1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * v4l2-dv-timings - dv-timings helper functions
4 *
5 * Copyright 2013 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6 */
7
8 #include <linux/module.h>
9 #include <linux/types.h>
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/rational.h>
13 #include <linux/videodev2.h>
14 #include <linux/v4l2-dv-timings.h>
15 #include <media/v4l2-dv-timings.h>
16 #include <linux/math64.h>
17 #include <linux/hdmi.h>
18 #include <media/cec.h>
19
20 MODULE_AUTHOR("Hans Verkuil");
21 MODULE_DESCRIPTION("V4L2 DV Timings Helper Functions");
22 MODULE_LICENSE("GPL");
23
24 const struct v4l2_dv_timings v4l2_dv_timings_presets[] = {
25 V4L2_DV_BT_CEA_640X480P59_94,
26 V4L2_DV_BT_CEA_720X480I59_94,
27 V4L2_DV_BT_CEA_720X480P59_94,
28 V4L2_DV_BT_CEA_720X576I50,
29 V4L2_DV_BT_CEA_720X576P50,
30 V4L2_DV_BT_CEA_1280X720P24,
31 V4L2_DV_BT_CEA_1280X720P25,
32 V4L2_DV_BT_CEA_1280X720P30,
33 V4L2_DV_BT_CEA_1280X720P50,
34 V4L2_DV_BT_CEA_1280X720P60,
35 V4L2_DV_BT_CEA_1920X1080P24,
36 V4L2_DV_BT_CEA_1920X1080P25,
37 V4L2_DV_BT_CEA_1920X1080P30,
38 V4L2_DV_BT_CEA_1920X1080I50,
39 V4L2_DV_BT_CEA_1920X1080P50,
40 V4L2_DV_BT_CEA_1920X1080I60,
41 V4L2_DV_BT_CEA_1920X1080P60,
42 V4L2_DV_BT_DMT_640X350P85,
43 V4L2_DV_BT_DMT_640X400P85,
44 V4L2_DV_BT_DMT_720X400P85,
45 V4L2_DV_BT_DMT_640X480P72,
46 V4L2_DV_BT_DMT_640X480P75,
47 V4L2_DV_BT_DMT_640X480P85,
48 V4L2_DV_BT_DMT_800X600P56,
49 V4L2_DV_BT_DMT_800X600P60,
50 V4L2_DV_BT_DMT_800X600P72,
51 V4L2_DV_BT_DMT_800X600P75,
52 V4L2_DV_BT_DMT_800X600P85,
53 V4L2_DV_BT_DMT_800X600P120_RB,
54 V4L2_DV_BT_DMT_848X480P60,
55 V4L2_DV_BT_DMT_1024X768I43,
56 V4L2_DV_BT_DMT_1024X768P60,
57 V4L2_DV_BT_DMT_1024X768P70,
58 V4L2_DV_BT_DMT_1024X768P75,
59 V4L2_DV_BT_DMT_1024X768P85,
60 V4L2_DV_BT_DMT_1024X768P120_RB,
61 V4L2_DV_BT_DMT_1152X864P75,
62 V4L2_DV_BT_DMT_1280X768P60_RB,
63 V4L2_DV_BT_DMT_1280X768P60,
64 V4L2_DV_BT_DMT_1280X768P75,
65 V4L2_DV_BT_DMT_1280X768P85,
66 V4L2_DV_BT_DMT_1280X768P120_RB,
67 V4L2_DV_BT_DMT_1280X800P60_RB,
68 V4L2_DV_BT_DMT_1280X800P60,
69 V4L2_DV_BT_DMT_1280X800P75,
70 V4L2_DV_BT_DMT_1280X800P85,
71 V4L2_DV_BT_DMT_1280X800P120_RB,
72 V4L2_DV_BT_DMT_1280X960P60,
73 V4L2_DV_BT_DMT_1280X960P85,
74 V4L2_DV_BT_DMT_1280X960P120_RB,
75 V4L2_DV_BT_DMT_1280X1024P60,
76 V4L2_DV_BT_DMT_1280X1024P75,
77 V4L2_DV_BT_DMT_1280X1024P85,
78 V4L2_DV_BT_DMT_1280X1024P120_RB,
79 V4L2_DV_BT_DMT_1360X768P60,
80 V4L2_DV_BT_DMT_1360X768P120_RB,
81 V4L2_DV_BT_DMT_1366X768P60,
82 V4L2_DV_BT_DMT_1366X768P60_RB,
83 V4L2_DV_BT_DMT_1400X1050P60_RB,
84 V4L2_DV_BT_DMT_1400X1050P60,
85 V4L2_DV_BT_DMT_1400X1050P75,
86 V4L2_DV_BT_DMT_1400X1050P85,
87 V4L2_DV_BT_DMT_1400X1050P120_RB,
88 V4L2_DV_BT_DMT_1440X900P60_RB,
89 V4L2_DV_BT_DMT_1440X900P60,
90 V4L2_DV_BT_DMT_1440X900P75,
91 V4L2_DV_BT_DMT_1440X900P85,
92 V4L2_DV_BT_DMT_1440X900P120_RB,
93 V4L2_DV_BT_DMT_1600X900P60_RB,
94 V4L2_DV_BT_DMT_1600X1200P60,
95 V4L2_DV_BT_DMT_1600X1200P65,
96 V4L2_DV_BT_DMT_1600X1200P70,
97 V4L2_DV_BT_DMT_1600X1200P75,
98 V4L2_DV_BT_DMT_1600X1200P85,
99 V4L2_DV_BT_DMT_1600X1200P120_RB,
100 V4L2_DV_BT_DMT_1680X1050P60_RB,
101 V4L2_DV_BT_DMT_1680X1050P60,
102 V4L2_DV_BT_DMT_1680X1050P75,
103 V4L2_DV_BT_DMT_1680X1050P85,
104 V4L2_DV_BT_DMT_1680X1050P120_RB,
105 V4L2_DV_BT_DMT_1792X1344P60,
106 V4L2_DV_BT_DMT_1792X1344P75,
107 V4L2_DV_BT_DMT_1792X1344P120_RB,
108 V4L2_DV_BT_DMT_1856X1392P60,
109 V4L2_DV_BT_DMT_1856X1392P75,
110 V4L2_DV_BT_DMT_1856X1392P120_RB,
111 V4L2_DV_BT_DMT_1920X1200P60_RB,
112 V4L2_DV_BT_DMT_1920X1200P60,
113 V4L2_DV_BT_DMT_1920X1200P75,
114 V4L2_DV_BT_DMT_1920X1200P85,
115 V4L2_DV_BT_DMT_1920X1200P120_RB,
116 V4L2_DV_BT_DMT_1920X1440P60,
117 V4L2_DV_BT_DMT_1920X1440P75,
118 V4L2_DV_BT_DMT_1920X1440P120_RB,
119 V4L2_DV_BT_DMT_2048X1152P60_RB,
120 V4L2_DV_BT_DMT_2560X1600P60_RB,
121 V4L2_DV_BT_DMT_2560X1600P60,
122 V4L2_DV_BT_DMT_2560X1600P75,
123 V4L2_DV_BT_DMT_2560X1600P85,
124 V4L2_DV_BT_DMT_2560X1600P120_RB,
125 V4L2_DV_BT_CEA_3840X2160P24,
126 V4L2_DV_BT_CEA_3840X2160P25,
127 V4L2_DV_BT_CEA_3840X2160P30,
128 V4L2_DV_BT_CEA_3840X2160P50,
