1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015 Broadcom
4 */
5
6 /**
7 * DOC: VC4 HVS module.
8 *
9 * The Hardware Video Scaler (HVS) is the piece of hardware that does
10 * translation, scaling, colorspace conversion, and compositing of
11 * pixels stored in framebuffers into a FIFO of pixels going out to
12 * the Pixel Valve (CRTC). It operates at the system clock rate (the
13 * system audio clock gate, specifically), which is much higher than
14 * the pixel clock rate.
15 *
16 * There is a single global HVS, with multiple output FIFOs that can
17 * be consumed by the PVs. This file just manages the resources for
18 * the HVS, while the vc4_crtc.c code actually drives HVS setup for
19 * each CRTC.
20 */
21
22 #include <linux/bitfield.h>
23 #include <linux/clk.h>
24 #include <linux/component.h>
25 #include <linux/platform_device.h>
26
27 #include <drm/drm_atomic_helper.h>
28 #include <drm/drm_drv.h>
29 #include <drm/drm_vblank.h>
30
31 #include <soc/bcm2835/raspberrypi-firmware.h>
32
33 #include "vc4_drv.h"
34 #include "vc4_regs.h"
35
36 static const struct debugfs_reg32 hvs_regs[] = {
37 VC4_REG32(SCALER_DISPCTRL),
38 VC4_REG32(SCALER_DISPSTAT),
39 VC4_REG32(SCALER_DISPID),
40 VC4_REG32(SCALER_DISPECTRL),
41 VC4_REG32(SCALER_DISPPROF),
42 VC4_REG32(SCALER_DISPDITHER),
43 VC4_REG32(SCALER_DISPEOLN),
44 VC4_REG32(SCALER_DISPLIST0),
45 VC4_REG32(SCALER_DISPLIST1),
46 VC4_REG32(SCALER_DISPLIST2),
47 VC4_REG32(SCALER_DISPLSTAT),
48 VC4_REG32(SCALER_DISPLACT0),
49 VC4_REG32(SCALER_DISPLACT1),
50 VC4_REG32(SCALER_DISPLACT2),
51 VC4_REG32(SCALER_DISPCTRL0),
52 VC4_REG32(SCALER_DISPBKGND0),
53 VC4_REG32(SCALER_DISPSTAT0),
54 VC4_REG32(SCALER_DISPBASE0),
55 VC4_REG32(SCALER_DISPCTRL1),
56 VC4_REG32(SCALER_DISPBKGND1),
57 VC4_REG32(SCALER_DISPSTAT1),
58 VC4_REG32(SCALER_DISPBASE1),
59 VC4_REG32(SCALER_DISPCTRL2),
60 VC4_REG32(SCALER_DISPBKGND2),
61 VC4_REG32(SCALER_DISPSTAT2),
62 VC4_REG32(SCALER_DISPBASE2),
63 VC4_REG32(SCALER_DISPALPHA2),
64 VC4_REG32(SCALER_OLEDOFFS),
65 VC4_REG32(SCALER_OLEDCOEF0),
66 VC4_REG32(SCALER_OLEDCOEF1),
67 VC4_REG32(SCALER_OLEDCOEF2),
68 };
69
vc4_hvs_dump_state(struct vc4_hvs * hvs)70 void vc4_hvs_dump_state(struct vc4_hvs *hvs)
71 {
72 struct drm_device *drm = &hvs->vc4->base;
73 struct drm_printer p = drm_info_printer(&hvs->pdev->dev);
74 int idx, i;
75
76 if (!drm_dev_enter(drm, &idx))
77 return;
78
79 drm_print_regset32(&p, &hvs->regset);
80
81 DRM_INFO("HVS ctx:\n");
82 for (i = 0; i < 64; i += 4) {
83 DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n",
84 i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D",
85 readl((u32 __iomem *)hvs->dlist + i + 0),
86 readl((u32 __iomem *)hvs->dlist + i + 1),
87 readl((u32 __iomem *)hvs->dlist + i + 2),
88 readl((u32 __iomem *)hvs->dlist + i + 3));
89 }
90
91 drm_dev_exit(idx);
92 }
93
vc4_hvs_debugfs_underrun(struct seq_file * m,void * data)94 static int vc4_hvs_debugfs_underrun(struct seq_file *m, void *data)
95 {
96 struct drm_debugfs_entry *entry = m->private;
97 struct drm_device *dev = entry->dev;
98 struct vc4_dev *vc4 = to_vc4_dev(dev);
99 struct drm_printer p = drm_seq_file_printer(m);
100
101 drm_printf(&p, "%d\n", atomic_read(&vc4->underrun));
102
103 return 0;
104 }
105
vc4_hvs_debugfs_dlist(struct seq_file * m,void * data)106 static int vc4_hvs_debugfs_dlist(struct seq_file *m, void *data)
107 {
108 struct drm_debugfs_entry *entry = m->private;
109 struct drm_device *dev = entry->dev;
110 struct vc4_dev *vc4 = to_vc4_dev(dev);
111 struct vc4_hvs *hvs = vc4->hvs;
112 struct drm_printer p = drm_seq_file_printer(m);
113 unsigned int next_entry_start = 0;
114 unsigned int i, j;
115 u32 dlist_word, dispstat;
116
117 for (i = 0; i < SCALER_CHANNELS_COUNT; i++) {
118 dispstat = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(i)),
119 SCALER_DISPSTATX_MODE);
120 if (dispstat == SCALER_DISPSTATX_MODE_DISABLED ||
121 dispstat == SCALER_DISPSTATX_MODE_EOF) {
122 drm_printf(&p, "HVS chan %u disabled\n", i);
123 continue;
124 }
125
126 drm_printf(&p, "HVS chan %u:\n", i);
127
128 for (j = HVS_READ(SCALER_DISPLISTX(i)); j < 256; j++) {
129 dlist_word = readl((u32 __iomem *)vc4->hvs->dlist + j);
130 drm_printf(&p, "dlist: %02d: 0x%08x\n", j,
131 dlist_word);
132 if (!next_entry_start ||
133 next_entry_start == j) {
134 if (dlist_word & SCALER_CTL0_END)
135 break;
136 next_entry_start = j +
137 VC4_GET_FIELD(dlist_word,
138 SCALER_CTL0_SIZE);
139 }
140 }
141 }
142
143 return 0;
144 }
145
146 /* The filter kernel is composed of dwords each containing 3 9-bit
147 * signed integers packed next to each other.
