1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * SGI NMI support routines
4 *
5 * Copyright (c) 2009-2013 Silicon Graphics, Inc. All Rights Reserved.
6 * Copyright (c) Mike Travis
7 */
8
9 #include <linux/cpu.h>
10 #include <linux/delay.h>
11 #include <linux/kdb.h>
12 #include <linux/kexec.h>
13 #include <linux/kgdb.h>
14 #include <linux/moduleparam.h>
15 #include <linux/nmi.h>
16 #include <linux/sched.h>
17 #include <linux/sched/debug.h>
18 #include <linux/slab.h>
19 #include <linux/clocksource.h>
20
21 #include <asm/apic.h>
22 #include <asm/current.h>
23 #include <asm/kdebug.h>
24 #include <asm/local64.h>
25 #include <asm/nmi.h>
26 #include <asm/traps.h>
27 #include <asm/uv/uv.h>
28 #include <asm/uv/uv_hub.h>
29 #include <asm/uv/uv_mmrs.h>
30
31 /*
32 * UV handler for NMI
33 *
34 * Handle system-wide NMI events generated by the global 'power nmi' command.
35 *
36 * Basic operation is to field the NMI interrupt on each CPU and wait
37 * until all CPU's have arrived into the nmi handler. If some CPU's do not
38 * make it into the handler, try and force them in with the IPI(NMI) signal.
39 *
40 * We also have to lessen UV Hub MMR accesses as much as possible as this
41 * disrupts the UV Hub's primary mission of directing NumaLink traffic and
42 * can cause system problems to occur.
43 *
44 * To do this we register our primary NMI notifier on the NMI_UNKNOWN
45 * chain. This reduces the number of false NMI calls when the perf
46 * tools are running which generate an enormous number of NMIs per
47 * second (~4M/s for 1024 CPU threads). Our secondary NMI handler is
48 * very short as it only checks that if it has been "pinged" with the
49 * IPI(NMI) signal as mentioned above, and does not read the UV Hub's MMR.
50 *
51 */
52
53 static struct uv_hub_nmi_s **uv_hub_nmi_list;
54
55 DEFINE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
56
57 /* UV hubless values */
58 #define NMI_CONTROL_PORT 0x70
59 #define NMI_DUMMY_PORT 0x71
60 #define PAD_OWN_GPP_D_0 0x2c
61 #define GPI_NMI_STS_GPP_D_0 0x164
62 #define GPI_NMI_ENA_GPP_D_0 0x174
63 #define STS_GPP_D_0_MASK 0x1
64 #define PAD_CFG_DW0_GPP_D_0 0x4c0
65 #define GPIROUTNMI (1ul << 17)
66 #define PCH_PCR_GPIO_1_BASE 0xfdae0000ul
67 #define PCH_PCR_GPIO_ADDRESS(offset) (int *)((u64)(pch_base) | (u64)(offset))
68
69 static u64 *pch_base;
70 static unsigned long nmi_mmr;
71 static unsigned long nmi_mmr_clear;
72 static unsigned long nmi_mmr_pending;
73
74 static atomic_t uv_in_nmi;
75 static atomic_t uv_nmi_cpu = ATOMIC_INIT(-1);
76 static atomic_t uv_nmi_cpus_in_nmi = ATOMIC_INIT(-1);
77 static atomic_t uv_nmi_slave_continue;
78 static cpumask_var_t uv_nmi_cpu_mask;
79
80 /* Values for uv_nmi_slave_continue */
81 #define SLAVE_CLEAR 0
82 #define SLAVE_CONTINUE 1
83 #define SLAVE_EXIT 2
84
85 /*
86 * Default is all stack dumps go to the console and buffer.
87 * Lower level to send to log buffer only.
88 */
89 static int uv_nmi_loglevel = CONSOLE_LOGLEVEL_DEFAULT;
90 module_param_named(dump_loglevel, uv_nmi_loglevel, int, 0644);
91
92 /*
93 * The following values show statistics on how perf events are affecting
94 * this system.