129 V4L2_DV_BT_CEA_3840X2160P60,
130 V4L2_DV_BT_CEA_4096X2160P24,
131 V4L2_DV_BT_CEA_4096X2160P25,
132 V4L2_DV_BT_CEA_4096X2160P30,
133 V4L2_DV_BT_CEA_4096X2160P50,
134 V4L2_DV_BT_DMT_4096X2160P59_94_RB,
135 V4L2_DV_BT_CEA_4096X2160P60,
136 { }
137 };
138 EXPORT_SYMBOL_GPL(v4l2_dv_timings_presets);
139
v4l2_valid_dv_timings(const struct v4l2_dv_timings * t,const struct v4l2_dv_timings_cap * dvcap,v4l2_check_dv_timings_fnc fnc,void * fnc_handle)140 bool v4l2_valid_dv_timings(const struct v4l2_dv_timings *t,
141 const struct v4l2_dv_timings_cap *dvcap,
142 v4l2_check_dv_timings_fnc fnc,
143 void *fnc_handle)
144 {
145 const struct v4l2_bt_timings *bt = &t->bt;
146 const struct v4l2_bt_timings_cap *cap = &dvcap->bt;
147 u32 caps = cap->capabilities;
148
149 if (t->type != V4L2_DV_BT_656_1120)
150 return false;
151 if (t->type != dvcap->type ||
152 bt->height < cap->min_height ||
153 bt->height > cap->max_height ||
154 bt->width < cap->min_width ||
155 bt->width > cap->max_width ||
156 bt->pixelclock < cap->min_pixelclock ||
157 bt->pixelclock > cap->max_pixelclock ||
158 (!(caps & V4L2_DV_BT_CAP_CUSTOM) &&
159 cap->standards && bt->standards &&
160 !(bt->standards & cap->standards)) ||
161 (bt->interlaced && !(caps & V4L2_DV_BT_CAP_INTERLACED)) ||
162 (!bt->interlaced && !(caps & V4L2_DV_BT_CAP_PROGRESSIVE)))
163 return false;
164 return fnc == NULL || fnc(t, fnc_handle);
165 }
166 EXPORT_SYMBOL_GPL(v4l2_valid_dv_timings);
167
v4l2_enum_dv_timings_cap(struct v4l2_enum_dv_timings * t,const struct v4l2_dv_timings_cap * cap,v4l2_check_dv_timings_fnc fnc,void * fnc_handle)168 int v4l2_enum_dv_timings_cap(struct v4l2_enum_dv_timings *t,
169 const struct v4l2_dv_timings_cap *cap,
170 v4l2_check_dv_timings_fnc fnc,
171 void *fnc_handle)
172 {
173 u32 i, idx;
174
175 memset(t->reserved, 0, sizeof(t->reserved));
176 for (i = idx = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
177 if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
178 fnc, fnc_handle) &&
179 idx++ == t->index) {
180 t->timings = v4l2_dv_timings_presets[i];
181 return 0;
182 }
183 }
184 return -EINVAL;
185 }
186 EXPORT_SYMBOL_GPL(v4l2_enum_dv_timings_cap);
187
v4l2_find_dv_timings_cap(struct v4l2_dv_timings * t,const struct v4l2_dv_timings_cap * cap,unsigned pclock_delta,v4l2_check_dv_timings_fnc fnc,void * fnc_handle)188 bool v4l2_find_dv_timings_cap(struct v4l2_dv_timings *t,
189 const struct v4l2_dv_timings_cap *cap,
190 unsigned pclock_delta,
191 v4l2_check_dv_timings_fnc fnc,
192 void *fnc_handle)
193 {
194 int i;
195
196 if (!v4l2_valid_dv_timings(t, cap, fnc, fnc_handle))
197 return false;
198
199 for (i = 0; i < v4l2_dv_timings_presets[i].bt.width; i++) {
200 if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
201 fnc, fnc_handle) &&
202 v4l2_match_dv_timings(t, v4l2_dv_timings_presets + i,
203 pclock_delta, false)) {
204 u32 flags = t->bt.flags & V4L2_DV_FL_REDUCED_FPS;
205
206 *t = v4l2_dv_timings_presets[i];
207 if (can_reduce_fps(&t->bt))
208 t->bt.flags |= flags;
209
210 return true;
211 }
212 }
213 return false;
214 }
215 EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cap);
216
v4l2_find_dv_timings_cea861_vic(struct v4l2_dv_timings * t,u8 vic)217 bool v4l2_find_dv_timings_cea861_vic(struct v4l2_dv_timings *t, u8 vic)
218 {
219 unsigned int i;
220
221 for (i = 0; i < v4l2_dv_timings_presets[i].bt.width; i++) {
222 const struct v4l2_bt_timings *bt =
223 &v4l2_dv_timings_presets[i].bt;
224
225 if ((bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) &&
226 bt->cea861_vic == vic) {
227 *t = v4l2_dv_timings_presets[i];
228 return true;
229 }
230 }
231 return false;
232 }
233 EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cea861_vic);
234
235 /**
236 * v4l2_match_dv_timings - check if two timings match
237 * @t1: compare this v4l2_dv_timings struct...
238 * @t2: with this struct.
239 * @pclock_delta: the allowed pixelclock deviation.
240 * @match_reduced_fps: if true, then fail if V4L2_DV_FL_REDUCED_FPS does not
241 * match.
242 *
243 * Compare t1 with t2 with a given margin of error for the pixelclock.