148 */
149 #define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff)
150 #define VC4_PPF_FILTER_WORD(c0, c1, c2) \
151 ((((c0) & 0x1ff) << 0) | \
152 (((c1) & 0x1ff) << 9) | \
153 (((c2) & 0x1ff) << 18))
154
155 /* The whole filter kernel is arranged as the coefficients 0-16 going
156 * up, then a pad, then 17-31 going down and reversed within the
157 * dwords. This means that a linear phase kernel (where it's
158 * symmetrical at the boundary between 15 and 16) has the last 5
159 * dwords matching the first 5, but reversed.
160 */
161 #define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8, \
162 c9, c10, c11, c12, c13, c14, c15) \
163 {VC4_PPF_FILTER_WORD(c0, c1, c2), \
164 VC4_PPF_FILTER_WORD(c3, c4, c5), \
165 VC4_PPF_FILTER_WORD(c6, c7, c8), \
166 VC4_PPF_FILTER_WORD(c9, c10, c11), \
167 VC4_PPF_FILTER_WORD(c12, c13, c14), \
168 VC4_PPF_FILTER_WORD(c15, c15, 0)}
169
170 #define VC4_LINEAR_PHASE_KERNEL_DWORDS 6
171 #define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1)
172
173 /* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali.
174 * http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
175 */
176 static const u32 mitchell_netravali_1_3_1_3_kernel[] =
177 VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18,
178 50, 82, 119, 155, 187, 213, 227);
179
vc4_hvs_upload_linear_kernel(struct vc4_hvs * hvs,struct drm_mm_node * space,const u32 * kernel)180 static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs,
181 struct drm_mm_node *space,
182 const u32 *kernel)
183 {
184 int ret, i;
185 u32 __iomem *dst_kernel;
186
187 /*
188 * NOTE: We don't need a call to drm_dev_enter()/drm_dev_exit()
189 * here since that function is only called from vc4_hvs_bind().
190 */
191
192 ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS);
193 if (ret) {
194 DRM_ERROR("Failed to allocate space for filter kernel: %d\n",
195 ret);
196 return ret;
197 }
198
199 dst_kernel = hvs->dlist + space->start;
200
201 for (i = 0; i < VC4_KERNEL_DWORDS; i++) {
202 if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS)
203 writel(kernel[i], &dst_kernel[i]);
204 else {
205 writel(kernel[VC4_KERNEL_DWORDS - i - 1],
206 &dst_kernel[i]);
207 }
208 }
209
210 return 0;
211 }
212
vc4_hvs_lut_load(struct vc4_hvs * hvs,struct vc4_crtc * vc4_crtc)213 static void vc4_hvs_lut_load(struct vc4_hvs *hvs,
214 struct vc4_crtc *vc4_crtc)
215 {
216 struct drm_device *drm = &hvs->vc4->base;
217 struct drm_crtc *crtc = &vc4_crtc->base;
218 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
219 int idx;
220 u32 i;
221
222 if (!drm_dev_enter(drm, &idx))
223 return;
224
225 /* The LUT memory is laid out with each HVS channel in order,
226 * each of which takes 256 writes for R, 256 for G, then 256
227 * for B.
228 */
229 HVS_WRITE(SCALER_GAMADDR,
230 SCALER_GAMADDR_AUTOINC |
231 (vc4_state->assigned_channel * 3 * crtc->gamma_size));
232
233 for (i = 0; i < crtc->gamma_size; i++)
234 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
235 for (i = 0; i < crtc->gamma_size; i++)
236 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
237 for (i = 0; i < crtc->gamma_size; i++)
238 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
239
240 drm_dev_exit(idx);
241 }
242
vc4_hvs_update_gamma_lut(struct vc4_hvs * hvs,struct vc4_crtc * vc4_crtc)243 static void vc4_hvs_update_gamma_lut(struct vc4_hvs *hvs,
244 struct vc4_crtc *vc4_crtc)
245 {
246 struct drm_crtc_state *crtc_state = vc4_crtc->base.state;
247 struct drm_color_lut *lut = crtc_state->gamma_lut->data;
248 u32 length = drm_color_lut_size(crtc_state->gamma_lut);
249 u32 i;
250
251 for (i = 0; i < length; i++) {
252 vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
253 vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
254 vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
255 }
256
257 vc4_hvs_lut_load(hvs, vc4_crtc);
258 }
259
vc4_hvs_get_fifo_frame_count(struct vc4_hvs * hvs,unsigned int fifo)260 u8 vc4_hvs_get_fifo_frame_count(struct vc4_hvs *hvs, unsigned int fifo)
261 {
262 struct drm_device *drm = &hvs->vc4->base;
263 u8 field = 0;
264 int idx;
265
266 if (!drm_dev_enter(drm, &idx))
267 return 0;
268
269 switch (fifo) {
270 case 0:
271 field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
272 SCALER_DISPSTAT1_FRCNT0);
273 break;
274 case 1:
275 field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
276 SCALER_DISPSTAT1_FRCNT1);
277 break;
278 case 2:
279 field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT2),
280 SCALER_DISPSTAT2_FRCNT2);
281 break;
282 }
283
284 drm_dev_exit(idx);
285 return field;
286 }
287
vc4_hvs_get_fifo_from_output(struct vc4_hvs * hvs,unsigned int output)288 int vc4_hvs_get_fifo_from_output(struct vc4_hvs *hvs, unsigned int output)
289 {
290 struct vc4_dev *vc4 = hvs->vc4;
291 u32 reg;
292 int ret;
293
294 if (!vc4->is_vc5)
295 return output;
296
297 /*
298 * NOTE: We should probably use drm_dev_enter()/drm_dev_exit()
299 * here, but this function is only used during the DRM device
300 * initialization, so we should be fine.
