1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * V4L2 fwnode binding parsing library
4 *
5 * The origins of the V4L2 fwnode library are in V4L2 OF library that
6 * formerly was located in v4l2-of.c.
7 *
8 * Copyright (c) 2016 Intel Corporation.
9 * Author: Sakari Ailus <sakari.ailus@linux.intel.com>
10 *
11 * Copyright (C) 2012 - 2013 Samsung Electronics Co., Ltd.
12 * Author: Sylwester Nawrocki <s.nawrocki@samsung.com>
13 *
14 * Copyright (C) 2012 Renesas Electronics Corp.
15 * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
16 */
17 #include <linux/acpi.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/property.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26
27 #include <media/v4l2-async.h>
28 #include <media/v4l2-fwnode.h>
29 #include <media/v4l2-subdev.h>
30
31 enum v4l2_fwnode_bus_type {
32 V4L2_FWNODE_BUS_TYPE_GUESS = 0,
33 V4L2_FWNODE_BUS_TYPE_CSI2_CPHY,
34 V4L2_FWNODE_BUS_TYPE_CSI1,
35 V4L2_FWNODE_BUS_TYPE_CCP2,
36 V4L2_FWNODE_BUS_TYPE_CSI2_DPHY,
37 V4L2_FWNODE_BUS_TYPE_PARALLEL,
38 V4L2_FWNODE_BUS_TYPE_BT656,
39 NR_OF_V4L2_FWNODE_BUS_TYPE,
40 };
41
42 static const struct v4l2_fwnode_bus_conv {
43 enum v4l2_fwnode_bus_type fwnode_bus_type;
44 enum v4l2_mbus_type mbus_type;
45 const char *name;
46 } buses[] = {
47 {
48 V4L2_FWNODE_BUS_TYPE_GUESS,
49 V4L2_MBUS_UNKNOWN,
50 "not specified",
51 }, {
52 V4L2_FWNODE_BUS_TYPE_CSI2_CPHY,
53 V4L2_MBUS_CSI2_CPHY,
54 "MIPI CSI-2 C-PHY",
55 }, {
56 V4L2_FWNODE_BUS_TYPE_CSI1,
57 V4L2_MBUS_CSI1,
58 "MIPI CSI-1",
59 }, {
60 V4L2_FWNODE_BUS_TYPE_CCP2,
61 V4L2_MBUS_CCP2,
62 "compact camera port 2",
63 }, {
64 V4L2_FWNODE_BUS_TYPE_CSI2_DPHY,
65 V4L2_MBUS_CSI2_DPHY,
66 "MIPI CSI-2 D-PHY",
67 }, {
68 V4L2_FWNODE_BUS_TYPE_PARALLEL,
69 V4L2_MBUS_PARALLEL,
70 "parallel",
71 }, {
72 V4L2_FWNODE_BUS_TYPE_BT656,
73 V4L2_MBUS_BT656,
74 "Bt.656",
75 }
76 };
77
78 static const struct v4l2_fwnode_bus_conv *
get_v4l2_fwnode_bus_conv_by_fwnode_bus(enum v4l2_fwnode_bus_type type)79 get_v4l2_fwnode_bus_conv_by_fwnode_bus(enum v4l2_fwnode_bus_type type)
80 {
81 unsigned int i;
82
83 for (i = 0; i < ARRAY_SIZE(buses); i++)
84 if (buses[i].fwnode_bus_type == type)
85 return &buses[i];
86
87 return NULL;
88 }
89
90 static enum v4l2_mbus_type
v4l2_fwnode_bus_type_to_mbus(enum v4l2_fwnode_bus_type type)91 v4l2_fwnode_bus_type_to_mbus(enum v4l2_fwnode_bus_type type)
92 {
93 const struct v4l2_fwnode_bus_conv *conv =
94 get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
95
96 return conv ? conv->mbus_type : V4L2_MBUS_UNKNOWN;
97 }
98
99 static const char *
v4l2_fwnode_bus_type_to_string(enum v4l2_fwnode_bus_type type)100 v4l2_fwnode_bus_type_to_string(enum v4l2_fwnode_bus_type type)
101 {
102 const struct v4l2_fwnode_bus_conv *conv =
103 get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
104
105 return conv ? conv->name : "not found";
106 }
107
108 static const struct v4l2_fwnode_bus_conv *
get_v4l2_fwnode_bus_conv_by_mbus(enum v4l2_mbus_type type)109 get_v4l2_fwnode_bus_conv_by_mbus(enum v4l2_mbus_type type)
110 {
111 unsigned int i;
112
113 for (i = 0; i < ARRAY_SIZE(buses); i++)
114 if (buses[i].mbus_type == type)
115 return &buses[i];
116
117 return NULL;
118 }
119
120 static const char *
v4l2_fwnode_mbus_type_to_string(enum v4l2_mbus_type type)121 v4l2_fwnode_mbus_type_to_string(enum v4l2_mbus_type type)
122 {
123 const struct v4l2_fwnode_bus_conv *conv =
124 get_v4l2_fwnode_bus_conv_by_mbus(type);
125
126 return conv ? conv->name : "not found";
127 }
128
v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep,enum v4l2_mbus_type bus_type)129 static int v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle *fwnode,
130 struct v4l2_fwnode_endpoint *vep,
131 enum v4l2_mbus_type bus_type)
132 {
133 struct v4l2_fwnode_bus_mipi_csi2 *bus = &vep->bus.mipi_csi2;
134 bool have_clk_lane = false, have_data_lanes = false,
135 have_lane_polarities = false;
136 unsigned int flags = 0, lanes_used = 0;
137 u32 array[1 + V4L2_FWNODE_CSI2_MAX_DATA_LANES];
138 u32 clock_lane = 0;
139 unsigned int num_data_lanes = 0;
140 bool use_default_lane_mapping = false;
141 unsigned int i;
142 u32 v;
143 int rval;
144
145 if (bus_type == V4L2_MBUS_CSI2_DPHY ||
146 bus_type == V4L2_MBUS_CSI2_CPHY) {
147 use_default_lane_mapping = true;
148
149 num_data_lanes = min_t(u32, bus->num_data_lanes,
150 V4L2_FWNODE_CSI2_MAX_DATA_LANES);
151
