1 /*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
8 * Christoffer Dall <c.dall@virtualopensystems.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23 #include <linux/bsearch.h>
24 #include <linux/kvm_host.h>
25 #include <linux/mm.h>
26 #include <linux/printk.h>
27 #include <linux/uaccess.h>
28
29 #include <asm/cacheflush.h>
30 #include <asm/cputype.h>
31 #include <asm/debug-monitors.h>
32 #include <asm/esr.h>
33 #include <asm/kvm_arm.h>
34 #include <asm/kvm_coproc.h>
35 #include <asm/kvm_emulate.h>
36 #include <asm/kvm_host.h>
37 #include <asm/kvm_hyp.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/perf_event.h>
40 #include <asm/sysreg.h>
41
42 #include <trace/events/kvm.h>
43
44 #include "sys_regs.h"
45
46 #include "trace.h"
47
48 /*
49 * All of this file is extremly similar to the ARM coproc.c, but the
50 * types are different. My gut feeling is that it should be pretty
51 * easy to merge, but that would be an ABI breakage -- again. VFP
52 * would also need to be abstracted.
53 *
54 * For AArch32, we only take care of what is being trapped. Anything
55 * that has to do with init and userspace access has to go via the
56 * 64bit interface.
57 */
58
read_from_write_only(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)59 static bool read_from_write_only(struct kvm_vcpu *vcpu,
60 struct sys_reg_params *params,
61 const struct sys_reg_desc *r)
62 {
63 WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
64 print_sys_reg_instr(params);
65 kvm_inject_undefined(vcpu);
66 return false;
67 }
68
write_to_read_only(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)69 static bool write_to_read_only(struct kvm_vcpu *vcpu,
70 struct sys_reg_params *params,
71 const struct sys_reg_desc *r)
72 {
73 WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
74 print_sys_reg_instr(params);
75 kvm_inject_undefined(vcpu);
76 return false;
77 }
78
vcpu_read_sys_reg(struct kvm_vcpu * vcpu,int reg)79 u64 vcpu_read_sys_reg(struct kvm_vcpu *vcpu, int reg)
80 {
81 if (!vcpu->arch.sysregs_loaded_on_cpu)
82 goto immediate_read;
83
84 /*
85 * System registers listed in the switch are not saved on every
86 * exit from the guest but are only saved on vcpu_put.
87 *
88 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
89 * should never be listed below, because the guest cannot modify its
90 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
91 * thread when emulating cross-VCPU communication.
92 */
93 switch (reg) {
94 case CSSELR_EL1: return read_sysreg_s(SYS_CSSELR_EL1);
95 case SCTLR_EL1: return read_sysreg_s(sctlr_EL12);
96 case ACTLR_EL1: return read_sysreg_s(SYS_ACTLR_EL1);
97 case CPACR_EL1: return read_sysreg_s(cpacr_EL12);
98 case TTBR0_EL1: return read_sysreg_s(ttbr0_EL12);
99 case TTBR1_EL1: return read_sysreg_s(ttbr1_EL12);
100 case TCR_EL1: return read_sysreg_s(tcr_EL12);
101 case ESR_EL1: return read_sysreg_s(esr_EL12);
102 case AFSR0_EL1: return read_sysreg_s(afsr0_EL12);
103 case AFSR1_EL1: return read_sysreg_s(afsr1_EL12);
104 case FAR_EL1: return read_sysreg_s(far_EL12);
105 case MAIR_EL1: return read_sysreg_s(mair_EL12);
106 case VBAR_EL1: return read_sysreg_s(vbar_EL12);
107 case CONTEXTIDR_EL1: return read_sysreg_s(contextidr_EL12);
108 case TPIDR_EL0: return read_sysreg_s(SYS_TPIDR_EL0);
109 case TPIDRRO_EL0: return read_sysreg_s(SYS_TPIDRRO_EL0);
110 case TPIDR_EL1: return read_sysreg_s(SYS_TPIDR_EL1);
111 case AMAIR_EL1: return read_sysreg_s(amair_EL12);
112 case CNTKCTL_EL1: return read_sysreg_s(cntkctl_EL12);
113 case PAR_EL1: return read_sysreg_s(SYS_PAR_EL1);
114 case DACR32_EL2: return read_sysreg_s(SYS_DACR32_EL2);
115 case IFSR32_EL2: return read_sysreg_s(SYS_IFSR32_EL2);
116 case DBGVCR32_EL2: return read_sysreg_s(SYS_DBGVCR32_EL2);
117 }
118
119 immediate_read:
120 return __vcpu_sys_reg(vcpu, reg);
121 }
122
vcpu_write_sys_reg(struct kvm_vcpu * vcpu,u64 val,int reg)123 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
124 {
125 if (!vcpu->arch.sysregs_loaded_on_cpu)
126 goto immediate_write;
127
128 /*
129 * System registers listed in the switch are not restored on every
130 * entry to the guest but are only restored on vcpu_load.
131 *
132 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
133 * should never be listed below, because the the MPIDR should only be
134 * set once, before running the VCPU, and never changed later.
135 */
136 switch (reg) {
137 case CSSELR_EL1: write_sysreg_s(val, SYS_CSSELR_EL1); return;
138 case SCTLR_EL1: write_sysreg_s(val, sctlr_EL12); return;
139 case ACTLR_EL1: write_sysreg_s(val, SYS_ACTLR_EL1); return;
140 case CPACR_EL1: write_sysreg_s(val, cpacr_EL12); return;
141 case TTBR0_EL1: write_sysreg_s(val, ttbr0_EL12); return;
142 case TTBR1_EL1: write_sysreg_s(val, ttbr1_EL12); return;
143 case TCR_EL1: write_sysreg_s(val, tcr_EL12); return;
144 case ESR_EL1: write_sysreg_s(val, esr_EL12); return;
145 case AFSR0_EL1: write_sysreg_s(val, afsr0_EL12); return;
146 case AFSR1_EL1: write_sysreg_s(val, afsr1_EL12); return;
147 case FAR_EL1: write_sysreg_s(val, far_EL12); return;
148 case MAIR_EL1: write_sysreg_s(val, mair_EL12); return;
149 case VBAR_EL1: write_sysreg_s(val, vbar_EL12); return;
150 case CONTEXTIDR_EL1: write_sysreg_s(val, contextidr_EL12); return;
151 case TPIDR_EL0: write_sysreg_s(val, SYS_TPIDR_EL0); return;
152 case TPIDRRO_EL0: write_sysreg_s(val, SYS_TPIDRRO_EL0); return;
153 case TPIDR_EL1: write_sysreg_s(val, SYS_TPIDR_EL1); return;
154 case AMAIR_EL1: write_sysreg_s(val, amair_EL12); return;
155 case CNTKCTL_EL1: write_sysreg_s(val, cntkctl_EL12); return;
156 case PAR_EL1: write_sysreg_s(val, SYS_PAR_EL1); return;
157 case DACR32_EL2: write_sysreg_s(val, SYS_DACR32_EL2); return;
158 case IFSR32_EL2: write_sysreg_s(val, SYS_IFSR32_EL2); return;
159 case DBGVCR32_EL2: write_sysreg_s(val, SYS_DBGVCR32_EL2); return;
160 }
161
162 immediate_write:
163 __vcpu_sys_reg(vcpu, reg) = val;
164 }
165
166 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
167 static u32 cache_levels;
168
169 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
170 #define CSSELR_MAX 12
171
172 /* Which cache CCSIDR represents depends on CSSELR value. */
get_ccsidr(u32 csselr)173 static u32 get_ccsidr(u32 csselr)
174 {
175 u32 ccsidr;
176
177 /* Make sure noone else changes CSSELR during this! */
178 local_irq_disable();
179 write_sysreg(csselr, csselr_el1);
180 isb();
181 ccsidr = read_sysreg(ccsidr_el1);
182 local_irq_enable();
183
184 return ccsidr;
185 }
186
187 /*
188 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
189 */
access_dcsw(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)190 static bool access_dcsw(struct kvm_vcpu *vcpu,
191 struct sys_reg_params *p,
192 const struct sys_reg_desc *r)
193 {
194 if (!p->is_write)
195 return read_from_write_only(vcpu, p, r);
196
197 /*
198 * Only track S/W ops if we don't have FWB. It still indicates
199 * that the guest is a bit broken (S/W operations should only
200 * be done by firmware, knowing that there is only a single
201 * CPU left in the system, and certainly not from non-secure
202 * software).
203 */
204 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
205 kvm_set_way_flush(vcpu);
206
207 return true;
208 }
209
210 /*
211 * Generic accessor for VM registers. Only called as long as HCR_TVM
212 * is set. If the guest enables the MMU, we stop trapping the VM
213 * sys_regs and leave it in complete control of the caches.
214 */
access_vm_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)215 static bool access_vm_reg(struct kvm_vcpu *vcpu,
216 struct sys_reg_params *p,
217 const struct sys_reg_desc *r)
218 {
219 bool was_enabled = vcpu_has_cache_enabled(vcpu);
220 u64 val;
221 int reg = r->reg;
222
223 BUG_ON(!p->is_write);
224
225 /* See the 32bit mapping in kvm_host.h */
226 if (p->is_aarch32)
227 reg = r->reg / 2;
228
229 if (!p->is_aarch32 || !p->is_32bit) {
230 val = p->regval;
231 } else {
232 val = vcpu_read_sys_reg(vcpu, reg);
233 if (r->reg % 2)
234 val = (p->regval << 32) | (u64)lower_32_bits(val);
235 else
236 val = ((u64)upper_32_bits(val) << 32) |
237 lower_32_bits(p->regval);
238 }
239 vcpu_write_sys_reg(vcpu, val, reg);
240
241 kvm_toggle_cache(vcpu, was_enabled);
242 return true;
243 }
244
245 /*
246 * Trap handler for the GICv3 SGI generation system register.
247 * Forward the request to the VGIC emulation.
248 * The cp15_64 code makes sure this automatically works
249 * for both AArch64 and AArch32 accesses.
250 */
access_gic_sgi(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)251 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
252 struct sys_reg_params *p,
253 const struct sys_reg_desc *r)
254 {
255 bool g1;
256
257 if (!p->is_write)
258 return read_from_write_only(vcpu, p, r);
259
260 /*
261 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
262 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
263 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
264 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
265 * group.
