1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * V4L2 fwnode binding parsing library
4 *
5 * The origins of the V4L2 fwnode library are in V4L2 OF library that
6 * formerly was located in v4l2-of.c.
7 *
8 * Copyright (c) 2016 Intel Corporation.
9 * Author: Sakari Ailus <sakari.ailus@linux.intel.com>
10 *
11 * Copyright (C) 2012 - 2013 Samsung Electronics Co., Ltd.
12 * Author: Sylwester Nawrocki <s.nawrocki@samsung.com>
13 *
14 * Copyright (C) 2012 Renesas Electronics Corp.
15 * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
16 */
17 #include <linux/acpi.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/property.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26
27 #include <media/v4l2-async.h>
28 #include <media/v4l2-fwnode.h>
29 #include <media/v4l2-subdev.h>
30
31 static const struct v4l2_fwnode_bus_conv {
32 enum v4l2_fwnode_bus_type fwnode_bus_type;
33 enum v4l2_mbus_type mbus_type;
34 const char *name;
35 } buses[] = {
36 {
37 V4L2_FWNODE_BUS_TYPE_GUESS,
38 V4L2_MBUS_UNKNOWN,
39 "not specified",
40 }, {
41 V4L2_FWNODE_BUS_TYPE_CSI2_CPHY,
42 V4L2_MBUS_CSI2_CPHY,
43 "MIPI CSI-2 C-PHY",
44 }, {
45 V4L2_FWNODE_BUS_TYPE_CSI1,
46 V4L2_MBUS_CSI1,
47 "MIPI CSI-1",
48 }, {
49 V4L2_FWNODE_BUS_TYPE_CCP2,
50 V4L2_MBUS_CCP2,
51 "compact camera port 2",
52 }, {
53 V4L2_FWNODE_BUS_TYPE_CSI2_DPHY,
54 V4L2_MBUS_CSI2_DPHY,
55 "MIPI CSI-2 D-PHY",
56 }, {
57 V4L2_FWNODE_BUS_TYPE_PARALLEL,
58 V4L2_MBUS_PARALLEL,
59 "parallel",
60 }, {
61 V4L2_FWNODE_BUS_TYPE_BT656,
62 V4L2_MBUS_BT656,
63 "Bt.656",
64 }
65 };
66
67 static const struct v4l2_fwnode_bus_conv *
get_v4l2_fwnode_bus_conv_by_fwnode_bus(enum v4l2_fwnode_bus_type type)68 get_v4l2_fwnode_bus_conv_by_fwnode_bus(enum v4l2_fwnode_bus_type type)
69 {
70 unsigned int i;
71
72 for (i = 0; i < ARRAY_SIZE(buses); i++)
73 if (buses[i].fwnode_bus_type == type)
74 return &buses[i];
75
76 return NULL;
77 }
78
79 static enum v4l2_mbus_type
v4l2_fwnode_bus_type_to_mbus(enum v4l2_fwnode_bus_type type)80 v4l2_fwnode_bus_type_to_mbus(enum v4l2_fwnode_bus_type type)
81 {
82 const struct v4l2_fwnode_bus_conv *conv =
83 get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
84
85 return conv ? conv->mbus_type : V4L2_MBUS_INVALID;
86 }
87
88 static const char *
v4l2_fwnode_bus_type_to_string(enum v4l2_fwnode_bus_type type)89 v4l2_fwnode_bus_type_to_string(enum v4l2_fwnode_bus_type type)
90 {
91 const struct v4l2_fwnode_bus_conv *conv =
92 get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
93
94 return conv ? conv->name : "not found";
95 }
96
97 static const struct v4l2_fwnode_bus_conv *
get_v4l2_fwnode_bus_conv_by_mbus(enum v4l2_mbus_type type)98 get_v4l2_fwnode_bus_conv_by_mbus(enum v4l2_mbus_type type)
99 {
100 unsigned int i;
101
102 for (i = 0; i < ARRAY_SIZE(buses); i++)
103 if (buses[i].mbus_type == type)
104 return &buses[i];
105
106 return NULL;
107 }
108
109 static const char *
v4l2_fwnode_mbus_type_to_string(enum v4l2_mbus_type type)110 v4l2_fwnode_mbus_type_to_string(enum v4l2_mbus_type type)
111 {
112 const struct v4l2_fwnode_bus_conv *conv =
113 get_v4l2_fwnode_bus_conv_by_mbus(type);
114
115 return conv ? conv->name : "not found";
116 }
117
v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep,enum v4l2_mbus_type bus_type)118 static int v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle *fwnode,
119 struct v4l2_fwnode_endpoint *vep,
120 enum v4l2_mbus_type bus_type)
121 {
122 struct v4l2_fwnode_bus_mipi_csi2 *bus = &vep->bus.mipi_csi2;
123 bool have_clk_lane = false, have_data_lanes = false,
124 have_lane_polarities = false;
125 unsigned int flags = 0, lanes_used = 0;
126 u32 array[1 + V4L2_FWNODE_CSI2_MAX_DATA_LANES];
127 u32 clock_lane = 0;
128 unsigned int num_data_lanes = 0;
129 bool use_default_lane_mapping = false;
130 unsigned int i;
131 u32 v;
132 int rval;
133
134 if (bus_type == V4L2_MBUS_CSI2_DPHY ||
135 bus_type == V4L2_MBUS_CSI2_CPHY) {
136 use_default_lane_mapping = true;
137
138 num_data_lanes = min_t(u32, bus->num_data_lanes,
139 V4L2_FWNODE_CSI2_MAX_DATA_LANES);
140
141 clock_lane = bus->clock_lane;
142 if (clock_lane)
143 use_default_lane_mapping = false;
144
145 for (i = 0; i < num_data_lanes; i++) {
146 array[i] = bus->data_lanes[i];
147 if (array[i])
148 use_default_lane_mapping = false;
149 }
150
151 if (use_default_lane_mapping)
152 pr_debug("no lane mapping given, using defaults\n");
153 }
154
155 rval = fwnode_property_count_u32(fwnode, "data-lanes");
156 if (rval > 0) {
157 num_data_lanes =
158 min_t(int, V4L2_FWNODE_CSI2_MAX_DATA_LANES, rval);
159
160 fwnode_property_read_u32_array(fwnode, "data-lanes", array,
161 num_data_lanes);
162
163 have_data_lanes = true;
164 if (use_default_lane_mapping) {
165 pr_debug("data-lanes property exists; disabling default mapping\n");
166 use_default_lane_mapping = false;
167 }
168 }
169
170 for (i = 0; i < num_data_lanes; i++) {
171 if (lanes_used & BIT(array[i])) {
172 if (have_data_lanes || !use_default_lane_mapping)