95 */
param_get_local64(char * buffer,const struct kernel_param * kp)96 static int param_get_local64(char *buffer, const struct kernel_param *kp)
97 {
98 return sprintf(buffer, "%lu\n", local64_read((local64_t *)kp->arg));
99 }
100
param_set_local64(const char * val,const struct kernel_param * kp)101 static int param_set_local64(const char *val, const struct kernel_param *kp)
102 {
103 /* Clear on any write */
104 local64_set((local64_t *)kp->arg, 0);
105 return 0;
106 }
107
108 static const struct kernel_param_ops param_ops_local64 = {
109 .get = param_get_local64,
110 .set = param_set_local64,
111 };
112 #define param_check_local64(name, p) __param_check(name, p, local64_t)
113
114 static local64_t uv_nmi_count;
115 module_param_named(nmi_count, uv_nmi_count, local64, 0644);
116
117 static local64_t uv_nmi_misses;
118 module_param_named(nmi_misses, uv_nmi_misses, local64, 0644);
119
120 static local64_t uv_nmi_ping_count;
121 module_param_named(ping_count, uv_nmi_ping_count, local64, 0644);
122
123 static local64_t uv_nmi_ping_misses;
124 module_param_named(ping_misses, uv_nmi_ping_misses, local64, 0644);
125
126 /*
127 * Following values allow tuning for large systems under heavy loading
128 */
129 static int uv_nmi_initial_delay = 100;
130 module_param_named(initial_delay, uv_nmi_initial_delay, int, 0644);
131
132 static int uv_nmi_slave_delay = 100;
133 module_param_named(slave_delay, uv_nmi_slave_delay, int, 0644);
134
135 static int uv_nmi_loop_delay = 100;
136 module_param_named(loop_delay, uv_nmi_loop_delay, int, 0644);
137
138 static int uv_nmi_trigger_delay = 10000;
139 module_param_named(trigger_delay, uv_nmi_trigger_delay, int, 0644);
140
141 static int uv_nmi_wait_count = 100;
142 module_param_named(wait_count, uv_nmi_wait_count, int, 0644);
143
144 static int uv_nmi_retry_count = 500;
145 module_param_named(retry_count, uv_nmi_retry_count, int, 0644);
146
147 static bool uv_pch_intr_enable = true;
148 static bool uv_pch_intr_now_enabled;
149 module_param_named(pch_intr_enable, uv_pch_intr_enable, bool, 0644);
150
151 static bool uv_pch_init_enable = true;
152 module_param_named(pch_init_enable, uv_pch_init_enable, bool, 0644);
153
154 static int uv_nmi_debug;
155 module_param_named(debug, uv_nmi_debug, int, 0644);
156
157 #define nmi_debug(fmt, ...) \
158 do { \
159 if (uv_nmi_debug) \
160 pr_info(fmt, ##__VA_ARGS__); \
161 } while (0)
162
163 /* Valid NMI Actions */
164 #define ACTION_LEN 16
165 static struct nmi_action {
166 char *action;
167 char *desc;
168 } valid_acts[] = {
169 { "kdump", "do kernel crash dump" },
170 { "dump", "dump process stack for each cpu" },
171 { "ips", "dump Inst Ptr info for each cpu" },
172 { "kdb", "enter KDB (needs kgdboc= assignment)" },
173 { "kgdb", "enter KGDB (needs gdb target remote)" },
174 { "health", "check if CPUs respond to NMI" },
175 };
176 typedef char action_t[ACTION_LEN];
177 static action_t uv_nmi_action = { "dump" };
178
param_get_action(char * buffer,const struct kernel_param * kp)179 static int param_get_action(char *buffer, const struct kernel_param *kp)
180 {
181 return sprintf(buffer, "%s\n", uv_nmi_action);
182 }
183
param_set_action(const char * val,const struct kernel_param * kp)184 static int param_set_action(const char *val, const struct kernel_param *kp)
185 {
186 int i;
187 int n = ARRAY_SIZE(valid_acts);
188 char arg[ACTION_LEN], *p;
189
190 /* (remove possible '\n') */
191 strncpy(arg, val, ACTION_LEN - 1);
192 arg[ACTION_LEN - 1] = '\0';
193 p = strchr(arg, '\n');
194 if (p)
195 *p = '\0';
196
197 for (i = 0; i < n; i++)
198 if (!strcmp(arg, valid_acts[i].action))
199 break;
200
201 if (i < n) {
202 strcpy(uv_nmi_action, arg);
203 pr_info("UV: New NMI action:%s\n", uv_nmi_action);
204 return 0;
205 }
206
207 pr_err("UV: Invalid NMI action:%s, valid actions are:\n", arg);
208 for (i = 0; i < n; i++)
209 pr_err("UV: %-8s - %s\n",
210 valid_acts[i].action, valid_acts[i].desc);
211 return -EINVAL;
212 }
213
214 static const struct kernel_param_ops param_ops_action = {
215 .get = param_get_action,
216 .set = param_set_action,
217 };
218 #define param_check_action(name, p) __param_check(name, p, action_t)
219
220 module_param_named(action, uv_nmi_action, action, 0644);
221
uv_nmi_action_is(const char * action)222 static inline bool uv_nmi_action_is(const char *action)
223 {
224 return (strncmp(uv_nmi_action, action, strlen(action)) == 0);
225 }
226
227 /* Setup which NMI support is present in system */
uv_nmi_setup_mmrs(void)228 static void uv_nmi_setup_mmrs(void)