266 */
267 if (p->is_aarch32) {
268 switch (p->Op1) {
269 default: /* Keep GCC quiet */
270 case 0: /* ICC_SGI1R */
271 g1 = true;
272 break;
273 case 1: /* ICC_ASGI1R */
274 case 2: /* ICC_SGI0R */
275 g1 = false;
276 break;
277 }
278 } else {
279 switch (p->Op2) {
280 default: /* Keep GCC quiet */
281 case 5: /* ICC_SGI1R_EL1 */
282 g1 = true;
283 break;
284 case 6: /* ICC_ASGI1R_EL1 */
285 case 7: /* ICC_SGI0R_EL1 */
286 g1 = false;
287 break;
288 }
289 }
290
291 vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
292
293 return true;
294 }
295
access_gic_sre(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)296 static bool access_gic_sre(struct kvm_vcpu *vcpu,
297 struct sys_reg_params *p,
298 const struct sys_reg_desc *r)
299 {
300 if (p->is_write)
301 return ignore_write(vcpu, p);
302
303 p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
304 return true;
305 }
306
trap_raz_wi(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)307 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
308 struct sys_reg_params *p,
309 const struct sys_reg_desc *r)
310 {
311 if (p->is_write)
312 return ignore_write(vcpu, p);
313 else
314 return read_zero(vcpu, p);
315 }
316
trap_undef(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)317 static bool trap_undef(struct kvm_vcpu *vcpu,
318 struct sys_reg_params *p,
319 const struct sys_reg_desc *r)
320 {
321 kvm_inject_undefined(vcpu);
322 return false;
323 }
324
trap_oslsr_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)325 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
326 struct sys_reg_params *p,
327 const struct sys_reg_desc *r)
328 {
329 if (p->is_write) {
330 return ignore_write(vcpu, p);
331 } else {
332 p->regval = (1 << 3);
333 return true;
334 }
335 }
336
trap_dbgauthstatus_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)337 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
338 struct sys_reg_params *p,
339 const struct sys_reg_desc *r)
340 {
341 if (p->is_write) {
342 return ignore_write(vcpu, p);
343 } else {
344 p->regval = read_sysreg(dbgauthstatus_el1);
345 return true;
346 }
347 }
348
349 /*
350 * We want to avoid world-switching all the DBG registers all the
351 * time:
352 *
353 * - If we've touched any debug register, it is likely that we're
354 * going to touch more of them. It then makes sense to disable the
355 * traps and start doing the save/restore dance
356 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
357 * then mandatory to save/restore the registers, as the guest
358 * depends on them.
359 *
360 * For this, we use a DIRTY bit, indicating the guest has modified the
361 * debug registers, used as follow:
362 *
363 * On guest entry:
364 * - If the dirty bit is set (because we're coming back from trapping),
365 * disable the traps, save host registers, restore guest registers.
366 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
367 * set the dirty bit, disable the traps, save host registers,
368 * restore guest registers.
369 * - Otherwise, enable the traps
370 *
371 * On guest exit:
372 * - If the dirty bit is set, save guest registers, restore host
373 * registers and clear the dirty bit. This ensure that the host can
374 * now use the debug registers.
375 */
trap_debug_regs(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)376 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
377 struct sys_reg_params *p,
378 const struct sys_reg_desc *r)
379 {
380 if (p->is_write) {
381 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
382 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
383 } else {
384 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
385 }
386
387 trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
388
389 return true;
390 }
391
392 /*
393 * reg_to_dbg/dbg_to_reg
394 *
395 * A 32 bit write to a debug register leave top bits alone
396 * A 32 bit read from a debug register only returns the bottom bits
397 *
398 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
399 * hyp.S code switches between host and guest values in future.
400 */
reg_to_dbg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,u64 * dbg_reg)401 static void reg_to_dbg(struct kvm_vcpu *vcpu,
402 struct sys_reg_params *p,
403 u64 *dbg_reg)
404 {
405 u64 val = p->regval;
406
407 if (p->is_32bit) {
408 val &= 0xffffffffUL;
409 val |= ((*dbg_reg >> 32) << 32);
410 }
411
412 *dbg_reg = val;
413 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
414 }
415
dbg_to_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,u64 * dbg_reg)416 static void dbg_to_reg(struct kvm_vcpu *vcpu,
417 struct sys_reg_params *p,
418 u64 *dbg_reg)
419 {
420 p->regval = *dbg_reg;
421 if (p->is_32bit)
422 p->regval &= 0xffffffffUL;
423 }
424
trap_bvr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)425 static bool trap_bvr(struct kvm_vcpu *vcpu,
426 struct sys_reg_params *p,
427 const struct sys_reg_desc *rd)
428 {
429 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
430
431 if (p->is_write)
432 reg_to_dbg(vcpu, p, dbg_reg);
433 else
434 dbg_to_reg(vcpu, p, dbg_reg);
435
436 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
437
438 return true;
439 }
440
set_bvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)441 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
442 const struct kvm_one_reg *reg, void __user *uaddr)
443 {
444 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
445
446 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
447 return -EFAULT;
448 return 0;
449 }
450
get_bvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)451 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
452 const struct kvm_one_reg *reg, void __user *uaddr)
453 {
454 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
455
456 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
457 return -EFAULT;
458 return 0;
459 }
460
reset_bvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)461 static void reset_bvr(struct kvm_vcpu *vcpu,
462 const struct sys_reg_desc *rd)
463 {
464 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
465 }
466
trap_bcr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)467 static bool trap_bcr(struct kvm_vcpu *vcpu,
468 struct sys_reg_params *p,
469 const struct sys_reg_desc *rd)
470 {
471 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
472
473 if (p->is_write)
474 reg_to_dbg(vcpu, p, dbg_reg);
475 else
476 dbg_to_reg(vcpu, p, dbg_reg);
477
478 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
479
480 return true;
481 }
482
set_bcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)483 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
484 const struct kvm_one_reg *reg, void __user *uaddr)
485 {
486 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
487
488 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
489 return -EFAULT;
490
491 return 0;
492 }
493
get_bcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)494 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
495 const struct kvm_one_reg *reg, void __user *uaddr)
496 {
497 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
498
499 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
500 return -EFAULT;
501 return 0;
502 }
503
reset_bcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)504 static void reset_bcr(struct kvm_vcpu *vcpu,
505 const struct sys_reg_desc *rd)
506 {
507 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
508 }
509
trap_wvr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)510 static bool trap_wvr(struct kvm_vcpu *vcpu,
511 struct sys_reg_params *p,
512 const struct sys_reg_desc *rd)
513 {
514 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
515
516 if (p->is_write)
517 reg_to_dbg(vcpu, p, dbg_reg);
518 else
519 dbg_to_reg(vcpu, p, dbg_reg);
520
521 trace_trap_reg(__func__, rd->reg, p->is_write,
522 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
523
524 return true;
525 }
526
set_wvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)527 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
528 const struct kvm_one_reg *reg, void __user *uaddr)
529 {
530 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
531
532 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
533 return -EFAULT;
534 return 0;
535 }
536
get_wvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)537 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
538 const struct kvm_one_reg *reg, void __user *uaddr)
539 {
540 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
541
542 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
543 return -EFAULT;
544 return 0;
545 }
546
reset_wvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)547 static void reset_wvr(struct kvm_vcpu *vcpu,
548 const struct sys_reg_desc *rd)
549 {
550 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
551 }
552
trap_wcr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)553 static bool trap_wcr(struct kvm_vcpu *vcpu,
554 struct sys_reg_params *p,
555 const struct sys_reg_desc *rd)
556 {
557 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
558
559 if (p->is_write)
560 reg_to_dbg(vcpu, p, dbg_reg);
561 else
562 dbg_to_reg(vcpu, p, dbg_reg);
563
564 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
565
566 return true;
567 }
568
set_wcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)569 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
570 const struct kvm_one_reg *reg, void __user *uaddr)
571 {
572 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
573
574 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
575 return -EFAULT;
576 return 0;
577 }
578
get_wcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)579 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
580 const struct kvm_one_reg *reg, void __user *uaddr)
581 {
582 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
583
584 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
585 return -EFAULT;
586 return 0;
587 }
588
reset_wcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)589 static void reset_wcr(struct kvm_vcpu *vcpu,
590 const struct sys_reg_desc *rd)
591 {
592 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
593 }
594
reset_amair_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)595 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
596 {
597 u64 amair = read_sysreg(amair_el1);
598 vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
599 }
600
reset_mpidr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)601 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
602 {
603 u64 mpidr;
604
605 /*
606 * Map the vcpu_id into the first three affinity level fields of
607 * the MPIDR. We limit the number of VCPUs in level 0 due to a
608 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
609 * of the GICv3 to be able to address each CPU directly when
610 * sending IPIs.
611 */
612 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
613 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
614 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
615 vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
616 }
617
reset_pmcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)618 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
619 {
620 u64 pmcr, val;
621
622 pmcr = read_sysreg(pmcr_el0);
623 /*
624 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
625 * except PMCR.E resetting to zero.
