1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 HVS module.
8  *
9  * The Hardware Video Scaler (HVS) is the piece of hardware that does
10  * translation, scaling, colorspace conversion, and compositing of
11  * pixels stored in framebuffers into a FIFO of pixels going out to
12  * the Pixel Valve (CRTC).  It operates at the system clock rate (the
13  * system audio clock gate, specifically), which is much higher than
14  * the pixel clock rate.
15  *
16  * There is a single global HVS, with multiple output FIFOs that can
17  * be consumed by the PVs.  This file just manages the resources for
18  * the HVS, while the vc4_crtc.c code actually drives HVS setup for
19  * each CRTC.
20  */
21 
22 #include <linux/component.h>
23 #include <linux/platform_device.h>
24 
25 #include <drm/drm_atomic_helper.h>
26 
27 #include "vc4_drv.h"
28 #include "vc4_regs.h"
29 
30 static const struct debugfs_reg32 hvs_regs[] = {
31 	VC4_REG32(SCALER_DISPCTRL),
32 	VC4_REG32(SCALER_DISPSTAT),
33 	VC4_REG32(SCALER_DISPID),
34 	VC4_REG32(SCALER_DISPECTRL),
35 	VC4_REG32(SCALER_DISPPROF),
36 	VC4_REG32(SCALER_DISPDITHER),
37 	VC4_REG32(SCALER_DISPEOLN),
38 	VC4_REG32(SCALER_DISPLIST0),
39 	VC4_REG32(SCALER_DISPLIST1),
40 	VC4_REG32(SCALER_DISPLIST2),
41 	VC4_REG32(SCALER_DISPLSTAT),
42 	VC4_REG32(SCALER_DISPLACT0),
43 	VC4_REG32(SCALER_DISPLACT1),
44 	VC4_REG32(SCALER_DISPLACT2),
45 	VC4_REG32(SCALER_DISPCTRL0),
46 	VC4_REG32(SCALER_DISPBKGND0),
47 	VC4_REG32(SCALER_DISPSTAT0),
48 	VC4_REG32(SCALER_DISPBASE0),
49 	VC4_REG32(SCALER_DISPCTRL1),
50 	VC4_REG32(SCALER_DISPBKGND1),
51 	VC4_REG32(SCALER_DISPSTAT1),
52 	VC4_REG32(SCALER_DISPBASE1),
53 	VC4_REG32(SCALER_DISPCTRL2),
54 	VC4_REG32(SCALER_DISPBKGND2),
55 	VC4_REG32(SCALER_DISPSTAT2),
56 	VC4_REG32(SCALER_DISPBASE2),
57 	VC4_REG32(SCALER_DISPALPHA2),
58 	VC4_REG32(SCALER_OLEDOFFS),
59 	VC4_REG32(SCALER_OLEDCOEF0),
60 	VC4_REG32(SCALER_OLEDCOEF1),
61 	VC4_REG32(SCALER_OLEDCOEF2),
62 };
63 
vc4_hvs_dump_state(struct drm_device * dev)64 void vc4_hvs_dump_state(struct drm_device *dev)
65 {
66 	struct vc4_dev *vc4 = to_vc4_dev(dev);
67 	struct drm_printer p = drm_info_printer(&vc4->hvs->pdev->dev);
68 	int i;
69 
70 	drm_print_regset32(&p, &vc4->hvs->regset);
71 
72 	DRM_INFO("HVS ctx:\n");
73 	for (i = 0; i < 64; i += 4) {
74 		DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n",
75 			 i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D",
76 			 readl((u32 __iomem *)vc4->hvs->dlist + i + 0),
77 			 readl((u32 __iomem *)vc4->hvs->dlist + i + 1),
78 			 readl((u32 __iomem *)vc4->hvs->dlist + i + 2),
79 			 readl((u32 __iomem *)vc4->hvs->dlist + i + 3));
80 	}
81 }
82 
vc4_hvs_debugfs_underrun(struct seq_file * m,void * data)83 static int vc4_hvs_debugfs_underrun(struct seq_file *m, void *data)
84 {
85 	struct drm_info_node *node = m->private;
86 	struct drm_device *dev = node->minor->dev;
87 	struct vc4_dev *vc4 = to_vc4_dev(dev);
88 	struct drm_printer p = drm_seq_file_printer(m);
89 
90 	drm_printf(&p, "%d\n", atomic_read(&vc4->underrun));
91 
92 	return 0;
93 }
94 
95 /* The filter kernel is composed of dwords each containing 3 9-bit
96  * signed integers packed next to each other.