229 {
230 if (uv_read_local_mmr(UVH_NMI_MMRX_SUPPORTED)) {
231 uv_write_local_mmr(UVH_NMI_MMRX_REQ,
232 1UL << UVH_NMI_MMRX_REQ_SHIFT);
233 nmi_mmr = UVH_NMI_MMRX;
234 nmi_mmr_clear = UVH_NMI_MMRX_CLEAR;
235 nmi_mmr_pending = 1UL << UVH_NMI_MMRX_SHIFT;
236 pr_info("UV: SMI NMI support: %s\n", UVH_NMI_MMRX_TYPE);
237 } else {
238 nmi_mmr = UVH_NMI_MMR;
239 nmi_mmr_clear = UVH_NMI_MMR_CLEAR;
240 nmi_mmr_pending = 1UL << UVH_NMI_MMR_SHIFT;
241 pr_info("UV: SMI NMI support: %s\n", UVH_NMI_MMR_TYPE);
242 }
243 }
244
245 /* Read NMI MMR and check if NMI flag was set by BMC. */
uv_nmi_test_mmr(struct uv_hub_nmi_s * hub_nmi)246 static inline int uv_nmi_test_mmr(struct uv_hub_nmi_s *hub_nmi)
247 {
248 hub_nmi->nmi_value = uv_read_local_mmr(nmi_mmr);
249 atomic_inc(&hub_nmi->read_mmr_count);
250 return !!(hub_nmi->nmi_value & nmi_mmr_pending);
251 }
252
uv_local_mmr_clear_nmi(void)253 static inline void uv_local_mmr_clear_nmi(void)
254 {
255 uv_write_local_mmr(nmi_mmr_clear, nmi_mmr_pending);
256 }
257
258 /*
259 * UV hubless NMI handler functions
260 */
uv_reassert_nmi(void)261 static inline void uv_reassert_nmi(void)
262 {
263 /* (from arch/x86/include/asm/mach_traps.h) */
264 outb(0x8f, NMI_CONTROL_PORT);
265 inb(NMI_DUMMY_PORT); /* dummy read */
266 outb(0x0f, NMI_CONTROL_PORT);
267 inb(NMI_DUMMY_PORT); /* dummy read */
268 }
269
uv_init_hubless_pch_io(int offset,int mask,int data)270 static void uv_init_hubless_pch_io(int offset, int mask, int data)
271 {
272 int *addr = PCH_PCR_GPIO_ADDRESS(offset);
273 int readd = readl(addr);
274
275 if (mask) { /* OR in new data */
276 int writed = (readd & ~mask) | data;
277
278 nmi_debug("UV:PCH: %p = %x & %x | %x (%x)\n",
279 addr, readd, ~mask, data, writed);
280 writel(writed, addr);
281 } else if (readd & data) { /* clear status bit */
282 nmi_debug("UV:PCH: %p = %x\n", addr, data);
283 writel(data, addr);
284 }
285
286 (void)readl(addr); /* flush write data */
287 }
288
uv_nmi_setup_hubless_intr(void)289 static void uv_nmi_setup_hubless_intr(void)
290 {
291 uv_pch_intr_now_enabled = uv_pch_intr_enable;
292
293 uv_init_hubless_pch_io(
294 PAD_CFG_DW0_GPP_D_0, GPIROUTNMI,
295 uv_pch_intr_now_enabled ? GPIROUTNMI : 0);
296
297 nmi_debug("UV:NMI: GPP_D_0 interrupt %s\n",
298 uv_pch_intr_now_enabled ? "enabled" : "disabled");
299 }
300
301 static struct init_nmi {
302 unsigned int offset;
303 unsigned int mask;
304 unsigned int data;
305 } init_nmi[] = {
306 { /* HOSTSW_OWN_GPP_D_0 */
307 .offset = 0x84,
308 .mask = 0x1,
309 .data = 0x0, /* ACPI Mode */
310 },
311
312 /* Clear status: */
313 { /* GPI_INT_STS_GPP_D_0 */
314 .offset = 0x104,
315 .mask = 0x0,
316 .data = 0x1, /* Clear Status */
317 },
318 { /* GPI_GPE_STS_GPP_D_0 */
319 .offset = 0x124,
320 .mask = 0x0,
321 .data = 0x1, /* Clear Status */
322 },
323 { /* GPI_SMI_STS_GPP_D_0 */
324 .offset = 0x144,
325 .mask = 0x0,
326 .data = 0x1, /* Clear Status */
327 },
328 { /* GPI_NMI_STS_GPP_D_0 */
329 .offset = 0x164,
330 .mask = 0x0,
331 .data = 0x1, /* Clear Status */
332 },
333
334 /* Disable interrupts: */
335 { /* GPI_INT_EN_GPP_D_0 */
336 .offset = 0x114,
337 .mask = 0x1,
338 .data = 0x0, /* Disable interrupt generation */
339 },
340 { /* GPI_GPE_EN_GPP_D_0 */
341 .offset = 0x134,
342 .mask = 0x1,
343 .data = 0x0, /* Disable interrupt generation */
344 },
345 { /* GPI_SMI_EN_GPP_D_0 */
346 .offset = 0x154,
347 .mask = 0x1,
348 .data = 0x0, /* Disable interrupt generation */
349 },
350 { /* GPI_NMI_EN_GPP_D_0 */
351 .offset = 0x174,
352 .mask = 0x1,
353 .data = 0x0, /* Disable interrupt generation */
354 },
355
356 /* Setup GPP_D_0 Pad Config: */
357 { /* PAD_CFG_DW0_GPP_D_0 */
358 .offset = 0x4c0,
359 .mask = 0xffffffff,
360 .data = 0x82020100,
361 /*
362 * 31:30 Pad Reset Config (PADRSTCFG): = 2h # PLTRST# (default)
363 *
364 * 29 RX Pad State Select (RXPADSTSEL): = 0 # Raw RX pad state directly
365 * from RX buffer (default)
366 *
367 * 28 RX Raw Override to '1' (RXRAW1): = 0 # No Override
368 *
369 * 26:25 RX Level/Edge Configuration (RXEVCFG):
370 * = 0h # Level
371 * = 1h # Edge
372 *
373 * 23 RX Invert (RXINV): = 0 # No Inversion (signal active high)
374 *
375 * 20 GPIO Input Route IOxAPIC (GPIROUTIOXAPIC):
376 * = 0 # Routing does not cause peripheral IRQ...
377 * # (we want an NMI not an IRQ)
378 *
379 * 19 GPIO Input Route SCI (GPIROUTSCI): = 0 # Routing does not cause SCI.
380 * 18 GPIO Input Route SMI (GPIROUTSMI): = 0 # Routing does not cause SMI.
381 * 17 GPIO Input Route NMI (GPIROUTNMI): = 1 # Routing can cause NMI.