626 */
627 val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
628 | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
629 __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
630 }
631
check_pmu_access_disabled(struct kvm_vcpu * vcpu,u64 flags)632 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
633 {
634 u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
635 bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
636
637 if (!enabled)
638 kvm_inject_undefined(vcpu);
639
640 return !enabled;
641 }
642
pmu_access_el0_disabled(struct kvm_vcpu * vcpu)643 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
644 {
645 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
646 }
647
pmu_write_swinc_el0_disabled(struct kvm_vcpu * vcpu)648 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
649 {
650 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
651 }
652
pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu * vcpu)653 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
654 {
655 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
656 }
657
pmu_access_event_counter_el0_disabled(struct kvm_vcpu * vcpu)658 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
659 {
660 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
661 }
662
access_pmcr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)663 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
664 const struct sys_reg_desc *r)
665 {
666 u64 val;
667
668 if (!kvm_arm_pmu_v3_ready(vcpu))
669 return trap_raz_wi(vcpu, p, r);
670
671 if (pmu_access_el0_disabled(vcpu))
672 return false;
673
674 if (p->is_write) {
675 /* Only update writeable bits of PMCR */
676 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
677 val &= ~ARMV8_PMU_PMCR_MASK;
678 val |= p->regval & ARMV8_PMU_PMCR_MASK;
679 __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
680 kvm_pmu_handle_pmcr(vcpu, val);
681 } else {
682 /* PMCR.P & PMCR.C are RAZ */
683 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
684 & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
685 p->regval = val;
686 }
687
688 return true;
689 }
690
access_pmselr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)691 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
692 const struct sys_reg_desc *r)
693 {
694 if (!kvm_arm_pmu_v3_ready(vcpu))
695 return trap_raz_wi(vcpu, p, r);
696
697 if (pmu_access_event_counter_el0_disabled(vcpu))
698 return false;
699
700 if (p->is_write)
701 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
702 else
703 /* return PMSELR.SEL field */
704 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
705 & ARMV8_PMU_COUNTER_MASK;
706
707 return true;
708 }
709
access_pmceid(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)710 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
711 const struct sys_reg_desc *r)
712 {
713 u64 pmceid;
714
715 if (!kvm_arm_pmu_v3_ready(vcpu))
716 return trap_raz_wi(vcpu, p, r);
717
718 BUG_ON(p->is_write);
719
720 if (pmu_access_el0_disabled(vcpu))
721 return false;
722
723 if (!(p->Op2 & 1))
724 pmceid = read_sysreg(pmceid0_el0);
725 else
726 pmceid = read_sysreg(pmceid1_el0);
727
728 p->regval = pmceid;
729
730 return true;
731 }
732
pmu_counter_idx_valid(struct kvm_vcpu * vcpu,u64 idx)733 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
734 {
735 u64 pmcr, val;
736
737 pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
738 val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
739 if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
740 kvm_inject_undefined(vcpu);
741 return false;
742 }
743
744 return true;
745 }
746
access_pmu_evcntr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)747 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
748 struct sys_reg_params *p,
749 const struct sys_reg_desc *r)
750 {
751 u64 idx;
752
753 if (!kvm_arm_pmu_v3_ready(vcpu))
754 return trap_raz_wi(vcpu, p, r);
755
756 if (r->CRn == 9 && r->CRm == 13) {
757 if (r->Op2 == 2) {
758 /* PMXEVCNTR_EL0 */
759 if (pmu_access_event_counter_el0_disabled(vcpu))
760 return false;
761
762 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
763 & ARMV8_PMU_COUNTER_MASK;
764 } else if (r->Op2 == 0) {
765 /* PMCCNTR_EL0 */
766 if (pmu_access_cycle_counter_el0_disabled(vcpu))
767 return false;
768
769 idx = ARMV8_PMU_CYCLE_IDX;
770 } else {
771 return false;
772 }
773 } else if (r->CRn == 0 && r->CRm == 9) {
774 /* PMCCNTR */
775 if (pmu_access_event_counter_el0_disabled(vcpu))
776 return false;
777
778 idx = ARMV8_PMU_CYCLE_IDX;
779 } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
780 /* PMEVCNTRn_EL0 */
781 if (pmu_access_event_counter_el0_disabled(vcpu))
782 return false;
783
784 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
785 } else {
786 return false;
787 }
788
789 if (!pmu_counter_idx_valid(vcpu, idx))
790 return false;
791
792 if (p->is_write) {
793 if (pmu_access_el0_disabled(vcpu))
794 return false;
795
796 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
797 } else {
798 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
799 }
800
801 return true;
802 }
803
access_pmu_evtyper(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)804 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
805 const struct sys_reg_desc *r)
806 {
807 u64 idx, reg;
808
809 if (!kvm_arm_pmu_v3_ready(vcpu))
810 return trap_raz_wi(vcpu, p, r);
811
812 if (pmu_access_el0_disabled(vcpu))
813 return false;
814
815 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
816 /* PMXEVTYPER_EL0 */
817 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
818 reg = PMEVTYPER0_EL0 + idx;
819 } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
820 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
821 if (idx == ARMV8_PMU_CYCLE_IDX)
822 reg = PMCCFILTR_EL0;
823 else
824 /* PMEVTYPERn_EL0 */
825 reg = PMEVTYPER0_EL0 + idx;
826 } else {
827 BUG();
828 }
829
830 if (!pmu_counter_idx_valid(vcpu, idx))
831 return false;
832
833 if (p->is_write) {
834 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
835 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
836 } else {
837 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
838 }
839
840 return true;
841 }
842
access_pmcnten(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)843 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
844 const struct sys_reg_desc *r)
845 {
846 u64 val, mask;
847
848 if (!kvm_arm_pmu_v3_ready(vcpu))
849 return trap_raz_wi(vcpu, p, r);
850
851 if (pmu_access_el0_disabled(vcpu))
852 return false;
853
854 mask = kvm_pmu_valid_counter_mask(vcpu);
855 if (p->is_write) {
856 val = p->regval & mask;
857 if (r->Op2 & 0x1) {
858 /* accessing PMCNTENSET_EL0 */
859 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
860 kvm_pmu_enable_counter(vcpu, val);
861 } else {
862 /* accessing PMCNTENCLR_EL0 */
863 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
864 kvm_pmu_disable_counter(vcpu, val);
865 }
866 } else {
867 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
868 }
869
870 return true;
871 }
872
access_pminten(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)873 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
874 const struct sys_reg_desc *r)
875 {
876 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
877
878 if (!kvm_arm_pmu_v3_ready(vcpu))
879 return trap_raz_wi(vcpu, p, r);
880
881 if (!vcpu_mode_priv(vcpu)) {
882 kvm_inject_undefined(vcpu);
883 return false;
884 }
885
886 if (p->is_write) {
887 u64 val = p->regval & mask;
888
889 if (r->Op2 & 0x1)
890 /* accessing PMINTENSET_EL1 */
891 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
892 else
893 /* accessing PMINTENCLR_EL1 */
894 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
895 } else {
896 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
897 }
898
899 return true;
900 }
901
access_pmovs(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)902 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
903 const struct sys_reg_desc *r)
904 {
905 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
906
907 if (!kvm_arm_pmu_v3_ready(vcpu))
908 return trap_raz_wi(vcpu, p, r);
909
910 if (pmu_access_el0_disabled(vcpu))
911 return false;
912
913 if (p->is_write) {
914 if (r->CRm & 0x2)
915 /* accessing PMOVSSET_EL0 */
916 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
917 else
918 /* accessing PMOVSCLR_EL0 */
919 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
920 } else {
921 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
922 }
923
924 return true;
925 }
926
access_pmswinc(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)927 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
928 const struct sys_reg_desc *r)
929 {
930 u64 mask;
931
932 if (!kvm_arm_pmu_v3_ready(vcpu))
933 return trap_raz_wi(vcpu, p, r);
934
935 if (!p->is_write)
936 return read_from_write_only(vcpu, p, r);
937
938 if (pmu_write_swinc_el0_disabled(vcpu))
939 return false;
940
941 mask = kvm_pmu_valid_counter_mask(vcpu);
942 kvm_pmu_software_increment(vcpu, p->regval & mask);
943 return true;
944 }
945
access_pmuserenr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)946 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
947 const struct sys_reg_desc *r)
948 {
949 if (!kvm_arm_pmu_v3_ready(vcpu))
950 return trap_raz_wi(vcpu, p, r);
951
952 if (p->is_write) {
953 if (!vcpu_mode_priv(vcpu)) {
954 kvm_inject_undefined(vcpu);
955 return false;
956 }
957
958 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
959 p->regval & ARMV8_PMU_USERENR_MASK;
960 } else {
961 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
962 & ARMV8_PMU_USERENR_MASK;
963 }
964
965 return true;
966 }
967
968 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
969 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
970 { SYS_DESC(SYS_DBGBVRn_EL1(n)), \
971 trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr }, \
972 { SYS_DESC(SYS_DBGBCRn_EL1(n)), \
973 trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr }, \
974 { SYS_DESC(SYS_DBGWVRn_EL1(n)), \
975 trap_wvr, reset_wvr, n, 0, get_wvr, set_wvr }, \
976 { SYS_DESC(SYS_DBGWCRn_EL1(n)), \
977 trap_wcr, reset_wcr, n, 0, get_wcr, set_wcr }
978
979 /* Macro to expand the PMEVCNTRn_EL0 register */
980 #define PMU_PMEVCNTR_EL0(n) \
981 { SYS_DESC(SYS_PMEVCNTRn_EL0(n)), \
982 access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
983
984 /* Macro to expand the PMEVTYPERn_EL0 register */
985 #define PMU_PMEVTYPER_EL0(n) \
986 { SYS_DESC(SYS_PMEVTYPERn_EL0(n)), \
987 access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
988
access_cntp_tval(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)989 static bool access_cntp_tval(struct kvm_vcpu *vcpu,
990 struct sys_reg_params *p,
991 const struct sys_reg_desc *r)
992 {
993 u64 now = kvm_phys_timer_read();
994 u64 cval;
995
996 if (p->is_write) {
997 kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL,
998 p->regval + now);
999 } else {
1000 cval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
1001 p->regval = cval - now;
1002 }
1003
1004 return true;
1005 }
1006
access_cntp_ctl(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1007 static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
1008 struct sys_reg_params *p,
1009 const struct sys_reg_desc *r)
1010 {
1011 if (p->is_write)
1012 kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CTL, p->regval);
1013 else
1014 p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CTL);
1015
1016 return true;
1017 }
1018
access_cntp_cval(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1019 static bool access_cntp_cval(struct kvm_vcpu *vcpu,
1020 struct sys_reg_params *p,
1021 const struct sys_reg_desc *r)
1022 {
1023 if (p->is_write)
1024 kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, p->regval);
1025 else
1026 p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
1027
1028 return true;
1029 }
1030
1031 /* Read a sanitised cpufeature ID register by sys_reg_desc */
read_id_reg(struct sys_reg_desc const * r,bool raz)1032 static u64 read_id_reg(struct sys_reg_desc const *r, bool raz)
1033 {
1034 u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1035 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1036 u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1037
1038 if (id == SYS_ID_AA64PFR0_EL1) {
1039 if (val & (0xfUL << ID_AA64PFR0_SVE_SHIFT))
1040 kvm_debug("SVE unsupported for guests, suppressing\n");
1041
1042 val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
1043 } else if (id == SYS_ID_AA64MMFR1_EL1) {
1044 if (val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))
1045 kvm_debug("LORegions unsupported for guests, suppressing\n");
1046
1047 val &= ~(0xfUL << ID_AA64MMFR1_LOR_SHIFT);
1048 }
1049
1050 return val;
1051 }
1052
1053 /* cpufeature ID register access trap handlers */
1054
__access_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r,bool raz)1055 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1056 struct sys_reg_params *p,
1057 const struct sys_reg_desc *r,
1058 bool raz)
1059 {
1060 if (p->is_write)
1061 return write_to_read_only(vcpu, p, r);
1062
1063 p->regval = read_id_reg(r, raz);
1064 return true;
1065 }
1066
access_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1067 static bool access_id_reg(struct kvm_vcpu *vcpu,
1068 struct sys_reg_params *p,
1069 const struct sys_reg_desc *r)
1070 {
1071 return __access_id_reg(vcpu, p, r, false);
1072 }
1073
access_raz_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1074 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1075 struct sys_reg_params *p,
1076 const struct sys_reg_desc *r)
1077 {
1078 return __access_id_reg(vcpu, p, r, true);
1079 }
1080
1081 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1082 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1083 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1084
1085 /*
1086 * cpufeature ID register user accessors
1087 *
1088 * For now, these registers are immutable for userspace, so no values
1089 * are stored, and for set_id_reg() we don't allow the effective value
1090 * to be changed.