301 */
302
303 switch (output) {
304 case 0:
305 return 0;
306
307 case 1:
308 return 1;
309
310 case 2:
311 reg = HVS_READ(SCALER_DISPECTRL);
312 ret = FIELD_GET(SCALER_DISPECTRL_DSP2_MUX_MASK, reg);
313 if (ret == 0)
314 return 2;
315
316 return 0;
317
318 case 3:
319 reg = HVS_READ(SCALER_DISPCTRL);
320 ret = FIELD_GET(SCALER_DISPCTRL_DSP3_MUX_MASK, reg);
321 if (ret == 3)
322 return -EPIPE;
323
324 return ret;
325
326 case 4:
327 reg = HVS_READ(SCALER_DISPEOLN);
328 ret = FIELD_GET(SCALER_DISPEOLN_DSP4_MUX_MASK, reg);
329 if (ret == 3)
330 return -EPIPE;
331
332 return ret;
333
334 case 5:
335 reg = HVS_READ(SCALER_DISPDITHER);
336 ret = FIELD_GET(SCALER_DISPDITHER_DSP5_MUX_MASK, reg);
337 if (ret == 3)
338 return -EPIPE;
339
340 return ret;
341
342 default:
343 return -EPIPE;
344 }
345 }
346
vc4_hvs_init_channel(struct vc4_hvs * hvs,struct drm_crtc * crtc,struct drm_display_mode * mode,bool oneshot)347 static int vc4_hvs_init_channel(struct vc4_hvs *hvs, struct drm_crtc *crtc,
348 struct drm_display_mode *mode, bool oneshot)
349 {
350 struct vc4_dev *vc4 = hvs->vc4;
351 struct drm_device *drm = &vc4->base;
352 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
353 struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
354 unsigned int chan = vc4_crtc_state->assigned_channel;
355 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
356 u32 dispbkgndx;
357 u32 dispctrl;
358 int idx;
359
360 if (!drm_dev_enter(drm, &idx))
361 return -ENODEV;
362
363 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
364 HVS_WRITE(SCALER_DISPCTRLX(chan), SCALER_DISPCTRLX_RESET);
365 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
366
367 /* Turn on the scaler, which will wait for vstart to start
368 * compositing.
369 * When feeding the transposer, we should operate in oneshot
370 * mode.
371 */
372 dispctrl = SCALER_DISPCTRLX_ENABLE;
373 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(chan));
374
375 if (!vc4->is_vc5) {
376 dispctrl |= VC4_SET_FIELD(mode->hdisplay,
377 SCALER_DISPCTRLX_WIDTH) |
378 VC4_SET_FIELD(mode->vdisplay,
379 SCALER_DISPCTRLX_HEIGHT) |
380 (oneshot ? SCALER_DISPCTRLX_ONESHOT : 0);
381 dispbkgndx |= SCALER_DISPBKGND_AUTOHS;
382 } else {
383 dispctrl |= VC4_SET_FIELD(mode->hdisplay,
384 SCALER5_DISPCTRLX_WIDTH) |
385 VC4_SET_FIELD(mode->vdisplay,
386 SCALER5_DISPCTRLX_HEIGHT) |
387 (oneshot ? SCALER5_DISPCTRLX_ONESHOT : 0);
388 dispbkgndx &= ~SCALER5_DISPBKGND_BCK2BCK;
389 }
390
391 HVS_WRITE(SCALER_DISPCTRLX(chan), dispctrl);
392
393 dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
394 dispbkgndx &= ~SCALER_DISPBKGND_INTERLACE;
395
396 HVS_WRITE(SCALER_DISPBKGNDX(chan), dispbkgndx |
397 ((!vc4->is_vc5) ? SCALER_DISPBKGND_GAMMA : 0) |
398 (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
399
400 /* Reload the LUT, since the SRAMs would have been disabled if
401 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
402 */
403 vc4_hvs_lut_load(hvs, vc4_crtc);
404
405 drm_dev_exit(idx);
406
407 return 0;
408 }
409
vc4_hvs_stop_channel(struct vc4_hvs * hvs,unsigned int chan)410 void vc4_hvs_stop_channel(struct vc4_hvs *hvs, unsigned int chan)
411 {
412 struct drm_device *drm = &hvs->vc4->base;
413 int idx;
414
415 if (!drm_dev_enter(drm, &idx))
416 return;
417
418 if (HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_ENABLE)
419 goto out;
420
421 HVS_WRITE(SCALER_DISPCTRLX(chan),
422 HVS_READ(SCALER_DISPCTRLX(chan)) | SCALER_DISPCTRLX_RESET);
423 HVS_WRITE(SCALER_DISPCTRLX(chan),
424 HVS_READ(SCALER_DISPCTRLX(chan)) & ~SCALER_DISPCTRLX_ENABLE);
425
426 /* Once we leave, the scaler should be disabled and its fifo empty. */
427 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
428
429 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
430 SCALER_DISPSTATX_MODE) !=
431 SCALER_DISPSTATX_MODE_DISABLED);
432
433 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
434 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
435 SCALER_DISPSTATX_EMPTY);
436
437 out:
438 drm_dev_exit(idx);
439 }
440
vc4_hvs_atomic_check(struct drm_crtc * crtc,struct drm_atomic_state * state)441 int vc4_hvs_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state)
442 {
443 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
444 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
445 struct drm_device *dev = crtc->dev;
446 struct vc4_dev *vc4 = to_vc4_dev(dev);
447 struct drm_plane *plane;
448 unsigned long flags;
449 const struct drm_plane_state *plane_state;
450 u32 dlist_count = 0;
451 int ret;
452
453 /* The pixelvalve can only feed one encoder (and encoders are
454 * 1:1 with connectors.)
