1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_USB_H
3 #define __LINUX_USB_H
4 
5 #include <linux/mod_devicetable.h>
6 #include <linux/usb/ch9.h>
7 
8 #define USB_MAJOR			180
9 #define USB_DEVICE_MAJOR		189
10 
11 
12 #ifdef __KERNEL__
13 
14 #include <linux/errno.h>        /* for -ENODEV */
15 #include <linux/delay.h>	/* for mdelay() */
16 #include <linux/interrupt.h>	/* for in_interrupt() */
17 #include <linux/list.h>		/* for struct list_head */
18 #include <linux/kref.h>		/* for struct kref */
19 #include <linux/device.h>	/* for struct device */
20 #include <linux/fs.h>		/* for struct file_operations */
21 #include <linux/completion.h>	/* for struct completion */
22 #include <linux/sched.h>	/* for current && schedule_timeout */
23 #include <linux/mutex.h>	/* for struct mutex */
24 #include <linux/pm_runtime.h>	/* for runtime PM */
25 
26 struct usb_device;
27 struct usb_driver;
28 struct wusb_dev;
29 
30 /*-------------------------------------------------------------------------*/
31 
32 /*
33  * Host-side wrappers for standard USB descriptors ... these are parsed
34  * from the data provided by devices.  Parsing turns them from a flat
35  * sequence of descriptors into a hierarchy:
36  *
37  *  - devices have one (usually) or more configs;
38  *  - configs have one (often) or more interfaces;
39  *  - interfaces have one (usually) or more settings;
40  *  - each interface setting has zero or (usually) more endpoints.
41  *  - a SuperSpeed endpoint has a companion descriptor
42  *
43  * And there might be other descriptors mixed in with those.
44  *
45  * Devices may also have class-specific or vendor-specific descriptors.
46  */
47 
48 struct ep_device;
49 
50 /**
51  * struct usb_host_endpoint - host-side endpoint descriptor and queue
52  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
53  * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
54  * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
55  * @urb_list: urbs queued to this endpoint; maintained by usbcore
56  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
57  *	with one or more transfer descriptors (TDs) per urb
58  * @ep_dev: ep_device for sysfs info
59  * @extra: descriptors following this endpoint in the configuration
60  * @extralen: how many bytes of "extra" are valid
61  * @enabled: URBs may be submitted to this endpoint
62  * @streams: number of USB-3 streams allocated on the endpoint
63  *
64  * USB requests are always queued to a given endpoint, identified by a
65  * descriptor within an active interface in a given USB configuration.
66  */
67 struct usb_host_endpoint {
68 	struct usb_endpoint_descriptor		desc;
69 	struct usb_ss_ep_comp_descriptor	ss_ep_comp;
70 	struct usb_ssp_isoc_ep_comp_descriptor	ssp_isoc_ep_comp;
71 	struct list_head		urb_list;
72 	void				*hcpriv;
73 	struct ep_device		*ep_dev;	/* For sysfs info */
74 
75 	unsigned char *extra;   /* Extra descriptors */
76 	int extralen;
77 	int enabled;
78 	int streams;
79 };
80 
81 /* host-side wrapper for one interface setting's parsed descriptors */
82 struct usb_host_interface {
83 	struct usb_interface_descriptor	desc;
84 
85 	int extralen;
86 	unsigned char *extra;   /* Extra descriptors */
87 
88 	/* array of desc.bNumEndpoints endpoints associated with this
89 	 * interface setting.  these will be in no particular order.
90 	 */
91 	struct usb_host_endpoint *endpoint;
92 
93 	char *string;		/* iInterface string, if present */
94 };
95 
96 enum usb_interface_condition {
97 	USB_INTERFACE_UNBOUND = 0,
98 	USB_INTERFACE_BINDING,
99 	USB_INTERFACE_BOUND,
100 	USB_INTERFACE_UNBINDING,
101 };
102 
103 int __must_check
104 usb_find_common_endpoints(struct usb_host_interface *alt,
105 		struct usb_endpoint_descriptor **bulk_in,
106 		struct usb_endpoint_descriptor **bulk_out,
107 		struct usb_endpoint_descriptor **int_in,
108 		struct usb_endpoint_descriptor **int_out);
109 
110 int __must_check
111 usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
112 		struct usb_endpoint_descriptor **bulk_in,
113 		struct usb_endpoint_descriptor **bulk_out,
114 		struct usb_endpoint_descriptor **int_in,
115 		struct usb_endpoint_descriptor **int_out);
116 
117 static inline int __must_check
usb_find_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)118 usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
119 		struct usb_endpoint_descriptor **bulk_in)
120 {
121 	return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
122 }
123 
124 static inline int __must_check
usb_find_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)125 usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
126 		struct usb_endpoint_descriptor **bulk_out)
127 {
128 	return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
129 }
130 
131 static inline int __must_check
usb_find_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)132 usb_find_int_in_endpoint(struct usb_host_interface *alt,
133 		struct usb_endpoint_descriptor **int_in)
134 {
135 	return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
136 }
137 
138 static inline int __must_check
usb_find_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)139 usb_find_int_out_endpoint(struct usb_host_interface *alt,
140 		struct usb_endpoint_descriptor **int_out)
141 {
142 	return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
143 }
144 
145 static inline int __must_check
usb_find_last_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)146 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
147 		struct usb_endpoint_descriptor **bulk_in)
148 {
149 	return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
150 }
151 
152 static inline int __must_check
usb_find_last_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)153 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
154 		struct usb_endpoint_descriptor **bulk_out)
155 {
156 	return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
157 }
158 
159 static inline int __must_check
usb_find_last_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)160 usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
161 		struct usb_endpoint_descriptor **int_in)
162 {
163 	return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
164 }
165 
166 static inline int __must_check
usb_find_last_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)167 usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
168 		struct usb_endpoint_descriptor **int_out)
169 {
170 	return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
171 }
172 
173 /**
174  * struct usb_interface - what usb device drivers talk to
175  * @altsetting: array of interface structures, one for each alternate
176  *	setting that may be selected.  Each one includes a set of
177  *	endpoint configurations.  They will be in no particular order.
178  * @cur_altsetting: the current altsetting.
179  * @num_altsetting: number of altsettings defined.
180  * @intf_assoc: interface association descriptor
181  * @minor: the minor number assigned to this interface, if this
182  *	interface is bound to a driver that uses the USB major number.
183  *	If this interface does not use the USB major, this field should
184  *	be unused.  The driver should set this value in the probe()
185  *	function of the driver, after it has been assigned a minor
186  *	number from the USB core by calling usb_register_dev().
187  * @condition: binding state of the interface: not bound, binding
188  *	(in probe()), bound to a driver, or unbinding (in disconnect())
189  * @sysfs_files_created: sysfs attributes exist
190  * @ep_devs_created: endpoint child pseudo-devices exist
191  * @unregistering: flag set when the interface is being unregistered
192  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
193  *	capability during autosuspend.
194  * @needs_altsetting0: flag set when a set-interface request for altsetting 0
195  *	has been deferred.
196  * @needs_binding: flag set when the driver should be re-probed or unbound
197  *	following a reset or suspend operation it doesn't support.
198  * @authorized: This allows to (de)authorize individual interfaces instead
199  *	a whole device in contrast to the device authorization.
200  * @dev: driver model's view of this device
201  * @usb_dev: if an interface is bound to the USB major, this will point
202  *	to the sysfs representation for that device.
203  * @pm_usage_cnt: PM usage counter for this interface
204  * @reset_ws: Used for scheduling resets from atomic context.
205  * @resetting_device: USB core reset the device, so use alt setting 0 as
206  *	current; needs bandwidth alloc after reset.