1091 */
__get_id_reg(const struct sys_reg_desc * rd,void __user * uaddr,bool raz)1092 static int __get_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
1093 bool raz)
1094 {
1095 const u64 id = sys_reg_to_index(rd);
1096 const u64 val = read_id_reg(rd, raz);
1097
1098 return reg_to_user(uaddr, &val, id);
1099 }
1100
__set_id_reg(const struct sys_reg_desc * rd,void __user * uaddr,bool raz)1101 static int __set_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
1102 bool raz)
1103 {
1104 const u64 id = sys_reg_to_index(rd);
1105 int err;
1106 u64 val;
1107
1108 err = reg_from_user(&val, uaddr, id);
1109 if (err)
1110 return err;
1111
1112 /* This is what we mean by invariant: you can't change it. */
1113 if (val != read_id_reg(rd, raz))
1114 return -EINVAL;
1115
1116 return 0;
1117 }
1118
get_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)1119 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1120 const struct kvm_one_reg *reg, void __user *uaddr)
1121 {
1122 return __get_id_reg(rd, uaddr, false);
1123 }
1124
set_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)1125 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1126 const struct kvm_one_reg *reg, void __user *uaddr)
1127 {
1128 return __set_id_reg(rd, uaddr, false);
1129 }
1130
get_raz_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)1131 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1132 const struct kvm_one_reg *reg, void __user *uaddr)
1133 {
1134 return __get_id_reg(rd, uaddr, true);
1135 }
1136
set_raz_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,const struct kvm_one_reg * reg,void __user * uaddr)1137 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1138 const struct kvm_one_reg *reg, void __user *uaddr)
1139 {
1140 return __set_id_reg(rd, uaddr, true);
1141 }
1142
1143 /* sys_reg_desc initialiser for known cpufeature ID registers */
1144 #define ID_SANITISED(name) { \
1145 SYS_DESC(SYS_##name), \
1146 .access = access_id_reg, \
1147 .get_user = get_id_reg, \
1148 .set_user = set_id_reg, \
1149 }
1150
1151 /*
1152 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1153 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1154 * (1 <= crm < 8, 0 <= Op2 < 8).
1155 */
1156 #define ID_UNALLOCATED(crm, op2) { \
1157 Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \
1158 .access = access_raz_id_reg, \
1159 .get_user = get_raz_id_reg, \
1160 .set_user = set_raz_id_reg, \
1161 }
1162
1163 /*
1164 * sys_reg_desc initialiser for known ID registers that we hide from guests.
1165 * For now, these are exposed just like unallocated ID regs: they appear
1166 * RAZ for the guest.
1167 */
1168 #define ID_HIDDEN(name) { \
1169 SYS_DESC(SYS_##name), \
1170 .access = access_raz_id_reg, \
1171 .get_user = get_raz_id_reg, \
1172 .set_user = set_raz_id_reg, \
1173 }
1174
1175 /*
1176 * Architected system registers.
1177 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1178 *
1179 * Debug handling: We do trap most, if not all debug related system
1180 * registers. The implementation is good enough to ensure that a guest
1181 * can use these with minimal performance degradation. The drawback is
1182 * that we don't implement any of the external debug, none of the
1183 * OSlock protocol. This should be revisited if we ever encounter a
1184 * more demanding guest...
1185 */
1186 static const struct sys_reg_desc sys_reg_descs[] = {
1187 { SYS_DESC(SYS_DC_ISW), access_dcsw },
1188 { SYS_DESC(SYS_DC_CSW), access_dcsw },
1189 { SYS_DESC(SYS_DC_CISW), access_dcsw },
1190
1191 DBG_BCR_BVR_WCR_WVR_EL1(0),
1192 DBG_BCR_BVR_WCR_WVR_EL1(1),
1193 { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1194 { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1195 DBG_BCR_BVR_WCR_WVR_EL1(2),
1196 DBG_BCR_BVR_WCR_WVR_EL1(3),
1197 DBG_BCR_BVR_WCR_WVR_EL1(4),
1198 DBG_BCR_BVR_WCR_WVR_EL1(5),
1199 DBG_BCR_BVR_WCR_WVR_EL1(6),
1200 DBG_BCR_BVR_WCR_WVR_EL1(7),
1201 DBG_BCR_BVR_WCR_WVR_EL1(8),
1202 DBG_BCR_BVR_WCR_WVR_EL1(9),
1203 DBG_BCR_BVR_WCR_WVR_EL1(10),
1204 DBG_BCR_BVR_WCR_WVR_EL1(11),
1205 DBG_BCR_BVR_WCR_WVR_EL1(12),
1206 DBG_BCR_BVR_WCR_WVR_EL1(13),
1207 DBG_BCR_BVR_WCR_WVR_EL1(14),
1208 DBG_BCR_BVR_WCR_WVR_EL1(15),
1209
1210 { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1211 { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1212 { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1213 { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1214 { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1215 { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1216 { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1217 { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1218
1219 { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1220 { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1221 // DBGDTR[TR]X_EL0 share the same encoding
1222 { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1223
1224 { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1225
1226 { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1227
1228 /*
1229 * ID regs: all ID_SANITISED() entries here must have corresponding
1230 * entries in arm64_ftr_regs[].
1231 */
1232
1233 /* AArch64 mappings of the AArch32 ID registers */
1234 /* CRm=1 */
1235 ID_SANITISED(ID_PFR0_EL1),
1236 ID_SANITISED(ID_PFR1_EL1),
1237 ID_SANITISED(ID_DFR0_EL1),
1238 ID_HIDDEN(ID_AFR0_EL1),
1239 ID_SANITISED(ID_MMFR0_EL1),
1240 ID_SANITISED(ID_MMFR1_EL1),
1241 ID_SANITISED(ID_MMFR2_EL1),
1242 ID_SANITISED(ID_MMFR3_EL1),
1243
1244 /* CRm=2 */
1245 ID_SANITISED(ID_ISAR0_EL1),
1246 ID_SANITISED(ID_ISAR1_EL1),
1247 ID_SANITISED(ID_ISAR2_EL1),
1248 ID_SANITISED(ID_ISAR3_EL1),
1249 ID_SANITISED(ID_ISAR4_EL1),
1250 ID_SANITISED(ID_ISAR5_EL1),
1251 ID_SANITISED(ID_MMFR4_EL1),
1252 ID_UNALLOCATED(2,7),
1253
1254 /* CRm=3 */
1255 ID_SANITISED(MVFR0_EL1),
1256 ID_SANITISED(MVFR1_EL1),
1257 ID_SANITISED(MVFR2_EL1),
1258 ID_UNALLOCATED(3,3),
1259 ID_UNALLOCATED(3,4),
1260 ID_UNALLOCATED(3,5),
1261 ID_UNALLOCATED(3,6),
1262 ID_UNALLOCATED(3,7),
1263
1264 /* AArch64 ID registers */
1265 /* CRm=4 */
1266 ID_SANITISED(ID_AA64PFR0_EL1),
1267 ID_SANITISED(ID_AA64PFR1_EL1),
1268 ID_UNALLOCATED(4,2),
1269 ID_UNALLOCATED(4,3),
1270 ID_UNALLOCATED(4,4),
1271 ID_UNALLOCATED(4,5),
1272 ID_UNALLOCATED(4,6),
1273 ID_UNALLOCATED(4,7),
1274
1275 /* CRm=5 */
1276 ID_SANITISED(ID_AA64DFR0_EL1),
1277 ID_SANITISED(ID_AA64DFR1_EL1),
1278 ID_UNALLOCATED(5,2),
1279 ID_UNALLOCATED(5,3),
1280 ID_HIDDEN(ID_AA64AFR0_EL1),
1281 ID_HIDDEN(ID_AA64AFR1_EL1),
1282 ID_UNALLOCATED(5,6),
1283 ID_UNALLOCATED(5,7),
1284
1285 /* CRm=6 */
1286 ID_SANITISED(ID_AA64ISAR0_EL1),
1287 ID_SANITISED(ID_AA64ISAR1_EL1),
1288 ID_UNALLOCATED(6,2),
1289 ID_UNALLOCATED(6,3),
1290 ID_UNALLOCATED(6,4),
1291 ID_UNALLOCATED(6,5),
1292 ID_UNALLOCATED(6,6),
1293 ID_UNALLOCATED(6,7),
1294
1295 /* CRm=7 */
1296 ID_SANITISED(ID_AA64MMFR0_EL1),
1297 ID_SANITISED(ID_AA64MMFR1_EL1),
1298 ID_SANITISED(ID_AA64MMFR2_EL1),
1299 ID_UNALLOCATED(7,3),
1300 ID_UNALLOCATED(7,4),
1301 ID_UNALLOCATED(7,5),
1302 ID_UNALLOCATED(7,6),
1303 ID_UNALLOCATED(7,7),
1304
1305 { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1306 { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1307 { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1308 { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1309 { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1310
1311 { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1312 { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1313 { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1314
1315 { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1316 { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1317 { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1318 { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1319 { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1320 { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1321 { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1322 { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1323
1324 { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1325 { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1326
1327 { SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1328 { SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 },
1329
1330 { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1331 { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1332
1333 { SYS_DESC(SYS_LORSA_EL1), trap_undef },
1334 { SYS_DESC(SYS_LOREA_EL1), trap_undef },
1335 { SYS_DESC(SYS_LORN_EL1), trap_undef },
1336 { SYS_DESC(SYS_LORC_EL1), trap_undef },
1337 { SYS_DESC(SYS_LORID_EL1), trap_undef },
1338
1339 { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1340 { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1341
1342 { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1343 { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1344 { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1345 { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1346 { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1347 { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1348 { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1349 { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1350 { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1351 { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1352 { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1353 { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1354
1355 { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1356 { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1357
1358 { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1359
1360 { SYS_DESC(SYS_CSSELR_EL1), NULL, reset_unknown, CSSELR_EL1 },
1361
1362 { SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, },
1363 { SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1364 { SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 },
1365 { SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 },
1366 { SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
1367 { SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
1368 { SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
1369 { SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
1370 { SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1371 { SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
1372 { SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
1373 /*
1374 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1375 * in 32bit mode. Here we choose to reset it as zero for consistency.