173 pr_warn("duplicated lane %u in data-lanes, using defaults\n",
174 array[i]);
175 use_default_lane_mapping = true;
176 }
177 lanes_used |= BIT(array[i]);
178
179 if (have_data_lanes)
180 pr_debug("lane %u position %u\n", i, array[i]);
181 }
182
183 rval = fwnode_property_count_u32(fwnode, "lane-polarities");
184 if (rval > 0) {
185 if (rval != 1 + num_data_lanes /* clock+data */) {
186 pr_warn("invalid number of lane-polarities entries (need %u, got %u)\n",
187 1 + num_data_lanes, rval);
188 return -EINVAL;
189 }
190
191 have_lane_polarities = true;
192 }
193
194 if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
195 clock_lane = v;
196 pr_debug("clock lane position %u\n", v);
197 have_clk_lane = true;
198 }
199
200 if (have_clk_lane && lanes_used & BIT(clock_lane) &&
201 !use_default_lane_mapping) {
202 pr_warn("duplicated lane %u in clock-lanes, using defaults\n",
203 v);
204 use_default_lane_mapping = true;
205 }
206
207 if (fwnode_property_present(fwnode, "clock-noncontinuous")) {
208 flags |= V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK;
209 pr_debug("non-continuous clock\n");
210 } else {
211 flags |= V4L2_MBUS_CSI2_CONTINUOUS_CLOCK;
212 }
213
214 if (bus_type == V4L2_MBUS_CSI2_DPHY ||
215 bus_type == V4L2_MBUS_CSI2_CPHY || lanes_used ||
216 have_clk_lane || (flags & ~V4L2_MBUS_CSI2_CONTINUOUS_CLOCK)) {
217 /* Only D-PHY has a clock lane. */
218 unsigned int dfl_data_lane_index =
219 bus_type == V4L2_MBUS_CSI2_DPHY;
220
221 bus->flags = flags;
222 if (bus_type == V4L2_MBUS_UNKNOWN)
223 vep->bus_type = V4L2_MBUS_CSI2_DPHY;
224 bus->num_data_lanes = num_data_lanes;
225
226 if (use_default_lane_mapping) {
227 bus->clock_lane = 0;
228 for (i = 0; i < num_data_lanes; i++)
229 bus->data_lanes[i] = dfl_data_lane_index + i;
230 } else {
231 bus->clock_lane = clock_lane;
232 for (i = 0; i < num_data_lanes; i++)
233 bus->data_lanes[i] = array[i];
234 }
235
236 if (have_lane_polarities) {
237 fwnode_property_read_u32_array(fwnode,
238 "lane-polarities", array,
239 1 + num_data_lanes);
240
241 for (i = 0; i < 1 + num_data_lanes; i++) {
242 bus->lane_polarities[i] = array[i];
243 pr_debug("lane %u polarity %sinverted",
244 i, array[i] ? "" : "not ");
245 }
246 } else {
247 pr_debug("no lane polarities defined, assuming not inverted\n");
248 }
249 }
250
251 return 0;
252 }
253
254 #define PARALLEL_MBUS_FLAGS (V4L2_MBUS_HSYNC_ACTIVE_HIGH | \
255 V4L2_MBUS_HSYNC_ACTIVE_LOW | \
256 V4L2_MBUS_VSYNC_ACTIVE_HIGH | \
257 V4L2_MBUS_VSYNC_ACTIVE_LOW | \
258 V4L2_MBUS_FIELD_EVEN_HIGH | \
259 V4L2_MBUS_FIELD_EVEN_LOW)
260
261 static void
v4l2_fwnode_endpoint_parse_parallel_bus(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep,enum v4l2_mbus_type bus_type)262 v4l2_fwnode_endpoint_parse_parallel_bus(struct fwnode_handle *fwnode,
263 struct v4l2_fwnode_endpoint *vep,
264 enum v4l2_mbus_type bus_type)
265 {
266 struct v4l2_fwnode_bus_parallel *bus = &vep->bus.parallel;
267 unsigned int flags = 0;
268 u32 v;
269
270 if (bus_type == V4L2_MBUS_PARALLEL || bus_type == V4L2_MBUS_BT656)
271 flags = bus->flags;
272
273 if (!fwnode_property_read_u32(fwnode, "hsync-active", &v)) {
274 flags &= ~(V4L2_MBUS_HSYNC_ACTIVE_HIGH |
275 V4L2_MBUS_HSYNC_ACTIVE_LOW);
276 flags |= v ? V4L2_MBUS_HSYNC_ACTIVE_HIGH :
277 V4L2_MBUS_HSYNC_ACTIVE_LOW;
278 pr_debug("hsync-active %s\n", v ? "high" : "low");
279 }
280
281 if (!fwnode_property_read_u32(fwnode, "vsync-active", &v)) {
282 flags &= ~(V4L2_MBUS_VSYNC_ACTIVE_HIGH |
283 V4L2_MBUS_VSYNC_ACTIVE_LOW);
284 flags |= v ? V4L2_MBUS_VSYNC_ACTIVE_HIGH :
285 V4L2_MBUS_VSYNC_ACTIVE_LOW;
286 pr_debug("vsync-active %s\n", v ? "high" : "low");
287 }
288
289 if (!fwnode_property_read_u32(fwnode, "field-even-active", &v)) {
290 flags &= ~(V4L2_MBUS_FIELD_EVEN_HIGH |
291 V4L2_MBUS_FIELD_EVEN_LOW);
292 flags |= v ? V4L2_MBUS_FIELD_EVEN_HIGH :
293 V4L2_MBUS_FIELD_EVEN_LOW;
294 pr_debug("field-even-active %s\n", v ? "high" : "low");
295 }
296
297 if (!fwnode_property_read_u32(fwnode, "pclk-sample", &v)) {
298 flags &= ~(V4L2_MBUS_PCLK_SAMPLE_RISING |
299 V4L2_MBUS_PCLK_SAMPLE_FALLING);
300 flags |= v ? V4L2_MBUS_PCLK_SAMPLE_RISING :
301 V4L2_MBUS_PCLK_SAMPLE_FALLING;
302 pr_debug("pclk-sample %s\n", v ? "high" : "low");
303 }
304
305 if (!fwnode_property_read_u32(fwnode, "data-active", &v)) {
306 flags &= ~(V4L2_MBUS_DATA_ACTIVE_HIGH |
307 V4L2_MBUS_DATA_ACTIVE_LOW);
308 flags |= v ? V4L2_MBUS_DATA_ACTIVE_HIGH :
309 V4L2_MBUS_DATA_ACTIVE_LOW;
310 pr_debug("data-active %s\n", v ? "high" : "low");
311 }
312
313 if (fwnode_property_present(fwnode, "slave-mode")) {
314 pr_debug("slave mode\n");
315 flags &= ~V4L2_MBUS_MASTER;
316 flags |= V4L2_MBUS_SLAVE;
317 } else {
318 flags &= ~V4L2_MBUS_SLAVE;
319 flags |= V4L2_MBUS_MASTER;
320 }
321
322 if (!fwnode_property_read_u32(fwnode, "bus-width", &v)) {
323 bus->bus_width = v;
324 pr_debug("bus-width %u\n", v);
325 }
326
327 if (!fwnode_property_read_u32(fwnode, "data-shift", &v)) {
328 bus->data_shift = v;