97  */
98 #define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff)
99 #define VC4_PPF_FILTER_WORD(c0, c1, c2)				\
100 	((((c0) & 0x1ff) << 0) |				\
101 	 (((c1) & 0x1ff) << 9) |				\
102 	 (((c2) & 0x1ff) << 18))
103 
104 /* The whole filter kernel is arranged as the coefficients 0-16 going
105  * up, then a pad, then 17-31 going down and reversed within the
106  * dwords.  This means that a linear phase kernel (where it's
107  * symmetrical at the boundary between 15 and 16) has the last 5
108  * dwords matching the first 5, but reversed.
109  */
110 #define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8,	\
111 				c9, c10, c11, c12, c13, c14, c15)	\
112 	{VC4_PPF_FILTER_WORD(c0, c1, c2),				\
113 	 VC4_PPF_FILTER_WORD(c3, c4, c5),				\
114 	 VC4_PPF_FILTER_WORD(c6, c7, c8),				\
115 	 VC4_PPF_FILTER_WORD(c9, c10, c11),				\
116 	 VC4_PPF_FILTER_WORD(c12, c13, c14),				\
117 	 VC4_PPF_FILTER_WORD(c15, c15, 0)}
118 
119 #define VC4_LINEAR_PHASE_KERNEL_DWORDS 6
120 #define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1)
121 
122 /* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali.
123  * http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
124  */
125 static const u32 mitchell_netravali_1_3_1_3_kernel[] =
126 	VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18,
127 				50, 82, 119, 155, 187, 213, 227);
128 
vc4_hvs_upload_linear_kernel(struct vc4_hvs * hvs,struct drm_mm_node * space,const u32 * kernel)129 static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs,
130 					struct drm_mm_node *space,
131 					const u32 *kernel)
132 {
133 	int ret, i;
134 	u32 __iomem *dst_kernel;
135 
136 	ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS);
137 	if (ret) {
138 		DRM_ERROR("Failed to allocate space for filter kernel: %d\n",
139 			  ret);
140 		return ret;
141 	}
142 
143 	dst_kernel = hvs->dlist + space->start;
144 
145 	for (i = 0; i < VC4_KERNEL_DWORDS; i++) {
146 		if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS)
147 			writel(kernel[i], &dst_kernel[i]);
148 		else {
149 			writel(kernel[VC4_KERNEL_DWORDS - i - 1],
150 			       &dst_kernel[i]);
151 		}
152 	}
153 
154 	return 0;
155 }
156 
vc4_hvs_mask_underrun(struct drm_device * dev,int channel)157 void vc4_hvs_mask_underrun(struct drm_device *dev, int channel)
158 {
159 	struct vc4_dev *vc4 = to_vc4_dev(dev);
160 	u32 dispctrl = HVS_READ(SCALER_DISPCTRL);
161 
162 	dispctrl &= ~SCALER_DISPCTRL_DSPEISLUR(channel);
163 
164 	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
165 }
166 
vc4_hvs_unmask_underrun(struct drm_device * dev,int channel)167 void vc4_hvs_unmask_underrun(struct drm_device *dev, int channel)
168 {
169 	struct vc4_dev *vc4 = to_vc4_dev(dev);
170 	u32 dispctrl = HVS_READ(SCALER_DISPCTRL);
171 
172 	dispctrl |= SCALER_DISPCTRL_DSPEISLUR(channel);
173 
174 	HVS_WRITE(SCALER_DISPSTAT,
175 		  SCALER_DISPSTAT_EUFLOW(channel));
176 	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