207  *
208  * USB device drivers attach to interfaces on a physical device.  Each
209  * interface encapsulates a single high level function, such as feeding
210  * an audio stream to a speaker or reporting a change in a volume control.
211  * Many USB devices only have one interface.  The protocol used to talk to
212  * an interface's endpoints can be defined in a usb "class" specification,
213  * or by a product's vendor.  The (default) control endpoint is part of
214  * every interface, but is never listed among the interface's descriptors.
215  *
216  * The driver that is bound to the interface can use standard driver model
217  * calls such as dev_get_drvdata() on the dev member of this structure.
218  *
219  * Each interface may have alternate settings.  The initial configuration
220  * of a device sets altsetting 0, but the device driver can change
221  * that setting using usb_set_interface().  Alternate settings are often
222  * used to control the use of periodic endpoints, such as by having
223  * different endpoints use different amounts of reserved USB bandwidth.
224  * All standards-conformant USB devices that use isochronous endpoints
225  * will use them in non-default settings.
226  *
227  * The USB specification says that alternate setting numbers must run from
228  * 0 to one less than the total number of alternate settings.  But some
229  * devices manage to mess this up, and the structures aren't necessarily
230  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
231  * look up an alternate setting in the altsetting array based on its number.
232  */
233 struct usb_interface {
234 	/* array of alternate settings for this interface,
235 	 * stored in no particular order */
236 	struct usb_host_interface *altsetting;
237 
238 	struct usb_host_interface *cur_altsetting;	/* the currently
239 					 * active alternate setting */
240 	unsigned num_altsetting;	/* number of alternate settings */
241 
242 	/* If there is an interface association descriptor then it will list
243 	 * the associated interfaces */
244 	struct usb_interface_assoc_descriptor *intf_assoc;
245 
246 	int minor;			/* minor number this interface is
247 					 * bound to */
248 	enum usb_interface_condition condition;		/* state of binding */
249 	unsigned sysfs_files_created:1;	/* the sysfs attributes exist */
250 	unsigned ep_devs_created:1;	/* endpoint "devices" exist */
251 	unsigned unregistering:1;	/* unregistration is in progress */
252 	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
253 	unsigned needs_altsetting0:1;	/* switch to altsetting 0 is pending */
254 	unsigned needs_binding:1;	/* needs delayed unbind/rebind */
255 	unsigned resetting_device:1;	/* true: bandwidth alloc after reset */
256 	unsigned authorized:1;		/* used for interface authorization */
257 
258 	struct device dev;		/* interface specific device info */
259 	struct device *usb_dev;
260 	atomic_t pm_usage_cnt;		/* usage counter for autosuspend */
261 	struct work_struct reset_ws;	/* for resets in atomic context */
262 };
263 #define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
264 
usb_get_intfdata(struct usb_interface * intf)265 static inline void *usb_get_intfdata(struct usb_interface *intf)
266 {
267 	return dev_get_drvdata(&intf->dev);
268 }
269 
usb_set_intfdata(struct usb_interface * intf,void * data)270 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
271 {
272 	dev_set_drvdata(&intf->dev, data);
273 }
274 
275 struct usb_interface *usb_get_intf(struct usb_interface *intf);
276 void usb_put_intf(struct usb_interface *intf);
277 
278 /* Hard limit */
279 #define USB_MAXENDPOINTS	30
280 /* this maximum is arbitrary */
281 #define USB_MAXINTERFACES	32
282 #define USB_MAXIADS		(USB_MAXINTERFACES/2)
283 
284 /*
285  * USB Resume Timer: Every Host controller driver should drive the resume
286  * signalling on the bus for the amount of time defined by this macro.
287  *
288  * That way we will have a 'stable' behavior among all HCDs supported by Linux.
289  *
290  * Note that the USB Specification states we should drive resume for *at least*
291  * 20 ms, but it doesn't give an upper bound. This creates two possible
292  * situations which we want to avoid:
293  *
294  * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
295  * us to fail USB Electrical Tests, thus failing Certification
296  *
297  * (b) Some (many) devices actually need more than 20 ms of resume signalling,
298  * and while we can argue that's against the USB Specification, we don't have
299  * control over which devices a certification laboratory will be using for
300  * certification. If CertLab uses a device which was tested against Windows and
301  * that happens to have relaxed resume signalling rules, we might fall into
302  * situations where we fail interoperability and electrical tests.
303  *
304  * In order to avoid both conditions, we're using a 40 ms resume timeout, which
305  * should cope with both LPJ calibration errors and devices not following every
306  * detail of the USB Specification.
307  */
308 #define USB_RESUME_TIMEOUT	40 /* ms */
309 
310 /**
311  * struct usb_interface_cache - long-term representation of a device interface
312  * @num_altsetting: number of altsettings defined.
313  * @ref: reference counter.
314  * @altsetting: variable-length array of interface structures, one for
315  *	each alternate setting that may be selected.  Each one includes a
316  *	set of endpoint configurations.  They will be in no particular order.
317  *
318  * These structures persist for the lifetime of a usb_device, unlike
319  * struct usb_interface (which persists only as long as its configuration
320  * is installed).  The altsetting arrays can be accessed through these
321  * structures at any time, permitting comparison of configurations and
322  * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
323  */
324 struct usb_interface_cache {
325 	unsigned num_altsetting;	/* number of alternate settings */
326 	struct kref ref;		/* reference counter */
327 
328 	/* variable-length array of alternate settings for this interface,
329 	 * stored in no particular order */
330 	struct usb_host_interface altsetting[0];
331 };
332 #define	ref_to_usb_interface_cache(r) \
333 		container_of(r, struct usb_interface_cache, ref)
334 #define	altsetting_to_usb_interface_cache(a) \
335 		container_of(a, struct usb_interface_cache, altsetting[0])
336 
337 /**
338  * struct usb_host_config - representation of a device's configuration
339  * @desc: the device's configuration descriptor.
340  * @string: pointer to the cached version of the iConfiguration string, if
341  *	present for this configuration.
342  * @intf_assoc: list of any interface association descriptors in this config
343  * @interface: array of pointers to usb_interface structures, one for each
344  *	interface in the configuration.  The number of interfaces is stored
345  *	in desc.bNumInterfaces.  These pointers are valid only while the
346  *	the configuration is active.
347  * @intf_cache: array of pointers to usb_interface_cache structures, one
348  *	for each interface in the configuration.  These structures exist
349  *	for the entire life of the device.
350  * @extra: pointer to buffer containing all extra descriptors associated
351  *	with this configuration (those preceding the first interface
352  *	descriptor).
353  * @extralen: length of the extra descriptors buffer.
354  *
355  * USB devices may have multiple configurations, but only one can be active
356  * at any time.  Each encapsulates a different operational environment;
357  * for example, a dual-speed device would have separate configurations for
358  * full-speed and high-speed operation.  The number of configurations
359  * available is stored in the device descriptor as bNumConfigurations.
360  *
361  * A configuration can contain multiple interfaces.  Each corresponds to
362  * a different function of the USB device, and all are available whenever
363  * the configuration is active.  The USB standard says that interfaces
364  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
365  * of devices get this wrong.  In addition, the interface array is not
366  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
367  * look up an interface entry based on its number.
368  *
369  * Device drivers should not attempt to activate configurations.  The choice
370  * of which configuration to install is a policy decision based on such
371  * considerations as available power, functionality provided, and the user's
372  * desires (expressed through userspace tools).  However, drivers can call
373  * usb_reset_configuration() to reinitialize the current configuration and
374  * all its interfaces.