329 pr_debug("data-shift %u\n", v);
330 }
331
332 if (!fwnode_property_read_u32(fwnode, "sync-on-green-active", &v)) {
333 flags &= ~(V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH |
334 V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW);
335 flags |= v ? V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH :
336 V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW;
337 pr_debug("sync-on-green-active %s\n", v ? "high" : "low");
338 }
339
340 if (!fwnode_property_read_u32(fwnode, "data-enable-active", &v)) {
341 flags &= ~(V4L2_MBUS_DATA_ENABLE_HIGH |
342 V4L2_MBUS_DATA_ENABLE_LOW);
343 flags |= v ? V4L2_MBUS_DATA_ENABLE_HIGH :
344 V4L2_MBUS_DATA_ENABLE_LOW;
345 pr_debug("data-enable-active %s\n", v ? "high" : "low");
346 }
347
348 switch (bus_type) {
349 default:
350 bus->flags = flags;
351 if (flags & PARALLEL_MBUS_FLAGS)
352 vep->bus_type = V4L2_MBUS_PARALLEL;
353 else
354 vep->bus_type = V4L2_MBUS_BT656;
355 break;
356 case V4L2_MBUS_PARALLEL:
357 vep->bus_type = V4L2_MBUS_PARALLEL;
358 bus->flags = flags;
359 break;
360 case V4L2_MBUS_BT656:
361 vep->bus_type = V4L2_MBUS_BT656;
362 bus->flags = flags & ~PARALLEL_MBUS_FLAGS;
363 break;
364 }
365 }
366
367 static void
v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep,enum v4l2_mbus_type bus_type)368 v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle *fwnode,
369 struct v4l2_fwnode_endpoint *vep,
370 enum v4l2_mbus_type bus_type)
371 {
372 struct v4l2_fwnode_bus_mipi_csi1 *bus = &vep->bus.mipi_csi1;
373 u32 v;
374
375 if (!fwnode_property_read_u32(fwnode, "clock-inv", &v)) {
376 bus->clock_inv = v;
377 pr_debug("clock-inv %u\n", v);
378 }
379
380 if (!fwnode_property_read_u32(fwnode, "strobe", &v)) {
381 bus->strobe = v;
382 pr_debug("strobe %u\n", v);
383 }
384
385 if (!fwnode_property_read_u32(fwnode, "data-lanes", &v)) {
386 bus->data_lane = v;
387 pr_debug("data-lanes %u\n", v);
388 }
389
390 if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
391 bus->clock_lane = v;
392 pr_debug("clock-lanes %u\n", v);
393 }
394
395 if (bus_type == V4L2_MBUS_CCP2)
396 vep->bus_type = V4L2_MBUS_CCP2;
397 else
398 vep->bus_type = V4L2_MBUS_CSI1;
399 }
400
__v4l2_fwnode_endpoint_parse(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep)401 static int __v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
402 struct v4l2_fwnode_endpoint *vep)
403 {
404 u32 bus_type = V4L2_FWNODE_BUS_TYPE_GUESS;
405 enum v4l2_mbus_type mbus_type;
406 int rval;
407
408 pr_debug("===== begin parsing endpoint %pfw\n", fwnode);
409
410 fwnode_property_read_u32(fwnode, "bus-type", &bus_type);
411 pr_debug("fwnode video bus type %s (%u), mbus type %s (%u)\n",
412 v4l2_fwnode_bus_type_to_string(bus_type), bus_type,
413 v4l2_fwnode_mbus_type_to_string(vep->bus_type),
414 vep->bus_type);
415 mbus_type = v4l2_fwnode_bus_type_to_mbus(bus_type);
416 if (mbus_type == V4L2_MBUS_INVALID) {
417 pr_debug("unsupported bus type %u\n", bus_type);
418 return -EINVAL;
419 }
420
421 if (vep->bus_type != V4L2_MBUS_UNKNOWN) {
422 if (mbus_type != V4L2_MBUS_UNKNOWN &&
423 vep->bus_type != mbus_type) {
424 pr_debug("expecting bus type %s\n",
425 v4l2_fwnode_mbus_type_to_string(vep->bus_type));
426 return -ENXIO;
427 }
428 } else {
429 vep->bus_type = mbus_type;
430 }
431
432 switch (vep->bus_type) {
433 case V4L2_MBUS_UNKNOWN:
434 rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
435 V4L2_MBUS_UNKNOWN);
436 if (rval)
437 return rval;
438
439 if (vep->bus_type == V4L2_MBUS_UNKNOWN)
440 v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
441 V4L2_MBUS_UNKNOWN);
442
443 pr_debug("assuming media bus type %s (%u)\n",
444 v4l2_fwnode_mbus_type_to_string(vep->bus_type),
445 vep->bus_type);
446
447 break;
448 case V4L2_MBUS_CCP2:
449 case V4L2_MBUS_CSI1:
450 v4l2_fwnode_endpoint_parse_csi1_bus(fwnode, vep, vep->bus_type);
451
452 break;
453 case V4L2_MBUS_CSI2_DPHY:
454 case V4L2_MBUS_CSI2_CPHY:
455 rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
456 vep->bus_type);
457 if (rval)
458 return rval;
459
460 break;
461 case V4L2_MBUS_PARALLEL:
462 case V4L2_MBUS_BT656:
463 v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
464 vep->bus_type);
465
466 break;
467 default:
468 pr_warn("unsupported bus type %u\n", mbus_type);
469 return -EINVAL;
470 }
471
472 fwnode_graph_parse_endpoint(fwnode, &vep->base);
473
474 return 0;
475 }
476
v4l2_fwnode_endpoint_parse(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep)477 int v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
478 struct v4l2_fwnode_endpoint *vep)
479 {
480 int ret;
481
482 ret = __v4l2_fwnode_endpoint_parse(fwnode, vep);
483
484 pr_debug("===== end parsing endpoint %pfw\n", fwnode);
485
486 return ret;
487 }
488 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_parse);
489
v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint * vep)490 void v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint *vep)
491 {
492 if (IS_ERR_OR_NULL(vep))