244 */
v4l2_match_dv_timings(const struct v4l2_dv_timings * t1,const struct v4l2_dv_timings * t2,unsigned pclock_delta,bool match_reduced_fps)245 bool v4l2_match_dv_timings(const struct v4l2_dv_timings *t1,
246 const struct v4l2_dv_timings *t2,
247 unsigned pclock_delta, bool match_reduced_fps)
248 {
249 if (t1->type != t2->type || t1->type != V4L2_DV_BT_656_1120)
250 return false;
251 if (t1->bt.width == t2->bt.width &&
252 t1->bt.height == t2->bt.height &&
253 t1->bt.interlaced == t2->bt.interlaced &&
254 t1->bt.polarities == t2->bt.polarities &&
255 t1->bt.pixelclock >= t2->bt.pixelclock - pclock_delta &&
256 t1->bt.pixelclock <= t2->bt.pixelclock + pclock_delta &&
257 t1->bt.hfrontporch == t2->bt.hfrontporch &&
258 t1->bt.hsync == t2->bt.hsync &&
259 t1->bt.hbackporch == t2->bt.hbackporch &&
260 t1->bt.vfrontporch == t2->bt.vfrontporch &&
261 t1->bt.vsync == t2->bt.vsync &&
262 t1->bt.vbackporch == t2->bt.vbackporch &&
263 (!match_reduced_fps ||
264 (t1->bt.flags & V4L2_DV_FL_REDUCED_FPS) ==
265 (t2->bt.flags & V4L2_DV_FL_REDUCED_FPS)) &&
266 (!t1->bt.interlaced ||
267 (t1->bt.il_vfrontporch == t2->bt.il_vfrontporch &&
268 t1->bt.il_vsync == t2->bt.il_vsync &&
269 t1->bt.il_vbackporch == t2->bt.il_vbackporch)))
270 return true;
271 return false;
272 }
273 EXPORT_SYMBOL_GPL(v4l2_match_dv_timings);
274
v4l2_print_dv_timings(const char * dev_prefix,const char * prefix,const struct v4l2_dv_timings * t,bool detailed)275 void v4l2_print_dv_timings(const char *dev_prefix, const char *prefix,
276 const struct v4l2_dv_timings *t, bool detailed)
277 {
278 const struct v4l2_bt_timings *bt = &t->bt;
279 u32 htot, vtot;
280 u32 fps;
281
282 if (t->type != V4L2_DV_BT_656_1120)
283 return;
284
285 htot = V4L2_DV_BT_FRAME_WIDTH(bt);
286 vtot = V4L2_DV_BT_FRAME_HEIGHT(bt);
287 if (bt->interlaced)
288 vtot /= 2;
289
290 fps = (htot * vtot) > 0 ? div_u64((100 * (u64)bt->pixelclock),
291 (htot * vtot)) : 0;
292
293 if (prefix == NULL)
294 prefix = "";
295
296 pr_info("%s: %s%ux%u%s%u.%02u (%ux%u)\n", dev_prefix, prefix,
297 bt->width, bt->height, bt->interlaced ? "i" : "p",
298 fps / 100, fps % 100, htot, vtot);
299
300 if (!detailed)
301 return;
302
303 pr_info("%s: horizontal: fp = %u, %ssync = %u, bp = %u\n",
304 dev_prefix, bt->hfrontporch,
305 (bt->polarities & V4L2_DV_HSYNC_POS_POL) ? "+" : "-",
306 bt->hsync, bt->hbackporch);
307 pr_info("%s: vertical: fp = %u, %ssync = %u, bp = %u\n",
308 dev_prefix, bt->vfrontporch,
309 (bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
310 bt->vsync, bt->vbackporch);
311 if (bt->interlaced)
312 pr_info("%s: vertical bottom field: fp = %u, %ssync = %u, bp = %u\n",
313 dev_prefix, bt->il_vfrontporch,
314 (bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
315 bt->il_vsync, bt->il_vbackporch);
316 pr_info("%s: pixelclock: %llu\n", dev_prefix, bt->pixelclock);
317 pr_info("%s: flags (0x%x):%s%s%s%s%s%s%s%s%s%s\n",
318 dev_prefix, bt->flags,
319 (bt->flags & V4L2_DV_FL_REDUCED_BLANKING) ?
320 " REDUCED_BLANKING" : "",
321 ((bt->flags & V4L2_DV_FL_REDUCED_BLANKING) &&
322 bt->vsync == 8) ? " (V2)" : "",
323 (bt->flags & V4L2_DV_FL_CAN_REDUCE_FPS) ?
324 " CAN_REDUCE_FPS" : "",
325 (bt->flags & V4L2_DV_FL_REDUCED_FPS) ?
326 " REDUCED_FPS" : "",
327 (bt->flags & V4L2_DV_FL_HALF_LINE) ?
328 " HALF_LINE" : "",
329 (bt->flags & V4L2_DV_FL_IS_CE_VIDEO) ?
330 " CE_VIDEO" : "",
331 (bt->flags & V4L2_DV_FL_FIRST_FIELD_EXTRA_LINE) ?
332 " FIRST_FIELD_EXTRA_LINE" : "",
333 (bt->flags & V4L2_DV_FL_HAS_PICTURE_ASPECT) ?
334 " HAS_PICTURE_ASPECT" : "",
335 (bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) ?
336 " HAS_CEA861_VIC" : "",
337 (bt->flags & V4L2_DV_FL_HAS_HDMI_VIC) ?
338 " HAS_HDMI_VIC" : "");
339 pr_info("%s: standards (0x%x):%s%s%s%s%s\n", dev_prefix, bt->standards,
340 (bt->standards & V4L2_DV_BT_STD_CEA861) ? " CEA" : "",
341 (bt->standards & V4L2_DV_BT_STD_DMT) ? " DMT" : "",
342 (bt->standards & V4L2_DV_BT_STD_CVT) ? " CVT" : "",
343 (bt->standards & V4L2_DV_BT_STD_GTF) ? " GTF" : "",
344 (bt->standards & V4L2_DV_BT_STD_SDI) ? " SDI" : "");
345 if (bt->flags & V4L2_DV_FL_HAS_PICTURE_ASPECT)
346 pr_info("%s: picture aspect (hor:vert): %u:%u\n", dev_prefix,
347 bt->picture_aspect.numerator,
348 bt->picture_aspect.denominator);
349 if (bt->flags & V4L2_DV_FL_HAS_CEA861_VIC)
350 pr_info("%s: CEA-861 VIC: %u\n", dev_prefix, bt->cea861_vic);
351 if (bt->flags & V4L2_DV_FL_HAS_HDMI_VIC)
352 pr_info("%s: HDMI VIC: %u\n", dev_prefix, bt->hdmi_vic);
353 }
354 EXPORT_SYMBOL_GPL(v4l2_print_dv_timings);
355
v4l2_dv_timings_aspect_ratio(const struct v4l2_dv_timings * t)356 struct v4l2_fract v4l2_dv_timings_aspect_ratio(const struct v4l2_dv_timings *t)
357 {
358 struct v4l2_fract ratio = { 1, 1 };
359 unsigned long n, d;
360
361 if (t->type != V4L2_DV_BT_656_1120)
362 return ratio;
363 if (!(t->bt.flags & V4L2_DV_FL_HAS_PICTURE_ASPECT))
364 return ratio;
365
366 ratio.numerator = t->bt.width * t->bt.picture_aspect.denominator;
367 ratio.denominator = t->bt.height * t->bt.picture_aspect.numerator;
368
369 rational_best_approximation(ratio.numerator, ratio.denominator,
370 ratio.numerator, ratio.denominator, &n, &d);
371 ratio.numerator = n;
372 ratio.denominator = d;
373 return ratio;
374 }
375 EXPORT_SYMBOL_GPL(v4l2_dv_timings_aspect_ratio);
376
377 /** v4l2_calc_timeperframe - helper function to calculate timeperframe based
378 * v4l2_dv_timings fields.
