1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18 
19 #ifndef __ARM_KVM_MMU_H__
20 #define __ARM_KVM_MMU_H__
21 
22 #include <asm/memory.h>
23 #include <asm/page.h>
24 
25 /*
26  * We directly use the kernel VA for the HYP, as we can directly share
27  * the mapping (HTTBR "covers" TTBR1).
28  */
29 #define kern_hyp_va(kva)	(kva)
30 
31 /* Contrary to arm64, there is no need to generate a PC-relative address */
32 #define hyp_symbol_addr(s)						\
33 	({								\
34 		typeof(s) *addr = &(s);					\
35 		addr;							\
36 	})
37 
38 /*
39  * KVM_MMU_CACHE_MIN_PAGES is the number of stage2 page table translation levels.
40  */
41 #define KVM_MMU_CACHE_MIN_PAGES	2
42 
43 #ifndef __ASSEMBLY__
44 
45 #include <linux/highmem.h>
46 #include <asm/cacheflush.h>
47 #include <asm/cputype.h>
48 #include <asm/kvm_hyp.h>
49 #include <asm/pgalloc.h>
50 #include <asm/stage2_pgtable.h>
51 
52 /* Ensure compatibility with arm64 */
53 #define VA_BITS			32
54 
55 int create_hyp_mappings(void *from, void *to, pgprot_t prot);
56 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
57 			   void __iomem **kaddr,
58 			   void __iomem **haddr);
59 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
60 			     void **haddr);
61 void free_hyp_pgds(void);
62 
63 void stage2_unmap_vm(struct kvm *kvm);
64 int kvm_alloc_stage2_pgd(struct kvm *kvm);
65 void kvm_free_stage2_pgd(struct kvm *kvm);
66 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
67 			  phys_addr_t pa, unsigned long size, bool writable);
68 
69 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
70 
71 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
72 
73 phys_addr_t kvm_mmu_get_httbr(void);
74 phys_addr_t kvm_get_idmap_vector(void);
75 int kvm_mmu_init(void);
76 void kvm_clear_hyp_idmap(void);
77 
78 #define kvm_mk_pmd(ptep)	__pmd(__pa(ptep) | PMD_TYPE_TABLE)
79 #define kvm_mk_pud(pmdp)	__pud(__pa(pmdp) | PMD_TYPE_TABLE)
80 #define kvm_mk_pgd(pudp)	({ BUILD_BUG(); 0; })
81 
kvm_s2pte_mkwrite(pte_t pte)82 static inline pte_t kvm_s2pte_mkwrite(pte_t pte)
83 {
84 	pte_val(pte) |= L_PTE_S2_RDWR;
85 	return pte;
86 }
87 
kvm_s2pmd_mkwrite(pmd_t pmd)88 static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd)
89 {
90 	pmd_val(pmd) |= L_PMD_S2_RDWR;
91 	return pmd;
92 }
93 
kvm_s2pte_mkexec(pte_t pte)94 static inline pte_t kvm_s2pte_mkexec(pte_t pte)
95 {
96 	pte_val(pte) &= ~L_PTE_XN;
97 	return pte;
98 }
99 
kvm_s2pmd_mkexec(pmd_t pmd)100 static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd)
101 {
102 	pmd_val(pmd) &= ~PMD_SECT_XN;
103 	return pmd;
104 }
105 
kvm_set_s2pte_readonly(pte_t * pte)106 static inline void kvm_set_s2pte_readonly(pte_t *pte)
107 {
108 	pte_val(*pte) = (pte_val(*pte) & ~L_PTE_S2_RDWR) | L_PTE_S2_RDONLY;
109 }
110 
kvm_s2pte_readonly(pte_t * pte)111 static inline bool kvm_s2pte_readonly(pte_t *pte)
112 {
113 	return (pte_val(*pte) & L_PTE_S2_RDWR) == L_PTE_S2_RDONLY;
114 }
115 
kvm_s2pte_exec(pte_t * pte)116 static inline bool kvm_s2pte_exec(pte_t *pte)
117 {
118 	return !(pte_val(*pte) & L_PTE_XN);
119 }
120 
kvm_set_s2pmd_readonly(pmd_t * pmd)121 static inline void kvm_set_s2pmd_readonly(pmd_t *pmd)
122 {