375  */
376 struct usb_host_config {
377 	struct usb_config_descriptor	desc;
378 
379 	char *string;		/* iConfiguration string, if present */
380 
381 	/* List of any Interface Association Descriptors in this
382 	 * configuration. */
383 	struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
384 
385 	/* the interfaces associated with this configuration,
386 	 * stored in no particular order */
387 	struct usb_interface *interface[USB_MAXINTERFACES];
388 
389 	/* Interface information available even when this is not the
390 	 * active configuration */
391 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
392 
393 	unsigned char *extra;   /* Extra descriptors */
394 	int extralen;
395 };
396 
397 /* USB2.0 and USB3.0 device BOS descriptor set */
398 struct usb_host_bos {
399 	struct usb_bos_descriptor	*desc;
400 
401 	/* wireless cap descriptor is handled by wusb */
402 	struct usb_ext_cap_descriptor	*ext_cap;
403 	struct usb_ss_cap_descriptor	*ss_cap;
404 	struct usb_ssp_cap_descriptor	*ssp_cap;
405 	struct usb_ss_container_id_descriptor	*ss_id;
406 	struct usb_ptm_cap_descriptor	*ptm_cap;
407 };
408 
409 int __usb_get_extra_descriptor(char *buffer, unsigned size,
410 	unsigned char type, void **ptr);
411 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
412 				__usb_get_extra_descriptor((ifpoint)->extra, \
413 				(ifpoint)->extralen, \
414 				type, (void **)ptr)
415 
416 /* ----------------------------------------------------------------------- */
417 
418 /* USB device number allocation bitmap */
419 struct usb_devmap {
420 	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
421 };
422 
423 /*
424  * Allocated per bus (tree of devices) we have:
425  */
426 struct usb_bus {
427 	struct device *controller;	/* host/master side hardware */
428 	struct device *sysdev;		/* as seen from firmware or bus */
429 	int busnum;			/* Bus number (in order of reg) */
430 	const char *bus_name;		/* stable id (PCI slot_name etc) */
431 	u8 uses_dma;			/* Does the host controller use DMA? */
432 	u8 uses_pio_for_control;	/*
433 					 * Does the host controller use PIO
434 					 * for control transfers?
435 					 */
436 	u8 otg_port;			/* 0, or number of OTG/HNP port */
437 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
438 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
439 	unsigned no_stop_on_short:1;    /*
440 					 * Quirk: some controllers don't stop
441 					 * the ep queue on a short transfer
442 					 * with the URB_SHORT_NOT_OK flag set.
443 					 */
444 	unsigned no_sg_constraint:1;	/* no sg constraint */
445 	unsigned sg_tablesize;		/* 0 or largest number of sg list entries */
446 
447 	int devnum_next;		/* Next open device number in
448 					 * round-robin allocation */
449 	struct mutex devnum_next_mutex; /* devnum_next mutex */
450 
451 	struct usb_devmap devmap;	/* device address allocation map */
452 	struct usb_device *root_hub;	/* Root hub */
453 	struct usb_bus *hs_companion;	/* Companion EHCI bus, if any */
454 
455 	int bandwidth_allocated;	/* on this bus: how much of the time
456 					 * reserved for periodic (intr/iso)
457 					 * requests is used, on average?
458 					 * Units: microseconds/frame.
459 					 * Limits: Full/low speed reserve 90%,
460 					 * while high speed reserves 80%.
461 					 */
462 	int bandwidth_int_reqs;		/* number of Interrupt requests */
463 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
464 
465 	unsigned resuming_ports;	/* bit array: resuming root-hub ports */
466 
467 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
468 	struct mon_bus *mon_bus;	/* non-null when associated */
469 	int monitored;			/* non-zero when monitored */
470 #endif
471 };
472 
473 struct usb_dev_state;
474 
475 /* ----------------------------------------------------------------------- */
476 
477 struct usb_tt;
478 
479 enum usb_device_removable {
480 	USB_DEVICE_REMOVABLE_UNKNOWN = 0,
481 	USB_DEVICE_REMOVABLE,
482 	USB_DEVICE_FIXED,
483 };
484 
485 enum usb_port_connect_type {
486 	USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
487 	USB_PORT_CONNECT_TYPE_HOT_PLUG,
488 	USB_PORT_CONNECT_TYPE_HARD_WIRED,
489 	USB_PORT_NOT_USED,
490 };
491 
492 /*
493  * USB port quirks.
494  */
495 
496 /* For the given port, prefer the old (faster) enumeration scheme. */
497 #define USB_PORT_QUIRK_OLD_SCHEME	BIT(0)
498 
499 /* Decrease TRSTRCY to 10ms during device enumeration. */
500 #define USB_PORT_QUIRK_FAST_ENUM	BIT(1)
501 
502 /*
503  * USB 2.0 Link Power Management (LPM) parameters.
504  */
505 struct usb2_lpm_parameters {
506 	/* Best effort service latency indicate how long the host will drive
507 	 * resume on an exit from L1.
508 	 */
509 	unsigned int besl;
510 
511 	/* Timeout value in microseconds for the L1 inactivity (LPM) timer.
512 	 * When the timer counts to zero, the parent hub will initiate a LPM
513 	 * transition to L1.
514 	 */
515 	int timeout;
516 };
517 
518 /*
519  * USB 3.0 Link Power Management (LPM) parameters.
520  *
521  * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
522  * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
523  * All three are stored in nanoseconds.
524  */
525 struct usb3_lpm_parameters {
526 	/*
527 	 * Maximum exit latency (MEL) for the host to send a packet to the
528 	 * device (either a Ping for isoc endpoints, or a data packet for
529 	 * interrupt endpoints), the hubs to decode the packet, and for all hubs
530 	 * in the path to transition the links to U0.
531 	 */
532 	unsigned int mel;
533 	/*
534 	 * Maximum exit latency for a device-initiated LPM transition to bring
535 	 * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
536 	 * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
537 	 */
538 	unsigned int pel;
539 
540 	/*
541 	 * The System Exit Latency (SEL) includes PEL, and three other
542 	 * latencies.  After a device initiates a U0 transition, it will take
543 	 * some time from when the device sends the ERDY to when it will finally
544 	 * receive the data packet.  Basically, SEL should be the worse-case
545 	 * latency from when a device starts initiating a U0 transition to when
546 	 * it will get data.
547 	 */
548 	unsigned int sel;
549 	/*
550 	 * The idle timeout value that is currently programmed into the parent
551 	 * hub for this device.  When the timer counts to zero, the parent hub
552 	 * will initiate an LPM transition to either U1 or U2.
553 	 */
554 	int timeout;
555 };
556 
557 /**
558  * struct usb_device - kernel's representation of a USB device
559  * @devnum: device number; address on a USB bus
560  * @devpath: device ID string for use in messages (e.g., /port/...)
561  * @route: tree topology hex string for use with xHCI
562  * @state: device state: configured, not attached, etc.
563  * @speed: device speed: high/full/low (or error)
564  * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support
565  * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support
566  * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
567  * @ttport: device port on that tt hub
568  * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
569  * @parent: our hub, unless we're the root
570  * @bus: bus we're part of
571  * @ep0: endpoint 0 data (default control pipe)
572  * @dev: generic device interface
573  * @descriptor: USB device descriptor
574  * @bos: USB device BOS descriptor set
575  * @config: all of the device's configs
576  * @actconfig: the active configuration
577  * @ep_in: array of IN endpoints
578  * @ep_out: array of OUT endpoints
579  * @rawdescriptors: raw descriptors for each config
580  * @bus_mA: Current available from the bus
581  * @portnum: parent port number (origin 1)
582  * @level: number of USB hub ancestors
583  * @can_submit: URBs may be submitted
584  * @persist_enabled:  USB_PERSIST enabled for this device
585  * @have_langid: whether string_langid is valid
586  * @authorized: policy has said we can use it;
587  *	(user space) policy determines if we authorize this device to be
588  *	used or not. By default, wired USB devices are authorized.
