if (vdma_debug)
238 printk("vdma_remap: first=%x, pages=%x\n", first, pages);
239 if (first + pages > VDMA_PGTBL_ENTRIES) {
240 if (vdma_debug)
241 printk("vdma_alloc: Invalid size: %08lx\n", size);
242 return -EINVAL;
243 }
244
245 paddr &= ~(VDMA_PAGESIZE - 1);
246 while (pages > 0 && first < VDMA_PGTBL_ENTRIES) {
247 if (pgtbl[first].owner != laddr) {
248 if (vdma_debug)
249 printk("Trying to remap other's pages.\n");
250 return -EPERM; /* not owner */
251 }
252 pgtbl[first].frame = paddr;
253 paddr += VDMA_PAGESIZE;
254 first++;
255 pages--;
256 }
257
258 /*
259 * Update translation table
260 */
261 r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
262
263 if (vdma_debug > 2) {
264 int i;
265 pages = (((paddr & (VDMA_PAGESIZE - 1)) + size) >> 12) + 1;
266 first = laddr >> 12;
267 printk("LADDR: ");
268 for (i = first; i < first + pages; i++)
269 printk("%08x ", i << 12);
270 printk("\nPADDR: ");
271 for (i = first; i < first + pages; i++)
272 printk("%08x ", pgtbl[i].frame);
273 printk("\nOWNER: ");
274 for (i = first; i < first + pages; i++)
275 printk("%08x ", pgtbl[i].owner);
276 printk("\n");
277 }
278
279 return 0;
280 }
281
282 /*
283 * Translate a physical address to a logical address.
284 * This will return the logical address of the first
285 * match.
286 */
vdma_phys2log(unsigned long paddr)287 unsigned long vdma_phys2log(unsigned long paddr)
288 {
289 int i;
290 int frame;
291
292 frame = paddr & ~(VDMA_PAGESIZE - 1);
293
294 for (i = 0; i < VDMA_PGTBL_ENTRIES; i++) {
295 if (pgtbl[i].frame == frame)
296 break;
297 }
298
299 if (i == VDMA_PGTBL_ENTRIES)
300 return ~0UL;
301
302 return (i << 12) + (paddr & (VDMA_PAGESIZE - 1));
303 }
304
305 EXPORT_SYMBOL(vdma_phys2log);
306
307 /*
308 * Translate a logical DMA address to a physical address
309 */
vdma_log2phys(unsigned long laddr)310 unsigned long vdma_log2phys(unsigned long laddr)
311 {
312 return pgtbl[laddr >> 12].frame + (laddr & (VDMA_PAGESIZE - 1));
313 }
314
315 EXPORT_SYMBOL(vdma_log2phys);
316
317 /*
318 * Print DMA statistics
319 */
vdma_stats(void)320 void vdma_stats(void)
321 {
322 int i;
323
324 printk("vdma_stats: CONFIG: %08x\n",
325 r4030_read_reg32(JAZZ_R4030_CONFIG));
326 printk("R4030 translation table base: %08x\n",
327 r4030_read_reg32(JAZZ_R4030_TRSTBL_BASE));
328 printk("R4030 translation table limit: %08x\n",
329 r4030_read_reg32(JAZZ_R4030_TRSTBL_LIM));
330 printk("vdma_stats: INV_ADDR: %08x\n",
331 r4030_read_reg32(JAZZ_R4030_INV_ADDR));
332 printk("vdma_stats: R_FAIL_ADDR: %08x\n",
333 r4030_read_reg32(JAZZ_R4030_R_FAIL_ADDR));
334 printk("vdma_stats: M_FAIL_ADDR: %08x\n",
335 r4030_read_reg32(JAZZ_R4030_M_FAIL_ADDR));
336 printk("vdma_stats: IRQ_SOURCE: %08x\n",
337 r4030_read_reg32(JAZZ_R4030_IRQ_SOURCE));
338 printk("vdma_stats: I386_ERROR: %08x\n",
339 r4030_read_reg32(JAZZ_R4030_I386_ERROR));
340 printk("vdma_chnl_modes: ");
341 for (i = 0; i < 8; i++)
342 printk("%04x ",
343 (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_MODE +
344 (i << 5)));
345 printk("\n");
346 printk("vdma_chnl_enables: ");
347 for (i = 0; i < 8; i++)
348 printk("%04x ",
349 (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
350 (i << 5)));
351 printk("\n");
352 }
353
354 /*
355 * DMA transfer functions
356 */
357
358 /*
359 * Enable a DMA channel. Also clear any error conditions.