455 */
456 if (hweight32(crtc_state->connector_mask) > 1)
457 return -EINVAL;
458
459 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state)
460 dlist_count += vc4_plane_dlist_size(plane_state);
461
462 dlist_count++; /* Account for SCALER_CTL0_END. */
463
464 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
465 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
466 dlist_count);
467 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
468 if (ret)
469 return ret;
470
471 return 0;
472 }
473
vc4_hvs_install_dlist(struct drm_crtc * crtc)474 static void vc4_hvs_install_dlist(struct drm_crtc *crtc)
475 {
476 struct drm_device *dev = crtc->dev;
477 struct vc4_dev *vc4 = to_vc4_dev(dev);
478 struct vc4_hvs *hvs = vc4->hvs;
479 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
480 int idx;
481
482 if (!drm_dev_enter(dev, &idx))
483 return;
484
485 HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel),
486 vc4_state->mm.start);
487
488 drm_dev_exit(idx);
489 }
490
vc4_hvs_update_dlist(struct drm_crtc * crtc)491 static void vc4_hvs_update_dlist(struct drm_crtc *crtc)
492 {
493 struct drm_device *dev = crtc->dev;
494 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
495 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
496 unsigned long flags;
497
498 if (crtc->state->event) {
499 crtc->state->event->pipe = drm_crtc_index(crtc);
500
501 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
502
503 spin_lock_irqsave(&dev->event_lock, flags);
504
505 if (!vc4_crtc->feeds_txp || vc4_state->txp_armed) {
506 vc4_crtc->event = crtc->state->event;
507 crtc->state->event = NULL;
508 }
509
510 spin_unlock_irqrestore(&dev->event_lock, flags);
511 }
512
513 spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
514 vc4_crtc->current_dlist = vc4_state->mm.start;
515 spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
516 }
517
vc4_hvs_atomic_begin(struct drm_crtc * crtc,struct drm_atomic_state * state)518 void vc4_hvs_atomic_begin(struct drm_crtc *crtc,
519 struct drm_atomic_state *state)
520 {
521 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
522 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
523 unsigned long flags;
524
525 spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
526 vc4_crtc->current_hvs_channel = vc4_state->assigned_channel;
527 spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
528 }
529
vc4_hvs_atomic_enable(struct drm_crtc * crtc,struct drm_atomic_state * state)530 void vc4_hvs_atomic_enable(struct drm_crtc *crtc,
531 struct drm_atomic_state *state)
532 {
533 struct drm_device *dev = crtc->dev;
534 struct vc4_dev *vc4 = to_vc4_dev(dev);
535 struct drm_display_mode *mode = &crtc->state->adjusted_mode;
536 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
537 bool oneshot = vc4_crtc->feeds_txp;
538
539 vc4_hvs_install_dlist(crtc);
540 vc4_hvs_update_dlist(crtc);
541 vc4_hvs_init_channel(vc4->hvs, crtc, mode, oneshot);
542 }
543
vc4_hvs_atomic_disable(struct drm_crtc * crtc,struct drm_atomic_state * state)544 void vc4_hvs_atomic_disable(struct drm_crtc *crtc,
545 struct drm_atomic_state *state)
546 {
547 struct drm_device *dev = crtc->dev;
548 struct vc4_dev *vc4 = to_vc4_dev(dev);
549 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, crtc);
550 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(old_state);
551 unsigned int chan = vc4_state->assigned_channel;
552
553 vc4_hvs_stop_channel(vc4->hvs, chan);
554 }
555
vc4_hvs_atomic_flush(struct drm_crtc * crtc,struct drm_atomic_state * state)556 void vc4_hvs_atomic_flush(struct drm_crtc *crtc,
557 struct drm_atomic_state *state)
558 {
559 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
560 crtc);
561 struct drm_device *dev = crtc->dev;
562 struct vc4_dev *vc4 = to_vc4_dev(dev);
563 struct vc4_hvs *hvs = vc4->hvs;
564 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
565 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
566 unsigned int channel = vc4_state->assigned_channel;
567 struct drm_plane *plane;
568 struct vc4_plane_state *vc4_plane_state;
569 bool debug_dump_regs = false;
570 bool enable_bg_fill = false;
571 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
572 u32 __iomem *dlist_next = dlist_start;
573 unsigned int zpos = 0;
574 bool found = false;
575 int idx;
576
577 if (!drm_dev_enter(dev, &idx)) {
578 vc4_crtc_send_vblank(crtc);
579 return;
580 }
581
582 if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
583 return;
584
585 if (debug_dump_regs) {
586 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
587 vc4_hvs_dump_state(hvs);
588 }
589
590 /* Copy all the active planes' dlist contents to the hardware dlist. */
591 do {
592 found = false;
593
594 drm_atomic_crtc_for_each_plane(plane, crtc) {
595 if (plane->state->normalized_zpos != zpos)
596 continue;
597
598 /* Is this the first active plane? */
599 if (dlist_next == dlist_start) {
600 /* We need to enable background fill when a plane
601 * could be alpha blending from the background, i.e.