589  *	WUSB devices are not, until we authorize them from user space.
590  *	FIXME -- complete doc
591  * @authenticated: Crypto authentication passed
592  * @wusb: device is Wireless USB
593  * @lpm_capable: device supports LPM
594  * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
595  * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
596  * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
597  * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
598  * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
599  * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
600  * @string_langid: language ID for strings
601  * @product: iProduct string, if present (static)
602  * @manufacturer: iManufacturer string, if present (static)
603  * @serial: iSerialNumber string, if present (static)
604  * @filelist: usbfs files that are open to this device
605  * @maxchild: number of ports if hub
606  * @quirks: quirks of the whole device
607  * @urbnum: number of URBs submitted for the whole device
608  * @active_duration: total time device is not suspended
609  * @connect_time: time device was first connected
610  * @do_remote_wakeup:  remote wakeup should be enabled
611  * @reset_resume: needs reset instead of resume
612  * @port_is_suspended: the upstream port is suspended (L2 or U3)
613  * @wusb_dev: if this is a Wireless USB device, link to the WUSB
614  *	specific data for the device.
615  * @slot_id: Slot ID assigned by xHCI
616  * @removable: Device can be physically removed from this port
617  * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
618  * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
619  * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
620  * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
621  *	to keep track of the number of functions that require USB 3.0 Link Power
622  *	Management to be disabled for this usb_device.  This count should only
623  *	be manipulated by those functions, with the bandwidth_mutex is held.
624  * @hub_delay: cached value consisting of:
625  *		parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
626  *
627  *	Will be used as wValue for SetIsochDelay requests.
628  *
629  * Notes:
630  * Usbcore drivers should not set usbdev->state directly.  Instead use
631  * usb_set_device_state().
632  */
633 struct usb_device {
634 	int		devnum;
635 	char		devpath[16];
636 	u32		route;
637 	enum usb_device_state	state;
638 	enum usb_device_speed	speed;
639 	unsigned int		rx_lanes;
640 	unsigned int		tx_lanes;
641 
642 	struct usb_tt	*tt;
643 	int		ttport;
644 
645 	unsigned int toggle[2];
646 
647 	struct usb_device *parent;
648 	struct usb_bus *bus;
649 	struct usb_host_endpoint ep0;
650 
651 	struct device dev;
652 
653 	struct usb_device_descriptor descriptor;
654 	struct usb_host_bos *bos;
655 	struct usb_host_config *config;
656 
657 	struct usb_host_config *actconfig;
658 	struct usb_host_endpoint *ep_in[16];
659 	struct usb_host_endpoint *ep_out[16];
660 
661 	char **rawdescriptors;
662 
663 	unsigned short bus_mA;
664 	u8 portnum;
665 	u8 level;
666 
667 	unsigned can_submit:1;
668 	unsigned persist_enabled:1;
669 	unsigned have_langid:1;
670 	unsigned authorized:1;
671 	unsigned authenticated:1;
672 	unsigned wusb:1;
673 	unsigned lpm_capable:1;
674 	unsigned usb2_hw_lpm_capable:1;
675 	unsigned usb2_hw_lpm_besl_capable:1;
676 	unsigned usb2_hw_lpm_enabled:1;
677 	unsigned usb2_hw_lpm_allowed:1;
678 	unsigned usb3_lpm_u1_enabled:1;
679 	unsigned usb3_lpm_u2_enabled:1;
680 	int string_langid;
681 
682 	/* static strings from the device */
683 	char *product;
684 	char *manufacturer;
685 	char *serial;
686 
687 	struct list_head filelist;
688 
689 	int maxchild;
690 
691 	u32 quirks;
692 	atomic_t urbnum;
693 
694 	unsigned long active_duration;
695 
696 #ifdef CONFIG_PM
697 	unsigned long connect_time;
698 
699 	unsigned do_remote_wakeup:1;
700 	unsigned reset_resume:1;
701 	unsigned port_is_suspended:1;
702 #endif
703 	struct wusb_dev *wusb_dev;
704 	int slot_id;
705 	enum usb_device_removable removable;
706 	struct usb2_lpm_parameters l1_params;
707 	struct usb3_lpm_parameters u1_params;
708 	struct usb3_lpm_parameters u2_params;
709 	unsigned lpm_disable_count;
710 
711 	u16 hub_delay;
712 };
713 #define	to_usb_device(d) container_of(d, struct usb_device, dev)
714 
interface_to_usbdev(struct usb_interface * intf)715 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
716 {
717 	return to_usb_device(intf->dev.parent);
718 }
719 
720 extern struct usb_device *usb_get_dev(struct usb_device *dev);
721 extern void usb_put_dev(struct usb_device *dev);
722 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
723 	int port1);
724 
725 /**
726  * usb_hub_for_each_child - iterate over all child devices on the hub
727  * @hdev:  USB device belonging to the usb hub
728  * @port1: portnum associated with child device
729  * @child: child device pointer
730  */
731 #define usb_hub_for_each_child(hdev, port1, child) \
732 	for (port1 = 1,	child =	usb_hub_find_child(hdev, port1); \
733 			port1 <= hdev->maxchild; \
734 			child = usb_hub_find_child(hdev, ++port1)) \
735 		if (!child) continue; else
736 
737 /* USB device locking */
738 #define usb_lock_device(udev)			device_lock(&(udev)->dev)
739 #define usb_unlock_device(udev)			device_unlock(&(udev)->dev)
740 #define usb_lock_device_interruptible(udev)	device_lock_interruptible(&(udev)->dev)
741 #define usb_trylock_device(udev)		device_trylock(&(udev)->dev)
742 extern int usb_lock_device_for_reset(struct usb_device *udev,
743 				     const struct usb_interface *iface);
744 
745 /* USB port reset for device reinitialization */
746 extern int usb_reset_device(struct usb_device *dev);
747 extern void usb_queue_reset_device(struct usb_interface *dev);
748 
749 #ifdef CONFIG_ACPI
750 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
751 	bool enable);
752 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
753 #else
usb_acpi_set_power_state(struct usb_device * hdev,int index,bool enable)754 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
755 	bool enable) { return 0; }
usb_acpi_power_manageable(struct usb_device * hdev,int index)756 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
757 	{ return true; }
758 #endif
759 
760 /* USB autosuspend and autoresume */
761 #ifdef CONFIG_PM
762 extern void usb_enable_autosuspend(struct usb_device *udev);
763 extern void usb_disable_autosuspend(struct usb_device *udev);
764 
765 extern int usb_autopm_get_interface(struct usb_interface *intf);
766 extern void usb_autopm_put_interface(struct usb_interface *intf);
767 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
768 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
769 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
770 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
771 
usb_mark_last_busy(struct usb_device * udev)772 static inline void usb_mark_last_busy(struct usb_device *udev)
773 {
774 	pm_runtime_mark_last_busy(&udev->dev);
775 }
776 
777 #else
778 
usb_enable_autosuspend(struct usb_device * udev)779 static inline int usb_enable_autosuspend(struct usb_device *udev)
780 { return 0; }
usb_disable_autosuspend(struct usb_device * udev)781 static inline int usb_disable_autosuspend(struct usb_device *udev)
782 { return 0; }
783 
usb_autopm_get_interface(struct usb_interface * intf)784 static inline int usb_autopm_get_interface(struct usb_interface *intf)
785 { return 0; }
usb_autopm_get_interface_async(struct usb_interface * intf)786 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
787 { return 0; }
788 
usb_autopm_put_interface(struct usb_interface * intf)789 static inline void usb_autopm_put_interface(struct usb_interface *intf)
790 { }
usb_autopm_put_interface_async(struct usb_interface * intf)791 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
792 { }
usb_autopm_get_interface_no_resume(struct usb_interface * intf)793 static inline void usb_autopm_get_interface_no_resume(
794 		struct usb_interface *intf)
795 { }
usb_autopm_put_interface_no_suspend(struct usb_interface * intf)796 static inline void usb_autopm_put_interface_no_suspend(
797 		struct usb_interface *intf)
798 { }
usb_mark_last_busy(struct usb_device * udev)799 static inline void usb_mark_last_busy(struct usb_device *udev)
800 { }
801 #endif
802 
803 extern int usb_disable_lpm(struct usb_device *udev);
804 extern void usb_enable_lpm(struct usb_device *udev);
805 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
806 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
807 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
808 
809 extern int usb_disable_ltm(struct usb_device *udev);
810 extern void usb_enable_ltm(struct usb_device *udev);
811 
usb_device_supports_ltm(struct usb_device * udev)812 static inline bool usb_device_supports_ltm(struct usb_device *udev)
813 {
814 	if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
815 		return false;
816 	return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
817 }
818 
usb_device_no_sg_constraint(struct usb_device * udev)819 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
820 {
821 	return udev && udev->bus && udev->bus->no_sg_constraint;
822 }
823 
824 
825 /*-------------------------------------------------------------------------*/
826 
827 /* for drivers using iso endpoints */
828 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
829 
830 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
831 extern int usb_alloc_streams(struct usb_interface *interface,
832 		struct usb_host_endpoint **eps, unsigned int num_eps,
833 		unsigned int num_streams, gfp_t mem_flags);
834 
835 /* Reverts a group of bulk endpoints back to not using stream IDs. */
836 extern int usb_free_streams(struct usb_interface *interface,
837 		struct usb_host_endpoint **eps, unsigned int num_eps,
838 		gfp_t mem_flags);
839 
840 /* used these for multi-interface device registration */
841 extern int usb_driver_claim_interface(struct usb_driver *driver,
842 			struct usb_interface *iface, void *priv);
843 
844 /**
845  * usb_interface_claimed - returns true iff an interface is claimed
846  * @iface: the interface being checked
847  *
848  * Return: %true (nonzero) iff the interface is claimed, else %false
849  * (zero).