1376 */
1377 { SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1378 { SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1379
1380 { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1381 { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1382
1383 { SYS_DESC(SYS_CNTP_TVAL_EL0), access_cntp_tval },
1384 { SYS_DESC(SYS_CNTP_CTL_EL0), access_cntp_ctl },
1385 { SYS_DESC(SYS_CNTP_CVAL_EL0), access_cntp_cval },
1386
1387 /* PMEVCNTRn_EL0 */
1388 PMU_PMEVCNTR_EL0(0),
1389 PMU_PMEVCNTR_EL0(1),
1390 PMU_PMEVCNTR_EL0(2),
1391 PMU_PMEVCNTR_EL0(3),
1392 PMU_PMEVCNTR_EL0(4),
1393 PMU_PMEVCNTR_EL0(5),
1394 PMU_PMEVCNTR_EL0(6),
1395 PMU_PMEVCNTR_EL0(7),
1396 PMU_PMEVCNTR_EL0(8),
1397 PMU_PMEVCNTR_EL0(9),
1398 PMU_PMEVCNTR_EL0(10),
1399 PMU_PMEVCNTR_EL0(11),
1400 PMU_PMEVCNTR_EL0(12),
1401 PMU_PMEVCNTR_EL0(13),
1402 PMU_PMEVCNTR_EL0(14),
1403 PMU_PMEVCNTR_EL0(15),
1404 PMU_PMEVCNTR_EL0(16),
1405 PMU_PMEVCNTR_EL0(17),
1406 PMU_PMEVCNTR_EL0(18),
1407 PMU_PMEVCNTR_EL0(19),
1408 PMU_PMEVCNTR_EL0(20),
1409 PMU_PMEVCNTR_EL0(21),
1410 PMU_PMEVCNTR_EL0(22),
1411 PMU_PMEVCNTR_EL0(23),
1412 PMU_PMEVCNTR_EL0(24),
1413 PMU_PMEVCNTR_EL0(25),
1414 PMU_PMEVCNTR_EL0(26),
1415 PMU_PMEVCNTR_EL0(27),
1416 PMU_PMEVCNTR_EL0(28),
1417 PMU_PMEVCNTR_EL0(29),
1418 PMU_PMEVCNTR_EL0(30),
1419 /* PMEVTYPERn_EL0 */
1420 PMU_PMEVTYPER_EL0(0),
1421 PMU_PMEVTYPER_EL0(1),
1422 PMU_PMEVTYPER_EL0(2),
1423 PMU_PMEVTYPER_EL0(3),
1424 PMU_PMEVTYPER_EL0(4),
1425 PMU_PMEVTYPER_EL0(5),
1426 PMU_PMEVTYPER_EL0(6),
1427 PMU_PMEVTYPER_EL0(7),
1428 PMU_PMEVTYPER_EL0(8),
1429 PMU_PMEVTYPER_EL0(9),
1430 PMU_PMEVTYPER_EL0(10),
1431 PMU_PMEVTYPER_EL0(11),
1432 PMU_PMEVTYPER_EL0(12),
1433 PMU_PMEVTYPER_EL0(13),
1434 PMU_PMEVTYPER_EL0(14),
1435 PMU_PMEVTYPER_EL0(15),
1436 PMU_PMEVTYPER_EL0(16),
1437 PMU_PMEVTYPER_EL0(17),
1438 PMU_PMEVTYPER_EL0(18),
1439 PMU_PMEVTYPER_EL0(19),
1440 PMU_PMEVTYPER_EL0(20),
1441 PMU_PMEVTYPER_EL0(21),
1442 PMU_PMEVTYPER_EL0(22),
1443 PMU_PMEVTYPER_EL0(23),
1444 PMU_PMEVTYPER_EL0(24),
1445 PMU_PMEVTYPER_EL0(25),
1446 PMU_PMEVTYPER_EL0(26),
1447 PMU_PMEVTYPER_EL0(27),
1448 PMU_PMEVTYPER_EL0(28),
1449 PMU_PMEVTYPER_EL0(29),
1450 PMU_PMEVTYPER_EL0(30),
1451 /*
1452 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1453 * in 32bit mode. Here we choose to reset it as zero for consistency.
1454 */
1455 { SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1456
1457 { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1458 { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1459 { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x70 },
1460 };
1461
trap_dbgidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1462 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1463 struct sys_reg_params *p,
1464 const struct sys_reg_desc *r)
1465 {
1466 if (p->is_write) {
1467 return ignore_write(vcpu, p);
1468 } else {
1469 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1470 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1471 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1472
1473 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1474 (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1475 (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1476 | (6 << 16) | (el3 << 14) | (el3 << 12));
1477 return true;
1478 }
1479 }
1480
trap_debug32(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1481 static bool trap_debug32(struct kvm_vcpu *vcpu,
1482 struct sys_reg_params *p,
1483 const struct sys_reg_desc *r)
1484 {
1485 if (p->is_write) {
1486 vcpu_cp14(vcpu, r->reg) = p->regval;
1487 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1488 } else {
1489 p->regval = vcpu_cp14(vcpu, r->reg);
1490 }
1491
1492 return true;
1493 }
1494
1495 /* AArch32 debug register mappings
1496 *
1497 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1498 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1499 *
1500 * All control registers and watchpoint value registers are mapped to
1501 * the lower 32 bits of their AArch64 equivalents. We share the trap
1502 * handlers with the above AArch64 code which checks what mode the
1503 * system is in.
1504 */
1505
trap_xvr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)1506 static bool trap_xvr(struct kvm_vcpu *vcpu,
1507 struct sys_reg_params *p,
1508 const struct sys_reg_desc *rd)
1509 {
1510 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1511
1512 if (p->is_write) {
1513 u64 val = *dbg_reg;
1514
1515 val &= 0xffffffffUL;
1516 val |= p->regval << 32;
1517 *dbg_reg = val;
1518
1519 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1520 } else {
1521 p->regval = *dbg_reg >> 32;
1522 }
1523
1524 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1525
1526 return true;
1527 }
1528
1529 #define DBG_BCR_BVR_WCR_WVR(n) \
1530 /* DBGBVRn */ \
1531 { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1532 /* DBGBCRn */ \
1533 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
1534 /* DBGWVRn */ \
1535 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
1536 /* DBGWCRn */ \
1537 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1538
1539 #define DBGBXVR(n) \
1540 { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1541
1542 /*
1543 * Trapped cp14 registers. We generally ignore most of the external
1544 * debug, on the principle that they don't really make sense to a
1545 * guest. Revisit this one day, would this principle change.
1546 */
1547 static const struct sys_reg_desc cp14_regs[] = {
1548 /* DBGIDR */
1549 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1550 /* DBGDTRRXext */
1551 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1552
1553 DBG_BCR_BVR_WCR_WVR(0),
1554 /* DBGDSCRint */
1555 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1556 DBG_BCR_BVR_WCR_WVR(1),
1557 /* DBGDCCINT */
1558 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1559 /* DBGDSCRext */
1560 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1561 DBG_BCR_BVR_WCR_WVR(2),
1562 /* DBGDTR[RT]Xint */
1563 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1564 /* DBGDTR[RT]Xext */
1565 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1566 DBG_BCR_BVR_WCR_WVR(3),
1567 DBG_BCR_BVR_WCR_WVR(4),
1568 DBG_BCR_BVR_WCR_WVR(5),
1569 /* DBGWFAR */
1570 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1571 /* DBGOSECCR */
1572 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1573 DBG_BCR_BVR_WCR_WVR(6),
1574 /* DBGVCR */
1575 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1576 DBG_BCR_BVR_WCR_WVR(7),
1577 DBG_BCR_BVR_WCR_WVR(8),
1578 DBG_BCR_BVR_WCR_WVR(9),
1579 DBG_BCR_BVR_WCR_WVR(10),
1580 DBG_BCR_BVR_WCR_WVR(11),
1581 DBG_BCR_BVR_WCR_WVR(12),
1582 DBG_BCR_BVR_WCR_WVR(13),
1583 DBG_BCR_BVR_WCR_WVR(14),
1584 DBG_BCR_BVR_WCR_WVR(15),
1585
1586 /* DBGDRAR (32bit) */
1587 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1588
1589 DBGBXVR(0),
1590 /* DBGOSLAR */
1591 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1592 DBGBXVR(1),
1593 /* DBGOSLSR */
1594 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1595 DBGBXVR(2),
1596 DBGBXVR(3),
1597 /* DBGOSDLR */
1598 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1599 DBGBXVR(4),
1600 /* DBGPRCR */
1601 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1602 DBGBXVR(5),
1603 DBGBXVR(6),
1604 DBGBXVR(7),
1605 DBGBXVR(8),
1606 DBGBXVR(9),
1607 DBGBXVR(10),
1608 DBGBXVR(11),
1609 DBGBXVR(12),
1610 DBGBXVR(13),
1611 DBGBXVR(14),
1612 DBGBXVR(15),
1613
1614 /* DBGDSAR (32bit) */
1615 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1616
1617 /* DBGDEVID2 */
1618 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1619 /* DBGDEVID1 */
1620 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1621 /* DBGDEVID */
1622 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1623 /* DBGCLAIMSET */
1624 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1625 /* DBGCLAIMCLR */
1626 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1627 /* DBGAUTHSTATUS */
1628 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1629 };
1630
1631 /* Trapped cp14 64bit registers */
1632 static const struct sys_reg_desc cp14_64_regs[] = {
1633 /* DBGDRAR (64bit) */
1634 { Op1( 0), CRm( 1), .access = trap_raz_wi },
1635
1636 /* DBGDSAR (64bit) */
1637 { Op1( 0), CRm( 2), .access = trap_raz_wi },
1638 };
1639
1640 /* Macro to expand the PMEVCNTRn register */
1641 #define PMU_PMEVCNTR(n) \
1642 /* PMEVCNTRn */ \
1643 { Op1(0), CRn(0b1110), \
1644 CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1645 access_pmu_evcntr }
1646
1647 /* Macro to expand the PMEVTYPERn register */
1648 #define PMU_PMEVTYPER(n) \
1649 /* PMEVTYPERn */ \
1650 { Op1(0), CRn(0b1110), \
1651 CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1652 access_pmu_evtyper }
1653
1654 /*
1655 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1656 * depending on the way they are accessed (as a 32bit or a 64bit
1657 * register).