382 *
383 * 11:10 Pad Mode (PMODE1/0): = 0h = GPIO control the Pad.
384 * 9 GPIO RX Disable (GPIORXDIS):
385 * = 0 # Enable the input buffer (active low enable)
386 *
387 * 8 GPIO TX Disable (GPIOTXDIS):
388 * = 1 # Disable the output buffer; i.e. Hi-Z
389 *
390 * 1 GPIO RX State (GPIORXSTATE): This is the current internal RX pad state..
391 * 0 GPIO TX State (GPIOTXSTATE):
392 * = 0 # (Leave at default)
393 */
394 },
395
396 /* Pad Config DW1 */
397 { /* PAD_CFG_DW1_GPP_D_0 */
398 .offset = 0x4c4,
399 .mask = 0x3c00,
400 .data = 0, /* Termination = none (default) */
401 },
402 };
403
uv_init_hubless_pch_d0(void)404 static void uv_init_hubless_pch_d0(void)
405 {
406 int i, read;
407
408 read = *PCH_PCR_GPIO_ADDRESS(PAD_OWN_GPP_D_0);
409 if (read != 0) {
410 pr_info("UV: Hubless NMI already configured\n");
411 return;
412 }
413
414 nmi_debug("UV: Initializing UV Hubless NMI on PCH\n");
415 for (i = 0; i < ARRAY_SIZE(init_nmi); i++) {
416 uv_init_hubless_pch_io(init_nmi[i].offset,
417 init_nmi[i].mask,
418 init_nmi[i].data);
419 }
420 }
421
uv_nmi_test_hubless(struct uv_hub_nmi_s * hub_nmi)422 static int uv_nmi_test_hubless(struct uv_hub_nmi_s *hub_nmi)
423 {
424 int *pstat = PCH_PCR_GPIO_ADDRESS(GPI_NMI_STS_GPP_D_0);
425 int status = *pstat;
426
427 hub_nmi->nmi_value = status;
428 atomic_inc(&hub_nmi->read_mmr_count);
429
430 if (!(status & STS_GPP_D_0_MASK)) /* Not a UV external NMI */
431 return 0;
432
433 *pstat = STS_GPP_D_0_MASK; /* Is a UV NMI: clear GPP_D_0 status */
434 (void)*pstat; /* Flush write */
435
436 return 1;
437 }
438
uv_test_nmi(struct uv_hub_nmi_s * hub_nmi)439 static int uv_test_nmi(struct uv_hub_nmi_s *hub_nmi)
440 {
441 if (hub_nmi->hub_present)
442 return uv_nmi_test_mmr(hub_nmi);
443
444 if (hub_nmi->pch_owner) /* Only PCH owner can check status */
445 return uv_nmi_test_hubless(hub_nmi);
446
447 return -1;
448 }
449
450 /*
451 * If first CPU in on this hub, set hub_nmi "in_nmi" and "owner" values and
452 * return true. If first CPU in on the system, set global "in_nmi" flag.
453 */
uv_set_in_nmi(int cpu,struct uv_hub_nmi_s * hub_nmi)454 static int uv_set_in_nmi(int cpu, struct uv_hub_nmi_s *hub_nmi)
455 {
456 int first = atomic_add_unless(&hub_nmi->in_nmi, 1, 1);
457
458 if (first) {
459 atomic_set(&hub_nmi->cpu_owner, cpu);
460 if (atomic_add_unless(&uv_in_nmi, 1, 1))
461 atomic_set(&uv_nmi_cpu, cpu);
462
463 atomic_inc(&hub_nmi->nmi_count);
464 }
465 return first;
466 }
467
468 /* Check if this is a system NMI event */
uv_check_nmi(struct uv_hub_nmi_s * hub_nmi)469 static int uv_check_nmi(struct uv_hub_nmi_s *hub_nmi)
470 {
471 int cpu = smp_processor_id();
472 int nmi = 0;
473 int nmi_detected = 0;
474
475 local64_inc(&uv_nmi_count);
476 this_cpu_inc(uv_cpu_nmi.queries);
477
478 do {
479 nmi = atomic_read(&hub_nmi->in_nmi);
480 if (nmi)
481 break;
482
483 if (raw_spin_trylock(&hub_nmi->nmi_lock)) {
484 nmi_detected = uv_test_nmi(hub_nmi);
485
486 /* Check flag for UV external NMI */
487 if (nmi_detected > 0) {
488 uv_set_in_nmi(cpu, hub_nmi);
489 nmi = 1;
490 break;
491 }
492
493 /* A non-PCH node in a hubless system waits for NMI */
494 else if (nmi_detected < 0)
495 goto slave_wait;
496
497 /* MMR/PCH NMI flag is clear */
498 raw_spin_unlock(&hub_nmi->nmi_lock);
499
500 } else {
501
502 /* Wait a moment for the HUB NMI locker to set flag */
503 slave_wait: cpu_relax();
504 udelay(uv_nmi_slave_delay);
505
506 /* Re-check hub in_nmi flag */
507 nmi = atomic_read(&hub_nmi->in_nmi);
508 if (nmi)
509 break;
510 }
511
512 /*
513 * Check if this BMC missed setting the MMR NMI flag (or)
514 * UV hubless system where only PCH owner can check flag
515 */
516 if (!nmi) {
517 nmi = atomic_read(&uv_in_nmi);
518 if (nmi)
519 uv_set_in_nmi(cpu, hub_nmi);
520 }
521
522 /* If we're holding the hub lock, release it now */
523 if (nmi_detected < 0)
524 raw_spin_unlock(&hub_nmi->nmi_lock);
525
526 } while (0);
527
528 if (!nmi)
529 local64_inc(&uv_nmi_misses);
530
531 return nmi;
532 }
533
534 /* Need to reset the NMI MMR register, but only once per hub. */
uv_clear_nmi(int cpu)535 static inline void uv_clear_nmi(int cpu)
536 {