379 * @t - Timings for the video mode.
380 *
381 * Calculates the expected timeperframe using the pixel clock value and
382 * horizontal/vertical measures. This means that v4l2_dv_timings structure
383 * must be correctly and fully filled.
384 */
v4l2_calc_timeperframe(const struct v4l2_dv_timings * t)385 struct v4l2_fract v4l2_calc_timeperframe(const struct v4l2_dv_timings *t)
386 {
387 const struct v4l2_bt_timings *bt = &t->bt;
388 struct v4l2_fract fps_fract = { 1, 1 };
389 unsigned long n, d;
390 u32 htot, vtot, fps;
391 u64 pclk;
392
393 if (t->type != V4L2_DV_BT_656_1120)
394 return fps_fract;
395
396 htot = V4L2_DV_BT_FRAME_WIDTH(bt);
397 vtot = V4L2_DV_BT_FRAME_HEIGHT(bt);
398 pclk = bt->pixelclock;
399
400 if ((bt->flags & V4L2_DV_FL_CAN_DETECT_REDUCED_FPS) &&
401 (bt->flags & V4L2_DV_FL_REDUCED_FPS))
402 pclk = div_u64(pclk * 1000ULL, 1001);
403
404 fps = (htot * vtot) > 0 ? div_u64((100 * pclk), (htot * vtot)) : 0;
405 if (!fps)
406 return fps_fract;
407
408 rational_best_approximation(fps, 100, fps, 100, &n, &d);
409
410 fps_fract.numerator = d;
411 fps_fract.denominator = n;
412 return fps_fract;
413 }
414 EXPORT_SYMBOL_GPL(v4l2_calc_timeperframe);
415
416 /*
417 * CVT defines
418 * Based on Coordinated Video Timings Standard
419 * version 1.1 September 10, 2003
420 */
421
422 #define CVT_PXL_CLK_GRAN 250000 /* pixel clock granularity */
423 #define CVT_PXL_CLK_GRAN_RB_V2 1000 /* granularity for reduced blanking v2*/
424
425 /* Normal blanking */
426 #define CVT_MIN_V_BPORCH 7 /* lines */
427 #define CVT_MIN_V_PORCH_RND 3 /* lines */
428 #define CVT_MIN_VSYNC_BP 550 /* min time of vsync + back porch (us) */
429 #define CVT_HSYNC_PERCENT 8 /* nominal hsync as percentage of line */
430
431 /* Normal blanking for CVT uses GTF to calculate horizontal blanking */
432 #define CVT_CELL_GRAN 8 /* character cell granularity */
433 #define CVT_M 600 /* blanking formula gradient */
434 #define CVT_C 40 /* blanking formula offset */
435 #define CVT_K 128 /* blanking formula scaling factor */
436 #define CVT_J 20 /* blanking formula scaling factor */
437 #define CVT_C_PRIME (((CVT_C - CVT_J) * CVT_K / 256) + CVT_J)
438 #define CVT_M_PRIME (CVT_K * CVT_M / 256)
439
440 /* Reduced Blanking */
441 #define CVT_RB_MIN_V_BPORCH 7 /* lines */
442 #define CVT_RB_V_FPORCH 3 /* lines */
443 #define CVT_RB_MIN_V_BLANK 460 /* us */
444 #define CVT_RB_H_SYNC 32 /* pixels */
445 #define CVT_RB_H_BLANK 160 /* pixels */
446 /* Reduce blanking Version 2 */
447 #define CVT_RB_V2_H_BLANK 80 /* pixels */
448 #define CVT_RB_MIN_V_FPORCH 3 /* lines */
449 #define CVT_RB_V2_MIN_V_FPORCH 1 /* lines */
450 #define CVT_RB_V_BPORCH 6 /* lines */
451
452 /** v4l2_detect_cvt - detect if the given timings follow the CVT standard
453 * @frame_height - the total height of the frame (including blanking) in lines.
454 * @hfreq - the horizontal frequency in Hz.
455 * @vsync - the height of the vertical sync in lines.
456 * @active_width - active width of image (does not include blanking). This
457 * information is needed only in case of version 2 of reduced blanking.
458 * In other cases, this parameter does not have any effect on timings.
459 * @polarities - the horizontal and vertical polarities (same as struct
460 * v4l2_bt_timings polarities).
461 * @interlaced - if this flag is true, it indicates interlaced format
462 * @fmt - the resulting timings.
463 *
464 * This function will attempt to detect if the given values correspond to a
465 * valid CVT format. If so, then it will return true, and fmt will be filled
466 * in with the found CVT timings.