1658 */
1659 static const struct sys_reg_desc cp15_regs[] = {
1660 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1661 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1662 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1663 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1664 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1665 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1666 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1667 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1668 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1669 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1670 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1671
1672 /*
1673 * DC{C,I,CI}SW operations:
1674 */
1675 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1676 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1677 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1678
1679 /* PMU */
1680 { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1681 { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1682 { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1683 { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1684 { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1685 { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1686 { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1687 { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1688 { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1689 { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1690 { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1691 { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1692 { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1693 { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1694 { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1695
1696 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1697 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1698 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1699 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1700
1701 /* ICC_SRE */
1702 { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1703
1704 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1705
1706 /* CNTP_TVAL */
1707 { Op1( 0), CRn(14), CRm( 2), Op2( 0), access_cntp_tval },
1708 /* CNTP_CTL */
1709 { Op1( 0), CRn(14), CRm( 2), Op2( 1), access_cntp_ctl },
1710
1711 /* PMEVCNTRn */
1712 PMU_PMEVCNTR(0),
1713 PMU_PMEVCNTR(1),
1714 PMU_PMEVCNTR(2),
1715 PMU_PMEVCNTR(3),
1716 PMU_PMEVCNTR(4),
1717 PMU_PMEVCNTR(5),
1718 PMU_PMEVCNTR(6),
1719 PMU_PMEVCNTR(7),
1720 PMU_PMEVCNTR(8),
1721 PMU_PMEVCNTR(9),
1722 PMU_PMEVCNTR(10),
1723 PMU_PMEVCNTR(11),
1724 PMU_PMEVCNTR(12),
1725 PMU_PMEVCNTR(13),
1726 PMU_PMEVCNTR(14),
1727 PMU_PMEVCNTR(15),
1728 PMU_PMEVCNTR(16),
1729 PMU_PMEVCNTR(17),
1730 PMU_PMEVCNTR(18),
1731 PMU_PMEVCNTR(19),
1732 PMU_PMEVCNTR(20),
1733 PMU_PMEVCNTR(21),
1734 PMU_PMEVCNTR(22),
1735 PMU_PMEVCNTR(23),
1736 PMU_PMEVCNTR(24),
1737 PMU_PMEVCNTR(25),
1738 PMU_PMEVCNTR(26),
1739 PMU_PMEVCNTR(27),
1740 PMU_PMEVCNTR(28),
1741 PMU_PMEVCNTR(29),
1742 PMU_PMEVCNTR(30),
1743 /* PMEVTYPERn */
1744 PMU_PMEVTYPER(0),
1745 PMU_PMEVTYPER(1),
1746 PMU_PMEVTYPER(2),
1747 PMU_PMEVTYPER(3),
1748 PMU_PMEVTYPER(4),
1749 PMU_PMEVTYPER(5),
1750 PMU_PMEVTYPER(6),
1751 PMU_PMEVTYPER(7),
1752 PMU_PMEVTYPER(8),
1753 PMU_PMEVTYPER(9),
1754 PMU_PMEVTYPER(10),
1755 PMU_PMEVTYPER(11),
1756 PMU_PMEVTYPER(12),
1757 PMU_PMEVTYPER(13),
1758 PMU_PMEVTYPER(14),
1759 PMU_PMEVTYPER(15),
1760 PMU_PMEVTYPER(16),
1761 PMU_PMEVTYPER(17),
1762 PMU_PMEVTYPER(18),
1763 PMU_PMEVTYPER(19),
1764 PMU_PMEVTYPER(20),
1765 PMU_PMEVTYPER(21),
1766 PMU_PMEVTYPER(22),
1767 PMU_PMEVTYPER(23),
1768 PMU_PMEVTYPER(24),
1769 PMU_PMEVTYPER(25),
1770 PMU_PMEVTYPER(26),
1771 PMU_PMEVTYPER(27),
1772 PMU_PMEVTYPER(28),
1773 PMU_PMEVTYPER(29),
1774 PMU_PMEVTYPER(30),
1775 /* PMCCFILTR */
1776 { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1777 };
1778
1779 static const struct sys_reg_desc cp15_64_regs[] = {
1780 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1781 { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1782 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
1783 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1784 { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
1785 { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
1786 { Op1( 2), CRn( 0), CRm(14), Op2( 0), access_cntp_cval },
1787 };
1788
1789 /* Target specific emulation tables */
1790 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1791
kvm_register_target_sys_reg_table(unsigned int target,struct kvm_sys_reg_target_table * table)1792 void kvm_register_target_sys_reg_table(unsigned int target,
1793 struct kvm_sys_reg_target_table *table)
1794 {
1795 target_tables[target] = table;
1796 }
1797
1798 /* Get specific register table for this target. */
get_target_table(unsigned target,bool mode_is_64,size_t * num)1799 static const struct sys_reg_desc *get_target_table(unsigned target,
1800 bool mode_is_64,
1801 size_t *num)
1802 {
1803 struct kvm_sys_reg_target_table *table;
1804
1805 table = target_tables[target];
1806 if (mode_is_64) {
1807 *num = table->table64.num;
1808 return table->table64.table;
1809 } else {
1810 *num = table->table32.num;
1811 return table->table32.table;
1812 }
1813 }
1814
1815 #define reg_to_match_value(x) \
1816 ({ \
1817 unsigned long val; \
1818 val = (x)->Op0 << 14; \
1819 val |= (x)->Op1 << 11; \
1820 val |= (x)->CRn << 7; \
1821 val |= (x)->CRm << 3; \
1822 val |= (x)->Op2; \
1823 val; \
1824 })
1825
match_sys_reg(const void * key,const void * elt)1826 static int match_sys_reg(const void *key, const void *elt)
1827 {
1828 const unsigned long pval = (unsigned long)key;
1829 const struct sys_reg_desc *r = elt;
1830
1831 return pval - reg_to_match_value(r);
1832 }
1833
find_reg(const struct sys_reg_params * params,const struct sys_reg_desc table[],unsigned int num)1834 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
1835 const struct sys_reg_desc table[],
1836 unsigned int num)
1837 {
1838 unsigned long pval = reg_to_match_value(params);
1839
1840 return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
1841 }
1842
kvm_handle_cp14_load_store(struct kvm_vcpu * vcpu,struct kvm_run * run)1843 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
1844 {
1845 kvm_inject_undefined(vcpu);
1846 return 1;
1847 }
1848
perform_access(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)1849 static void perform_access(struct kvm_vcpu *vcpu,
1850 struct sys_reg_params *params,
1851 const struct sys_reg_desc *r)
1852 {
1853 /*
1854 * Not having an accessor means that we have configured a trap
1855 * that we don't know how to handle. This certainly qualifies
1856 * as a gross bug that should be fixed right away.
1857 */
1858 BUG_ON(!r->access);
1859
1860 /* Skip instruction if instructed so */
1861 if (likely(r->access(vcpu, params, r)))
1862 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1863 }
1864
1865 /*
1866 * emulate_cp -- tries to match a sys_reg access in a handling table, and
1867 * call the corresponding trap handler.
1868 *
1869 * @params: pointer to the descriptor of the access
1870 * @table: array of trap descriptors
1871 * @num: size of the trap descriptor array
1872 *
1873 * Return 0 if the access has been handled, and -1 if not.
1874 */
emulate_cp(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * table,size_t num)1875 static int emulate_cp(struct kvm_vcpu *vcpu,
1876 struct sys_reg_params *params,
1877 const struct sys_reg_desc *table,
1878 size_t num)
1879 {
1880 const struct sys_reg_desc *r;
1881
1882 if (!table)
1883 return -1; /* Not handled */
1884
1885 r = find_reg(params, table, num);
1886
1887 if (r) {
1888 perform_access(vcpu, params, r);
1889 return 0;
1890 }
1891
1892 /* Not handled */
1893 return -1;
1894 }
1895
unhandled_cp_access(struct kvm_vcpu * vcpu,struct sys_reg_params * params)1896 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1897 struct sys_reg_params *params)
1898 {
1899 u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
1900 int cp = -1;
1901
1902 switch(hsr_ec) {
1903 case ESR_ELx_EC_CP15_32:
1904 case ESR_ELx_EC_CP15_64:
1905 cp = 15;
1906 break;
1907 case ESR_ELx_EC_CP14_MR:
1908 case ESR_ELx_EC_CP14_64:
1909 cp = 14;
1910 break;
1911 default:
1912 WARN_ON(1);
1913 }
1914
1915 kvm_err("Unsupported guest CP%d access at: %08lx\n",
1916 cp, *vcpu_pc(vcpu));
1917 print_sys_reg_instr(params);
1918 kvm_inject_undefined(vcpu);
1919 }
1920
1921 /**
1922 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
1923 * @vcpu: The VCPU pointer
1924 * @run: The kvm_run struct
1925 */
kvm_handle_cp_64(struct kvm_vcpu * vcpu,const struct sys_reg_desc * global,size_t nr_global,const struct sys_reg_desc * target_specific,size_t nr_specific)1926 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1927 const struct sys_reg_desc *global,
1928 size_t nr_global,
1929 const struct sys_reg_desc *target_specific,
1930 size_t nr_specific)
1931 {
1932 struct sys_reg_params params;
1933 u32 hsr = kvm_vcpu_get_hsr(vcpu);
1934 int Rt = kvm_vcpu_sys_get_rt(vcpu);
1935 int Rt2 = (hsr >> 10) & 0x1f;
1936
1937 params.is_aarch32 = true;
1938 params.is_32bit = false;
1939 params.CRm = (hsr >> 1) & 0xf;
1940 params.is_write = ((hsr & 1) == 0);
1941
1942 params.Op0 = 0;
1943 params.Op1 = (hsr >> 16) & 0xf;
1944 params.Op2 = 0;
1945 params.CRn = 0;
1946
1947 /*
1948 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
1949 * backends between AArch32 and AArch64, we get away with it.