152 clock_lane = bus->clock_lane;
153 if (clock_lane)
154 use_default_lane_mapping = false;
155
156 for (i = 0; i < num_data_lanes; i++) {
157 array[i] = bus->data_lanes[i];
158 if (array[i])
159 use_default_lane_mapping = false;
160 }
161
162 if (use_default_lane_mapping)
163 pr_debug("no lane mapping given, using defaults\n");
164 }
165
166 rval = fwnode_property_count_u32(fwnode, "data-lanes");
167 if (rval > 0) {
168 num_data_lanes =
169 min_t(int, V4L2_FWNODE_CSI2_MAX_DATA_LANES, rval);
170
171 fwnode_property_read_u32_array(fwnode, "data-lanes", array,
172 num_data_lanes);
173
174 have_data_lanes = true;
175 if (use_default_lane_mapping) {
176 pr_debug("data-lanes property exists; disabling default mapping\n");
177 use_default_lane_mapping = false;
178 }
179 }
180
181 for (i = 0; i < num_data_lanes; i++) {
182 if (lanes_used & BIT(array[i])) {
183 if (have_data_lanes || !use_default_lane_mapping)
184 pr_warn("duplicated lane %u in data-lanes, using defaults\n",
185 array[i]);
186 use_default_lane_mapping = true;
187 }
188 lanes_used |= BIT(array[i]);
189
190 if (have_data_lanes)
191 pr_debug("lane %u position %u\n", i, array[i]);
192 }
193
194 rval = fwnode_property_count_u32(fwnode, "lane-polarities");
195 if (rval > 0) {
196 if (rval != 1 + num_data_lanes /* clock+data */) {
197 pr_warn("invalid number of lane-polarities entries (need %u, got %u)\n",
198 1 + num_data_lanes, rval);
199 return -EINVAL;
200 }
201
202 have_lane_polarities = true;
203 }
204
205 if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
206 clock_lane = v;
207 pr_debug("clock lane position %u\n", v);
208 have_clk_lane = true;
209 }
210
211 if (have_clk_lane && lanes_used & BIT(clock_lane) &&
212 !use_default_lane_mapping) {
213 pr_warn("duplicated lane %u in clock-lanes, using defaults\n",
214 v);
215 use_default_lane_mapping = true;
216 }
217
218 if (fwnode_property_present(fwnode, "clock-noncontinuous")) {
219 flags |= V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK;
220 pr_debug("non-continuous clock\n");
221 } else {
222 flags |= V4L2_MBUS_CSI2_CONTINUOUS_CLOCK;
223 }
224
225 if (bus_type == V4L2_MBUS_CSI2_DPHY ||
226 bus_type == V4L2_MBUS_CSI2_CPHY || lanes_used ||
227 have_clk_lane || (flags & ~V4L2_MBUS_CSI2_CONTINUOUS_CLOCK)) {
228 /* Only D-PHY has a clock lane. */
229 unsigned int dfl_data_lane_index =
230 bus_type == V4L2_MBUS_CSI2_DPHY;
231
232 bus->flags = flags;
233 if (bus_type == V4L2_MBUS_UNKNOWN)
234 vep->bus_type = V4L2_MBUS_CSI2_DPHY;
235 bus->num_data_lanes = num_data_lanes;
236
237 if (use_default_lane_mapping) {
238 bus->clock_lane = 0;
239 for (i = 0; i < num_data_lanes; i++)
240 bus->data_lanes[i] = dfl_data_lane_index + i;
241 } else {
242 bus->clock_lane = clock_lane;
243 for (i = 0; i < num_data_lanes; i++)
244 bus->data_lanes[i] = array[i];
245 }
246
247 if (have_lane_polarities) {
248 fwnode_property_read_u32_array(fwnode,
249 "lane-polarities", array,
250 1 + num_data_lanes);
251
252 for (i = 0; i < 1 + num_data_lanes; i++) {
253 bus->lane_polarities[i] = array[i];
254 pr_debug("lane %u polarity %sinverted",
255 i, array[i] ? "" : "not ");
256 }
257 } else {
258 pr_debug("no lane polarities defined, assuming not inverted\n");
259 }
260 }
261
262 return 0;
263 }
264
265 #define PARALLEL_MBUS_FLAGS (V4L2_MBUS_HSYNC_ACTIVE_HIGH | \
266 V4L2_MBUS_HSYNC_ACTIVE_LOW | \
267 V4L2_MBUS_VSYNC_ACTIVE_HIGH | \
268 V4L2_MBUS_VSYNC_ACTIVE_LOW | \
269 V4L2_MBUS_FIELD_EVEN_HIGH | \
270 V4L2_MBUS_FIELD_EVEN_LOW)
271
272 static void
v4l2_fwnode_endpoint_parse_parallel_bus(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep,enum v4l2_mbus_type bus_type)273 v4l2_fwnode_endpoint_parse_parallel_bus(struct fwnode_handle *fwnode,
274 struct v4l2_fwnode_endpoint *vep,
275 enum v4l2_mbus_type bus_type)
276 {
277 struct v4l2_fwnode_bus_parallel *bus = &vep->bus.parallel;
278 unsigned int flags = 0;
279 u32 v;
280
281 if (bus_type == V4L2_MBUS_PARALLEL || bus_type == V4L2_MBUS_BT656)
282 flags = bus->flags;
283
284 if (!fwnode_property_read_u32(fwnode, "hsync-active", &v)) {
285 flags &= ~(V4L2_MBUS_HSYNC_ACTIVE_HIGH |
286 V4L2_MBUS_HSYNC_ACTIVE_LOW);
287 flags |= v ? V4L2_MBUS_HSYNC_ACTIVE_HIGH :
288 V4L2_MBUS_HSYNC_ACTIVE_LOW;
289 pr_debug("hsync-active %s\n", v ? "high" : "low");
290 }
291
292 if (!fwnode_property_read_u32(fwnode, "vsync-active", &v)) {