493 return;
494
495 kfree(vep->link_frequencies);
496 vep->link_frequencies = NULL;
497 }
498 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_free);
499
v4l2_fwnode_endpoint_alloc_parse(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep)500 int v4l2_fwnode_endpoint_alloc_parse(struct fwnode_handle *fwnode,
501 struct v4l2_fwnode_endpoint *vep)
502 {
503 int rval;
504
505 rval = __v4l2_fwnode_endpoint_parse(fwnode, vep);
506 if (rval < 0)
507 return rval;
508
509 rval = fwnode_property_count_u64(fwnode, "link-frequencies");
510 if (rval > 0) {
511 unsigned int i;
512
513 vep->link_frequencies =
514 kmalloc_array(rval, sizeof(*vep->link_frequencies),
515 GFP_KERNEL);
516 if (!vep->link_frequencies)
517 return -ENOMEM;
518
519 vep->nr_of_link_frequencies = rval;
520
521 rval = fwnode_property_read_u64_array(fwnode,
522 "link-frequencies",
523 vep->link_frequencies,
524 vep->nr_of_link_frequencies);
525 if (rval < 0) {
526 v4l2_fwnode_endpoint_free(vep);
527 return rval;
528 }
529
530 for (i = 0; i < vep->nr_of_link_frequencies; i++)
531 pr_debug("link-frequencies %u value %llu\n", i,
532 vep->link_frequencies[i]);
533 }
534
535 pr_debug("===== end parsing endpoint %pfw\n", fwnode);
536
537 return 0;
538 }
539 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_alloc_parse);
540
v4l2_fwnode_parse_link(struct fwnode_handle * fwnode,struct v4l2_fwnode_link * link)541 int v4l2_fwnode_parse_link(struct fwnode_handle *fwnode,
542 struct v4l2_fwnode_link *link)
543 {
544 struct fwnode_endpoint fwep;
545
546 memset(link, 0, sizeof(*link));
547
548 fwnode_graph_parse_endpoint(fwnode, &fwep);
549 link->local_id = fwep.id;
550 link->local_port = fwep.port;
551 link->local_node = fwnode_graph_get_port_parent(fwnode);
552
553 fwnode = fwnode_graph_get_remote_endpoint(fwnode);
554 if (!fwnode) {
555 fwnode_handle_put(fwnode);
556 return -ENOLINK;
557 }
558
559 fwnode_graph_parse_endpoint(fwnode, &fwep);
560 link->remote_id = fwep.id;
561 link->remote_port = fwep.port;
562 link->remote_node = fwnode_graph_get_port_parent(fwnode);
563
564 return 0;
565 }
566 EXPORT_SYMBOL_GPL(v4l2_fwnode_parse_link);
567
v4l2_fwnode_put_link(struct v4l2_fwnode_link * link)568 void v4l2_fwnode_put_link(struct v4l2_fwnode_link *link)
569 {
570 fwnode_handle_put(link->local_node);
571 fwnode_handle_put(link->remote_node);
572 }
573 EXPORT_SYMBOL_GPL(v4l2_fwnode_put_link);
574
575 static const struct v4l2_fwnode_connector_conv {
576 enum v4l2_connector_type type;
577 const char *compatible;
578 } connectors[] = {
579 {
580 .type = V4L2_CONN_COMPOSITE,
581 .compatible = "composite-video-connector",
582 }, {
583 .type = V4L2_CONN_SVIDEO,
584 .compatible = "svideo-connector",
585 },
586 };
587
588 static enum v4l2_connector_type
v4l2_fwnode_string_to_connector_type(const char * con_str)589 v4l2_fwnode_string_to_connector_type(const char *con_str)
590 {
591 unsigned int i;
592
593 for (i = 0; i < ARRAY_SIZE(connectors); i++)
594 if (!strcmp(con_str, connectors[i].compatible))
595 return connectors[i].type;
596
597 return V4L2_CONN_UNKNOWN;
598 }
599
600 static void
v4l2_fwnode_connector_parse_analog(struct fwnode_handle * fwnode,struct v4l2_fwnode_connector * vc)601 v4l2_fwnode_connector_parse_analog(struct fwnode_handle *fwnode,
602 struct v4l2_fwnode_connector *vc)
603 {
604 u32 stds;
605 int ret;
606
607 ret = fwnode_property_read_u32(fwnode, "sdtv-standards", &stds);
608
609 /* The property is optional. */
610 vc->connector.analog.sdtv_stds = ret ? V4L2_STD_ALL : stds;
611 }
612
v4l2_fwnode_connector_free(struct v4l2_fwnode_connector * connector)613 void v4l2_fwnode_connector_free(struct v4l2_fwnode_connector *connector)
614 {
615 struct v4l2_connector_link *link, *tmp;
616
617 if (IS_ERR_OR_NULL(connector) || connector->type == V4L2_CONN_UNKNOWN)
618 return;
619
620 list_for_each_entry_safe(link, tmp, &connector->links, head) {
621 v4l2_fwnode_put_link(&link->fwnode_link);
622 list_del(&link->head);
623 kfree(link);
624 }
625
626 kfree(connector->label);
627 connector->label = NULL;
628 connector->type = V4L2_CONN_UNKNOWN;
629 }
630 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_free);
631
632 static enum v4l2_connector_type
v4l2_fwnode_get_connector_type(struct fwnode_handle * fwnode)633 v4l2_fwnode_get_connector_type(struct fwnode_handle *fwnode)
634 {
635 const char *type_name;
636 int err;
637
638 if (!fwnode)
639 return V4L2_CONN_UNKNOWN;
640
641 /* The connector-type is stored within the compatible string. */
642 err = fwnode_property_read_string(fwnode, "compatible", &type_name);
643 if (err)
644 return V4L2_CONN_UNKNOWN;
645
646 return v4l2_fwnode_string_to_connector_type(type_name);
647 }
648
v4l2_fwnode_connector_parse(struct fwnode_handle * fwnode,struct v4l2_fwnode_connector * connector)649 int v4l2_fwnode_connector_parse(struct fwnode_handle *fwnode,
650 struct v4l2_fwnode_connector *connector)
651 {
652 struct fwnode_handle *connector_node;