360 */
vdma_enable(int channel)361 void vdma_enable(int channel)
362 {
363 int status;
364
365 if (vdma_debug)
366 printk("vdma_enable: channel %d\n", channel);
367
368 /*
369 * Check error conditions first
370 */
371 status = r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5));
372 if (status & 0x400)
373 printk("VDMA: Channel %d: Address error!\n", channel);
374 if (status & 0x200)
375 printk("VDMA: Channel %d: Memory error!\n", channel);
376
377 /*
378 * Clear all interrupt flags
379 */
380 r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
381 r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
382 (channel << 5)) | R4030_TC_INTR
383 | R4030_MEM_INTR | R4030_ADDR_INTR);
384
385 /*
386 * Enable the desired channel
387 */
388 r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
389 r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
390 (channel << 5)) |
391 R4030_CHNL_ENABLE);
392 }
393
394 EXPORT_SYMBOL(vdma_enable);
395
396 /*
397 * Disable a DMA channel
398 */
vdma_disable(int channel)399 void vdma_disable(int channel)
400 {
401 if (vdma_debug) {
402 int status =
403 r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
404 (channel << 5));
405
406 printk("vdma_disable: channel %d\n", channel);
407 printk("VDMA: channel %d status: %04x (%s) mode: "
408 "%02x addr: %06x count: %06x\n",
409 channel, status,
410 ((status & 0x600) ? "ERROR" : "OK"),
411 (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_MODE +
412 (channel << 5)),
413 (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_ADDR +
414 (channel << 5)),
415 (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_COUNT +
416 (channel << 5)));
417 }
418
419 r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
420 r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
421 (channel << 5)) &
422 ~R4030_CHNL_ENABLE);
423
424 /*
425 * After disabling a DMA channel a remote bus register should be
426 * read to ensure that the current DMA acknowledge cycle is completed.
427 */
428 *((volatile unsigned int *) JAZZ_DUMMY_DEVICE);
429 }
430
431 EXPORT_SYMBOL(vdma_disable);
432
433 /*
434 * Set DMA mode. This function accepts the mode values used
435 * to set a PC-style DMA controller. For the SCSI and FDC
436 * channels, we also set the default modes each time we're
437 * called.
438 * NOTE: The FAST and BURST dma modes are supported by the
439 * R4030 Rev. 2 and PICA chipsets only. I leave them disabled
440 * for now.
441 */
vdma_set_mode(int channel,int mode)442 void vdma_set_mode(int channel, int mode)
443 {
444 if (vdma_debug)
445 printk("vdma_set_mode: channel %d, mode 0x%x\n", channel,
446 mode);
447
448 switch (channel) {
449 case JAZZ_SCSI_DMA: /* scsi */
450 r4030_write_reg32(JAZZ_R4030_CHNL_MODE + (channel << 5),
451 /* R4030_MODE_FAST | */
452 /* R4030_MODE_BURST | */
453 R4030_MODE_INTR_EN |
454 R4030_MODE_WIDTH_16 |
455 R4030_MODE_ATIME_80);
456 break;
457
458 case JAZZ_FLOPPY_DMA: /* floppy */
459 r4030_write_reg32(JAZZ_R4030_CHNL_MODE + (channel << 5),
460 /* R4030_MODE_FAST | */
461 /* R4030_MODE_BURST | */
462 R4030_MODE_INTR_EN |
463 R4030_MODE_WIDTH_8 |
464 R4030_MODE_ATIME_120);
465 break;
466
467 case JAZZ_AUDIOL_DMA:
468 case JAZZ_AUDIOR_DMA:
469 printk("VDMA: Audio DMA not supported yet.\n");
470 break;
471
472 default:
473 printk
474 ("VDMA: vdma_set_mode() called with unsupported channel %d!\n",
475 channel);
476 }
477
478 switch (mode) {
479 case DMA_MODE_READ:
480 r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
481 r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