123 	pmd_val(*pmd) = (pmd_val(*pmd) & ~L_PMD_S2_RDWR) | L_PMD_S2_RDONLY;
124 }
125 
kvm_s2pmd_readonly(pmd_t * pmd)126 static inline bool kvm_s2pmd_readonly(pmd_t *pmd)
127 {
128 	return (pmd_val(*pmd) & L_PMD_S2_RDWR) == L_PMD_S2_RDONLY;
129 }
130 
kvm_s2pmd_exec(pmd_t * pmd)131 static inline bool kvm_s2pmd_exec(pmd_t *pmd)
132 {
133 	return !(pmd_val(*pmd) & PMD_SECT_XN);
134 }
135 
kvm_page_empty(void * ptr)136 static inline bool kvm_page_empty(void *ptr)
137 {
138 	struct page *ptr_page = virt_to_page(ptr);
139 	return page_count(ptr_page) == 1;
140 }
141 
142 #define kvm_pte_table_empty(kvm, ptep) kvm_page_empty(ptep)
143 #define kvm_pmd_table_empty(kvm, pmdp) kvm_page_empty(pmdp)
144 #define kvm_pud_table_empty(kvm, pudp) false
145 
146 #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
147 #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
148 #define hyp_pud_table_empty(pudp) false
149 
150 struct kvm;
151 
152 #define kvm_flush_dcache_to_poc(a,l)	__cpuc_flush_dcache_area((a), (l))
153 
vcpu_has_cache_enabled(struct kvm_vcpu * vcpu)154 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
155 {
156 	return (vcpu_cp15(vcpu, c1_SCTLR) & 0b101) == 0b101;
157 }
158 
__clean_dcache_guest_page(kvm_pfn_t pfn,unsigned long size)159 static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
160 {
161 	/*
162 	 * Clean the dcache to the Point of Coherency.
163 	 *
164 	 * We need to do this through a kernel mapping (using the
165 	 * user-space mapping has proved to be the wrong
166 	 * solution). For that, we need to kmap one page at a time,
167 	 * and iterate over the range.
168 	 */
169 
170 	VM_BUG_ON(size & ~PAGE_MASK);
171 
172 	while (size) {
173 		void *va = kmap_atomic_pfn(pfn);
174 
175 		kvm_flush_dcache_to_poc(va, PAGE_SIZE);
176 
177 		size -= PAGE_SIZE;
178 		pfn++;
179 
180 		kunmap_atomic(va);
181 	}
182 }
183 
__invalidate_icache_guest_page(kvm_pfn_t pfn,unsigned long size)184 static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn,
185 						  unsigned long size)
186 {
187 	u32 iclsz;
188 
189 	/*
190 	 * If we are going to insert an instruction page and the icache is
191 	 * either VIPT or PIPT, there is a potential problem where the host
192 	 * (or another VM) may have used the same page as this guest, and we
193 	 * read incorrect data from the icache.  If we're using a PIPT cache,
194 	 * we can invalidate just that page, but if we are using a VIPT cache
195 	 * we need to invalidate the entire icache - damn shame - as written
196 	 * in the ARM ARM (DDI 0406C.b - Page B3-1393).
197 	 *
198 	 * VIVT caches are tagged using both the ASID and the VMID and doesn't
199 	 * need any kind of flushing (DDI 0406C.b - Page B3-1392).
200 	 */
201 
202 	VM_BUG_ON(size & ~PAGE_MASK);
203 
204 	if (icache_is_vivt_asid_tagged())
205 		return;
206 
207 	if (!icache_is_pipt()) {
208 		/* any kind of VIPT cache */
209 		__flush_icache_all();
210 		return;
211 	}
212 
213 	/*
214 	 * CTR IminLine contains Log2 of the number of words in the
215 	 * cache line, so we can get the number of words as
216 	 * 2 << (IminLine - 1).  To get the number of bytes, we
217 	 * multiply by 4 (the number of bytes in a 32-bit word), and
218 	 * get 4 << (IminLine).