850  *
851  * Note:
852  * Callers must own the driver model's usb bus readlock.  So driver
853  * probe() entries don't need extra locking, but other call contexts
854  * may need to explicitly claim that lock.
855  *
856  */
usb_interface_claimed(struct usb_interface * iface)857 static inline int usb_interface_claimed(struct usb_interface *iface)
858 {
859 	return (iface->dev.driver != NULL);
860 }
861 
862 extern void usb_driver_release_interface(struct usb_driver *driver,
863 			struct usb_interface *iface);
864 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
865 					 const struct usb_device_id *id);
866 extern int usb_match_one_id(struct usb_interface *interface,
867 			    const struct usb_device_id *id);
868 
869 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
870 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
871 		int minor);
872 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
873 		unsigned ifnum);
874 extern struct usb_host_interface *usb_altnum_to_altsetting(
875 		const struct usb_interface *intf, unsigned int altnum);
876 extern struct usb_host_interface *usb_find_alt_setting(
877 		struct usb_host_config *config,
878 		unsigned int iface_num,
879 		unsigned int alt_num);
880 
881 /* port claiming functions */
882 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
883 		struct usb_dev_state *owner);
884 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
885 		struct usb_dev_state *owner);
886 
887 /**
888  * usb_make_path - returns stable device path in the usb tree
889  * @dev: the device whose path is being constructed
890  * @buf: where to put the string
891  * @size: how big is "buf"?
892  *
893  * Return: Length of the string (> 0) or negative if size was too small.
894  *
895  * Note:
896  * This identifier is intended to be "stable", reflecting physical paths in
897  * hardware such as physical bus addresses for host controllers or ports on
898  * USB hubs.  That makes it stay the same until systems are physically
899  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
900  * controllers.  Adding and removing devices, including virtual root hubs
901  * in host controller driver modules, does not change these path identifiers;
902  * neither does rebooting or re-enumerating.  These are more useful identifiers
903  * than changeable ("unstable") ones like bus numbers or device addresses.
904  *
905  * With a partial exception for devices connected to USB 2.0 root hubs, these
906  * identifiers are also predictable.  So long as the device tree isn't changed,
907  * plugging any USB device into a given hub port always gives it the same path.
908  * Because of the use of "companion" controllers, devices connected to ports on
909  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
910  * high speed, and a different one if they are full or low speed.
911  */
usb_make_path(struct usb_device * dev,char * buf,size_t size)912 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
913 {
914 	int actual;
915 	actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
916 			  dev->devpath);
917 	return (actual >= (int)size) ? -1 : actual;
918 }
919 
920 /*-------------------------------------------------------------------------*/
921 
922 #define USB_DEVICE_ID_MATCH_DEVICE \
923 		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
924 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
925 		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
926 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
927 		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
928 #define USB_DEVICE_ID_MATCH_DEV_INFO \
929 		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
930 		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
931 		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
932 #define USB_DEVICE_ID_MATCH_INT_INFO \
933 		(USB_DEVICE_ID_MATCH_INT_CLASS | \
934 		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
935 		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
936 
937 /**
938  * USB_DEVICE - macro used to describe a specific usb device
939  * @vend: the 16 bit USB Vendor ID
940  * @prod: the 16 bit USB Product ID
941  *
942  * This macro is used to create a struct usb_device_id that matches a
943  * specific device.
944  */
945 #define USB_DEVICE(vend, prod) \
946 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
947 	.idVendor = (vend), \
948 	.idProduct = (prod)
949 /**
950  * USB_DEVICE_VER - describe a specific usb device with a version range
951  * @vend: the 16 bit USB Vendor ID
952  * @prod: the 16 bit USB Product ID
953  * @lo: the bcdDevice_lo value
954  * @hi: the bcdDevice_hi value
955  *
956  * This macro is used to create a struct usb_device_id that matches a
957  * specific device, with a version range.
958  */
959 #define USB_DEVICE_VER(vend, prod, lo, hi) \
960 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
961 	.idVendor = (vend), \
962 	.idProduct = (prod), \
963 	.bcdDevice_lo = (lo), \
964 	.bcdDevice_hi = (hi)
965 
966 /**
967  * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
968  * @vend: the 16 bit USB Vendor ID
969  * @prod: the 16 bit USB Product ID
970  * @cl: bInterfaceClass value
971  *
972  * This macro is used to create a struct usb_device_id that matches a
973  * specific interface class of devices.
974  */
975 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
976 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
977 		       USB_DEVICE_ID_MATCH_INT_CLASS, \
978 	.idVendor = (vend), \
979 	.idProduct = (prod), \
980 	.bInterfaceClass = (cl)
981 
982 /**
983  * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
984  * @vend: the 16 bit USB Vendor ID
985  * @prod: the 16 bit USB Product ID
986  * @pr: bInterfaceProtocol value
987  *
988  * This macro is used to create a struct usb_device_id that matches a
989  * specific interface protocol of devices.
990  */
991 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
992 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
993 		       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
994 	.idVendor = (vend), \
995 	.idProduct = (prod), \
996 	.bInterfaceProtocol = (pr)
997 
998 /**
999  * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
1000  * @vend: the 16 bit USB Vendor ID
1001  * @prod: the 16 bit USB Product ID
1002  * @num: bInterfaceNumber value
1003  *
1004  * This macro is used to create a struct usb_device_id that matches a
1005  * specific interface number of devices.