293 flags &= ~(V4L2_MBUS_VSYNC_ACTIVE_HIGH |
294 V4L2_MBUS_VSYNC_ACTIVE_LOW);
295 flags |= v ? V4L2_MBUS_VSYNC_ACTIVE_HIGH :
296 V4L2_MBUS_VSYNC_ACTIVE_LOW;
297 pr_debug("vsync-active %s\n", v ? "high" : "low");
298 }
299
300 if (!fwnode_property_read_u32(fwnode, "field-even-active", &v)) {
301 flags &= ~(V4L2_MBUS_FIELD_EVEN_HIGH |
302 V4L2_MBUS_FIELD_EVEN_LOW);
303 flags |= v ? V4L2_MBUS_FIELD_EVEN_HIGH :
304 V4L2_MBUS_FIELD_EVEN_LOW;
305 pr_debug("field-even-active %s\n", v ? "high" : "low");
306 }
307
308 if (!fwnode_property_read_u32(fwnode, "pclk-sample", &v)) {
309 flags &= ~(V4L2_MBUS_PCLK_SAMPLE_RISING |
310 V4L2_MBUS_PCLK_SAMPLE_FALLING);
311 flags |= v ? V4L2_MBUS_PCLK_SAMPLE_RISING :
312 V4L2_MBUS_PCLK_SAMPLE_FALLING;
313 pr_debug("pclk-sample %s\n", v ? "high" : "low");
314 }
315
316 if (!fwnode_property_read_u32(fwnode, "data-active", &v)) {
317 flags &= ~(V4L2_MBUS_DATA_ACTIVE_HIGH |
318 V4L2_MBUS_DATA_ACTIVE_LOW);
319 flags |= v ? V4L2_MBUS_DATA_ACTIVE_HIGH :
320 V4L2_MBUS_DATA_ACTIVE_LOW;
321 pr_debug("data-active %s\n", v ? "high" : "low");
322 }
323
324 if (fwnode_property_present(fwnode, "slave-mode")) {
325 pr_debug("slave mode\n");
326 flags &= ~V4L2_MBUS_MASTER;
327 flags |= V4L2_MBUS_SLAVE;
328 } else {
329 flags &= ~V4L2_MBUS_SLAVE;
330 flags |= V4L2_MBUS_MASTER;
331 }
332
333 if (!fwnode_property_read_u32(fwnode, "bus-width", &v)) {
334 bus->bus_width = v;
335 pr_debug("bus-width %u\n", v);
336 }
337
338 if (!fwnode_property_read_u32(fwnode, "data-shift", &v)) {
339 bus->data_shift = v;
340 pr_debug("data-shift %u\n", v);
341 }
342
343 if (!fwnode_property_read_u32(fwnode, "sync-on-green-active", &v)) {
344 flags &= ~(V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH |
345 V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW);
346 flags |= v ? V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH :
347 V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW;
348 pr_debug("sync-on-green-active %s\n", v ? "high" : "low");
349 }
350
351 if (!fwnode_property_read_u32(fwnode, "data-enable-active", &v)) {
352 flags &= ~(V4L2_MBUS_DATA_ENABLE_HIGH |
353 V4L2_MBUS_DATA_ENABLE_LOW);
354 flags |= v ? V4L2_MBUS_DATA_ENABLE_HIGH :
355 V4L2_MBUS_DATA_ENABLE_LOW;
356 pr_debug("data-enable-active %s\n", v ? "high" : "low");
357 }
358
359 switch (bus_type) {
360 default:
361 bus->flags = flags;
362 if (flags & PARALLEL_MBUS_FLAGS)
363 vep->bus_type = V4L2_MBUS_PARALLEL;
364 else
365 vep->bus_type = V4L2_MBUS_BT656;
366 break;
367 case V4L2_MBUS_PARALLEL:
368 vep->bus_type = V4L2_MBUS_PARALLEL;
369 bus->flags = flags;
370 break;
371 case V4L2_MBUS_BT656:
372 vep->bus_type = V4L2_MBUS_BT656;
373 bus->flags = flags & ~PARALLEL_MBUS_FLAGS;
374 break;
375 }
376 }
377
378 static void
v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep,enum v4l2_mbus_type bus_type)379 v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle *fwnode,
380 struct v4l2_fwnode_endpoint *vep,
381 enum v4l2_mbus_type bus_type)
382 {
383 struct v4l2_fwnode_bus_mipi_csi1 *bus = &vep->bus.mipi_csi1;
384 u32 v;
385
386 if (!fwnode_property_read_u32(fwnode, "clock-inv", &v)) {
387 bus->clock_inv = v;
388 pr_debug("clock-inv %u\n", v);
389 }
390
391 if (!fwnode_property_read_u32(fwnode, "strobe", &v)) {
392 bus->strobe = v;
393 pr_debug("strobe %u\n", v);
394 }
395
396 if (!fwnode_property_read_u32(fwnode, "data-lanes", &v)) {
397 bus->data_lane = v;
398 pr_debug("data-lanes %u\n", v);
399 }
400
401 if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
402 bus->clock_lane = v;
403 pr_debug("clock-lanes %u\n", v);
404 }
405
406 if (bus_type == V4L2_MBUS_CCP2)
407 vep->bus_type = V4L2_MBUS_CCP2;
408 else
409 vep->bus_type = V4L2_MBUS_CSI1;
410 }
411
__v4l2_fwnode_endpoint_parse(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep)412 static int __v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
413 struct v4l2_fwnode_endpoint *vep)
414 {
415 u32 bus_type = V4L2_FWNODE_BUS_TYPE_GUESS;
416 enum v4l2_mbus_type mbus_type;
417 int rval;
418
419 if (vep->bus_type == V4L2_MBUS_UNKNOWN) {
420 /* Zero fields from bus union to until the end */
421 memset(&vep->bus, 0,
422 sizeof(*vep) - offsetof(typeof(*vep), bus));
423 }
424
425 pr_debug("===== begin V4L2 endpoint properties\n");
426
427 /*
428 * Zero the fwnode graph endpoint memory in case we don't end up parsing
429 * the endpoint.