467 */
v4l2_detect_cvt(unsigned frame_height,unsigned hfreq,unsigned vsync,unsigned active_width,u32 polarities,bool interlaced,struct v4l2_dv_timings * fmt)468 bool v4l2_detect_cvt(unsigned frame_height,
469 unsigned hfreq,
470 unsigned vsync,
471 unsigned active_width,
472 u32 polarities,
473 bool interlaced,
474 struct v4l2_dv_timings *fmt)
475 {
476 int v_fp, v_bp, h_fp, h_bp, hsync;
477 int frame_width, image_height, image_width;
478 bool reduced_blanking;
479 bool rb_v2 = false;
480 unsigned pix_clk;
481
482 if (vsync < 4 || vsync > 8)
483 return false;
484
485 if (polarities == V4L2_DV_VSYNC_POS_POL)
486 reduced_blanking = false;
487 else if (polarities == V4L2_DV_HSYNC_POS_POL)
488 reduced_blanking = true;
489 else
490 return false;
491
492 if (reduced_blanking && vsync == 8)
493 rb_v2 = true;
494
495 if (rb_v2 && active_width == 0)
496 return false;
497
498 if (!rb_v2 && vsync > 7)
499 return false;
500
501 if (hfreq == 0)
502 return false;
503
504 /* Vertical */
505 if (reduced_blanking) {
506 if (rb_v2) {
507 v_bp = CVT_RB_V_BPORCH;
508 v_fp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1;
509 v_fp -= vsync + v_bp;
510
511 if (v_fp < CVT_RB_V2_MIN_V_FPORCH)
512 v_fp = CVT_RB_V2_MIN_V_FPORCH;
513 } else {
514 v_fp = CVT_RB_V_FPORCH;
515 v_bp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1;
516 v_bp -= vsync + v_fp;
517
518 if (v_bp < CVT_RB_MIN_V_BPORCH)
519 v_bp = CVT_RB_MIN_V_BPORCH;
520 }
521 } else {
522 v_fp = CVT_MIN_V_PORCH_RND;
523 v_bp = (CVT_MIN_VSYNC_BP * hfreq) / 1000000 + 1 - vsync;
524
525 if (v_bp < CVT_MIN_V_BPORCH)
526 v_bp = CVT_MIN_V_BPORCH;
527 }
528
529 if (interlaced)
530 image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1;
531 else
532 image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
533
534 if (image_height < 0)
535 return false;
536
537 /* Aspect ratio based on vsync */
538 switch (vsync) {
539 case 4:
540 image_width = (image_height * 4) / 3;
541 break;
542 case 5:
543 image_width = (image_height * 16) / 9;
544 break;
545 case 6:
546 image_width = (image_height * 16) / 10;
547 break;
548 case 7:
549 /* special case */
550 if (image_height == 1024)
551 image_width = (image_height * 5) / 4;
552 else if (image_height == 768)
553 image_width = (image_height * 15) / 9;
554 else
555 return false;
556 break;
557 case 8:
558 image_width = active_width;
559 break;
560 default:
561 return false;
562 }
563
564 if (!rb_v2)
565 image_width = image_width & ~7;
566
567 /* Horizontal */
568 if (reduced_blanking) {
569 int h_blank;
570 int clk_gran;
571
572 h_blank = rb_v2 ? CVT_RB_V2_H_BLANK : CVT_RB_H_BLANK;
573 clk_gran = rb_v2 ? CVT_PXL_CLK_GRAN_RB_V2 : CVT_PXL_CLK_GRAN;
574
575 pix_clk = (image_width + h_blank) * hfreq;
576 pix_clk = (pix_clk / clk_gran) * clk_gran;
577
578 h_bp = h_blank / 2;
579 hsync = CVT_RB_H_SYNC;
580 h_fp = h_blank - h_bp - hsync;
581
582 frame_width = image_width + h_blank;
583 } else {
584 unsigned ideal_duty_cycle_per_myriad =
585 100 * CVT_C_PRIME - (CVT_M_PRIME * 100000) / hfreq;
586 int h_blank;
587
588 if (ideal_duty_cycle_per_myriad < 2000)
589 ideal_duty_cycle_per_myriad = 2000;
590
591 h_blank = image_width * ideal_duty_cycle_per_myriad /
592 (10000 - ideal_duty_cycle_per_myriad);
593 h_blank = (h_blank / (2 * CVT_CELL_GRAN)) * 2 * CVT_CELL_GRAN;
594
595 pix_clk = (image_width + h_blank) * hfreq;
596 pix_clk = (pix_clk / CVT_PXL_CLK_GRAN) * CVT_PXL_CLK_GRAN;
597
598 h_bp = h_blank / 2;
599 frame_width = image_width + h_blank;
600
601 hsync = frame_width * CVT_HSYNC_PERCENT / 100;
602 hsync = (hsync / CVT_CELL_GRAN) * CVT_CELL_GRAN;
603 h_fp = h_blank - hsync - h_bp;
604 }
605
606 fmt->type = V4L2_DV_BT_656_1120;
607 fmt->bt.polarities = polarities;
608 fmt->bt.width = image_width;
609 fmt->bt.height = image_height;
610 fmt->bt.hfrontporch = h_fp;
611 fmt->bt.vfrontporch = v_fp;
612 fmt->bt.hsync = hsync;
613 fmt->bt.vsync = vsync;
614 fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync;
615
616 if (!interlaced) {
617 fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync;
618 fmt->bt.interlaced = V4L2_DV_PROGRESSIVE;
619 } else {
620 fmt->bt.vbackporch = (frame_height - image_height - 2 * v_fp -
621 2 * vsync) / 2;
622 fmt->bt.il_vbackporch = frame_height - image_height - 2 * v_fp -
623 2 * vsync - fmt->bt.vbackporch;
624 fmt->bt.il_vfrontporch = v_fp;
625 fmt->bt.il_vsync = vsync;
626 fmt->bt.flags |= V4L2_DV_FL_HALF_LINE;
627 fmt->bt.interlaced = V4L2_DV_INTERLACED;
628 }
629
630 fmt->bt.pixelclock = pix_clk;
631 fmt->bt.standards = V4L2_DV_BT_STD_CVT;
632
633 if (reduced_blanking)
634 fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
635
636 return true;
637 }
638 EXPORT_SYMBOL_GPL(v4l2_detect_cvt);
639
640 /*
641 * GTF defines
642 * Based on Generalized Timing Formula Standard
643 * Version 1.1 September 2, 1999
644 */
645
646 #define GTF_PXL_CLK_GRAN 250000 /* pixel clock granularity */
647
648 #define GTF_MIN_VSYNC_BP 550 /* min time of vsync + back porch (us) */
649 #define GTF_V_FP 1 /* vertical front porch (lines) */
650 #define GTF_CELL_GRAN 8 /* character cell granularity */
651
652 /* Default */
653 #define GTF_D_M 600 /* blanking formula gradient */
654 #define GTF_D_C 40 /* blanking formula offset */
655 #define GTF_D_K 128 /* blanking formula scaling factor */
656 #define GTF_D_J 20 /* blanking formula scaling factor */
657 #define GTF_D_C_PRIME ((((GTF_D_C - GTF_D_J) * GTF_D_K) / 256) + GTF_D_J)
658 #define GTF_D_M_PRIME ((GTF_D_K * GTF_D_M) / 256)
659
660 /* Secondary */
661 #define GTF_S_M 3600 /* blanking formula gradient */
662 #define GTF_S_C 40 /* blanking formula offset */
663 #define GTF_S_K 128 /* blanking formula scaling factor */
664 #define GTF_S_J 35 /* blanking formula scaling factor */
665 #define GTF_S_C_PRIME ((((GTF_S_C - GTF_S_J) * GTF_S_K) / 256) + GTF_S_J)
666 #define GTF_S_M_PRIME ((GTF_S_K * GTF_S_M) / 256)
667
668 /** v4l2_detect_gtf - detect if the given timings follow the GTF standard
669 * @frame_height - the total height of the frame (including blanking) in lines.
670 * @hfreq - the horizontal frequency in Hz.
671 * @vsync - the height of the vertical sync in lines.