602 * where no other plane is underneath. It suffices to
603 * consider the first active plane here since we set
604 * needs_bg_fill such that either the first plane
605 * already needs it or all planes on top blend from
606 * the first or a lower plane.
607 */
608 vc4_plane_state = to_vc4_plane_state(plane->state);
609 enable_bg_fill = vc4_plane_state->needs_bg_fill;
610 }
611
612 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
613
614 found = true;
615 }
616
617 zpos++;
618 } while (found);
619
620 writel(SCALER_CTL0_END, dlist_next);
621 dlist_next++;
622
623 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
624
625 if (enable_bg_fill)
626 /* This sets a black background color fill, as is the case
627 * with other DRM drivers.
628 */
629 HVS_WRITE(SCALER_DISPBKGNDX(channel),
630 HVS_READ(SCALER_DISPBKGNDX(channel)) |
631 SCALER_DISPBKGND_FILL);
632
633 /* Only update DISPLIST if the CRTC was already running and is not
634 * being disabled.
635 * vc4_crtc_enable() takes care of updating the dlist just after
636 * re-enabling VBLANK interrupts and before enabling the engine.
637 * If the CRTC is being disabled, there's no point in updating this
638 * information.
639 */
640 if (crtc->state->active && old_state->active) {
641 vc4_hvs_install_dlist(crtc);
642 vc4_hvs_update_dlist(crtc);
643 }
644
645 if (crtc->state->color_mgmt_changed) {
646 u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(channel));
647
648 if (crtc->state->gamma_lut) {
649 vc4_hvs_update_gamma_lut(hvs, vc4_crtc);
650 dispbkgndx |= SCALER_DISPBKGND_GAMMA;
651 } else {
652 /* Unsetting DISPBKGND_GAMMA skips the gamma lut step
653 * in hardware, which is the same as a linear lut that
654 * DRM expects us to use in absence of a user lut.
655 */
656 dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
657 }
658 HVS_WRITE(SCALER_DISPBKGNDX(channel), dispbkgndx);
659 }
660
661 if (debug_dump_regs) {
662 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
663 vc4_hvs_dump_state(hvs);
664 }
665
666 drm_dev_exit(idx);
667 }
668
vc4_hvs_mask_underrun(struct vc4_hvs * hvs,int channel)669 void vc4_hvs_mask_underrun(struct vc4_hvs *hvs, int channel)
670 {
671 struct drm_device *drm = &hvs->vc4->base;
672 u32 dispctrl;
673 int idx;
674
675 if (!drm_dev_enter(drm, &idx))
676 return;
677
678 dispctrl = HVS_READ(SCALER_DISPCTRL);
679 dispctrl &= ~(hvs->vc4->is_vc5 ? SCALER5_DISPCTRL_DSPEISLUR(channel) :
680 SCALER_DISPCTRL_DSPEISLUR(channel));
681
682 HVS_WRITE(SCALER_DISPCTRL, dispctrl);
683
684 drm_dev_exit(idx);
685 }
686
vc4_hvs_unmask_underrun(struct vc4_hvs * hvs,int channel)687 void vc4_hvs_unmask_underrun(struct vc4_hvs *hvs, int channel)
688 {
689 struct drm_device *drm = &hvs->vc4->base;
690 u32 dispctrl;
691 int idx;
692
693 if (!drm_dev_enter(drm, &idx))
694 return;
695
696 dispctrl = HVS_READ(SCALER_DISPCTRL);
697 dispctrl |= (hvs->vc4->is_vc5 ? SCALER5_DISPCTRL_DSPEISLUR(channel) :
698 SCALER_DISPCTRL_DSPEISLUR(channel));
699
700 HVS_WRITE(SCALER_DISPSTAT,
701 SCALER_DISPSTAT_EUFLOW(channel));
702 HVS_WRITE(SCALER_DISPCTRL, dispctrl);
703
704 drm_dev_exit(idx);
705 }
706
vc4_hvs_report_underrun(struct drm_device * dev)707 static void vc4_hvs_report_underrun(struct drm_device *dev)
708 {
709 struct vc4_dev *vc4 = to_vc4_dev(dev);
710
711 atomic_inc(&vc4->underrun);
712 DRM_DEV_ERROR(dev->dev, "HVS underrun\n");
713 }
714
vc4_hvs_irq_handler(int irq,void * data)715 static irqreturn_t vc4_hvs_irq_handler(int irq, void *data)
716 {
717 struct drm_device *dev = data;
718 struct vc4_dev *vc4 = to_vc4_dev(dev);
719 struct vc4_hvs *hvs = vc4->hvs;
720 irqreturn_t irqret = IRQ_NONE;
721 int channel;
722 u32 control;
723 u32 status;
724 u32 dspeislur;
725
726 /*
727 * NOTE: We don't need to protect the register access using
728 * drm_dev_enter() there because the interrupt handler lifetime
729 * is tied to the device itself, and not to the DRM device.