653 enum v4l2_connector_type connector_type;
654 const char *label;
655 int err;
656
657 if (!fwnode)
658 return -EINVAL;
659
660 memset(connector, 0, sizeof(*connector));
661
662 INIT_LIST_HEAD(&connector->links);
663
664 connector_node = fwnode_graph_get_port_parent(fwnode);
665 connector_type = v4l2_fwnode_get_connector_type(connector_node);
666 if (connector_type == V4L2_CONN_UNKNOWN) {
667 fwnode_handle_put(connector_node);
668 connector_node = fwnode_graph_get_remote_port_parent(fwnode);
669 connector_type = v4l2_fwnode_get_connector_type(connector_node);
670 }
671
672 if (connector_type == V4L2_CONN_UNKNOWN) {
673 pr_err("Unknown connector type\n");
674 err = -ENOTCONN;
675 goto out;
676 }
677
678 connector->type = connector_type;
679 connector->name = fwnode_get_name(connector_node);
680 err = fwnode_property_read_string(connector_node, "label", &label);
681 connector->label = err ? NULL : kstrdup_const(label, GFP_KERNEL);
682
683 /* Parse the connector specific properties. */
684 switch (connector->type) {
685 case V4L2_CONN_COMPOSITE:
686 case V4L2_CONN_SVIDEO:
687 v4l2_fwnode_connector_parse_analog(connector_node, connector);
688 break;
689 /* Avoid compiler warnings */
690 case V4L2_CONN_UNKNOWN:
691 break;
692 }
693
694 out:
695 fwnode_handle_put(connector_node);
696
697 return err;
698 }
699 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_parse);
700
v4l2_fwnode_connector_add_link(struct fwnode_handle * fwnode,struct v4l2_fwnode_connector * connector)701 int v4l2_fwnode_connector_add_link(struct fwnode_handle *fwnode,
702 struct v4l2_fwnode_connector *connector)
703 {
704 struct fwnode_handle *connector_ep;
705 struct v4l2_connector_link *link;
706 int err;
707
708 if (!fwnode || !connector || connector->type == V4L2_CONN_UNKNOWN)
709 return -EINVAL;
710
711 connector_ep = fwnode_graph_get_remote_endpoint(fwnode);
712 if (!connector_ep)
713 return -ENOTCONN;
714
715 link = kzalloc(sizeof(*link), GFP_KERNEL);
716 if (!link) {
717 err = -ENOMEM;
718 goto err;
719 }
720
721 err = v4l2_fwnode_parse_link(connector_ep, &link->fwnode_link);
722 if (err)
723 goto err;
724
725 fwnode_handle_put(connector_ep);
726
727 list_add(&link->head, &connector->links);
728 connector->nr_of_links++;
729
730 return 0;
731
732 err:
733 kfree(link);
734 fwnode_handle_put(connector_ep);
735
736 return err;
737 }
738 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_add_link);
739
v4l2_fwnode_device_parse(struct device * dev,struct v4l2_fwnode_device_properties * props)740 int v4l2_fwnode_device_parse(struct device *dev,
741 struct v4l2_fwnode_device_properties *props)
742 {
743 struct fwnode_handle *fwnode = dev_fwnode(dev);
744 u32 val;
745 int ret;
746
747 memset(props, 0, sizeof(*props));
748
749 props->orientation = V4L2_FWNODE_PROPERTY_UNSET;
750 ret = fwnode_property_read_u32(fwnode, "orientation", &val);
751 if (!ret) {
752 switch (val) {
753 case V4L2_FWNODE_ORIENTATION_FRONT:
754 case V4L2_FWNODE_ORIENTATION_BACK:
755 case V4L2_FWNODE_ORIENTATION_EXTERNAL:
756 break;
757 default:
758 dev_warn(dev, "Unsupported device orientation: %u\n", val);
759 return -EINVAL;
760 }
761
762 props->orientation = val;
763 dev_dbg(dev, "device orientation: %u\n", val);
764 }
765
766 props->rotation = V4L2_FWNODE_PROPERTY_UNSET;
767 ret = fwnode_property_read_u32(fwnode, "rotation", &val);
768 if (!ret) {
769 if (val >= 360) {
770 dev_warn(dev, "Unsupported device rotation: %u\n", val);
771 return -EINVAL;
772 }
773
774 props->rotation = val;
775 dev_dbg(dev, "device rotation: %u\n", val);
776 }
777
778 return 0;
779 }
780 EXPORT_SYMBOL_GPL(v4l2_fwnode_device_parse);
781
782 static int
v4l2_async_notifier_fwnode_parse_endpoint(struct device * dev,struct v4l2_async_notifier * notifier,struct fwnode_handle * endpoint,unsigned int asd_struct_size,parse_endpoint_func parse_endpoint)783 v4l2_async_notifier_fwnode_parse_endpoint(struct device *dev,
784 struct v4l2_async_notifier *notifier,
785 struct fwnode_handle *endpoint,
786 unsigned int asd_struct_size,
787 parse_endpoint_func parse_endpoint)
788 {
789 struct v4l2_fwnode_endpoint vep = { .bus_type = 0 };
790 struct v4l2_async_subdev *asd;
791 int ret;
792
793 asd = kzalloc(asd_struct_size, GFP_KERNEL);
794 if (!asd)
795 return -ENOMEM;
796
797 asd->match_type = V4L2_ASYNC_MATCH_FWNODE;
798 asd->match.fwnode =
799 fwnode_graph_get_remote_port_parent(endpoint);
800 if (!asd->match.fwnode) {
801 dev_dbg(dev, "no remote endpoint found\n");
802 ret = -ENOTCONN;
803 goto out_err;
804 }
805
806 ret = v4l2_fwnode_endpoint_alloc_parse(endpoint, &vep);
807 if (ret) {
808 dev_warn(dev, "unable to parse V4L2 fwnode endpoint (%d)\n",
809 ret);
810 goto out_err;
811 }
812
813 ret = parse_endpoint ? parse_endpoint(dev, &vep, asd) : 0;
814 if (ret == -ENOTCONN)
815 dev_dbg(dev, "ignoring port@%u/endpoint@%u\n", vep.base.port,
816 vep.base.id);
817 else if (ret < 0)
818 dev_warn(dev,
819 "driver could not parse port@%u/endpoint@%u (%d)\n",