430 */
431 memset(&vep->base, 0, sizeof(vep->base));
432
433 fwnode_property_read_u32(fwnode, "bus-type", &bus_type);
434 pr_debug("fwnode video bus type %s (%u), mbus type %s (%u)\n",
435 v4l2_fwnode_bus_type_to_string(bus_type), bus_type,
436 v4l2_fwnode_mbus_type_to_string(vep->bus_type),
437 vep->bus_type);
438 mbus_type = v4l2_fwnode_bus_type_to_mbus(bus_type);
439
440 if (vep->bus_type != V4L2_MBUS_UNKNOWN) {
441 if (mbus_type != V4L2_MBUS_UNKNOWN &&
442 vep->bus_type != mbus_type) {
443 pr_debug("expecting bus type %s\n",
444 v4l2_fwnode_mbus_type_to_string(vep->bus_type));
445 return -ENXIO;
446 }
447 } else {
448 vep->bus_type = mbus_type;
449 }
450
451 switch (vep->bus_type) {
452 case V4L2_MBUS_UNKNOWN:
453 rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
454 V4L2_MBUS_UNKNOWN);
455 if (rval)
456 return rval;
457
458 if (vep->bus_type == V4L2_MBUS_UNKNOWN)
459 v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
460 V4L2_MBUS_UNKNOWN);
461
462 pr_debug("assuming media bus type %s (%u)\n",
463 v4l2_fwnode_mbus_type_to_string(vep->bus_type),
464 vep->bus_type);
465
466 break;
467 case V4L2_MBUS_CCP2:
468 case V4L2_MBUS_CSI1:
469 v4l2_fwnode_endpoint_parse_csi1_bus(fwnode, vep, vep->bus_type);
470
471 break;
472 case V4L2_MBUS_CSI2_DPHY:
473 case V4L2_MBUS_CSI2_CPHY:
474 rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
475 vep->bus_type);
476 if (rval)
477 return rval;
478
479 break;
480 case V4L2_MBUS_PARALLEL:
481 case V4L2_MBUS_BT656:
482 v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
483 vep->bus_type);
484
485 break;
486 default:
487 pr_warn("unsupported bus type %u\n", mbus_type);
488 return -EINVAL;
489 }
490
491 fwnode_graph_parse_endpoint(fwnode, &vep->base);
492
493 return 0;
494 }
495
v4l2_fwnode_endpoint_parse(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep)496 int v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
497 struct v4l2_fwnode_endpoint *vep)
498 {
499 int ret;
500
501 ret = __v4l2_fwnode_endpoint_parse(fwnode, vep);
502
503 pr_debug("===== end V4L2 endpoint properties\n");
504
505 return ret;
506 }
507 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_parse);
508
v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint * vep)509 void v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint *vep)
510 {
511 if (IS_ERR_OR_NULL(vep))
512 return;
513
514 kfree(vep->link_frequencies);
515 }
516 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_free);
517
v4l2_fwnode_endpoint_alloc_parse(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep)518 int v4l2_fwnode_endpoint_alloc_parse(struct fwnode_handle *fwnode,
519 struct v4l2_fwnode_endpoint *vep)
520 {
521 int rval;
522
523 rval = __v4l2_fwnode_endpoint_parse(fwnode, vep);
524 if (rval < 0)
525 return rval;
526
527 rval = fwnode_property_count_u64(fwnode, "link-frequencies");
528 if (rval > 0) {
529 unsigned int i;
530
531 vep->link_frequencies =
532 kmalloc_array(rval, sizeof(*vep->link_frequencies),
533 GFP_KERNEL);
534 if (!vep->link_frequencies)
535 return -ENOMEM;
536
537 vep->nr_of_link_frequencies = rval;
538
539 rval = fwnode_property_read_u64_array(fwnode,
540 "link-frequencies",
541 vep->link_frequencies,
542 vep->nr_of_link_frequencies);
543 if (rval < 0) {
544 v4l2_fwnode_endpoint_free(vep);
545 return rval;
546 }
547
548 for (i = 0; i < vep->nr_of_link_frequencies; i++)
549 pr_info("link-frequencies %u value %llu\n", i,
550 vep->link_frequencies[i]);
551 }
552
553 pr_debug("===== end V4L2 endpoint properties\n");
554
555 return 0;
556 }
557 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_alloc_parse);
558
v4l2_fwnode_parse_link(struct fwnode_handle * __fwnode,struct v4l2_fwnode_link * link)559 int v4l2_fwnode_parse_link(struct fwnode_handle *__fwnode,
560 struct v4l2_fwnode_link *link)
561 {
562 const char *port_prop = is_of_node(__fwnode) ? "reg" : "port";
563 struct fwnode_handle *fwnode;
564
565 memset(link, 0, sizeof(*link));
566
567 fwnode = fwnode_get_parent(__fwnode);
568 fwnode_property_read_u32(fwnode, port_prop, &link->local_port);
569 fwnode = fwnode_get_next_parent(fwnode);
570 if (is_of_node(fwnode) && of_node_name_eq(to_of_node(fwnode), "ports"))
571 fwnode = fwnode_get_next_parent(fwnode);
572 link->local_node = fwnode;
573
574 fwnode = fwnode_graph_get_remote_endpoint(__fwnode);
575 if (!fwnode) {
576 fwnode_handle_put(fwnode);
577 return -ENOLINK;
578 }
579
580 fwnode = fwnode_get_parent(fwnode);
581 fwnode_property_read_u32(fwnode, port_prop, &link->remote_port);
582 fwnode = fwnode_get_next_parent(fwnode);
583 if (is_of_node(fwnode) && of_node_name_eq(to_of_node(fwnode), "ports"))
584 fwnode = fwnode_get_next_parent(fwnode);
585 link->remote_node = fwnode;
586
587 return 0;
588 }
589 EXPORT_SYMBOL_GPL(v4l2_fwnode_parse_link);
590
v4l2_fwnode_put_link(struct v4l2_fwnode_link * link)591 void v4l2_fwnode_put_link(struct v4l2_fwnode_link *link)