482 (channel << 5)) &
483 ~R4030_CHNL_WRITE);
484 break;
485
486 case DMA_MODE_WRITE:
487 r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
488 r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
489 (channel << 5)) |
490 R4030_CHNL_WRITE);
491 break;
492
493 default:
494 printk
495 ("VDMA: vdma_set_mode() called with unknown dma mode 0x%x\n",
496 mode);
497 }
498 }
499
500 EXPORT_SYMBOL(vdma_set_mode);
501
502 /*
503 * Set Transfer Address
504 */
vdma_set_addr(int channel,long addr)505 void vdma_set_addr(int channel, long addr)
506 {
507 if (vdma_debug)
508 printk("vdma_set_addr: channel %d, addr %lx\n", channel,
509 addr);
510
511 r4030_write_reg32(JAZZ_R4030_CHNL_ADDR + (channel << 5), addr);
512 }
513
514 EXPORT_SYMBOL(vdma_set_addr);
515
516 /*
517 * Set Transfer Count
518 */
vdma_set_count(int channel,int count)519 void vdma_set_count(int channel, int count)
520 {
521 if (vdma_debug)
522 printk("vdma_set_count: channel %d, count %08x\n", channel,
523 (unsigned) count);
524
525 r4030_write_reg32(JAZZ_R4030_CHNL_COUNT + (channel << 5), count);
526 }
527
528 EXPORT_SYMBOL(vdma_set_count);
529
530 /*
531 * Get Residual
532 */
vdma_get_residue(int channel)533 int vdma_get_residue(int channel)
534 {
535 int residual;
536
537 residual = r4030_read_reg32(JAZZ_R4030_CHNL_COUNT + (channel << 5));
538
539 if (vdma_debug)
540 printk("vdma_get_residual: channel %d: residual=%d\n",
541 channel, residual);
542
543 return residual;
544 }
545
546 /*
547 * Get DMA channel enable register
548 */
vdma_get_enable(int channel)549 int vdma_get_enable(int channel)
550 {
551 int enable;
552
553 enable = r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5));
554
555 if (vdma_debug)
556 printk("vdma_get_enable: channel %d: enable=%d\n", channel,
557 enable);
558
559 return enable;
560 }
561
jazz_dma_alloc(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)562 static void *jazz_dma_alloc(struct device *dev, size_t size,
563 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
564 {
565 void *ret;
566
567 ret = dma_direct_alloc(dev, size, dma_handle, gfp, attrs);
568 if (!ret)
569 return NULL;
570
571 *dma_handle = vdma_alloc(virt_to_phys(ret), size);
572 if (*dma_handle == VDMA_ERROR) {
573 dma_direct_free(dev, size, ret, *dma_handle, attrs);
574 return NULL;
575 }
576
577 if (!(attrs & DMA_ATTR_NON_CONSISTENT)) {
578 dma_cache_wback_inv((unsigned long)ret, size);
579 ret = (void *)UNCAC_ADDR(ret);
580 }
581 return ret;
582 }
583
jazz_dma_free(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle,unsigned long attrs)584 static void jazz_dma_free(struct device *dev, size_t size, void *vaddr,
585 dma_addr_t dma_handle, unsigned long attrs)
586 {
587 vdma_free(dma_handle);
588 if (!(attrs & DMA_ATTR_NON_CONSISTENT))
589 vaddr = (void *)CAC_ADDR((unsigned long)vaddr);
590 return dma_direct_free(dev, size, vaddr, dma_handle, attrs);
591 }
592
jazz_dma_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)593 static dma_addr_t jazz_dma_map_page(struct device *dev, struct page *page,
594 unsigned long offset, size_t size, enum dma_data_direction dir,
595 unsigned long attrs)
596 {
597 phys_addr_t phys = page_to_phys(page) + offset;
598
599 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
600 arch_sync_dma_for_device(dev, phys, size, dir);
601 return vdma_alloc(phys, size);
602 }
603
jazz_dma_unmap_page(struct device * dev,dma_addr_t dma_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)604 static void jazz_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