820 vep.base.port, vep.base.id, ret);
821 v4l2_fwnode_endpoint_free(&vep);
822 if (ret < 0)
823 goto out_err;
824
825 ret = __v4l2_async_notifier_add_subdev(notifier, asd);
826 if (ret < 0) {
827 /* not an error if asd already exists */
828 if (ret == -EEXIST)
829 ret = 0;
830 goto out_err;
831 }
832
833 return 0;
834
835 out_err:
836 fwnode_handle_put(asd->match.fwnode);
837 kfree(asd);
838
839 return ret == -ENOTCONN ? 0 : ret;
840 }
841
842 static int
__v4l2_async_notifier_parse_fwnode_ep(struct device * dev,struct v4l2_async_notifier * notifier,size_t asd_struct_size,unsigned int port,bool has_port,parse_endpoint_func parse_endpoint)843 __v4l2_async_notifier_parse_fwnode_ep(struct device *dev,
844 struct v4l2_async_notifier *notifier,
845 size_t asd_struct_size,
846 unsigned int port,
847 bool has_port,
848 parse_endpoint_func parse_endpoint)
849 {
850 struct fwnode_handle *fwnode;
851 int ret = 0;
852
853 if (WARN_ON(asd_struct_size < sizeof(struct v4l2_async_subdev)))
854 return -EINVAL;
855
856 fwnode_graph_for_each_endpoint(dev_fwnode(dev), fwnode) {
857 struct fwnode_handle *dev_fwnode;
858 bool is_available;
859
860 dev_fwnode = fwnode_graph_get_port_parent(fwnode);
861 is_available = fwnode_device_is_available(dev_fwnode);
862 fwnode_handle_put(dev_fwnode);
863 if (!is_available)
864 continue;
865
866 if (has_port) {
867 struct fwnode_endpoint ep;
868
869 ret = fwnode_graph_parse_endpoint(fwnode, &ep);
870 if (ret)
871 break;
872
873 if (ep.port != port)
874 continue;
875 }
876
877 ret = v4l2_async_notifier_fwnode_parse_endpoint(dev,
878 notifier,
879 fwnode,
880 asd_struct_size,
881 parse_endpoint);
882 if (ret < 0)
883 break;
884 }
885
886 fwnode_handle_put(fwnode);
887
888 return ret;
889 }
890
891 int
v4l2_async_notifier_parse_fwnode_endpoints(struct device * dev,struct v4l2_async_notifier * notifier,size_t asd_struct_size,parse_endpoint_func parse_endpoint)892 v4l2_async_notifier_parse_fwnode_endpoints(struct device *dev,
893 struct v4l2_async_notifier *notifier,
894 size_t asd_struct_size,
895 parse_endpoint_func parse_endpoint)
896 {
897 return __v4l2_async_notifier_parse_fwnode_ep(dev, notifier,
898 asd_struct_size, 0,
899 false, parse_endpoint);
900 }
901 EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_endpoints);
902
903 /*
904 * v4l2_fwnode_reference_parse - parse references for async sub-devices
905 * @dev: the device node the properties of which are parsed for references
906 * @notifier: the async notifier where the async subdevs will be added
907 * @prop: the name of the property
908 *
909 * Return: 0 on success
910 * -ENOENT if no entries were found
911 * -ENOMEM if memory allocation failed
912 * -EINVAL if property parsing failed
913 */
v4l2_fwnode_reference_parse(struct device * dev,struct v4l2_async_notifier * notifier,const char * prop)914 static int v4l2_fwnode_reference_parse(struct device *dev,
915 struct v4l2_async_notifier *notifier,
916 const char *prop)
917 {
918 struct fwnode_reference_args args;
919 unsigned int index;
920 int ret;
921
922 for (index = 0;
923 !(ret = fwnode_property_get_reference_args(dev_fwnode(dev),
924 prop, NULL, 0,
925 index, &args));
926 index++)
927 fwnode_handle_put(args.fwnode);
928
929 if (!index)
930 return -ENOENT;
931
932 /*
933 * Note that right now both -ENODATA and -ENOENT may signal
934 * out-of-bounds access. Return the error in cases other than that.
935 */
936 if (ret != -ENOENT && ret != -ENODATA)
937 return ret;
938
939 for (index = 0;
940 !fwnode_property_get_reference_args(dev_fwnode(dev), prop, NULL,
941 0, index, &args);
942 index++) {
943 struct v4l2_async_subdev *asd;
944
945 asd = v4l2_async_notifier_add_fwnode_subdev(notifier,
946 args.fwnode,
947 struct v4l2_async_subdev);
948 fwnode_handle_put(args.fwnode);
949 if (IS_ERR(asd)) {
950 /* not an error if asd already exists */
951 if (PTR_ERR(asd) == -EEXIST)
952 continue;
953
954 return PTR_ERR(asd);
955 }
956 }
957
958 return 0;
959 }
960
961 /*
962 * v4l2_fwnode_reference_get_int_prop - parse a reference with integer
963 * arguments
964 * @fwnode: fwnode to read @prop from
965 * @notifier: notifier for @dev
966 * @prop: the name of the property
967 * @index: the index of the reference to get
968 * @props: the array of integer property names
969 * @nprops: the number of integer property names in @nprops
970 *
971 * First find an fwnode referred to by the reference at @index in @prop.
972 *
973 * Then under that fwnode, @nprops times, for each property in @props,
974 * iteratively follow child nodes starting from fwnode such that they have the
975 * property in @props array at the index of the child node distance from the
976 * root node and the value of that property matching with the integer argument
977 * of the reference, at the same index.
978 *
979 * The child fwnode reached at the end of the iteration is then returned to the
980 * caller.
981 *
982 * The core reason for this is that you cannot refer to just any node in ACPI.