537 struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi;
538
539 if (cpu == atomic_read(&hub_nmi->cpu_owner)) {
540 atomic_set(&hub_nmi->cpu_owner, -1);
541 atomic_set(&hub_nmi->in_nmi, 0);
542 if (hub_nmi->hub_present)
543 uv_local_mmr_clear_nmi();
544 else
545 uv_reassert_nmi();
546 raw_spin_unlock(&hub_nmi->nmi_lock);
547 }
548 }
549
550 /* Ping non-responding CPU's attempting to force them into the NMI handler */
uv_nmi_nr_cpus_ping(void)551 static void uv_nmi_nr_cpus_ping(void)
552 {
553 int cpu;
554
555 for_each_cpu(cpu, uv_nmi_cpu_mask)
556 uv_cpu_nmi_per(cpu).pinging = 1;
557
558 apic->send_IPI_mask(uv_nmi_cpu_mask, APIC_DM_NMI);
559 }
560
561 /* Clean up flags for CPU's that ignored both NMI and ping */
uv_nmi_cleanup_mask(void)562 static void uv_nmi_cleanup_mask(void)
563 {
564 int cpu;
565
566 for_each_cpu(cpu, uv_nmi_cpu_mask) {
567 uv_cpu_nmi_per(cpu).pinging = 0;
568 uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_OUT;
569 cpumask_clear_cpu(cpu, uv_nmi_cpu_mask);
570 }
571 }
572
573 /* Loop waiting as CPU's enter NMI handler */
uv_nmi_wait_cpus(int first)574 static int uv_nmi_wait_cpus(int first)
575 {
576 int i, j, k, n = num_online_cpus();
577 int last_k = 0, waiting = 0;
578 int cpu = smp_processor_id();
579
580 if (first) {
581 cpumask_copy(uv_nmi_cpu_mask, cpu_online_mask);
582 k = 0;
583 } else {
584 k = n - cpumask_weight(uv_nmi_cpu_mask);
585 }
586
587 /* PCH NMI causes only one CPU to respond */
588 if (first && uv_pch_intr_now_enabled) {
589 cpumask_clear_cpu(cpu, uv_nmi_cpu_mask);
590 return n - k - 1;
591 }
592
593 udelay(uv_nmi_initial_delay);
594 for (i = 0; i < uv_nmi_retry_count; i++) {
595 int loop_delay = uv_nmi_loop_delay;
596
597 for_each_cpu(j, uv_nmi_cpu_mask) {
598 if (uv_cpu_nmi_per(j).state) {
599 cpumask_clear_cpu(j, uv_nmi_cpu_mask);
600 if (++k >= n)
601 break;
602 }
603 }
604 if (k >= n) { /* all in? */
605 k = n;
606 break;
607 }
608 if (last_k != k) { /* abort if no new CPU's coming in */
609 last_k = k;
610 waiting = 0;
611 } else if (++waiting > uv_nmi_wait_count)
612 break;
613
614 /* Extend delay if waiting only for CPU 0: */
615 if (waiting && (n - k) == 1 &&
616 cpumask_test_cpu(0, uv_nmi_cpu_mask))
617 loop_delay *= 100;
618
619 udelay(loop_delay);
620 }
621 atomic_set(&uv_nmi_cpus_in_nmi, k);
622 return n - k;
623 }
624
625 /* Wait until all slave CPU's have entered UV NMI handler */
uv_nmi_wait(int master)626 static void uv_nmi_wait(int master)
627 {
628 /* Indicate this CPU is in: */
629 this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_IN);
630
631 /* If not the first CPU in (the master), then we are a slave CPU */
632 if (!master)
633 return;
634
635 do {
636 /* Wait for all other CPU's to gather here */
637 if (!uv_nmi_wait_cpus(1))
638 break;
639
640 /* If not all made it in, send IPI NMI to them */
641 pr_alert("UV: Sending NMI IPI to %d CPUs: %*pbl\n",
642 cpumask_weight(uv_nmi_cpu_mask),
643 cpumask_pr_args(uv_nmi_cpu_mask));
644
645 uv_nmi_nr_cpus_ping();
646
647 /* If all CPU's are in, then done */
648 if (!uv_nmi_wait_cpus(0))
649 break;
650
651 pr_alert("UV: %d CPUs not in NMI loop: %*pbl\n",
652 cpumask_weight(uv_nmi_cpu_mask),
653 cpumask_pr_args(uv_nmi_cpu_mask));
654 } while (0);
655
656 pr_alert("UV: %d of %d CPUs in NMI\n",
657 atomic_read(&uv_nmi_cpus_in_nmi), num_online_cpus());
658 }
659
660 /* Dump Instruction Pointer header */
uv_nmi_dump_cpu_ip_hdr(void)661 static void uv_nmi_dump_cpu_ip_hdr(void)
662 {
663 pr_info("\nUV: %4s %6s %-32s %s (Note: PID 0 not listed)\n",
664 "CPU", "PID", "COMMAND", "IP");
665 }
666
667 /* Dump Instruction Pointer info */
uv_nmi_dump_cpu_ip(int cpu,struct pt_regs * regs)668 static void uv_nmi_dump_cpu_ip(int cpu, struct pt_regs *regs)
669 {
670 pr_info("UV: %4d %6d %-32.32s %pS",
671 cpu, current->pid, current->comm, (void *)regs->ip);
672 }
673
674 /*
675 * Dump this CPU's state. If action was set to "kdump" and the crash_kexec
676 * failed, then we provide "dump" as an alternate action. Action "dump" now
677 * also includes the show "ips" (instruction pointers) action whereas the
678 * action "ips" only displays instruction pointers for the non-idle CPU's.