177 }
178 
vc4_hvs_report_underrun(struct drm_device * dev)179 static void vc4_hvs_report_underrun(struct drm_device *dev)
180 {
181 	struct vc4_dev *vc4 = to_vc4_dev(dev);
182 
183 	atomic_inc(&vc4->underrun);
184 	DRM_DEV_ERROR(dev->dev, "HVS underrun\n");
185 }
186 
vc4_hvs_irq_handler(int irq,void * data)187 static irqreturn_t vc4_hvs_irq_handler(int irq, void *data)
188 {
189 	struct drm_device *dev = data;
190 	struct vc4_dev *vc4 = to_vc4_dev(dev);
191 	irqreturn_t irqret = IRQ_NONE;
192 	int channel;
193 	u32 control;
194 	u32 status;
195 
196 	status = HVS_READ(SCALER_DISPSTAT);
197 	control = HVS_READ(SCALER_DISPCTRL);
198 
199 	for (channel = 0; channel < SCALER_CHANNELS_COUNT; channel++) {
200 		/* Interrupt masking is not always honored, so check it here. */
201 		if (status & SCALER_DISPSTAT_EUFLOW(channel) &&
202 		    control & SCALER_DISPCTRL_DSPEISLUR(channel)) {
203 			vc4_hvs_mask_underrun(dev, channel);
204 			vc4_hvs_report_underrun(dev);
205 
206 			irqret = IRQ_HANDLED;
207 		}
208 	}
209 
210 	/* Clear every per-channel interrupt flag. */
211 	HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_IRQMASK(0) |
212 				   SCALER_DISPSTAT_IRQMASK(1) |
213 				   SCALER_DISPSTAT_IRQMASK(2));
214 
215 	return irqret;
216 }
217 
vc4_hvs_bind(struct device * dev,struct device * master,void * data)218 static int vc4_hvs_bind(struct device *dev, struct device *master, void *data)
219 {
220 	struct platform_device *pdev = to_platform_device(dev);
221 	struct drm_device *drm = dev_get_drvdata(master);
222 	struct vc4_dev *vc4 = drm->dev_private;
223 	struct vc4_hvs *hvs = NULL;
224 	int ret;
225 	u32 dispctrl;
226 
227 	hvs = devm_kzalloc(&pdev->dev, sizeof(*hvs), GFP_KERNEL);
228 	if (!hvs)
229 		return -ENOMEM;
230 
231 	hvs->pdev = pdev;
232 
233 	hvs->regs = vc4_ioremap_regs(pdev, 0);
234 	if (IS_ERR(hvs->regs))
235 		return PTR_ERR(hvs->regs);
236 
237 	hvs->regset.base = hvs->regs;
238 	hvs->regset.regs = hvs_regs;
239 	hvs->regset.nregs = ARRAY_SIZE(hvs_regs);
240 
241 	hvs->dlist = hvs->regs + SCALER_DLIST_START;
242 
243 	spin_lock_init(&hvs->mm_lock);
244 
245 	/* Set up the HVS display list memory manager.  We never
246 	 * overwrite the setup from the bootloader (just 128b out of
247 	 * our 16K), since we don't want to scramble the screen when
248 	 * transitioning from the firmware's boot setup to runtime.
249 	 */
250 	drm_mm_init(&hvs->dlist_mm,
251 		    HVS_BOOTLOADER_DLIST_END,
252 		    (SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END);
253 
254 	/* Set up the HVS LBM memory manager.  We could have some more
255 	 * complicated data structure that allowed reuse of LBM areas
256 	 * between planes when they don't overlap on the screen, but
257 	 * for now we just allocate globally.
258 	 */
259 	drm_mm_init(&hvs->lbm_mm, 0, 96 * 1024);
260 
261 	/* Upload filter kernels.  We only have the one for now, so we
262 	 * keep it around for the lifetime of the driver.