730 *
731 * So when the device will be gone, one of the first thing we
732 * will be doing will be to unregister the interrupt handler,
733 * and then unregister the DRM device. drm_dev_enter() would
734 * thus always succeed if we are here.
735 */
736
737 status = HVS_READ(SCALER_DISPSTAT);
738 control = HVS_READ(SCALER_DISPCTRL);
739
740 for (channel = 0; channel < SCALER_CHANNELS_COUNT; channel++) {
741 dspeislur = vc4->is_vc5 ? SCALER5_DISPCTRL_DSPEISLUR(channel) :
742 SCALER_DISPCTRL_DSPEISLUR(channel);
743 /* Interrupt masking is not always honored, so check it here. */
744 if (status & SCALER_DISPSTAT_EUFLOW(channel) &&
745 control & dspeislur) {
746 vc4_hvs_mask_underrun(hvs, channel);
747 vc4_hvs_report_underrun(dev);
748
749 irqret = IRQ_HANDLED;
750 }
751 }
752
753 /* Clear every per-channel interrupt flag. */
754 HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_IRQMASK(0) |
755 SCALER_DISPSTAT_IRQMASK(1) |
756 SCALER_DISPSTAT_IRQMASK(2));
757
758 return irqret;
759 }
760
vc4_hvs_debugfs_init(struct drm_minor * minor)761 int vc4_hvs_debugfs_init(struct drm_minor *minor)
762 {
763 struct drm_device *drm = minor->dev;
764 struct vc4_dev *vc4 = to_vc4_dev(drm);
765 struct vc4_hvs *hvs = vc4->hvs;
766
767 if (!vc4->hvs)
768 return -ENODEV;
769
770 if (!vc4->is_vc5)
771 debugfs_create_bool("hvs_load_tracker", S_IRUGO | S_IWUSR,
772 minor->debugfs_root,
773 &vc4->load_tracker_enabled);
774
775 drm_debugfs_add_file(drm, "hvs_dlists", vc4_hvs_debugfs_dlist, NULL);
776
777 drm_debugfs_add_file(drm, "hvs_underrun", vc4_hvs_debugfs_underrun, NULL);
778
779 vc4_debugfs_add_regset32(drm, "hvs_regs", &hvs->regset);
780
781 return 0;
782 }
783
__vc4_hvs_alloc(struct vc4_dev * vc4,struct platform_device * pdev)784 struct vc4_hvs *__vc4_hvs_alloc(struct vc4_dev *vc4, struct platform_device *pdev)
785 {
786 struct drm_device *drm = &vc4->base;
787 struct vc4_hvs *hvs;
788
789 hvs = drmm_kzalloc(drm, sizeof(*hvs), GFP_KERNEL);
790 if (!hvs)
791 return ERR_PTR(-ENOMEM);
792
793 hvs->vc4 = vc4;
794 hvs->pdev = pdev;
795
796 spin_lock_init(&hvs->mm_lock);
797
798 /* Set up the HVS display list memory manager. We never
799 * overwrite the setup from the bootloader (just 128b out of
800 * our 16K), since we don't want to scramble the screen when
801 * transitioning from the firmware's boot setup to runtime.
802 */
803 drm_mm_init(&hvs->dlist_mm,
804 HVS_BOOTLOADER_DLIST_END,
805 (SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END);
806
807 /* Set up the HVS LBM memory manager. We could have some more
808 * complicated data structure that allowed reuse of LBM areas
809 * between planes when they don't overlap on the screen, but
810 * for now we just allocate globally.