592 {
593 fwnode_handle_put(link->local_node);
594 fwnode_handle_put(link->remote_node);
595 }
596 EXPORT_SYMBOL_GPL(v4l2_fwnode_put_link);
597
598 static int
v4l2_async_notifier_fwnode_parse_endpoint(struct device * dev,struct v4l2_async_notifier * notifier,struct fwnode_handle * endpoint,unsigned int asd_struct_size,parse_endpoint_func parse_endpoint)599 v4l2_async_notifier_fwnode_parse_endpoint(struct device *dev,
600 struct v4l2_async_notifier *notifier,
601 struct fwnode_handle *endpoint,
602 unsigned int asd_struct_size,
603 parse_endpoint_func parse_endpoint)
604 {
605 struct v4l2_fwnode_endpoint vep = { .bus_type = 0 };
606 struct v4l2_async_subdev *asd;
607 int ret;
608
609 asd = kzalloc(asd_struct_size, GFP_KERNEL);
610 if (!asd)
611 return -ENOMEM;
612
613 asd->match_type = V4L2_ASYNC_MATCH_FWNODE;
614 asd->match.fwnode =
615 fwnode_graph_get_remote_port_parent(endpoint);
616 if (!asd->match.fwnode) {
617 dev_dbg(dev, "no remote endpoint found\n");
618 ret = -ENOTCONN;
619 goto out_err;
620 }
621
622 ret = v4l2_fwnode_endpoint_alloc_parse(endpoint, &vep);
623 if (ret) {
624 dev_warn(dev, "unable to parse V4L2 fwnode endpoint (%d)\n",
625 ret);
626 goto out_err;
627 }
628
629 ret = parse_endpoint ? parse_endpoint(dev, &vep, asd) : 0;
630 if (ret == -ENOTCONN)
631 dev_dbg(dev, "ignoring port@%u/endpoint@%u\n", vep.base.port,
632 vep.base.id);
633 else if (ret < 0)
634 dev_warn(dev,
635 "driver could not parse port@%u/endpoint@%u (%d)\n",
636 vep.base.port, vep.base.id, ret);
637 v4l2_fwnode_endpoint_free(&vep);
638 if (ret < 0)
639 goto out_err;
640
641 ret = v4l2_async_notifier_add_subdev(notifier, asd);
642 if (ret < 0) {
643 /* not an error if asd already exists */
644 if (ret == -EEXIST)
645 ret = 0;
646 goto out_err;
647 }
648
649 return 0;
650
651 out_err:
652 fwnode_handle_put(asd->match.fwnode);
653 kfree(asd);
654
655 return ret == -ENOTCONN ? 0 : ret;
656 }
657
658 static int
__v4l2_async_notifier_parse_fwnode_ep(struct device * dev,struct v4l2_async_notifier * notifier,size_t asd_struct_size,unsigned int port,bool has_port,parse_endpoint_func parse_endpoint)659 __v4l2_async_notifier_parse_fwnode_ep(struct device *dev,
660 struct v4l2_async_notifier *notifier,
661 size_t asd_struct_size,
662 unsigned int port,
663 bool has_port,
664 parse_endpoint_func parse_endpoint)
665 {
666 struct fwnode_handle *fwnode;
667 int ret = 0;
668
669 if (WARN_ON(asd_struct_size < sizeof(struct v4l2_async_subdev)))
670 return -EINVAL;
671
672 fwnode_graph_for_each_endpoint(dev_fwnode(dev), fwnode) {
673 struct fwnode_handle *dev_fwnode;
674 bool is_available;
675
676 dev_fwnode = fwnode_graph_get_port_parent(fwnode);
677 is_available = fwnode_device_is_available(dev_fwnode);
678 fwnode_handle_put(dev_fwnode);
679 if (!is_available)
680 continue;
681
682 if (has_port) {
683 struct fwnode_endpoint ep;
684
685 ret = fwnode_graph_parse_endpoint(fwnode, &ep);
686 if (ret)
687 break;
688
689 if (ep.port != port)
690 continue;
691 }
692
693 ret = v4l2_async_notifier_fwnode_parse_endpoint(dev,
694 notifier,
695 fwnode,
696 asd_struct_size,
697 parse_endpoint);
698 if (ret < 0)
699 break;
700 }
701
702 fwnode_handle_put(fwnode);
703
704 return ret;
705 }
706
707 int
v4l2_async_notifier_parse_fwnode_endpoints(struct device * dev,struct v4l2_async_notifier * notifier,size_t asd_struct_size,parse_endpoint_func parse_endpoint)708 v4l2_async_notifier_parse_fwnode_endpoints(struct device *dev,
709 struct v4l2_async_notifier *notifier,
710 size_t asd_struct_size,
711 parse_endpoint_func parse_endpoint)
712 {
713 return __v4l2_async_notifier_parse_fwnode_ep(dev, notifier,
714 asd_struct_size, 0,
715 false, parse_endpoint);
716 }
717 EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_endpoints);
718
719 int
v4l2_async_notifier_parse_fwnode_endpoints_by_port(struct device * dev,struct v4l2_async_notifier * notifier,size_t asd_struct_size,unsigned int port,parse_endpoint_func parse_endpoint)720 v4l2_async_notifier_parse_fwnode_endpoints_by_port(struct device *dev,
721 struct v4l2_async_notifier *notifier,
722 size_t asd_struct_size,
723 unsigned int port,
724 parse_endpoint_func parse_endpoint)
725 {
726 return __v4l2_async_notifier_parse_fwnode_ep(dev, notifier,
727 asd_struct_size,
728 port, true,
729 parse_endpoint);
730 }
731 EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_endpoints_by_port);
732
733 /*
734 * v4l2_fwnode_reference_parse - parse references for async sub-devices
735 * @dev: the device node the properties of which are parsed for references
736 * @notifier: the async notifier where the async subdevs will be added
737 * @prop: the name of the property
738 *
739 * Return: 0 on success
740 * -ENOENT if no entries were found
741 * -ENOMEM if memory allocation failed
742 * -EINVAL if property parsing failed
743 */