605 size_t size, enum dma_data_direction dir, unsigned long attrs)
606 {
607 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
608 arch_sync_dma_for_cpu(dev, vdma_log2phys(dma_addr), size, dir);
609 vdma_free(dma_addr);
610 }
611
jazz_dma_map_sg(struct device * dev,struct scatterlist * sglist,int nents,enum dma_data_direction dir,unsigned long attrs)612 static int jazz_dma_map_sg(struct device *dev, struct scatterlist *sglist,
613 int nents, enum dma_data_direction dir, unsigned long attrs)
614 {
615 int i;
616 struct scatterlist *sg;
617
618 for_each_sg(sglist, sg, nents, i) {
619 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
620 arch_sync_dma_for_device(dev, sg_phys(sg), sg->length,
621 dir);
622 sg->dma_address = vdma_alloc(sg_phys(sg), sg->length);
623 if (sg->dma_address == VDMA_ERROR)
624 return 0;
625 sg_dma_len(sg) = sg->length;
626 }
627
628 return nents;
629 }
630
jazz_dma_unmap_sg(struct device * dev,struct scatterlist * sglist,int nents,enum dma_data_direction dir,unsigned long attrs)631 static void jazz_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
632 int nents, enum dma_data_direction dir, unsigned long attrs)
633 {
634 int i;
635 struct scatterlist *sg;
636
637 for_each_sg(sglist, sg, nents, i) {
638 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
639 arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length,
640 dir);
641 vdma_free(sg->dma_address);
642 }
643 }
644
jazz_dma_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)645 static void jazz_dma_sync_single_for_device(struct device *dev,
646 dma_addr_t addr, size_t size, enum dma_data_direction dir)
647 {
648 arch_sync_dma_for_device(dev, vdma_log2phys(addr), size, dir);
649 }
650
jazz_dma_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)651 static void jazz_dma_sync_single_for_cpu(struct device *dev,
652 dma_addr_t addr, size_t size, enum dma_data_direction dir)
653 {
654 arch_sync_dma_for_cpu(dev, vdma_log2phys(addr), size, dir);
655 }
656
jazz_dma_sync_sg_for_device(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir)657 static void jazz_dma_sync_sg_for_device(struct device *dev,
658 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
659 {
660 struct scatterlist *sg;
661 int i;
662
663 for_each_sg(sgl, sg, nents, i)
664 arch_sync_dma_for_device(dev, sg_phys(sg), sg->length, dir);
665 }
666
jazz_dma_sync_sg_for_cpu(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir)667 static void jazz_dma_sync_sg_for_cpu(struct device *dev,
668 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
669 {
670 struct scatterlist *sg;
671 int i;
672
673 for_each_sg(sgl, sg, nents, i)
674 arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir);
675 }
676
jazz_dma_mapping_error(struct device * dev,dma_addr_t dma_addr)677 static int jazz_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
678 {
679 return dma_addr == VDMA_ERROR;
680 }
681
682 const struct dma_map_ops jazz_dma_ops = {
683 .alloc = jazz_dma_alloc,
684 .free = jazz_dma_free,
685 .mmap = arch_dma_mmap,
686 .map_page = jazz_dma_map_page,
687 .unmap_page = jazz_dma_unmap_page,
688 .map_sg = jazz_dma_map_sg,
689 .unmap_sg = jazz_dma_unmap_sg,
690 .sync_single_for_cpu = jazz_dma_sync_single_for_cpu,
691 .sync_single_for_device = jazz_dma_sync_single_for_device,
692 .sync_sg_for_cpu = jazz_dma_sync_sg_for_cpu,
693 .sync_sg_for_device = jazz_dma_sync_sg_for_device,
694 .dma_supported = dma_direct_supported,
695 .cache_sync = arch_dma_cache_sync,
696 .mapping_error = jazz_dma_mapping_error,
697 };
698 EXPORT_SYMBOL(jazz_dma_ops);
699