811 */
812 if (!vc4->is_vc5)
813 /* 48k words of 2x12-bit pixels */
814 drm_mm_init(&hvs->lbm_mm, 0, 48 * 1024);
815 else
816 /* 60k words of 4x12-bit pixels */
817 drm_mm_init(&hvs->lbm_mm, 0, 60 * 1024);
818
819 vc4->hvs = hvs;
820
821 return hvs;
822 }
823
vc4_hvs_bind(struct device * dev,struct device * master,void * data)824 static int vc4_hvs_bind(struct device *dev, struct device *master, void *data)
825 {
826 struct platform_device *pdev = to_platform_device(dev);
827 struct drm_device *drm = dev_get_drvdata(master);
828 struct vc4_dev *vc4 = to_vc4_dev(drm);
829 struct vc4_hvs *hvs = NULL;
830 int ret;
831 u32 dispctrl;
832 u32 reg, top;
833
834 hvs = __vc4_hvs_alloc(vc4, NULL);
835 if (IS_ERR(hvs))
836 return PTR_ERR(hvs);
837
838 hvs->regs = vc4_ioremap_regs(pdev, 0);
839 if (IS_ERR(hvs->regs))
840 return PTR_ERR(hvs->regs);
841
842 hvs->regset.base = hvs->regs;
843 hvs->regset.regs = hvs_regs;
844 hvs->regset.nregs = ARRAY_SIZE(hvs_regs);
845
846 if (vc4->is_vc5) {
847 struct rpi_firmware *firmware;
848 struct device_node *node;
849 unsigned int max_rate;
850
851 node = rpi_firmware_find_node();
852 if (!node)
853 return -EINVAL;
854
855 firmware = rpi_firmware_get(node);
856 of_node_put(node);
857 if (!firmware)
858 return -EPROBE_DEFER;
859
860 hvs->core_clk = devm_clk_get(&pdev->dev, NULL);
861 if (IS_ERR(hvs->core_clk)) {
862 dev_err(&pdev->dev, "Couldn't get core clock\n");
863 return PTR_ERR(hvs->core_clk);
864 }
865
866 max_rate = rpi_firmware_clk_get_max_rate(firmware,
867 RPI_FIRMWARE_CORE_CLK_ID);
868 rpi_firmware_put(firmware);
869 if (max_rate >= 550000000)
870 hvs->vc5_hdmi_enable_hdmi_20 = true;
871
872 if (max_rate >= 600000000)
873 hvs->vc5_hdmi_enable_4096by2160 = true;
874
875 hvs->max_core_rate = max_rate;
876
877 ret = clk_prepare_enable(hvs->core_clk);
878 if (ret) {
879 dev_err(&pdev->dev, "Couldn't enable the core clock\n");
880 return ret;
881 }
882 }
883
884 if (!vc4->is_vc5)
885 hvs->dlist = hvs->regs + SCALER_DLIST_START;
886 else
887 hvs->dlist = hvs->regs + SCALER5_DLIST_START;
888
889 /* Upload filter kernels. We only have the one for now, so we
890 * keep it around for the lifetime of the driver.
891 */
892 ret = vc4_hvs_upload_linear_kernel(hvs,
893 &hvs->mitchell_netravali_filter,
894 mitchell_netravali_1_3_1_3_kernel);
895 if (ret)
896 return ret;
897
898 reg = HVS_READ(SCALER_DISPECTRL);
899 reg &= ~SCALER_DISPECTRL_DSP2_MUX_MASK;
900 HVS_WRITE(SCALER_DISPECTRL,
901 reg | VC4_SET_FIELD(0, SCALER_DISPECTRL_DSP2_MUX));
902
903 reg = HVS_READ(SCALER_DISPCTRL);
904 reg &= ~SCALER_DISPCTRL_DSP3_MUX_MASK;
905 HVS_WRITE(SCALER_DISPCTRL,
906 reg | VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX));
907
908 reg = HVS_READ(SCALER_DISPEOLN);
909 reg &= ~SCALER_DISPEOLN_DSP4_MUX_MASK;
910 HVS_WRITE(SCALER_DISPEOLN,
911 reg | VC4_SET_FIELD(3, SCALER_DISPEOLN_DSP4_MUX));
912
913 reg = HVS_READ(SCALER_DISPDITHER);
914 reg &= ~SCALER_DISPDITHER_DSP5_MUX_MASK;
915 HVS_WRITE(SCALER_DISPDITHER,
916 reg | VC4_SET_FIELD(3, SCALER_DISPDITHER_DSP5_MUX));
917
918 dispctrl = HVS_READ(SCALER_DISPCTRL);
919
920 dispctrl |= SCALER_DISPCTRL_ENABLE;
921 dispctrl |= SCALER_DISPCTRL_DISPEIRQ(0) |
922 SCALER_DISPCTRL_DISPEIRQ(1) |
923 SCALER_DISPCTRL_DISPEIRQ(2);
924
925 if (!vc4->is_vc5)
926 dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
927 SCALER_DISPCTRL_SLVWREIRQ |
928 SCALER_DISPCTRL_SLVRDEIRQ |
929 SCALER_DISPCTRL_DSPEIEOF(0) |
930 SCALER_DISPCTRL_DSPEIEOF(1) |
931 SCALER_DISPCTRL_DSPEIEOF(2) |
932 SCALER_DISPCTRL_DSPEIEOLN(0) |
933 SCALER_DISPCTRL_DSPEIEOLN(1) |
934 SCALER_DISPCTRL_DSPEIEOLN(2) |
935 SCALER_DISPCTRL_DSPEISLUR(0) |
936 SCALER_DISPCTRL_DSPEISLUR(1) |
937 SCALER_DISPCTRL_DSPEISLUR(2) |
938 SCALER_DISPCTRL_SCLEIRQ);
939 else
940 dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
941 SCALER5_DISPCTRL_SLVEIRQ |
942 SCALER5_DISPCTRL_DSPEIEOF(0) |
943 SCALER5_DISPCTRL_DSPEIEOF(1) |
944 SCALER5_DISPCTRL_DSPEIEOF(2) |
945 SCALER5_DISPCTRL_DSPEIEOLN(0) |
946 SCALER5_DISPCTRL_DSPEIEOLN(1) |
947 SCALER5_DISPCTRL_DSPEIEOLN(2) |
948 SCALER5_DISPCTRL_DSPEISLUR(0) |
949 SCALER5_DISPCTRL_DSPEISLUR(1) |
950 SCALER5_DISPCTRL_DSPEISLUR(2) |
951 SCALER_DISPCTRL_SCLEIRQ);
952
953
954 /* Set AXI panic mode.
955 * VC4 panics when < 2 lines in FIFO.
956 * VC5 panics when less than 1 line in the FIFO.