v4l2_fwnode_reference_parse(struct device * dev,struct v4l2_async_notifier * notifier,const char * prop)744 static int v4l2_fwnode_reference_parse(struct device *dev,
745 struct v4l2_async_notifier *notifier,
746 const char *prop)
747 {
748 struct fwnode_reference_args args;
749 unsigned int index;
750 int ret;
751
752 for (index = 0;
753 !(ret = fwnode_property_get_reference_args(dev_fwnode(dev),
754 prop, NULL, 0,
755 index, &args));
756 index++)
757 fwnode_handle_put(args.fwnode);
758
759 if (!index)
760 return -ENOENT;
761
762 /*
763 * Note that right now both -ENODATA and -ENOENT may signal
764 * out-of-bounds access. Return the error in cases other than that.
765 */
766 if (ret != -ENOENT && ret != -ENODATA)
767 return ret;
768
769 for (index = 0;
770 !fwnode_property_get_reference_args(dev_fwnode(dev), prop, NULL,
771 0, index, &args);
772 index++) {
773 struct v4l2_async_subdev *asd;
774
775 asd = v4l2_async_notifier_add_fwnode_subdev(notifier,
776 args.fwnode,
777 sizeof(*asd));
778 fwnode_handle_put(args.fwnode);
779 if (IS_ERR(asd)) {
780 /* not an error if asd already exists */
781 if (PTR_ERR(asd) == -EEXIST)
782 continue;
783
784 return PTR_ERR(asd);
785 }
786 }
787
788 return 0;
789 }
790
791 /*
792 * v4l2_fwnode_reference_get_int_prop - parse a reference with integer
793 * arguments
794 * @fwnode: fwnode to read @prop from
795 * @notifier: notifier for @dev
796 * @prop: the name of the property
797 * @index: the index of the reference to get
798 * @props: the array of integer property names
799 * @nprops: the number of integer property names in @nprops
800 *
801 * First find an fwnode referred to by the reference at @index in @prop.
802 *
803 * Then under that fwnode, @nprops times, for each property in @props,
804 * iteratively follow child nodes starting from fwnode such that they have the
805 * property in @props array at the index of the child node distance from the
806 * root node and the value of that property matching with the integer argument
807 * of the reference, at the same index.
808 *
809 * The child fwnode reached at the end of the iteration is then returned to the
810 * caller.
811 *
812 * The core reason for this is that you cannot refer to just any node in ACPI.
813 * So to refer to an endpoint (easy in DT) you need to refer to a device, then
814 * provide a list of (property name, property value) tuples where each tuple
815 * uniquely identifies a child node. The first tuple identifies a child directly
816 * underneath the device fwnode, the next tuple identifies a child node
817 * underneath the fwnode identified by the previous tuple, etc. until you
818 * reached the fwnode you need.
819 *
820 * THIS EXAMPLE EXISTS MERELY TO DOCUMENT THIS FUNCTION. DO NOT USE IT AS A
821 * REFERENCE IN HOW ACPI TABLES SHOULD BE WRITTEN!! See documentation under
822 * Documentation/acpi/dsd instead and especially graph.txt,
823 * data-node-references.txt and leds.txt .
824 *
825 * Scope (\_SB.PCI0.I2C2)
826 * {
827 * Device (CAM0)
828 * {
829 * Name (_DSD, Package () {
830 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
831 * Package () {
832 * Package () {
833 * "compatible",
834 * Package () { "nokia,smia" }
835 * },
836 * },
837 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
838 * Package () {
839 * Package () { "port0", "PRT0" },
840 * }
841 * })
842 * Name (PRT0, Package() {
843 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
844 * Package () {
845 * Package () { "port", 0 },
846 * },
847 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
848 * Package () {
849 * Package () { "endpoint0", "EP00" },
850 * }
851 * })
852 * Name (EP00, Package() {
853 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
854 * Package () {
855 * Package () { "endpoint", 0 },
856 * Package () {
857 * "remote-endpoint",
858 * Package() {
859 * \_SB.PCI0.ISP, 4, 0
860 * }
861 * },
862 * }
863 * })
864 * }
865 * }
866 *
867 * Scope (\_SB.PCI0)
868 * {
869 * Device (ISP)
870 * {
871 * Name (_DSD, Package () {
872 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
873 * Package () {
874 * Package () { "port4", "PRT4" },
875 * }
876 * })
877 *
878 * Name (PRT4, Package() {
879 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
880 * Package () {
881 * Package () { "port", 4 },
882 * },
883 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
884 * Package () {
885 * Package () { "endpoint0", "EP40" },
886 * }
887 * })
888 *
889 * Name (EP40, Package() {
890 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
891 * Package () {
892 * Package () { "endpoint", 0 },
893 * Package () {
894 * "remote-endpoint",
895 * Package () {
896 * \_SB.PCI0.I2C2.CAM0,
897 * 0, 0
898 * }
899 * },
900 * }
901 * })
902 * }
903 * }
904 *
905 * From the EP40 node under ISP device, you could parse the graph remote
906 * endpoint using v4l2_fwnode_reference_get_int_prop with these arguments:
907 *
908 * @fwnode: fwnode referring to EP40 under ISP.