263 	 */
264 	ret = vc4_hvs_upload_linear_kernel(hvs,
265 					   &hvs->mitchell_netravali_filter,
266 					   mitchell_netravali_1_3_1_3_kernel);
267 	if (ret)
268 		return ret;
269 
270 	vc4->hvs = hvs;
271 
272 	dispctrl = HVS_READ(SCALER_DISPCTRL);
273 
274 	dispctrl |= SCALER_DISPCTRL_ENABLE;
275 	dispctrl |= SCALER_DISPCTRL_DISPEIRQ(0) |
276 		    SCALER_DISPCTRL_DISPEIRQ(1) |
277 		    SCALER_DISPCTRL_DISPEIRQ(2);
278 
279 	/* Set DSP3 (PV1) to use HVS channel 2, which would otherwise
280 	 * be unused.
281 	 */
282 	dispctrl &= ~SCALER_DISPCTRL_DSP3_MUX_MASK;
283 	dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
284 		      SCALER_DISPCTRL_SLVWREIRQ |
285 		      SCALER_DISPCTRL_SLVRDEIRQ |
286 		      SCALER_DISPCTRL_DSPEIEOF(0) |
287 		      SCALER_DISPCTRL_DSPEIEOF(1) |
288 		      SCALER_DISPCTRL_DSPEIEOF(2) |
289 		      SCALER_DISPCTRL_DSPEIEOLN(0) |
290 		      SCALER_DISPCTRL_DSPEIEOLN(1) |
291 		      SCALER_DISPCTRL_DSPEIEOLN(2) |
292 		      SCALER_DISPCTRL_DSPEISLUR(0) |
293 		      SCALER_DISPCTRL_DSPEISLUR(1) |
294 		      SCALER_DISPCTRL_DSPEISLUR(2) |
295 		      SCALER_DISPCTRL_SCLEIRQ);
296 	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
297 
298 	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
299 
300 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
301 			       vc4_hvs_irq_handler, 0, "vc4 hvs", drm);
302 	if (ret)
303 		return ret;
304 
305 	vc4_debugfs_add_regset32(drm, "hvs_regs", &hvs->regset);
306 	vc4_debugfs_add_file(drm, "hvs_underrun", vc4_hvs_debugfs_underrun,
307 			     NULL);
308 
309 	return 0;
310 }
311 
vc4_hvs_unbind(struct device * dev,struct device * master,void * data)312 static void vc4_hvs_unbind(struct device *dev, struct device *master,
313 			   void *data)
314 {
315 	struct drm_device *drm = dev_get_drvdata(master);
316 	struct vc4_dev *vc4 = drm->dev_private;
317 
318 	if (vc4->hvs->mitchell_netravali_filter.allocated)
319 		drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter);
320 
321 	drm_mm_takedown(&vc4->hvs->dlist_mm);
322 	drm_mm_takedown(&vc4->hvs->lbm_mm);
323 
324 	vc4->hvs = NULL;
325 }
326 
327 static const struct component_ops vc4_hvs_ops = {
328 	.bind   = vc4_hvs_bind,
329 	.unbind = vc4_hvs_unbind,
330 };
331 
vc4_hvs_dev_probe(struct platform_device * pdev)332 static int vc4_hvs_dev_probe(struct platform_device *pdev)
333 {
334 	return component_add(&pdev->dev, &vc4_hvs_ops);
335 }
336 
vc4_hvs_dev_remove(struct platform_device * pdev)337 static int vc4_hvs_dev_remove(struct platform_device *pdev)
338 {
339 	component_del(&pdev->dev, &vc4_hvs_ops);
340 	return 0;
341 }
342 
343 static const struct of_device_id vc4_hvs_dt_match[] = {
344 	{ .compatible = "brcm,bcm2835-hvs" },
345 	{}
346 };
347 
348 struct platform_driver vc4_hvs_driver = {
349 	.probe = vc4_hvs_dev_probe,
350 	.remove = vc4_hvs_dev_remove,
351 	.driver = {
352 		.name = "vc4_hvs",
353 		.of_match_table = vc4_hvs_dt_match,
354 	},
355 };
356