983 * So to refer to an endpoint (easy in DT) you need to refer to a device, then
984 * provide a list of (property name, property value) tuples where each tuple
985 * uniquely identifies a child node. The first tuple identifies a child directly
986 * underneath the device fwnode, the next tuple identifies a child node
987 * underneath the fwnode identified by the previous tuple, etc. until you
988 * reached the fwnode you need.
989 *
990 * THIS EXAMPLE EXISTS MERELY TO DOCUMENT THIS FUNCTION. DO NOT USE IT AS A
991 * REFERENCE IN HOW ACPI TABLES SHOULD BE WRITTEN!! See documentation under
992 * Documentation/firmware-guide/acpi/dsd/ instead and especially graph.txt,
993 * data-node-references.txt and leds.txt .
994 *
995 * Scope (\_SB.PCI0.I2C2)
996 * {
997 * Device (CAM0)
998 * {
999 * Name (_DSD, Package () {
1000 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1001 * Package () {
1002 * Package () {
1003 * "compatible",
1004 * Package () { "nokia,smia" }
1005 * },
1006 * },
1007 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1008 * Package () {
1009 * Package () { "port0", "PRT0" },
1010 * }
1011 * })
1012 * Name (PRT0, Package() {
1013 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1014 * Package () {
1015 * Package () { "port", 0 },
1016 * },
1017 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1018 * Package () {
1019 * Package () { "endpoint0", "EP00" },
1020 * }
1021 * })
1022 * Name (EP00, Package() {
1023 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1024 * Package () {
1025 * Package () { "endpoint", 0 },
1026 * Package () {
1027 * "remote-endpoint",
1028 * Package() {
1029 * \_SB.PCI0.ISP, 4, 0
1030 * }
1031 * },
1032 * }
1033 * })
1034 * }
1035 * }
1036 *
1037 * Scope (\_SB.PCI0)
1038 * {
1039 * Device (ISP)
1040 * {
1041 * Name (_DSD, Package () {
1042 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1043 * Package () {
1044 * Package () { "port4", "PRT4" },
1045 * }
1046 * })
1047 *
1048 * Name (PRT4, Package() {
1049 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1050 * Package () {
1051 * Package () { "port", 4 },
1052 * },
1053 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1054 * Package () {
1055 * Package () { "endpoint0", "EP40" },
1056 * }
1057 * })
1058 *
1059 * Name (EP40, Package() {
1060 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1061 * Package () {
1062 * Package () { "endpoint", 0 },
1063 * Package () {
1064 * "remote-endpoint",
1065 * Package () {
1066 * \_SB.PCI0.I2C2.CAM0,
1067 * 0, 0
1068 * }
1069 * },
1070 * }
1071 * })
1072 * }
1073 * }
1074 *
1075 * From the EP40 node under ISP device, you could parse the graph remote
1076 * endpoint using v4l2_fwnode_reference_get_int_prop with these arguments:
1077 *
1078 * @fwnode: fwnode referring to EP40 under ISP.
1079 * @prop: "remote-endpoint"
1080 * @index: 0
1081 * @props: "port", "endpoint"
1082 * @nprops: 2
1083 *
1084 * And you'd get back fwnode referring to EP00 under CAM0.
1085 *
1086 * The same works the other way around: if you use EP00 under CAM0 as the
1087 * fwnode, you'll get fwnode referring to EP40 under ISP.
1088 *
1089 * The same example in DT syntax would look like this:
1090 *
1091 * cam: cam0 {
1092 * compatible = "nokia,smia";
1093 *
1094 * port {
1095 * port = <0>;
1096 * endpoint {
1097 * endpoint = <0>;
1098 * remote-endpoint = <&isp 4 0>;
1099 * };
1100 * };
1101 * };
1102 *
1103 * isp: isp {
1104 * ports {
1105 * port@4 {
1106 * port = <4>;
1107 * endpoint {
1108 * endpoint = <0>;
1109 * remote-endpoint = <&cam 0 0>;
1110 * };
1111 * };
1112 * };
1113 * };
1114 *
1115 * Return: 0 on success
1116 * -ENOENT if no entries (or the property itself) were found
1117 * -EINVAL if property parsing otherwise failed
1118 * -ENOMEM if memory allocation failed
1119 */
1120 static struct fwnode_handle *
v4l2_fwnode_reference_get_int_prop(struct fwnode_handle * fwnode,const char * prop,unsigned int index,const char * const * props,unsigned int nprops)1121 v4l2_fwnode_reference_get_int_prop(struct fwnode_handle *fwnode,
1122 const char *prop,
1123 unsigned int index,
1124 const char * const *props,
1125 unsigned int nprops)
1126 {
1127 struct fwnode_reference_args fwnode_args;
1128 u64 *args = fwnode_args.args;
1129 struct fwnode_handle *child;
1130 int ret;
1131
1132 /*
1133 * Obtain remote fwnode as well as the integer arguments.
1134 *
1135 * Note that right now both -ENODATA and -ENOENT may signal
1136 * out-of-bounds access. Return -ENOENT in that case.
1137 */
1138 ret = fwnode_property_get_reference_args(fwnode, prop, NULL, nprops,
1139 index, &fwnode_args);
1140 if (ret)
1141 return ERR_PTR(ret == -ENODATA ? -ENOENT : ret);
1142
1143 /*
1144 * Find a node in the tree under the referred fwnode corresponding to
1145 * the integer arguments.
1146 */
1147 fwnode = fwnode_args.fwnode;
1148 while (nprops--) {
1149 u32 val;
1150
1151 /* Loop over all child nodes under fwnode. */
1152 fwnode_for_each_child_node(fwnode, child) {
1153 if (fwnode_property_read_u32(child, *props, &val))
1154 continue;
1155
1156 /* Found property, see if its value matches. */
1157 if (val == *args)
1158 break;
1159 }
1160
1161 fwnode_handle_put(fwnode);
1162
1163 /* No property found; return an error here. */
1164 if (!child) {
1165 fwnode = ERR_PTR(-ENOENT);
1166 break;
1167 }
1168
1169 props++;
1170 args++;
1171 fwnode = child;
1172 }
1173
1174 return fwnode;
1175 }
1176
1177 struct v4l2_fwnode_int_props {
1178 const char *name;
1179 const char * const *props;
1180 unsigned int nprops;
1181 };
1182
1183 /*
1184 * v4l2_fwnode_reference_parse_int_props - parse references for async
1185 * sub-devices
1186 * @dev: struct device pointer
1187 * @notifier: notifier for @dev
1188 * @prop: the name of the property
1189 * @props: the array of integer property names
1190 * @nprops: the number of integer properties
1191 *
1192 * Use v4l2_fwnode_reference_get_int_prop to find fwnodes through reference in
1193 * property @prop with integer arguments with child nodes matching in properties
1194 * @props. Then, set up V4L2 async sub-devices for those fwnodes in the notifier
1195 * accordingly.