219 	 */
220 	iclsz = 4 << (read_cpuid(CPUID_CACHETYPE) & 0xf);
221 
222 	while (size) {
223 		void *va = kmap_atomic_pfn(pfn);
224 		void *end = va + PAGE_SIZE;
225 		void *addr = va;
226 
227 		do {
228 			write_sysreg(addr, ICIMVAU);
229 			addr += iclsz;
230 		} while (addr < end);
231 
232 		dsb(ishst);
233 		isb();
234 
235 		size -= PAGE_SIZE;
236 		pfn++;
237 
238 		kunmap_atomic(va);
239 	}
240 
241 	/* Check if we need to invalidate the BTB */
242 	if ((read_cpuid_ext(CPUID_EXT_MMFR1) >> 28) != 4) {
243 		write_sysreg(0, BPIALLIS);
244 		dsb(ishst);
245 		isb();
246 	}
247 }
248 
__kvm_flush_dcache_pte(pte_t pte)249 static inline void __kvm_flush_dcache_pte(pte_t pte)
250 {
251 	void *va = kmap_atomic(pte_page(pte));
252 
253 	kvm_flush_dcache_to_poc(va, PAGE_SIZE);
254 
255 	kunmap_atomic(va);
256 }
257 
__kvm_flush_dcache_pmd(pmd_t pmd)258 static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
259 {
260 	unsigned long size = PMD_SIZE;
261 	kvm_pfn_t pfn = pmd_pfn(pmd);
262 
263 	while (size) {
264 		void *va = kmap_atomic_pfn(pfn);
265 
266 		kvm_flush_dcache_to_poc(va, PAGE_SIZE);
267 
268 		pfn++;
269 		size -= PAGE_SIZE;
270 
271 		kunmap_atomic(va);
272 	}
273 }
274 
__kvm_flush_dcache_pud(pud_t pud)275 static inline void __kvm_flush_dcache_pud(pud_t pud)
276 {
277 }
278 
279 #define kvm_virt_to_phys(x)		virt_to_idmap((unsigned long)(x))
280 
281 void kvm_set_way_flush(struct kvm_vcpu *vcpu);
282 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
283 
__kvm_cpu_uses_extended_idmap(void)284 static inline bool __kvm_cpu_uses_extended_idmap(void)
285 {
286 	return false;
287 }
288 
__kvm_idmap_ptrs_per_pgd(void)289 static inline unsigned long __kvm_idmap_ptrs_per_pgd(void)
290 {
291 	return PTRS_PER_PGD;
292 }
293 
__kvm_extend_hypmap(pgd_t * boot_hyp_pgd,pgd_t * hyp_pgd,pgd_t * merged_hyp_pgd,unsigned long hyp_idmap_start)294 static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
295 				       pgd_t *hyp_pgd,
296 				       pgd_t *merged_hyp_pgd,
297 				       unsigned long hyp_idmap_start) { }
298 
kvm_get_vmid_bits(void)299 static inline unsigned int kvm_get_vmid_bits(void)
300 {
301 	return 8;
302 }
303 
304 /*
305  * We are not in the kvm->srcu critical section most of the time, so we take
306  * the SRCU read lock here. Since we copy the data from the user page, we
307  * can immediately drop the lock again.
308  */
kvm_read_guest_lock(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)309 static inline int kvm_read_guest_lock(struct kvm *kvm,
310 				      gpa_t gpa, void *data, unsigned long len)
311 {
312 	int srcu_idx = srcu_read_lock(&kvm->srcu);
313 	int ret = kvm_read_guest(kvm, gpa, data, len);
314 
315 	srcu_read_unlock(&kvm->srcu, srcu_idx);
316 
317 	return ret;
318 }
319 
kvm_get_hyp_vector(void)320 static inline void *kvm_get_hyp_vector(void)
321 {
322 	switch(read_cpuid_part()) {
323 #ifdef CONFIG_HARDEN_BRANCH_PREDICTOR
324 	case ARM_CPU_PART_CORTEX_A12:
325 	case ARM_CPU_PART_CORTEX_A17:
326 	{
327 		extern char __kvm_hyp_vector_bp_inv[];
328 		return kvm_ksym_ref(__kvm_hyp_vector_bp_inv);
329 	}
330 
331 	case ARM_CPU_PART_BRAHMA_B15:
332 	case ARM_CPU_PART_CORTEX_A15:
333 	{
334 		extern char __kvm_hyp_vector_ic_inv[];
335 		return kvm_ksym_ref(__kvm_hyp_vector_ic_inv);
336 	}
337 #endif
338 	default:
339 	{
340 		extern char __kvm_hyp_vector[];
341 		return kvm_ksym_ref(__kvm_hyp_vector);
342 	}
343 	}
344 }
345 
kvm_map_vectors(void)346 static inline int kvm_map_vectors(void)
347 {
348 	return 0;
349 }
350 
hyp_map_aux_data(void)351 static inline int hyp_map_aux_data(void)
352 {
353 	return 0;
354 }
355 
356 #define kvm_phys_to_vttbr(addr)		(addr)
357 
358 #endif	/* !__ASSEMBLY__ */
359 
360 #endif /* __ARM_KVM_MMU_H__ */
361