1950 */
1951 if (params.is_write) {
1952 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
1953 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
1954 }
1955
1956 /*
1957 * Try to emulate the coprocessor access using the target
1958 * specific table first, and using the global table afterwards.
1959 * If either of the tables contains a handler, handle the
1960 * potential register operation in the case of a read and return
1961 * with success.
1962 */
1963 if (!emulate_cp(vcpu, ¶ms, target_specific, nr_specific) ||
1964 !emulate_cp(vcpu, ¶ms, global, nr_global)) {
1965 /* Split up the value between registers for the read side */
1966 if (!params.is_write) {
1967 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
1968 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
1969 }
1970
1971 return 1;
1972 }
1973
1974 unhandled_cp_access(vcpu, ¶ms);
1975 return 1;
1976 }
1977
1978 /**
1979 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
1980 * @vcpu: The VCPU pointer
1981 * @run: The kvm_run struct
1982 */
kvm_handle_cp_32(struct kvm_vcpu * vcpu,const struct sys_reg_desc * global,size_t nr_global,const struct sys_reg_desc * target_specific,size_t nr_specific)1983 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
1984 const struct sys_reg_desc *global,
1985 size_t nr_global,
1986 const struct sys_reg_desc *target_specific,
1987 size_t nr_specific)
1988 {
1989 struct sys_reg_params params;
1990 u32 hsr = kvm_vcpu_get_hsr(vcpu);
1991 int Rt = kvm_vcpu_sys_get_rt(vcpu);
1992
1993 params.is_aarch32 = true;
1994 params.is_32bit = true;
1995 params.CRm = (hsr >> 1) & 0xf;
1996 params.regval = vcpu_get_reg(vcpu, Rt);
1997 params.is_write = ((hsr & 1) == 0);
1998 params.CRn = (hsr >> 10) & 0xf;
1999 params.Op0 = 0;
2000 params.Op1 = (hsr >> 14) & 0x7;
2001 params.Op2 = (hsr >> 17) & 0x7;
2002
2003 if (!emulate_cp(vcpu, ¶ms, target_specific, nr_specific) ||
2004 !emulate_cp(vcpu, ¶ms, global, nr_global)) {
2005 if (!params.is_write)
2006 vcpu_set_reg(vcpu, Rt, params.regval);
2007 return 1;
2008 }
2009
2010 unhandled_cp_access(vcpu, ¶ms);
2011 return 1;
2012 }
2013
kvm_handle_cp15_64(struct kvm_vcpu * vcpu,struct kvm_run * run)2014 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
2015 {
2016 const struct sys_reg_desc *target_specific;
2017 size_t num;
2018
2019 target_specific = get_target_table(vcpu->arch.target, false, &num);
2020 return kvm_handle_cp_64(vcpu,
2021 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
2022 target_specific, num);
2023 }
2024
kvm_handle_cp15_32(struct kvm_vcpu * vcpu,struct kvm_run * run)2025 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2026 {
2027 const struct sys_reg_desc *target_specific;
2028 size_t num;
2029
2030 target_specific = get_target_table(vcpu->arch.target, false, &num);
2031 return kvm_handle_cp_32(vcpu,
2032 cp15_regs, ARRAY_SIZE(cp15_regs),
2033 target_specific, num);
2034 }
2035
kvm_handle_cp14_64(struct kvm_vcpu * vcpu,struct kvm_run * run)2036 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
2037 {
2038 return kvm_handle_cp_64(vcpu,
2039 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
2040 NULL, 0);
2041 }
2042
kvm_handle_cp14_32(struct kvm_vcpu * vcpu,struct kvm_run * run)2043 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2044 {
2045 return kvm_handle_cp_32(vcpu,
2046 cp14_regs, ARRAY_SIZE(cp14_regs),
2047 NULL, 0);
2048 }
2049
emulate_sys_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * params)2050 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2051 struct sys_reg_params *params)
2052 {
2053 size_t num;
2054 const struct sys_reg_desc *table, *r;
2055
2056 table = get_target_table(vcpu->arch.target, true, &num);
2057
2058 /* Search target-specific then generic table. */
2059 r = find_reg(params, table, num);
2060 if (!r)
2061 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2062
2063 if (likely(r)) {
2064 perform_access(vcpu, params, r);
2065 } else {
2066 kvm_err("Unsupported guest sys_reg access at: %lx\n",
2067 *vcpu_pc(vcpu));
2068 print_sys_reg_instr(params);
2069 kvm_inject_undefined(vcpu);
2070 }
2071 return 1;
2072 }
2073
reset_sys_reg_descs(struct kvm_vcpu * vcpu,const struct sys_reg_desc * table,size_t num)2074 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
2075 const struct sys_reg_desc *table, size_t num)
2076 {
2077 unsigned long i;
2078
2079 for (i = 0; i < num; i++)
2080 if (table[i].reset)
2081 table[i].reset(vcpu, &table[i]);
2082 }
2083
2084 /**
2085 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2086 * @vcpu: The VCPU pointer
2087 * @run: The kvm_run struct
2088 */
kvm_handle_sys_reg(struct kvm_vcpu * vcpu,struct kvm_run * run)2089 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
2090 {
2091 struct sys_reg_params params;
2092 unsigned long esr = kvm_vcpu_get_hsr(vcpu);
2093 int Rt = kvm_vcpu_sys_get_rt(vcpu);
2094 int ret;
2095
2096 trace_kvm_handle_sys_reg(esr);
2097
2098 params.is_aarch32 = false;
2099 params.is_32bit = false;
2100 params.Op0 = (esr >> 20) & 3;
2101 params.Op1 = (esr >> 14) & 0x7;
2102 params.CRn = (esr >> 10) & 0xf;
2103 params.CRm = (esr >> 1) & 0xf;
2104 params.Op2 = (esr >> 17) & 0x7;
2105 params.regval = vcpu_get_reg(vcpu, Rt);
2106 params.is_write = !(esr & 1);
2107
2108 ret = emulate_sys_reg(vcpu, ¶ms);
2109
2110 if (!params.is_write)
2111 vcpu_set_reg(vcpu, Rt, params.regval);
2112 return ret;
2113 }
2114
2115 /******************************************************************************
2116 * Userspace API
2117 *****************************************************************************/
2118
index_to_params(u64 id,struct sys_reg_params * params)2119 static bool index_to_params(u64 id, struct sys_reg_params *params)
2120 {
2121 switch (id & KVM_REG_SIZE_MASK) {
2122 case KVM_REG_SIZE_U64:
2123 /* Any unused index bits means it's not valid. */
2124 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2125 | KVM_REG_ARM_COPROC_MASK
2126 | KVM_REG_ARM64_SYSREG_OP0_MASK
2127 | KVM_REG_ARM64_SYSREG_OP1_MASK
2128 | KVM_REG_ARM64_SYSREG_CRN_MASK
2129 | KVM_REG_ARM64_SYSREG_CRM_MASK
2130 | KVM_REG_ARM64_SYSREG_OP2_MASK))
2131 return false;
2132 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2133 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2134 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2135 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2136 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2137 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2138 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2139 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2140 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2141 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2142 return true;
2143 default:
2144 return false;
2145 }
2146 }
2147
find_reg_by_id(u64 id,struct sys_reg_params * params,const struct sys_reg_desc table[],unsigned int num)2148 const struct sys_reg_desc *find_reg_by_id(u64 id,
2149 struct sys_reg_params *params,
2150 const struct sys_reg_desc table[],
2151 unsigned int num)
2152 {
2153 if (!index_to_params(id, params))
2154 return NULL;
2155
2156 return find_reg(params, table, num);
2157 }
2158
2159 /* Decode an index value, and find the sys_reg_desc entry. */
index_to_sys_reg_desc(struct kvm_vcpu * vcpu,u64 id)2160 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2161 u64 id)
2162 {
2163 size_t num;
2164 const struct sys_reg_desc *table, *r;
2165 struct sys_reg_params params;
2166
2167 /* We only do sys_reg for now. */
2168 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2169 return NULL;
2170
2171 table = get_target_table(vcpu->arch.target, true, &num);
2172 r = find_reg_by_id(id, ¶ms, table, num);
2173 if (!r)
2174 r = find_reg(¶ms, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2175
2176 /* Not saved in the sys_reg array and not otherwise accessible? */
2177 if (r && !(r->reg || r->get_user))
2178 r = NULL;
2179
2180 return r;
2181 }
2182
2183 /*
2184 * These are the invariant sys_reg registers: we let the guest see the
2185 * host versions of these, so they're part of the guest state.
2186 *
2187 * A future CPU may provide a mechanism to present different values to
2188 * the guest, or a future kvm may trap them.