672 * @polarities - the horizontal and vertical polarities (same as struct
673 * v4l2_bt_timings polarities).
674 * @interlaced - if this flag is true, it indicates interlaced format
675 * @aspect - preferred aspect ratio. GTF has no method of determining the
676 * aspect ratio in order to derive the image width from the
677 * image height, so it has to be passed explicitly. Usually
678 * the native screen aspect ratio is used for this. If it
679 * is not filled in correctly, then 16:9 will be assumed.
680 * @fmt - the resulting timings.
681 *
682 * This function will attempt to detect if the given values correspond to a
683 * valid GTF format. If so, then it will return true, and fmt will be filled
684 * in with the found GTF timings.
685 */
v4l2_detect_gtf(unsigned frame_height,unsigned hfreq,unsigned vsync,u32 polarities,bool interlaced,struct v4l2_fract aspect,struct v4l2_dv_timings * fmt)686 bool v4l2_detect_gtf(unsigned frame_height,
687 unsigned hfreq,
688 unsigned vsync,
689 u32 polarities,
690 bool interlaced,
691 struct v4l2_fract aspect,
692 struct v4l2_dv_timings *fmt)
693 {
694 int pix_clk;
695 int v_fp, v_bp, h_fp, hsync;
696 int frame_width, image_height, image_width;
697 bool default_gtf;
698 int h_blank;
699
700 if (vsync != 3)
701 return false;
702
703 if (polarities == V4L2_DV_VSYNC_POS_POL)
704 default_gtf = true;
705 else if (polarities == V4L2_DV_HSYNC_POS_POL)
706 default_gtf = false;
707 else
708 return false;
709
710 if (hfreq == 0)
711 return false;
712
713 /* Vertical */
714 v_fp = GTF_V_FP;
715 v_bp = (GTF_MIN_VSYNC_BP * hfreq + 500000) / 1000000 - vsync;
716 if (interlaced)
717 image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1;
718 else
719 image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
720
721 if (image_height < 0)
722 return false;
723
724 if (aspect.numerator == 0 || aspect.denominator == 0) {
725 aspect.numerator = 16;
726 aspect.denominator = 9;
727 }
728 image_width = ((image_height * aspect.numerator) / aspect.denominator);
729 image_width = (image_width + GTF_CELL_GRAN/2) & ~(GTF_CELL_GRAN - 1);
730
731 /* Horizontal */
732 if (default_gtf) {
733 u64 num;
734 u32 den;
735
736 num = ((image_width * GTF_D_C_PRIME * (u64)hfreq) -
737 ((u64)image_width * GTF_D_M_PRIME * 1000));
738 den = (hfreq * (100 - GTF_D_C_PRIME) + GTF_D_M_PRIME * 1000) *
739 (2 * GTF_CELL_GRAN);
740 h_blank = div_u64((num + (den >> 1)), den);
741 h_blank *= (2 * GTF_CELL_GRAN);
742 } else {
743 u64 num;
744 u32 den;
745
746 num = ((image_width * GTF_S_C_PRIME * (u64)hfreq) -
747 ((u64)image_width * GTF_S_M_PRIME * 1000));
748 den = (hfreq * (100 - GTF_S_C_PRIME) + GTF_S_M_PRIME * 1000) *
749 (2 * GTF_CELL_GRAN);
750 h_blank = div_u64((num + (den >> 1)), den);
751 h_blank *= (2 * GTF_CELL_GRAN);
752 }
753
754 frame_width = image_width + h_blank;
755
756 pix_clk = (image_width + h_blank) * hfreq;
757 pix_clk = pix_clk / GTF_PXL_CLK_GRAN * GTF_PXL_CLK_GRAN;
758
759 hsync = (frame_width * 8 + 50) / 100;
760 hsync = DIV_ROUND_CLOSEST(hsync, GTF_CELL_GRAN) * GTF_CELL_GRAN;
761
762 h_fp = h_blank / 2 - hsync;
763
764 fmt->type = V4L2_DV_BT_656_1120;
765 fmt->bt.polarities = polarities;
766 fmt->bt.width = image_width;
767 fmt->bt.height = image_height;
768 fmt->bt.hfrontporch = h_fp;
769 fmt->bt.vfrontporch = v_fp;
770 fmt->bt.hsync = hsync;
771 fmt->bt.vsync = vsync;
772 fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync;
773
774 if (!interlaced) {
775 fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync;
776 fmt->bt.interlaced = V4L2_DV_PROGRESSIVE;
777 } else {
778 fmt->bt.vbackporch = (frame_height - image_height - 2 * v_fp -
779 2 * vsync) / 2;
780 fmt->bt.il_vbackporch = frame_height - image_height - 2 * v_fp -
781 2 * vsync - fmt->bt.vbackporch;
782 fmt->bt.il_vfrontporch = v_fp;
783 fmt->bt.il_vsync = vsync;
784 fmt->bt.flags |= V4L2_DV_FL_HALF_LINE;
785 fmt->bt.interlaced = V4L2_DV_INTERLACED;
786 }
787
788 fmt->bt.pixelclock = pix_clk;
789 fmt->bt.standards = V4L2_DV_BT_STD_GTF;
790
791 if (!default_gtf)
792 fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
793
794 return true;
795 }
796 EXPORT_SYMBOL_GPL(v4l2_detect_gtf);
797
798 /** v4l2_calc_aspect_ratio - calculate the aspect ratio based on bytes
799 * 0x15 and 0x16 from the EDID.
800 * @hor_landscape - byte 0x15 from the EDID.
801 * @vert_portrait - byte 0x16 from the EDID.
802 *
803 * Determines the aspect ratio from the EDID.
804 * See VESA Enhanced EDID standard, release A, rev 2, section 3.6.2:
805 * "Horizontal and Vertical Screen Size or Aspect Ratio"
806 */
v4l2_calc_aspect_ratio(u8 hor_landscape,u8 vert_portrait)807 struct v4l2_fract v4l2_calc_aspect_ratio(u8 hor_landscape, u8 vert_portrait)
808 {
809 struct v4l2_fract aspect = { 16, 9 };
810 u8 ratio;
811
812 /* Nothing filled in, fallback to 16:9 */
813 if (!hor_landscape && !vert_portrait)
814 return aspect;
815 /* Both filled in, so they are interpreted as the screen size in cm */
816 if (hor_landscape && vert_portrait) {
817 aspect.numerator = hor_landscape;
818 aspect.denominator = vert_portrait;
819 return aspect;
820 }
821 /* Only one is filled in, so interpret them as a ratio:
822 (val + 99) / 100 */
823 ratio = hor_landscape | vert_portrait;
824 /* Change some rounded values into the exact aspect ratio */
825 if (ratio == 79) {
826 aspect.numerator = 16;
827 aspect.denominator = 9;
828 } else if (ratio == 34) {
829 aspect.numerator = 4;
830 aspect.denominator = 3;
831 } else if (ratio == 68) {
832 aspect.numerator = 15;
833 aspect.denominator = 9;
834 } else {
835 aspect.numerator = hor_landscape + 99;
836 aspect.denominator = 100;
837 }
838 if (hor_landscape)
839 return aspect;
840 /* The aspect ratio is for portrait, so swap numerator and denominator */
841 swap(aspect.denominator, aspect.numerator);
842 return aspect;
843 }
844 EXPORT_SYMBOL_GPL(v4l2_calc_aspect_ratio);
845
846 /** v4l2_hdmi_rx_colorimetry - determine HDMI colorimetry information
847 * based on various InfoFrames.