1196 *
1197 * While it is technically possible to use this function on DT, it is only
1198 * meaningful on ACPI. On Device tree you can refer to any node in the tree but
1199 * on ACPI the references are limited to devices.
1200 *
1201 * Return: 0 on success
1202 * -ENOENT if no entries (or the property itself) were found
1203 * -EINVAL if property parsing otherwisefailed
1204 * -ENOMEM if memory allocation failed
1205 */
1206 static int
v4l2_fwnode_reference_parse_int_props(struct device * dev,struct v4l2_async_notifier * notifier,const struct v4l2_fwnode_int_props * p)1207 v4l2_fwnode_reference_parse_int_props(struct device *dev,
1208 struct v4l2_async_notifier *notifier,
1209 const struct v4l2_fwnode_int_props *p)
1210 {
1211 struct fwnode_handle *fwnode;
1212 unsigned int index;
1213 int ret;
1214 const char *prop = p->name;
1215 const char * const *props = p->props;
1216 unsigned int nprops = p->nprops;
1217
1218 index = 0;
1219 do {
1220 fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
1221 prop, index,
1222 props, nprops);
1223 if (IS_ERR(fwnode)) {
1224 /*
1225 * Note that right now both -ENODATA and -ENOENT may
1226 * signal out-of-bounds access. Return the error in
1227 * cases other than that.
1228 */
1229 if (PTR_ERR(fwnode) != -ENOENT &&
1230 PTR_ERR(fwnode) != -ENODATA)
1231 return PTR_ERR(fwnode);
1232 break;
1233 }
1234 fwnode_handle_put(fwnode);
1235 index++;
1236 } while (1);
1237
1238 for (index = 0;
1239 !IS_ERR((fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
1240 prop, index,
1241 props,
1242 nprops)));
1243 index++) {
1244 struct v4l2_async_subdev *asd;
1245
1246 asd = v4l2_async_notifier_add_fwnode_subdev(notifier, fwnode,
1247 struct v4l2_async_subdev);
1248 fwnode_handle_put(fwnode);
1249 if (IS_ERR(asd)) {
1250 ret = PTR_ERR(asd);
1251 /* not an error if asd already exists */
1252 if (ret == -EEXIST)
1253 continue;
1254
1255 return PTR_ERR(asd);
1256 }
1257 }
1258
1259 return !fwnode || PTR_ERR(fwnode) == -ENOENT ? 0 : PTR_ERR(fwnode);
1260 }
1261
1262 /**
1263 * v4l2_async_notifier_parse_fwnode_sensor - parse common references on
1264 * sensors for async sub-devices
1265 * @dev: the device node the properties of which are parsed for references
1266 * @notifier: the async notifier where the async subdevs will be added
1267 *
1268 * Parse common sensor properties for remote devices related to the
1269 * sensor and set up async sub-devices for them.
1270 *
1271 * Any notifier populated using this function must be released with a call to
1272 * v4l2_async_notifier_release() after it has been unregistered and the async
1273 * sub-devices are no longer in use, even in the case the function returned an
1274 * error.
1275 *
1276 * Return: 0 on success
1277 * -ENOMEM if memory allocation failed
1278 * -EINVAL if property parsing failed
1279 */
1280 static int
v4l2_async_notifier_parse_fwnode_sensor(struct device * dev,struct v4l2_async_notifier * notifier)1281 v4l2_async_notifier_parse_fwnode_sensor(struct device *dev,
1282 struct v4l2_async_notifier *notifier)
1283 {
1284 static const char * const led_props[] = { "led" };
1285 static const struct v4l2_fwnode_int_props props[] = {
1286 { "flash-leds", led_props, ARRAY_SIZE(led_props) },
1287 { "lens-focus", NULL, 0 },
1288 };
1289 unsigned int i;
1290
1291 for (i = 0; i < ARRAY_SIZE(props); i++) {
1292 int ret;
1293
1294 if (props[i].props && is_acpi_node(dev_fwnode(dev)))
1295 ret = v4l2_fwnode_reference_parse_int_props(dev,
1296 notifier,
1297 &props[i]);
1298 else
1299 ret = v4l2_fwnode_reference_parse(dev, notifier,
1300 props[i].name);
1301 if (ret && ret != -ENOENT) {
1302 dev_warn(dev, "parsing property \"%s\" failed (%d)\n",
1303 props[i].name, ret);
1304 return ret;
1305 }
1306 }
1307
1308 return 0;
1309 }
1310
v4l2_async_register_subdev_sensor(struct v4l2_subdev * sd)1311 int v4l2_async_register_subdev_sensor(struct v4l2_subdev *sd)
1312 {
1313 struct v4l2_async_notifier *notifier;
1314 int ret;
1315
1316 if (WARN_ON(!sd->dev))
1317 return -ENODEV;
1318
1319 notifier = kzalloc(sizeof(*notifier), GFP_KERNEL);
1320 if (!notifier)
1321 return -ENOMEM;
1322
1323 v4l2_async_notifier_init(notifier);
1324
1325 ret = v4l2_async_notifier_parse_fwnode_sensor(sd->dev, notifier);
1326 if (ret < 0)
1327 goto out_cleanup;
1328
1329 ret = v4l2_async_subdev_notifier_register(sd, notifier);
1330 if (ret < 0)
1331 goto out_cleanup;
1332
1333 ret = v4l2_async_register_subdev(sd);
1334 if (ret < 0)
1335 goto out_unregister;
1336
1337 sd->subdev_notifier = notifier;
1338
1339 return 0;
1340
1341 out_unregister:
1342 v4l2_async_notifier_unregister(notifier);
1343
1344 out_cleanup:
1345 v4l2_async_notifier_cleanup(notifier);
1346 kfree(notifier);
1347
1348 return ret;
1349 }
1350 EXPORT_SYMBOL_GPL(v4l2_async_register_subdev_sensor);
1351
1352 MODULE_LICENSE("GPL");
1353 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>");
1354 MODULE_AUTHOR("Sylwester Nawrocki <s.nawrocki@samsung.com>");
1355 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1356