1006  */
1007 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
1008 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1009 		       USB_DEVICE_ID_MATCH_INT_NUMBER, \
1010 	.idVendor = (vend), \
1011 	.idProduct = (prod), \
1012 	.bInterfaceNumber = (num)
1013 
1014 /**
1015  * USB_DEVICE_INFO - macro used to describe a class of usb devices
1016  * @cl: bDeviceClass value
1017  * @sc: bDeviceSubClass value
1018  * @pr: bDeviceProtocol value
1019  *
1020  * This macro is used to create a struct usb_device_id that matches a
1021  * specific class of devices.
1022  */
1023 #define USB_DEVICE_INFO(cl, sc, pr) \
1024 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1025 	.bDeviceClass = (cl), \
1026 	.bDeviceSubClass = (sc), \
1027 	.bDeviceProtocol = (pr)
1028 
1029 /**
1030  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1031  * @cl: bInterfaceClass value
1032  * @sc: bInterfaceSubClass value
1033  * @pr: bInterfaceProtocol value
1034  *
1035  * This macro is used to create a struct usb_device_id that matches a
1036  * specific class of interfaces.
1037  */
1038 #define USB_INTERFACE_INFO(cl, sc, pr) \
1039 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1040 	.bInterfaceClass = (cl), \
1041 	.bInterfaceSubClass = (sc), \
1042 	.bInterfaceProtocol = (pr)
1043 
1044 /**
1045  * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1046  * @vend: the 16 bit USB Vendor ID
1047  * @prod: the 16 bit USB Product ID
1048  * @cl: bInterfaceClass value
1049  * @sc: bInterfaceSubClass value
1050  * @pr: bInterfaceProtocol value
1051  *
1052  * This macro is used to create a struct usb_device_id that matches a
1053  * specific device with a specific class of interfaces.
1054  *
1055  * This is especially useful when explicitly matching devices that have
1056  * vendor specific bDeviceClass values, but standards-compliant interfaces.
1057  */
1058 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1059 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1060 		| USB_DEVICE_ID_MATCH_DEVICE, \
1061 	.idVendor = (vend), \
1062 	.idProduct = (prod), \
1063 	.bInterfaceClass = (cl), \
1064 	.bInterfaceSubClass = (sc), \
1065 	.bInterfaceProtocol = (pr)
1066 
1067 /**
1068  * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1069  * @vend: the 16 bit USB Vendor ID
1070  * @cl: bInterfaceClass value
1071  * @sc: bInterfaceSubClass value
1072  * @pr: bInterfaceProtocol value
1073  *
1074  * This macro is used to create a struct usb_device_id that matches a
1075  * specific vendor with a specific class of interfaces.
1076  *
1077  * This is especially useful when explicitly matching devices that have
1078  * vendor specific bDeviceClass values, but standards-compliant interfaces.
1079  */
1080 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1081 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1082 		| USB_DEVICE_ID_MATCH_VENDOR, \
1083 	.idVendor = (vend), \
1084 	.bInterfaceClass = (cl), \
1085 	.bInterfaceSubClass = (sc), \
1086 	.bInterfaceProtocol = (pr)
1087 
1088 /* ----------------------------------------------------------------------- */
1089 
1090 /* Stuff for dynamic usb ids */
1091 struct usb_dynids {
1092 	spinlock_t lock;
1093 	struct list_head list;
1094 };
1095 
1096 struct usb_dynid {
1097 	struct list_head node;
1098 	struct usb_device_id id;
1099 };
1100 
1101 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1102 				const struct usb_device_id *id_table,
1103 				struct device_driver *driver,
1104 				const char *buf, size_t count);
1105 
1106 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1107 
1108 /**
1109  * struct usbdrv_wrap - wrapper for driver-model structure
1110  * @driver: The driver-model core driver structure.
1111  * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1112  */
1113 struct usbdrv_wrap {
1114 	struct device_driver driver;
1115 	int for_devices;
1116 };
1117 
1118 /**
1119  * struct usb_driver - identifies USB interface driver to usbcore
1120  * @name: The driver name should be unique among USB drivers,
1121  *	and should normally be the same as the module name.
1122  * @probe: Called to see if the driver is willing to manage a particular
1123  *	interface on a device.  If it is, probe returns zero and uses
1124  *	usb_set_intfdata() to associate driver-specific data with the
1125  *	interface.  It may also use usb_set_interface() to specify the
1126  *	appropriate altsetting.  If unwilling to manage the interface,
1127  *	return -ENODEV, if genuine IO errors occurred, an appropriate
1128  *	negative errno value.
1129  * @disconnect: Called when the interface is no longer accessible, usually
1130  *	because its device has been (or is being) disconnected or the
1131  *	driver module is being unloaded.
1132  * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1133  *	the "usbfs" filesystem.  This lets devices provide ways to
1134  *	expose information to user space regardless of where they
1135  *	do (or don't) show up otherwise in the filesystem.
1136  * @suspend: Called when the device is going to be suspended by the
1137  *	system either from system sleep or runtime suspend context. The
1138  *	return value will be ignored in system sleep context, so do NOT
1139  *	try to continue using the device if suspend fails in this case.
1140  *	Instead, let the resume or reset-resume routine recover from
1141  *	the failure.
1142  * @resume: Called when the device is being resumed by the system.
1143  * @reset_resume: Called when the suspended device has been reset instead
1144  *	of being resumed.
1145  * @pre_reset: Called by usb_reset_device() when the device is about to be
1146  *	reset.  This routine must not return until the driver has no active
1147  *	URBs for the device, and no more URBs may be submitted until the
1148  *	post_reset method is called.
1149  * @post_reset: Called by usb_reset_device() after the device
1150  *	has been reset
1151  * @id_table: USB drivers use ID table to support hotplugging.
1152  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
1153  *	or your driver's probe function will never get called.
1154  * @dynids: used internally to hold the list of dynamically added device
1155  *	ids for this driver.
1156  * @drvwrap: Driver-model core structure wrapper.
1157  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1158  *	added to this driver by preventing the sysfs file from being created.
1159  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1160  *	for interfaces bound to this driver.
1161  * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1162  *	endpoints before calling the driver's disconnect method.
1163  * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1164  *	to initiate lower power link state transitions when an idle timeout
1165  *	occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1166  *
1167  * USB interface drivers must provide a name, probe() and disconnect()
1168  * methods, and an id_table.  Other driver fields are optional.
1169  *
1170  * The id_table is used in hotplugging.  It holds a set of descriptors,
1171  * and specialized data may be associated with each entry.  That table
1172  * is used by both user and kernel mode hotplugging support.
1173  *
1174  * The probe() and disconnect() methods are called in a context where
1175  * they can sleep, but they should avoid abusing the privilege.  Most
1176  * work to connect to a device should be done when the device is opened,
1177  * and undone at the last close.  The disconnect code needs to address
1178  * concurrency issues with respect to open() and close() methods, as
1179  * well as forcing all pending I/O requests to complete (by unlinking
1180  * them as necessary, and blocking until the unlinks complete).
1181  */
1182 struct usb_driver {
1183 	const char *name;
1184 
1185 	int (*probe) (struct usb_interface *intf,
1186 		      const struct usb_device_id *id);
1187 
1188 	void (*disconnect) (struct usb_interface *intf);
1189 
1190 	int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1191 			void *buf);
1192 
1193 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
1194 	int (*resume) (struct usb_interface *intf);
1195 	int (*reset_resume)(struct usb_interface *intf);
1196 
1197 	int (*pre_reset)(struct usb_interface *intf);
1198 	int (*post_reset)(struct usb_interface *intf);
1199 
1200 	const struct usb_device_id *id_table;
1201 
1202 	struct usb_dynids dynids;
1203 	struct usbdrv_wrap drvwrap;
1204 	unsigned int no_dynamic_id:1;
1205 	unsigned int supports_autosuspend:1;
1206 	unsigned int disable_hub_initiated_lpm:1;
1207 	unsigned int soft_unbind:1;
1208 };
1209 #define	to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1210 
1211 /**
1212  * struct usb_device_driver - identifies USB device driver to usbcore
1213  * @name: The driver name should be unique among USB drivers,
1214  *	and should normally be the same as the module name.