848 * @avi: the AVI InfoFrame
849 * @hdmi: the HDMI Vendor InfoFrame, may be NULL
850 * @height: the frame height
851 *
852 * Determines the HDMI colorimetry information, i.e. how the HDMI
853 * pixel color data should be interpreted.
854 *
855 * Note that some of the newer features (DCI-P3, HDR) are not yet
856 * implemented: the hdmi.h header needs to be updated to the HDMI 2.0
857 * and CTA-861-G standards.
858 */
859 struct v4l2_hdmi_colorimetry
v4l2_hdmi_rx_colorimetry(const struct hdmi_avi_infoframe * avi,const struct hdmi_vendor_infoframe * hdmi,unsigned int height)860 v4l2_hdmi_rx_colorimetry(const struct hdmi_avi_infoframe *avi,
861 const struct hdmi_vendor_infoframe *hdmi,
862 unsigned int height)
863 {
864 struct v4l2_hdmi_colorimetry c = {
865 V4L2_COLORSPACE_SRGB,
866 V4L2_YCBCR_ENC_DEFAULT,
867 V4L2_QUANTIZATION_FULL_RANGE,
868 V4L2_XFER_FUNC_SRGB
869 };
870 bool is_ce = avi->video_code || (hdmi && hdmi->vic);
871 bool is_sdtv = height <= 576;
872 bool default_is_lim_range_rgb = avi->video_code > 1;
873
874 switch (avi->colorspace) {
875 case HDMI_COLORSPACE_RGB:
876 /* RGB pixel encoding */
877 switch (avi->colorimetry) {
878 case HDMI_COLORIMETRY_EXTENDED:
879 switch (avi->extended_colorimetry) {
880 case HDMI_EXTENDED_COLORIMETRY_OPRGB:
881 c.colorspace = V4L2_COLORSPACE_OPRGB;
882 c.xfer_func = V4L2_XFER_FUNC_OPRGB;
883 break;
884 case HDMI_EXTENDED_COLORIMETRY_BT2020:
885 c.colorspace = V4L2_COLORSPACE_BT2020;
886 c.xfer_func = V4L2_XFER_FUNC_709;
887 break;
888 default:
889 break;
890 }
891 break;
892 default:
893 break;
894 }
895 switch (avi->quantization_range) {
896 case HDMI_QUANTIZATION_RANGE_LIMITED:
897 c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
898 break;
899 case HDMI_QUANTIZATION_RANGE_FULL:
900 break;
901 default:
902 if (default_is_lim_range_rgb)
903 c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
904 break;
905 }
906 break;
907
908 default:
909 /* YCbCr pixel encoding */
910 c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
911 switch (avi->colorimetry) {
912 case HDMI_COLORIMETRY_NONE:
913 if (!is_ce)
914 break;
915 if (is_sdtv) {
916 c.colorspace = V4L2_COLORSPACE_SMPTE170M;
917 c.ycbcr_enc = V4L2_YCBCR_ENC_601;
918 } else {
919 c.colorspace = V4L2_COLORSPACE_REC709;
920 c.ycbcr_enc = V4L2_YCBCR_ENC_709;
921 }
922 c.xfer_func = V4L2_XFER_FUNC_709;
923 break;
924 case HDMI_COLORIMETRY_ITU_601:
925 c.colorspace = V4L2_COLORSPACE_SMPTE170M;
926 c.ycbcr_enc = V4L2_YCBCR_ENC_601;
927 c.xfer_func = V4L2_XFER_FUNC_709;
928 break;
929 case HDMI_COLORIMETRY_ITU_709:
930 c.colorspace = V4L2_COLORSPACE_REC709;
931 c.ycbcr_enc = V4L2_YCBCR_ENC_709;
932 c.xfer_func = V4L2_XFER_FUNC_709;
933 break;
934 case HDMI_COLORIMETRY_EXTENDED:
935 switch (avi->extended_colorimetry) {
936 case HDMI_EXTENDED_COLORIMETRY_XV_YCC_601:
937 c.colorspace = V4L2_COLORSPACE_REC709;
938 c.ycbcr_enc = V4L2_YCBCR_ENC_XV709;
939 c.xfer_func = V4L2_XFER_FUNC_709;
940 break;
941 case HDMI_EXTENDED_COLORIMETRY_XV_YCC_709:
942 c.colorspace = V4L2_COLORSPACE_REC709;
943 c.ycbcr_enc = V4L2_YCBCR_ENC_XV601;
944 c.xfer_func = V4L2_XFER_FUNC_709;
945 break;
946 case HDMI_EXTENDED_COLORIMETRY_S_YCC_601:
947 c.colorspace = V4L2_COLORSPACE_SRGB;
948 c.ycbcr_enc = V4L2_YCBCR_ENC_601;
949 c.xfer_func = V4L2_XFER_FUNC_SRGB;
950 break;
951 case HDMI_EXTENDED_COLORIMETRY_OPYCC_601:
952 c.colorspace = V4L2_COLORSPACE_OPRGB;
953 c.ycbcr_enc = V4L2_YCBCR_ENC_601;
954 c.xfer_func = V4L2_XFER_FUNC_OPRGB;
955 break;
956 case HDMI_EXTENDED_COLORIMETRY_BT2020:
957 c.colorspace = V4L2_COLORSPACE_BT2020;
958 c.ycbcr_enc = V4L2_YCBCR_ENC_BT2020;
959 c.xfer_func = V4L2_XFER_FUNC_709;
960 break;
961 case HDMI_EXTENDED_COLORIMETRY_BT2020_CONST_LUM:
962 c.colorspace = V4L2_COLORSPACE_BT2020;
963 c.ycbcr_enc = V4L2_YCBCR_ENC_BT2020_CONST_LUM;
964 c.xfer_func = V4L2_XFER_FUNC_709;
965 break;
966 default: /* fall back to ITU_709 */
967 c.colorspace = V4L2_COLORSPACE_REC709;
968 c.ycbcr_enc = V4L2_YCBCR_ENC_709;
969 c.xfer_func = V4L2_XFER_FUNC_709;
970 break;
971 }
972 break;
973 default:
974 break;
975 }
976 /*
977 * YCC Quantization Range signaling is more-or-less broken,
978 * let's just ignore this.