909 * @prop: "remote-endpoint"
910 * @index: 0
911 * @props: "port", "endpoint"
912 * @nprops: 2
913 *
914 * And you'd get back fwnode referring to EP00 under CAM0.
915 *
916 * The same works the other way around: if you use EP00 under CAM0 as the
917 * fwnode, you'll get fwnode referring to EP40 under ISP.
918 *
919 * The same example in DT syntax would look like this:
920 *
921 * cam: cam0 {
922 * compatible = "nokia,smia";
923 *
924 * port {
925 * port = <0>;
926 * endpoint {
927 * endpoint = <0>;
928 * remote-endpoint = <&isp 4 0>;
929 * };
930 * };
931 * };
932 *
933 * isp: isp {
934 * ports {
935 * port@4 {
936 * port = <4>;
937 * endpoint {
938 * endpoint = <0>;
939 * remote-endpoint = <&cam 0 0>;
940 * };
941 * };
942 * };
943 * };
944 *
945 * Return: 0 on success
946 * -ENOENT if no entries (or the property itself) were found
947 * -EINVAL if property parsing otherwise failed
948 * -ENOMEM if memory allocation failed
949 */
950 static struct fwnode_handle *
v4l2_fwnode_reference_get_int_prop(struct fwnode_handle * fwnode,const char * prop,unsigned int index,const char * const * props,unsigned int nprops)951 v4l2_fwnode_reference_get_int_prop(struct fwnode_handle *fwnode,
952 const char *prop,
953 unsigned int index,
954 const char * const *props,
955 unsigned int nprops)
956 {
957 struct fwnode_reference_args fwnode_args;
958 u64 *args = fwnode_args.args;
959 struct fwnode_handle *child;
960 int ret;
961
962 /*
963 * Obtain remote fwnode as well as the integer arguments.
964 *
965 * Note that right now both -ENODATA and -ENOENT may signal
966 * out-of-bounds access. Return -ENOENT in that case.
967 */
968 ret = fwnode_property_get_reference_args(fwnode, prop, NULL, nprops,
969 index, &fwnode_args);
970 if (ret)
971 return ERR_PTR(ret == -ENODATA ? -ENOENT : ret);
972
973 /*
974 * Find a node in the tree under the referred fwnode corresponding to
975 * the integer arguments.
976 */
977 fwnode = fwnode_args.fwnode;
978 while (nprops--) {
979 u32 val;
980
981 /* Loop over all child nodes under fwnode. */
982 fwnode_for_each_child_node(fwnode, child) {
983 if (fwnode_property_read_u32(child, *props, &val))
984 continue;
985
986 /* Found property, see if its value matches. */
987 if (val == *args)
988 break;
989 }
990
991 fwnode_handle_put(fwnode);
992
993 /* No property found; return an error here. */
994 if (!child) {
995 fwnode = ERR_PTR(-ENOENT);
996 break;
997 }
998
999 props++;
1000 args++;
1001 fwnode = child;
1002 }
1003
1004 return fwnode;
1005 }
1006
1007 struct v4l2_fwnode_int_props {
1008 const char *name;
1009 const char * const *props;
1010 unsigned int nprops;
1011 };
1012
1013 /*
1014 * v4l2_fwnode_reference_parse_int_props - parse references for async
1015 * sub-devices
1016 * @dev: struct device pointer
1017 * @notifier: notifier for @dev
1018 * @prop: the name of the property
1019 * @props: the array of integer property names
1020 * @nprops: the number of integer properties
1021 *
1022 * Use v4l2_fwnode_reference_get_int_prop to find fwnodes through reference in
1023 * property @prop with integer arguments with child nodes matching in properties
1024 * @props. Then, set up V4L2 async sub-devices for those fwnodes in the notifier
1025 * accordingly.
1026 *
1027 * While it is technically possible to use this function on DT, it is only
1028 * meaningful on ACPI. On Device tree you can refer to any node in the tree but
1029 * on ACPI the references are limited to devices.
1030 *
1031 * Return: 0 on success
1032 * -ENOENT if no entries (or the property itself) were found
1033 * -EINVAL if property parsing otherwisefailed
1034 * -ENOMEM if memory allocation failed
1035 */
1036 static int
v4l2_fwnode_reference_parse_int_props(struct device * dev,struct v4l2_async_notifier * notifier,const struct v4l2_fwnode_int_props * p)1037 v4l2_fwnode_reference_parse_int_props(struct device *dev,
1038 struct v4l2_async_notifier *notifier,
1039 const struct v4l2_fwnode_int_props *p)
1040 {
1041 struct fwnode_handle *fwnode;
1042 unsigned int index;
1043 int ret;
1044 const char *prop = p->name;
1045 const char * const *props = p->props;
1046 unsigned int nprops = p->nprops;
1047
1048 index = 0;
1049 do {
1050 fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
1051 prop, index,
1052 props, nprops);
1053 if (IS_ERR(fwnode)) {
1054 /*
1055 * Note that right now both -ENODATA and -ENOENT may
1056 * signal out-of-bounds access. Return the error in
1057 * cases other than that.