1215  * @probe: Called to see if the driver is willing to manage a particular
1216  *	device.  If it is, probe returns zero and uses dev_set_drvdata()
1217  *	to associate driver-specific data with the device.  If unwilling
1218  *	to manage the device, return a negative errno value.
1219  * @disconnect: Called when the device is no longer accessible, usually
1220  *	because it has been (or is being) disconnected or the driver's
1221  *	module is being unloaded.
1222  * @suspend: Called when the device is going to be suspended by the system.
1223  * @resume: Called when the device is being resumed by the system.
1224  * @drvwrap: Driver-model core structure wrapper.
1225  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1226  *	for devices bound to this driver.
1227  *
1228  * USB drivers must provide all the fields listed above except drvwrap.
1229  */
1230 struct usb_device_driver {
1231 	const char *name;
1232 
1233 	int (*probe) (struct usb_device *udev);
1234 	void (*disconnect) (struct usb_device *udev);
1235 
1236 	int (*suspend) (struct usb_device *udev, pm_message_t message);
1237 	int (*resume) (struct usb_device *udev, pm_message_t message);
1238 	struct usbdrv_wrap drvwrap;
1239 	unsigned int supports_autosuspend:1;
1240 };
1241 #define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1242 		drvwrap.driver)
1243 
1244 extern struct bus_type usb_bus_type;
1245 
1246 /**
1247  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1248  * @name: the usb class device name for this driver.  Will show up in sysfs.
1249  * @devnode: Callback to provide a naming hint for a possible
1250  *	device node to create.
1251  * @fops: pointer to the struct file_operations of this driver.
1252  * @minor_base: the start of the minor range for this driver.
1253  *
1254  * This structure is used for the usb_register_dev() and
1255  * usb_deregister_dev() functions, to consolidate a number of the
1256  * parameters used for them.
1257  */
1258 struct usb_class_driver {
1259 	char *name;
1260 	char *(*devnode)(struct device *dev, umode_t *mode);
1261 	const struct file_operations *fops;
1262 	int minor_base;
1263 };
1264 
1265 /*
1266  * use these in module_init()/module_exit()
1267  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1268  */
1269 extern int usb_register_driver(struct usb_driver *, struct module *,
1270 			       const char *);
1271 
1272 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1273 #define usb_register(driver) \
1274 	usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1275 
1276 extern void usb_deregister(struct usb_driver *);
1277 
1278 /**
1279  * module_usb_driver() - Helper macro for registering a USB driver
1280  * @__usb_driver: usb_driver struct
1281  *
1282  * Helper macro for USB drivers which do not do anything special in module
1283  * init/exit. This eliminates a lot of boilerplate. Each module may only
1284  * use this macro once, and calling it replaces module_init() and module_exit()
1285  */
1286 #define module_usb_driver(__usb_driver) \
1287 	module_driver(__usb_driver, usb_register, \
1288 		       usb_deregister)
1289 
1290 extern int usb_register_device_driver(struct usb_device_driver *,
1291 			struct module *);
1292 extern void usb_deregister_device_driver(struct usb_device_driver *);
1293 
1294 extern int usb_register_dev(struct usb_interface *intf,
1295 			    struct usb_class_driver *class_driver);
1296 extern void usb_deregister_dev(struct usb_interface *intf,
1297 			       struct usb_class_driver *class_driver);
1298 
1299 extern int usb_disabled(void);
1300 
1301 /* ----------------------------------------------------------------------- */
1302 
1303 /*
1304  * URB support, for asynchronous request completions
1305  */
1306 
1307 /*
1308  * urb->transfer_flags:
1309  *
1310  * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1311  */
1312 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
1313 #define URB_ISO_ASAP		0x0002	/* iso-only; use the first unexpired
1314 					 * slot in the schedule */
1315 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
1316 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
1317 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
1318 					 * needed */
1319 #define URB_FREE_BUFFER		0x0100	/* Free transfer buffer with the URB */
1320 
1321 /* The following flags are used internally by usbcore and HCDs */
1322 #define URB_DIR_IN		0x0200	/* Transfer from device to host */
1323 #define URB_DIR_OUT		0
1324 #define URB_DIR_MASK		URB_DIR_IN
1325 
1326 #define URB_DMA_MAP_SINGLE	0x00010000	/* Non-scatter-gather mapping */
1327 #define URB_DMA_MAP_PAGE	0x00020000	/* HCD-unsupported S-G */
1328 #define URB_DMA_MAP_SG		0x00040000	/* HCD-supported S-G */
1329 #define URB_MAP_LOCAL		0x00080000	/* HCD-local-memory mapping */
1330 #define URB_SETUP_MAP_SINGLE	0x00100000	/* Setup packet DMA mapped */
1331 #define URB_SETUP_MAP_LOCAL	0x00200000	/* HCD-local setup packet */
1332 #define URB_DMA_SG_COMBINED	0x00400000	/* S-G entries were combined */
1333 #define URB_ALIGNED_TEMP_BUFFER	0x00800000	/* Temp buffer was alloc'd */
1334 
1335 struct usb_iso_packet_descriptor {
1336 	unsigned int offset;
1337 	unsigned int length;		/* expected length */
1338 	unsigned int actual_length;
1339 	int status;
1340 };
1341 
1342 struct urb;
1343 
1344 struct usb_anchor {
1345 	struct list_head urb_list;
1346 	wait_queue_head_t wait;
1347 	spinlock_t lock;
1348 	atomic_t suspend_wakeups;
1349 	unsigned int poisoned:1;
1350 };
1351 
init_usb_anchor(struct usb_anchor * anchor)1352 static inline void init_usb_anchor(struct usb_anchor *anchor)
1353 {
1354 	memset(anchor, 0, sizeof(*anchor));
1355 	INIT_LIST_HEAD(&anchor->urb_list);
1356 	init_waitqueue_head(&anchor->wait);
1357 	spin_lock_init(&anchor->lock);
1358 }
1359 
1360 typedef void (*usb_complete_t)(struct urb *);
1361 
1362 /**
1363  * struct urb - USB Request Block
1364  * @urb_list: For use by current owner of the URB.
1365  * @anchor_list: membership in the list of an anchor
1366  * @anchor: to anchor URBs to a common mooring
1367  * @ep: Points to the endpoint's data structure.  Will eventually
1368  *	replace @pipe.
1369  * @pipe: Holds endpoint number, direction, type, and more.
1370  *	Create these values with the eight macros available;
1371  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1372  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
1373  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1374  *	numbers range from zero to fifteen.  Note that "in" endpoint two
1375  *	is a different endpoint (and pipe) from "out" endpoint two.
1376  *	The current configuration controls the existence, type, and
1377  *	maximum packet size of any given endpoint.
1378  * @stream_id: the endpoint's stream ID for bulk streams
1379  * @dev: Identifies the USB device to perform the request.
1380  * @status: This is read in non-iso completion functions to get the
1381  *	status of the particular request.  ISO requests only use it
1382  *	to tell whether the URB was unlinked; detailed status for
1383  *	each frame is in the fields of the iso_frame-desc.
1384  * @transfer_flags: A variety of flags may be used to affect how URB
1385  *	submission, unlinking, or operation are handled.  Different
1386  *	kinds of URB can use different flags.
1387  * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1388  *	request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1389  *	(however, do not leave garbage in transfer_buffer even then).