957 */
958 dispctrl &= ~(SCALER_DISPCTRL_PANIC0_MASK |
959 SCALER_DISPCTRL_PANIC1_MASK |
960 SCALER_DISPCTRL_PANIC2_MASK);
961 dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC0);
962 dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC1);
963 dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC2);
964
965 HVS_WRITE(SCALER_DISPCTRL, dispctrl);
966
967 /* Recompute Composite Output Buffer (COB) allocations for the displays
968 */
969 if (!vc4->is_vc5) {
970 /* The COB is 20736 pixels, or just over 10 lines at 2048 wide.
971 * The bottom 2048 pixels are full 32bpp RGBA (intended for the
972 * TXP composing RGBA to memory), whilst the remainder are only
973 * 24bpp RGB.
974 *
975 * Assign 3 lines to channels 1 & 2, and just over 4 lines to
976 * channel 0.
977 */
978 #define VC4_COB_SIZE 20736
979 #define VC4_COB_LINE_WIDTH 2048
980 #define VC4_COB_NUM_LINES 3
981 reg = 0;
982 top = VC4_COB_LINE_WIDTH * VC4_COB_NUM_LINES;
983 reg |= (top - 1) << 16;
984 HVS_WRITE(SCALER_DISPBASE2, reg);
985 reg = top;
986 top += VC4_COB_LINE_WIDTH * VC4_COB_NUM_LINES;
987 reg |= (top - 1) << 16;
988 HVS_WRITE(SCALER_DISPBASE1, reg);
989 reg = top;
990 top = VC4_COB_SIZE;
991 reg |= (top - 1) << 16;
992 HVS_WRITE(SCALER_DISPBASE0, reg);
993 } else {
994 /* The COB is 44416 pixels, or 10.8 lines at 4096 wide.
995 * The bottom 4096 pixels are full RGBA (intended for the TXP
996 * composing RGBA to memory), whilst the remainder are only
997 * RGB. Addressing is always pixel wide.
998 *
999 * Assign 3 lines of 4096 to channels 1 & 2, and just over 4
1000 * lines. to channel 0.
1001 */
1002 #define VC5_COB_SIZE 44416
1003 #define VC5_COB_LINE_WIDTH 4096
1004 #define VC5_COB_NUM_LINES 3
1005 reg = 0;
1006 top = VC5_COB_LINE_WIDTH * VC5_COB_NUM_LINES;
1007 reg |= top << 16;
1008 HVS_WRITE(SCALER_DISPBASE2, reg);
1009 top += 16;
1010 reg = top;
1011 top += VC5_COB_LINE_WIDTH * VC5_COB_NUM_LINES;
1012 reg |= top << 16;
1013 HVS_WRITE(SCALER_DISPBASE1, reg);
1014 top += 16;
1015 reg = top;
1016 top = VC5_COB_SIZE;
1017 reg |= top << 16;
1018 HVS_WRITE(SCALER_DISPBASE0, reg);
1019 }
1020
1021 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1022 vc4_hvs_irq_handler, 0, "vc4 hvs", drm);
1023 if (ret)
1024 return ret;
1025
1026 return 0;
1027 }
1028
vc4_hvs_unbind(struct device * dev,struct device * master,void * data)1029 static void vc4_hvs_unbind(struct device *dev, struct device *master,
1030 void *data)
1031 {
1032 struct drm_device *drm = dev_get_drvdata(master);
1033 struct vc4_dev *vc4 = to_vc4_dev(drm);
1034 struct vc4_hvs *hvs = vc4->hvs;
1035 struct drm_mm_node *node, *next;
1036
1037 if (drm_mm_node_allocated(&vc4->hvs->mitchell_netravali_filter))
1038 drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter);
1039
1040 drm_mm_for_each_node_safe(node, next, &vc4->hvs->dlist_mm)
1041 drm_mm_remove_node(node);
1042
1043 drm_mm_takedown(&vc4->hvs->dlist_mm);
1044
1045 drm_mm_for_each_node_safe(node, next, &vc4->hvs->lbm_mm)
1046 drm_mm_remove_node(node);
1047 drm_mm_takedown(&vc4->hvs->lbm_mm);
1048
1049 clk_disable_unprepare(hvs->core_clk);
1050
1051 vc4->hvs = NULL;
1052 }
1053
1054 static const struct component_ops vc4_hvs_ops = {
1055 .bind = vc4_hvs_bind,
1056 .unbind = vc4_hvs_unbind,
1057 };
1058
vc4_hvs_dev_probe(struct platform_device * pdev)1059 static int vc4_hvs_dev_probe(struct platform_device *pdev)
1060 {
1061 return component_add(&pdev->dev, &vc4_hvs_ops);
1062 }
1063
vc4_hvs_dev_remove(struct platform_device * pdev)1064 static void vc4_hvs_dev_remove(struct platform_device *pdev)
1065 {
1066 component_del(&pdev->dev, &vc4_hvs_ops);
1067 }
1068
1069 static const struct of_device_id vc4_hvs_dt_match[] = {
1070 { .compatible = "brcm,bcm2711-hvs" },
1071 { .compatible = "brcm,bcm2835-hvs" },
1072 {}
1073 };
1074
1075 struct platform_driver vc4_hvs_driver = {
1076 .probe = vc4_hvs_dev_probe,
1077 .remove_new = vc4_hvs_dev_remove,
1078 .driver = {
1079 .name = "vc4_hvs",
1080 .of_match_table = vc4_hvs_dt_match,
1081 },
1082 };
1083