679 * This is an abbreviated form of the "ps" command.
680 */
uv_nmi_dump_state_cpu(int cpu,struct pt_regs * regs)681 static void uv_nmi_dump_state_cpu(int cpu, struct pt_regs *regs)
682 {
683 const char *dots = " ................................. ";
684
685 if (cpu == 0)
686 uv_nmi_dump_cpu_ip_hdr();
687
688 if (current->pid != 0 || !uv_nmi_action_is("ips"))
689 uv_nmi_dump_cpu_ip(cpu, regs);
690
691 if (uv_nmi_action_is("dump")) {
692 pr_info("UV:%sNMI process trace for CPU %d\n", dots, cpu);
693 show_regs(regs);
694 }
695
696 this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_DUMP_DONE);
697 }
698
699 /* Trigger a slave CPU to dump it's state */
uv_nmi_trigger_dump(int cpu)700 static void uv_nmi_trigger_dump(int cpu)
701 {
702 int retry = uv_nmi_trigger_delay;
703
704 if (uv_cpu_nmi_per(cpu).state != UV_NMI_STATE_IN)
705 return;
706
707 uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_DUMP;
708 do {
709 cpu_relax();
710 udelay(10);
711 if (uv_cpu_nmi_per(cpu).state
712 != UV_NMI_STATE_DUMP)
713 return;
714 } while (--retry > 0);
715
716 pr_crit("UV: CPU %d stuck in process dump function\n", cpu);
717 uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_DUMP_DONE;
718 }
719
720 /* Wait until all CPU's ready to exit */
uv_nmi_sync_exit(int master)721 static void uv_nmi_sync_exit(int master)
722 {
723 atomic_dec(&uv_nmi_cpus_in_nmi);
724 if (master) {
725 while (atomic_read(&uv_nmi_cpus_in_nmi) > 0)
726 cpu_relax();
727 atomic_set(&uv_nmi_slave_continue, SLAVE_CLEAR);
728 } else {
729 while (atomic_read(&uv_nmi_slave_continue))
730 cpu_relax();
731 }
732 }
733
734 /* Current "health" check is to check which CPU's are responsive */
uv_nmi_action_health(int cpu,struct pt_regs * regs,int master)735 static void uv_nmi_action_health(int cpu, struct pt_regs *regs, int master)
736 {
737 if (master) {
738 int in = atomic_read(&uv_nmi_cpus_in_nmi);
739 int out = num_online_cpus() - in;
740
741 pr_alert("UV: NMI CPU health check (non-responding:%d)\n", out);
742 atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
743 } else {
744 while (!atomic_read(&uv_nmi_slave_continue))
745 cpu_relax();
746 }
747 uv_nmi_sync_exit(master);
748 }
749
750 /* Walk through CPU list and dump state of each */
uv_nmi_dump_state(int cpu,struct pt_regs * regs,int master)751 static void uv_nmi_dump_state(int cpu, struct pt_regs *regs, int master)
752 {
753 if (master) {
754 int tcpu;
755 int ignored = 0;
756 int saved_console_loglevel = console_loglevel;
757
758 pr_alert("UV: tracing %s for %d CPUs from CPU %d\n",
759 uv_nmi_action_is("ips") ? "IPs" : "processes",
760 atomic_read(&uv_nmi_cpus_in_nmi), cpu);
761
762 console_loglevel = uv_nmi_loglevel;
763 atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
764 for_each_online_cpu(tcpu) {
765 if (cpumask_test_cpu(tcpu, uv_nmi_cpu_mask))
766 ignored++;
767 else if (tcpu == cpu)
768 uv_nmi_dump_state_cpu(tcpu, regs);
769 else
770 uv_nmi_trigger_dump(tcpu);
771 }
772 if (ignored)
773 pr_alert("UV: %d CPUs ignored NMI\n", ignored);
774
775 console_loglevel = saved_console_loglevel;
776 pr_alert("UV: process trace complete\n");
777 } else {
778 while (!atomic_read(&uv_nmi_slave_continue))
779 cpu_relax();
780 while (this_cpu_read(uv_cpu_nmi.state) != UV_NMI_STATE_DUMP)
781 cpu_relax();
782 uv_nmi_dump_state_cpu(cpu, regs);
783 }
784 uv_nmi_sync_exit(master);
785 }
786
uv_nmi_touch_watchdogs(void)787 static void uv_nmi_touch_watchdogs(void)
788 {
789 touch_softlockup_watchdog_sync();
790 clocksource_touch_watchdog();
791 rcu_cpu_stall_reset();
792 touch_nmi_watchdog();
793 }
794
795 static atomic_t uv_nmi_kexec_failed;
796
797 #if defined(CONFIG_KEXEC_CORE)
uv_nmi_kdump(int cpu,int master,struct pt_regs * regs)798 static void uv_nmi_kdump(int cpu, int master, struct pt_regs *regs)
799 {
800 /* Call crash to dump system state */
801 if (master) {
802 pr_emerg("UV: NMI executing crash_kexec on CPU%d\n", cpu);