979 */
980 break;
981 }
982 return c;
983 }
984 EXPORT_SYMBOL_GPL(v4l2_hdmi_rx_colorimetry);
985
986 /**
987 * v4l2_get_edid_phys_addr() - find and return the physical address
988 *
989 * @edid: pointer to the EDID data
990 * @size: size in bytes of the EDID data
991 * @offset: If not %NULL then the location of the physical address
992 * bytes in the EDID will be returned here. This is set to 0
993 * if there is no physical address found.
994 *
995 * Return: the physical address or CEC_PHYS_ADDR_INVALID if there is none.
996 */
v4l2_get_edid_phys_addr(const u8 * edid,unsigned int size,unsigned int * offset)997 u16 v4l2_get_edid_phys_addr(const u8 *edid, unsigned int size,
998 unsigned int *offset)
999 {
1000 unsigned int loc = cec_get_edid_spa_location(edid, size);
1001
1002 if (offset)
1003 *offset = loc;
1004 if (loc == 0)
1005 return CEC_PHYS_ADDR_INVALID;
1006 return (edid[loc] << 8) | edid[loc + 1];
1007 }
1008 EXPORT_SYMBOL_GPL(v4l2_get_edid_phys_addr);
1009
1010 /**
1011 * v4l2_set_edid_phys_addr() - find and set the physical address
1012 *
1013 * @edid: pointer to the EDID data
1014 * @size: size in bytes of the EDID data
1015 * @phys_addr: the new physical address
1016 *
1017 * This function finds the location of the physical address in the EDID
1018 * and fills in the given physical address and updates the checksum
1019 * at the end of the EDID block. It does nothing if the EDID doesn't
1020 * contain a physical address.
1021 */
v4l2_set_edid_phys_addr(u8 * edid,unsigned int size,u16 phys_addr)1022 void v4l2_set_edid_phys_addr(u8 *edid, unsigned int size, u16 phys_addr)
1023 {
1024 unsigned int loc = cec_get_edid_spa_location(edid, size);
1025 u8 sum = 0;
1026 unsigned int i;
1027
1028 if (loc == 0)
1029 return;
1030 edid[loc] = phys_addr >> 8;
1031 edid[loc + 1] = phys_addr & 0xff;
1032 loc &= ~0x7f;
1033
1034 /* update the checksum */
1035 for (i = loc; i < loc + 127; i++)
1036 sum += edid[i];
1037 edid[i] = 256 - sum;
1038 }
1039 EXPORT_SYMBOL_GPL(v4l2_set_edid_phys_addr);
1040
1041 /**
1042 * v4l2_phys_addr_for_input() - calculate the PA for an input
1043 *
1044 * @phys_addr: the physical address of the parent
1045 * @input: the number of the input port, must be between 1 and 15
1046 *
1047 * This function calculates a new physical address based on the input
1048 * port number. For example:
1049 *
1050 * PA = 0.0.0.0 and input = 2 becomes 2.0.0.0
1051 *
1052 * PA = 3.0.0.0 and input = 1 becomes 3.1.0.0
1053 *
1054 * PA = 3.2.1.0 and input = 5 becomes 3.2.1.5
1055 *
1056 * PA = 3.2.1.3 and input = 5 becomes f.f.f.f since it maxed out the depth.
1057 *
1058 * Return: the new physical address or CEC_PHYS_ADDR_INVALID.
1059 */
v4l2_phys_addr_for_input(u16 phys_addr,u8 input)1060 u16 v4l2_phys_addr_for_input(u16 phys_addr, u8 input)
1061 {
1062 /* Check if input is sane */
1063 if (WARN_ON(input == 0 || input > 0xf))
1064 return CEC_PHYS_ADDR_INVALID;
1065
1066 if (phys_addr == 0)
1067 return input << 12;
1068
1069 if ((phys_addr & 0x0fff) == 0)
1070 return phys_addr | (input << 8);
1071
1072 if ((phys_addr & 0x00ff) == 0)
1073 return phys_addr | (input << 4);
1074
1075 if ((phys_addr & 0x000f) == 0)
1076 return phys_addr | input;
1077
1078 /*
1079 * All nibbles are used so no valid physical addresses can be assigned
1080 * to the input.
1081 */
1082 return CEC_PHYS_ADDR_INVALID;
1083 }
1084 EXPORT_SYMBOL_GPL(v4l2_phys_addr_for_input);
1085
1086 /**
1087 * v4l2_phys_addr_validate() - validate a physical address from an EDID
1088 *
1089 * @phys_addr: the physical address to validate
1090 * @parent: if not %NULL, then this is filled with the parents PA.
1091 * @port: if not %NULL, then this is filled with the input port.
1092 *
1093 * This validates a physical address as read from an EDID. If the
1094 * PA is invalid (such as 1.0.1.0 since '0' is only allowed at the end),
1095 * then it will return -EINVAL.
1096 *
1097 * The parent PA is passed into %parent and the input port is passed into
1098 * %port. For example:
1099 *
1100 * PA = 0.0.0.0: has parent 0.0.0.0 and input port 0.
1101 *
1102 * PA = 1.0.0.0: has parent 0.0.0.0 and input port 1.
1103 *
1104 * PA = 3.2.0.0: has parent 3.0.0.0 and input port 2.
1105 *
1106 * PA = f.f.f.f: has parent f.f.f.f and input port 0.
1107 *
1108 * Return: 0 if the PA is valid, -EINVAL if not.
1109 */
v4l2_phys_addr_validate(u16 phys_addr,u16 * parent,u16 * port)1110 int v4l2_phys_addr_validate(u16 phys_addr, u16 *parent, u16 *port)
1111 {
1112 int i;
1113
1114 if (parent)
1115 *parent = phys_addr;
1116 if (port)
1117 *port = 0;
1118 if (phys_addr == CEC_PHYS_ADDR_INVALID)
1119 return 0;
1120 for (i = 0; i < 16; i += 4)
1121 if (phys_addr & (0xf << i))
1122 break;
1123 if (i == 16)
1124 return 0;
1125 if (parent)
1126 *parent = phys_addr & (0xfff0 << i);
1127 if (port)
1128 *port = (phys_addr >> i) & 0xf;
1129 for (i += 4; i < 16; i += 4)
1130 if ((phys_addr & (0xf << i)) == 0)
1131 return -EINVAL;
1132 return 0;
1133 }
1134 EXPORT_SYMBOL_GPL(v4l2_phys_addr_validate);
1135