1058 */
1059 if (PTR_ERR(fwnode) != -ENOENT &&
1060 PTR_ERR(fwnode) != -ENODATA)
1061 return PTR_ERR(fwnode);
1062 break;
1063 }
1064 fwnode_handle_put(fwnode);
1065 index++;
1066 } while (1);
1067
1068 for (index = 0;
1069 !IS_ERR((fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
1070 prop, index,
1071 props,
1072 nprops)));
1073 index++) {
1074 struct v4l2_async_subdev *asd;
1075
1076 asd = v4l2_async_notifier_add_fwnode_subdev(notifier, fwnode,
1077 sizeof(*asd));
1078 fwnode_handle_put(fwnode);
1079 if (IS_ERR(asd)) {
1080 ret = PTR_ERR(asd);
1081 /* not an error if asd already exists */
1082 if (ret == -EEXIST)
1083 continue;
1084
1085 return PTR_ERR(asd);
1086 }
1087 }
1088
1089 return !fwnode || PTR_ERR(fwnode) == -ENOENT ? 0 : PTR_ERR(fwnode);
1090 }
1091
v4l2_async_notifier_parse_fwnode_sensor_common(struct device * dev,struct v4l2_async_notifier * notifier)1092 int v4l2_async_notifier_parse_fwnode_sensor_common(struct device *dev,
1093 struct v4l2_async_notifier *notifier)
1094 {
1095 static const char * const led_props[] = { "led" };
1096 static const struct v4l2_fwnode_int_props props[] = {
1097 { "flash-leds", led_props, ARRAY_SIZE(led_props) },
1098 { "lens-focus", NULL, 0 },
1099 };
1100 unsigned int i;
1101
1102 for (i = 0; i < ARRAY_SIZE(props); i++) {
1103 int ret;
1104
1105 if (props[i].props && is_acpi_node(dev_fwnode(dev)))
1106 ret = v4l2_fwnode_reference_parse_int_props(dev,
1107 notifier,
1108 &props[i]);
1109 else
1110 ret = v4l2_fwnode_reference_parse(dev, notifier,
1111 props[i].name);
1112 if (ret && ret != -ENOENT) {
1113 dev_warn(dev, "parsing property \"%s\" failed (%d)\n",
1114 props[i].name, ret);
1115 return ret;
1116 }
1117 }
1118
1119 return 0;
1120 }
1121 EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_sensor_common);
1122
v4l2_async_register_subdev_sensor_common(struct v4l2_subdev * sd)1123 int v4l2_async_register_subdev_sensor_common(struct v4l2_subdev *sd)
1124 {
1125 struct v4l2_async_notifier *notifier;
1126 int ret;
1127
1128 if (WARN_ON(!sd->dev))
1129 return -ENODEV;
1130
1131 notifier = kzalloc(sizeof(*notifier), GFP_KERNEL);
1132 if (!notifier)
1133 return -ENOMEM;
1134
1135 v4l2_async_notifier_init(notifier);
1136
1137 ret = v4l2_async_notifier_parse_fwnode_sensor_common(sd->dev,
1138 notifier);
1139 if (ret < 0)
1140 goto out_cleanup;
1141
1142 ret = v4l2_async_subdev_notifier_register(sd, notifier);
1143 if (ret < 0)
1144 goto out_cleanup;
1145
1146 ret = v4l2_async_register_subdev(sd);
1147 if (ret < 0)
1148 goto out_unregister;
1149
1150 sd->subdev_notifier = notifier;
1151
1152 return 0;
1153
1154 out_unregister:
1155 v4l2_async_notifier_unregister(notifier);
1156
1157 out_cleanup:
1158 v4l2_async_notifier_cleanup(notifier);
1159 kfree(notifier);
1160
1161 return ret;
1162 }
1163 EXPORT_SYMBOL_GPL(v4l2_async_register_subdev_sensor_common);
1164
v4l2_async_register_fwnode_subdev(struct v4l2_subdev * sd,size_t asd_struct_size,unsigned int * ports,unsigned int num_ports,parse_endpoint_func parse_endpoint)1165 int v4l2_async_register_fwnode_subdev(struct v4l2_subdev *sd,
1166 size_t asd_struct_size,
1167 unsigned int *ports,
1168 unsigned int num_ports,
1169 parse_endpoint_func parse_endpoint)
1170 {
1171 struct v4l2_async_notifier *notifier;
1172 struct device *dev = sd->dev;
1173 struct fwnode_handle *fwnode;
1174 int ret;
1175
1176 if (WARN_ON(!dev))
1177 return -ENODEV;
1178
1179 fwnode = dev_fwnode(dev);
1180 if (!fwnode_device_is_available(fwnode))
1181 return -ENODEV;
1182
1183 notifier = kzalloc(sizeof(*notifier), GFP_KERNEL);
1184 if (!notifier)
1185 return -ENOMEM;
1186
1187 v4l2_async_notifier_init(notifier);
1188
1189 if (!ports) {
1190 ret = v4l2_async_notifier_parse_fwnode_endpoints(dev, notifier,
1191 asd_struct_size,
1192 parse_endpoint);
1193 if (ret < 0)
1194 goto out_cleanup;
1195 } else {
1196 unsigned int i;
1197
1198 for (i = 0; i < num_ports; i++) {
1199 ret = v4l2_async_notifier_parse_fwnode_endpoints_by_port(dev, notifier, asd_struct_size, ports[i], parse_endpoint);
1200 if (ret < 0)
1201 goto out_cleanup;
1202 }
1203 }
1204
1205 ret = v4l2_async_subdev_notifier_register(sd, notifier);
1206 if (ret < 0)
1207 goto out_cleanup;
1208
1209 ret = v4l2_async_register_subdev(sd);
1210 if (ret < 0)
1211 goto out_unregister;
1212
1213 sd->subdev_notifier = notifier;
1214
1215 return 0;
1216
1217 out_unregister:
1218 v4l2_async_notifier_unregister(notifier);
1219 out_cleanup:
1220 v4l2_async_notifier_cleanup(notifier);
1221 kfree(notifier);
1222
1223 return ret;
1224 }
1225 EXPORT_SYMBOL_GPL(v4l2_async_register_fwnode_subdev);
1226
1227 MODULE_LICENSE("GPL");
1228 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>");
1229 MODULE_AUTHOR("Sylwester Nawrocki <s.nawrocki@samsung.com>");
1230 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1231