803 crash_kexec(regs);
804
805 pr_emerg("UV: crash_kexec unexpectedly returned, ");
806 atomic_set(&uv_nmi_kexec_failed, 1);
807 if (!kexec_crash_image) {
808 pr_cont("crash kernel not loaded\n");
809 return;
810 }
811 pr_cont("kexec busy, stalling cpus while waiting\n");
812 }
813
814 /* If crash exec fails the slaves should return, otherwise stall */
815 while (atomic_read(&uv_nmi_kexec_failed) == 0)
816 mdelay(10);
817 }
818
819 #else /* !CONFIG_KEXEC_CORE */
uv_nmi_kdump(int cpu,int master,struct pt_regs * regs)820 static inline void uv_nmi_kdump(int cpu, int master, struct pt_regs *regs)
821 {
822 if (master)
823 pr_err("UV: NMI kdump: KEXEC not supported in this kernel\n");
824 atomic_set(&uv_nmi_kexec_failed, 1);
825 }
826 #endif /* !CONFIG_KEXEC_CORE */
827
828 #ifdef CONFIG_KGDB
829 #ifdef CONFIG_KGDB_KDB
uv_nmi_kdb_reason(void)830 static inline int uv_nmi_kdb_reason(void)
831 {
832 return KDB_REASON_SYSTEM_NMI;
833 }
834 #else /* !CONFIG_KGDB_KDB */
uv_nmi_kdb_reason(void)835 static inline int uv_nmi_kdb_reason(void)
836 {
837 /* Ensure user is expecting to attach gdb remote */
838 if (uv_nmi_action_is("kgdb"))
839 return 0;
840
841 pr_err("UV: NMI error: KDB is not enabled in this kernel\n");
842 return -1;
843 }
844 #endif /* CONFIG_KGDB_KDB */
845
846 /*
847 * Call KGDB/KDB from NMI handler
848 *
849 * Note that if both KGDB and KDB are configured, then the action of 'kgdb' or
850 * 'kdb' has no affect on which is used. See the KGDB documention for further
851 * information.
852 */
uv_call_kgdb_kdb(int cpu,struct pt_regs * regs,int master)853 static void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master)
854 {
855 if (master) {
856 int reason = uv_nmi_kdb_reason();
857 int ret;
858
859 if (reason < 0)
860 return;
861
862 /* Call KGDB NMI handler as MASTER */
863 ret = kgdb_nmicallin(cpu, X86_TRAP_NMI, regs, reason,
864 &uv_nmi_slave_continue);
865 if (ret) {
866 pr_alert("KGDB returned error, is kgdboc set?\n");
867 atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
868 }
869 } else {
870 /* Wait for KGDB signal that it's ready for slaves to enter */
871 int sig;
872
873 do {
874 cpu_relax();
875 sig = atomic_read(&uv_nmi_slave_continue);
876 } while (!sig);
877
878 /* Call KGDB as slave */
879 if (sig == SLAVE_CONTINUE)
880 kgdb_nmicallback(cpu, regs);
881 }
882 uv_nmi_sync_exit(master);
883 }
884
885 #else /* !CONFIG_KGDB */
uv_call_kgdb_kdb(int cpu,struct pt_regs * regs,int master)886 static inline void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master)
887 {
888 pr_err("UV: NMI error: KGDB is not enabled in this kernel\n");
889 }
890 #endif /* !CONFIG_KGDB */
891
892 /*
893 * UV NMI handler
894 */
uv_handle_nmi(unsigned int reason,struct pt_regs * regs)895 static int uv_handle_nmi(unsigned int reason, struct pt_regs *regs)
896 {
897 struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi;
898 int cpu = smp_processor_id();
899 int master = 0;
900 unsigned long flags;
901
902 local_irq_save(flags);
903
904 /* If not a UV System NMI, ignore */
905 if (!this_cpu_read(uv_cpu_nmi.pinging) && !uv_check_nmi(hub_nmi)) {
906 local_irq_restore(flags);
907 return NMI_DONE;
908 }
909
910 /* Indicate we are the first CPU into the NMI handler */
911 master = (atomic_read(&uv_nmi_cpu) == cpu);
912
913 /* If NMI action is "kdump", then attempt to do it */
914 if (uv_nmi_action_is("kdump")) {
915 uv_nmi_kdump(cpu, master, regs);
916
917 /* Unexpected return, revert action to "dump" */
918 if (master)
919 strncpy(uv_nmi_action, "dump", strlen(uv_nmi_action));
920 }
921
922 /* Pause as all CPU's enter the NMI handler */
923 uv_nmi_wait(master);
924
925 /* Process actions other than "kdump": */
926 if (uv_nmi_action_is("health")) {
927 uv_nmi_action_health(cpu, regs, master);
928 } else if (uv_nmi_action_is("ips") || uv_nmi_action_is("dump")) {
929 uv_nmi_dump_state(cpu, regs, master);