2189 */
2190
2191 #define FUNCTION_INVARIANT(reg) \
2192 static void get_##reg(struct kvm_vcpu *v, \
2193 const struct sys_reg_desc *r) \
2194 { \
2195 ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \
2196 }
2197
2198 FUNCTION_INVARIANT(midr_el1)
2199 FUNCTION_INVARIANT(ctr_el0)
2200 FUNCTION_INVARIANT(revidr_el1)
2201 FUNCTION_INVARIANT(clidr_el1)
2202 FUNCTION_INVARIANT(aidr_el1)
2203
2204 /* ->val is filled in by kvm_sys_reg_table_init() */
2205 static struct sys_reg_desc invariant_sys_regs[] = {
2206 { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2207 { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2208 { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2209 { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2210 { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2211 };
2212
reg_from_user(u64 * val,const void __user * uaddr,u64 id)2213 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2214 {
2215 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2216 return -EFAULT;
2217 return 0;
2218 }
2219
reg_to_user(void __user * uaddr,const u64 * val,u64 id)2220 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2221 {
2222 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2223 return -EFAULT;
2224 return 0;
2225 }
2226
get_invariant_sys_reg(u64 id,void __user * uaddr)2227 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2228 {
2229 struct sys_reg_params params;
2230 const struct sys_reg_desc *r;
2231
2232 r = find_reg_by_id(id, ¶ms, invariant_sys_regs,
2233 ARRAY_SIZE(invariant_sys_regs));
2234 if (!r)
2235 return -ENOENT;
2236
2237 return reg_to_user(uaddr, &r->val, id);
2238 }
2239
set_invariant_sys_reg(u64 id,void __user * uaddr)2240 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2241 {
2242 struct sys_reg_params params;
2243 const struct sys_reg_desc *r;
2244 int err;
2245 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2246
2247 r = find_reg_by_id(id, ¶ms, invariant_sys_regs,
2248 ARRAY_SIZE(invariant_sys_regs));
2249 if (!r)
2250 return -ENOENT;
2251
2252 err = reg_from_user(&val, uaddr, id);
2253 if (err)
2254 return err;
2255
2256 /* This is what we mean by invariant: you can't change it. */
2257 if (r->val != val)
2258 return -EINVAL;
2259
2260 return 0;
2261 }
2262
is_valid_cache(u32 val)2263 static bool is_valid_cache(u32 val)
2264 {
2265 u32 level, ctype;
2266
2267 if (val >= CSSELR_MAX)
2268 return false;
2269
2270 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
2271 level = (val >> 1);
2272 ctype = (cache_levels >> (level * 3)) & 7;
2273
2274 switch (ctype) {
2275 case 0: /* No cache */
2276 return false;
2277 case 1: /* Instruction cache only */
2278 return (val & 1);
2279 case 2: /* Data cache only */
2280 case 4: /* Unified cache */
2281 return !(val & 1);
2282 case 3: /* Separate instruction and data caches */
2283 return true;
2284 default: /* Reserved: we can't know instruction or data. */
2285 return false;
2286 }
2287 }
2288
demux_c15_get(u64 id,void __user * uaddr)2289 static int demux_c15_get(u64 id, void __user *uaddr)
2290 {
2291 u32 val;
2292 u32 __user *uval = uaddr;
2293
2294 /* Fail if we have unknown bits set. */
2295 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2296 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2297 return -ENOENT;
2298
2299 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2300 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2301 if (KVM_REG_SIZE(id) != 4)
2302 return -ENOENT;
2303 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2304 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2305 if (!is_valid_cache(val))
2306 return -ENOENT;
2307
2308 return put_user(get_ccsidr(val), uval);
2309 default:
2310 return -ENOENT;
2311 }
2312 }
2313
demux_c15_set(u64 id,void __user * uaddr)2314 static int demux_c15_set(u64 id, void __user *uaddr)
2315 {
2316 u32 val, newval;
2317 u32 __user *uval = uaddr;
2318
2319 /* Fail if we have unknown bits set. */
2320 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2321 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2322 return -ENOENT;
2323
2324 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2325 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2326 if (KVM_REG_SIZE(id) != 4)
2327 return -ENOENT;
2328 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2329 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2330 if (!is_valid_cache(val))
2331 return -ENOENT;
2332
2333 if (get_user(newval, uval))
2334 return -EFAULT;
2335
2336 /* This is also invariant: you can't change it. */
2337 if (newval != get_ccsidr(val))
2338 return -EINVAL;
2339 return 0;
2340 default:
2341 return -ENOENT;
2342 }
2343 }
2344
kvm_arm_sys_reg_get_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)2345 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2346 {
2347 const struct sys_reg_desc *r;
2348 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2349
2350 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2351 return demux_c15_get(reg->id, uaddr);
2352
2353 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2354 return -ENOENT;
2355
2356 r = index_to_sys_reg_desc(vcpu, reg->id);
2357 if (!r)
2358 return get_invariant_sys_reg(reg->id, uaddr);
2359
2360 if (r->get_user)
2361 return (r->get_user)(vcpu, r, reg, uaddr);
2362
2363 return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2364 }
2365
kvm_arm_sys_reg_set_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)2366 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2367 {
2368 const struct sys_reg_desc *r;
2369 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2370
2371 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2372 return demux_c15_set(reg->id, uaddr);
2373
2374 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2375 return -ENOENT;
2376
2377 r = index_to_sys_reg_desc(vcpu, reg->id);
2378 if (!r)
2379 return set_invariant_sys_reg(reg->id, uaddr);
2380
2381 if (r->set_user)
2382 return (r->set_user)(vcpu, r, reg, uaddr);
2383
2384 return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2385 }
2386
num_demux_regs(void)2387 static unsigned int num_demux_regs(void)
2388 {
2389 unsigned int i, count = 0;
2390
2391 for (i = 0; i < CSSELR_MAX; i++)
2392 if (is_valid_cache(i))
2393 count++;
2394
2395 return count;
2396 }
2397
write_demux_regids(u64 __user * uindices)2398 static int write_demux_regids(u64 __user *uindices)
2399 {
2400 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2401 unsigned int i;
2402
2403 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2404 for (i = 0; i < CSSELR_MAX; i++) {
2405 if (!is_valid_cache(i))
2406 continue;
2407 if (put_user(val | i, uindices))
2408 return -EFAULT;
2409 uindices++;
2410 }
2411 return 0;
2412 }
2413
sys_reg_to_index(const struct sys_reg_desc * reg)2414 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2415 {
2416 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2417 KVM_REG_ARM64_SYSREG |
2418 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2419 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2420 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2421 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2422 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2423 }
2424
copy_reg_to_user(const struct sys_reg_desc * reg,u64 __user ** uind)2425 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2426 {
2427 if (!*uind)
2428 return true;
2429
2430 if (put_user(sys_reg_to_index(reg), *uind))
2431 return false;
2432
2433 (*uind)++;
2434 return true;
2435 }
2436
walk_one_sys_reg(const struct sys_reg_desc * rd,u64 __user ** uind,unsigned int * total)2437 static int walk_one_sys_reg(const struct sys_reg_desc *rd,
2438 u64 __user **uind,
2439 unsigned int *total)
2440 {
2441 /*
2442 * Ignore registers we trap but don't save,
2443 * and for which no custom user accessor is provided.
2444 */
2445 if (!(rd->reg || rd->get_user))
2446 return 0;
2447
2448 if (!copy_reg_to_user(rd, uind))
2449 return -EFAULT;
2450
2451 (*total)++;
2452 return 0;
2453 }
2454
2455 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
walk_sys_regs(struct kvm_vcpu * vcpu,u64 __user * uind)2456 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2457 {
2458 const struct sys_reg_desc *i1, *i2, *end1, *end2;
2459 unsigned int total = 0;
2460 size_t num;
2461 int err;
2462
2463 /* We check for duplicates here, to allow arch-specific overrides. */
2464 i1 = get_target_table(vcpu->arch.target, true, &num);
2465 end1 = i1 + num;
2466 i2 = sys_reg_descs;
2467 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2468
2469 BUG_ON(i1 == end1 || i2 == end2);
2470
2471 /* Walk carefully, as both tables may refer to the same register. */
2472 while (i1 || i2) {
2473 int cmp = cmp_sys_reg(i1, i2);
2474 /* target-specific overrides generic entry. */
2475 if (cmp <= 0)
2476 err = walk_one_sys_reg(i1, &uind, &total);
2477 else
2478 err = walk_one_sys_reg(i2, &uind, &total);
2479
2480 if (err)
2481 return err;
2482
2483 if (cmp <= 0 && ++i1 == end1)
2484 i1 = NULL;
2485 if (cmp >= 0 && ++i2 == end2)
2486 i2 = NULL;
2487 }
2488 return total;
2489 }
2490
kvm_arm_num_sys_reg_descs(struct kvm_vcpu * vcpu)2491 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2492 {
2493 return ARRAY_SIZE(invariant_sys_regs)
2494 + num_demux_regs()
2495 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2496 }
2497
kvm_arm_copy_sys_reg_indices(struct kvm_vcpu * vcpu,u64 __user * uindices)2498 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2499 {
2500 unsigned int i;
2501 int err;
2502
2503 /* Then give them all the invariant registers' indices. */
2504 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2505 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2506 return -EFAULT;
2507 uindices++;
2508 }
2509
2510 err = walk_sys_regs(vcpu, uindices);
2511 if (err < 0)
2512 return err;
2513 uindices += err;
2514
2515 return write_demux_regids(uindices);
2516 }
2517
check_sysreg_table(const struct sys_reg_desc * table,unsigned int n)2518 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2519 {
2520 unsigned int i;
2521
2522 for (i = 1; i < n; i++) {
2523 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2524 kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2525 return 1;
2526 }
2527 }
2528
2529 return 0;
2530 }
2531
kvm_sys_reg_table_init(void)2532 void kvm_sys_reg_table_init(void)
2533 {
2534 unsigned int i;
2535 struct sys_reg_desc clidr;
2536
2537 /* Make sure tables are unique and in order. */
2538 BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2539 BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2540 BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2541 BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2542 BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2543 BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2544
2545 /* We abuse the reset function to overwrite the table itself. */
2546 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2547 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2548
2549 /*
2550 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
2551 *
2552 * If software reads the Cache Type fields from Ctype1
2553 * upwards, once it has seen a value of 0b000, no caches
2554 * exist at further-out levels of the hierarchy. So, for
2555 * example, if Ctype3 is the first Cache Type field with a
2556 * value of 0b000, the values of Ctype4 to Ctype7 must be
2557 * ignored.
2558 */
2559 get_clidr_el1(NULL, &clidr); /* Ugly... */
2560 cache_levels = clidr.val;
2561 for (i = 0; i < 7; i++)
2562 if (((cache_levels >> (i*3)) & 7) == 0)
2563 break;
2564 /* Clear all higher bits. */
2565 cache_levels &= (1 << (i*3))-1;
2566 }
2567
2568 /**
2569 * kvm_reset_sys_regs - sets system registers to reset value
2570 * @vcpu: The VCPU pointer
2571 *
2572 * This function finds the right table above and sets the registers on the
2573 * virtual CPU struct to their architecturally defined reset values.
2574 */
kvm_reset_sys_regs(struct kvm_vcpu * vcpu)2575 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2576 {
2577 size_t num;
2578 const struct sys_reg_desc *table;
2579
2580 /* Catch someone adding a register without putting in reset entry. */
2581 memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
2582
2583 /* Generic chip reset first (so target could override). */
2584 reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2585
2586 table = get_target_table(vcpu->arch.target, true, &num);
2587 reset_sys_reg_descs(vcpu, table, num);
2588
2589 for (num = 1; num < NR_SYS_REGS; num++)
2590 if (__vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
2591 panic("Didn't reset __vcpu_sys_reg(%zi)", num);
2592 }
2593