930 } else if (uv_nmi_action_is("kdb") || uv_nmi_action_is("kgdb")) {
931 uv_call_kgdb_kdb(cpu, regs, master);
932 } else {
933 if (master)
934 pr_alert("UV: unknown NMI action: %s\n", uv_nmi_action);
935 uv_nmi_sync_exit(master);
936 }
937
938 /* Clear per_cpu "in_nmi" flag */
939 this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_OUT);
940
941 /* Clear MMR NMI flag on each hub */
942 uv_clear_nmi(cpu);
943
944 /* Clear global flags */
945 if (master) {
946 if (cpumask_weight(uv_nmi_cpu_mask))
947 uv_nmi_cleanup_mask();
948 atomic_set(&uv_nmi_cpus_in_nmi, -1);
949 atomic_set(&uv_nmi_cpu, -1);
950 atomic_set(&uv_in_nmi, 0);
951 atomic_set(&uv_nmi_kexec_failed, 0);
952 atomic_set(&uv_nmi_slave_continue, SLAVE_CLEAR);
953 }
954
955 uv_nmi_touch_watchdogs();
956 local_irq_restore(flags);
957
958 return NMI_HANDLED;
959 }
960
961 /*
962 * NMI handler for pulling in CPU's when perf events are grabbing our NMI
963 */
uv_handle_nmi_ping(unsigned int reason,struct pt_regs * regs)964 static int uv_handle_nmi_ping(unsigned int reason, struct pt_regs *regs)
965 {
966 int ret;
967
968 this_cpu_inc(uv_cpu_nmi.queries);
969 if (!this_cpu_read(uv_cpu_nmi.pinging)) {
970 local64_inc(&uv_nmi_ping_misses);
971 return NMI_DONE;
972 }
973
974 this_cpu_inc(uv_cpu_nmi.pings);
975 local64_inc(&uv_nmi_ping_count);
976 ret = uv_handle_nmi(reason, regs);
977 this_cpu_write(uv_cpu_nmi.pinging, 0);
978 return ret;
979 }
980
uv_register_nmi_notifier(void)981 static void uv_register_nmi_notifier(void)
982 {
983 if (register_nmi_handler(NMI_UNKNOWN, uv_handle_nmi, 0, "uv"))
984 pr_warn("UV: NMI handler failed to register\n");
985
986 if (register_nmi_handler(NMI_LOCAL, uv_handle_nmi_ping, 0, "uvping"))
987 pr_warn("UV: PING NMI handler failed to register\n");
988 }
989
uv_nmi_init(void)990 void uv_nmi_init(void)
991 {
992 unsigned int value;
993
994 /*
995 * Unmask NMI on all CPU's
996 */
997 value = apic_read(APIC_LVT1) | APIC_DM_NMI;
998 value &= ~APIC_LVT_MASKED;
999 apic_write(APIC_LVT1, value);
1000 }
1001
1002 /* Setup HUB NMI info */
uv_nmi_setup_common(bool hubbed)1003 static void __init uv_nmi_setup_common(bool hubbed)
1004 {
1005 int size = sizeof(void *) * (1 << NODES_SHIFT);
1006 int cpu;
1007
1008 uv_hub_nmi_list = kzalloc(size, GFP_KERNEL);
1009 nmi_debug("UV: NMI hub list @ 0x%p (%d)\n", uv_hub_nmi_list, size);
1010 BUG_ON(!uv_hub_nmi_list);
1011 size = sizeof(struct uv_hub_nmi_s);
1012 for_each_present_cpu(cpu) {
1013 int nid = cpu_to_node(cpu);
1014 if (uv_hub_nmi_list[nid] == NULL) {
1015 uv_hub_nmi_list[nid] = kzalloc_node(size,
1016 GFP_KERNEL, nid);
1017 BUG_ON(!uv_hub_nmi_list[nid]);
1018 raw_spin_lock_init(&(uv_hub_nmi_list[nid]->nmi_lock));
1019 atomic_set(&uv_hub_nmi_list[nid]->cpu_owner, -1);
1020 uv_hub_nmi_list[nid]->hub_present = hubbed;
1021 uv_hub_nmi_list[nid]->pch_owner = (nid == 0);
1022 }
1023 uv_hub_nmi_per(cpu) = uv_hub_nmi_list[nid];
1024 }
1025 BUG_ON(!alloc_cpumask_var(&uv_nmi_cpu_mask, GFP_KERNEL));
1026 }
1027
1028 /* Setup for UV Hub systems */
uv_nmi_setup(void)1029 void __init uv_nmi_setup(void)
1030 {
1031 uv_nmi_setup_mmrs();
1032 uv_nmi_setup_common(true);
1033 uv_register_nmi_notifier();
1034 pr_info("UV: Hub NMI enabled\n");
1035 }
1036
1037 /* Setup for UV Hubless systems */
uv_nmi_setup_hubless(void)1038 void __init uv_nmi_setup_hubless(void)
1039 {
1040 uv_nmi_setup_common(false);
1041 pch_base = xlate_dev_mem_ptr(PCH_PCR_GPIO_1_BASE);
1042 nmi_debug("UV: PCH base:%p from 0x%lx, GPP_D_0\n",
1043 pch_base, PCH_PCR_GPIO_1_BASE);
1044 if (uv_pch_init_enable)
1045 uv_init_hubless_pch_d0();
1046 uv_init_hubless_pch_io(GPI_NMI_ENA_GPP_D_0,
1047 STS_GPP_D_0_MASK, STS_GPP_D_0_MASK);
1048 uv_nmi_setup_hubless_intr();
1049 /* Ensure NMI enabled in Processor Interface Reg: */
1050 uv_reassert_nmi();
1051 uv_register_nmi_notifier();
1052 pr_info("UV: Hubless NMI enabled\n");
1053 }
1054