1390  *	This buffer must be suitable for DMA; allocate it with
1391  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1392  *	of this buffer will be modified.  This buffer is used for the data
1393  *	stage of control transfers.
1394  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1395  *	the device driver is saying that it provided this DMA address,
1396  *	which the host controller driver should use in preference to the
1397  *	transfer_buffer.
1398  * @sg: scatter gather buffer list, the buffer size of each element in
1399  * 	the list (except the last) must be divisible by the endpoint's
1400  * 	max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1401  * @num_mapped_sgs: (internal) number of mapped sg entries
1402  * @num_sgs: number of entries in the sg list
1403  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1404  *	be broken up into chunks according to the current maximum packet
1405  *	size for the endpoint, which is a function of the configuration
1406  *	and is encoded in the pipe.  When the length is zero, neither
1407  *	transfer_buffer nor transfer_dma is used.
1408  * @actual_length: This is read in non-iso completion functions, and
1409  *	it tells how many bytes (out of transfer_buffer_length) were
1410  *	transferred.  It will normally be the same as requested, unless
1411  *	either an error was reported or a short read was performed.
1412  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1413  *	short reads be reported as errors.
1414  * @setup_packet: Only used for control transfers, this points to eight bytes
1415  *	of setup data.  Control transfers always start by sending this data
1416  *	to the device.  Then transfer_buffer is read or written, if needed.
1417  * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1418  *	this field; setup_packet must point to a valid buffer.
1419  * @start_frame: Returns the initial frame for isochronous transfers.
1420  * @number_of_packets: Lists the number of ISO transfer buffers.
1421  * @interval: Specifies the polling interval for interrupt or isochronous
1422  *	transfers.  The units are frames (milliseconds) for full and low
1423  *	speed devices, and microframes (1/8 millisecond) for highspeed
1424  *	and SuperSpeed devices.
1425  * @error_count: Returns the number of ISO transfers that reported errors.
1426  * @context: For use in completion functions.  This normally points to
1427  *	request-specific driver context.
1428  * @complete: Completion handler. This URB is passed as the parameter to the
1429  *	completion function.  The completion function may then do what
1430  *	it likes with the URB, including resubmitting or freeing it.
1431  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1432  *	collect the transfer status for each buffer.
1433  *
1434  * This structure identifies USB transfer requests.  URBs must be allocated by
1435  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1436  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1437  * are submitted using usb_submit_urb(), and pending requests may be canceled
1438  * using usb_unlink_urb() or usb_kill_urb().
1439  *
1440  * Data Transfer Buffers:
1441  *
1442  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1443  * taken from the general page pool.  That is provided by transfer_buffer
1444  * (control requests also use setup_packet), and host controller drivers
1445  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1446  * mapping operations can be expensive on some platforms (perhaps using a dma
1447  * bounce buffer or talking to an IOMMU),
1448  * although they're cheap on commodity x86 and ppc hardware.
1449  *
1450  * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1451  * which tells the host controller driver that no such mapping is needed for
1452  * the transfer_buffer since
1453  * the device driver is DMA-aware.  For example, a device driver might
1454  * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1455  * When this transfer flag is provided, host controller drivers will
1456  * attempt to use the dma address found in the transfer_dma
1457  * field rather than determining a dma address themselves.
1458  *
1459  * Note that transfer_buffer must still be set if the controller
1460  * does not support DMA (as indicated by bus.uses_dma) and when talking
1461  * to root hub. If you have to trasfer between highmem zone and the device
1462  * on such controller, create a bounce buffer or bail out with an error.
1463  * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1464  * capable, assign NULL to it, so that usbmon knows not to use the value.
1465  * The setup_packet must always be set, so it cannot be located in highmem.
1466  *
1467  * Initialization:
1468  *
1469  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1470  * zero), and complete fields.  All URBs must also initialize
1471  * transfer_buffer and transfer_buffer_length.  They may provide the
1472  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1473  * to be treated as errors; that flag is invalid for write requests.
1474  *
1475  * Bulk URBs may
1476  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1477  * should always terminate with a short packet, even if it means adding an
1478  * extra zero length packet.
1479  *
1480  * Control URBs must provide a valid pointer in the setup_packet field.
1481  * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1482  * beforehand.
1483  *
1484  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1485  * or, for highspeed devices, 125 microsecond units)
1486  * to poll for transfers.  After the URB has been submitted, the interval
1487  * field reflects how the transfer was actually scheduled.
1488  * The polling interval may be more frequent than requested.
1489  * For example, some controllers have a maximum interval of 32 milliseconds,
1490  * while others support intervals of up to 1024 milliseconds.
1491  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1492  * endpoints, as well as high speed interrupt endpoints, the encoding of
1493  * the transfer interval in the endpoint descriptor is logarithmic.
1494  * Device drivers must convert that value to linear units themselves.)
1495  *
1496  * If an isochronous endpoint queue isn't already running, the host
1497  * controller will schedule a new URB to start as soon as bandwidth
1498  * utilization allows.  If the queue is running then a new URB will be
1499  * scheduled to start in the first transfer slot following the end of the
1500  * preceding URB, if that slot has not already expired.  If the slot has
1501  * expired (which can happen when IRQ delivery is delayed for a long time),
1502  * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1503  * is clear then the URB will be scheduled to start in the expired slot,
1504  * implying that some of its packets will not be transferred; if the flag
1505  * is set then the URB will be scheduled in the first unexpired slot,
1506  * breaking the queue's synchronization.  Upon URB completion, the
1507  * start_frame field will be set to the (micro)frame number in which the
1508  * transfer was scheduled.  Ranges for frame counter values are HC-specific
1509  * and can go from as low as 256 to as high as 65536 frames.
1510  *
1511  * Isochronous URBs have a different data transfer model, in part because
1512  * the quality of service is only "best effort".  Callers provide specially
1513  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1514  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1515  * URBs are normally queued, submitted by drivers to arrange that
1516  * transfers are at least double buffered, and then explicitly resubmitted
1517  * in completion handlers, so
1518  * that data (such as audio or video) streams at as constant a rate as the
1519  * host controller scheduler can support.
1520  *
1521  * Completion Callbacks:
1522  *
1523  * The completion callback is made in_interrupt(), and one of the first
1524  * things that a completion handler should do is check the status field.
1525  * The status field is provided for all URBs.  It is used to report
1526  * unlinked URBs, and status for all non-ISO transfers.  It should not
1527  * be examined before the URB is returned to the completion handler.
1528  *
1529  * The context field is normally used to link URBs back to the relevant
1530  * driver or request state.
1531  *
1532  * When the completion callback is invoked for non-isochronous URBs, the
1533  * actual_length field tells how many bytes were transferred.  This field
1534  * is updated even when the URB terminated with an error or was unlinked.
1535  *
1536  * ISO transfer status is reported in the status and actual_length fields
1537  * of the iso_frame_desc array, and the number of errors is reported in
1538  * error_count.  Completion callbacks for ISO transfers will normally
1539  * (re)submit URBs to ensure a constant transfer rate.
1540  *
1541  * Note that even fields marked "public" should not be touched by the driver
1542  * when the urb is owned by the hcd, that is, since the call to
1543  * usb_submit_urb() till the entry into the completion routine.
1544  */
1545 struct urb {
1546 	/* private: usb core and host controller only fields in the urb */
1547 	struct kref kref;		/* reference count of the URB */
1548 	void *hcpriv;			/* private data for host controller */
1549 	atomic_t use_count;		/* concurrent submissions counter */
1550 	atomic_t reject;		/* submissions will fail */
1551 	int unlinked;			/* unlink error code */
1552 
1553 	/* public: documented fields in the urb that can be used by drivers */
1554 	struct list_head urb_list;	/* list head for use by the urb's
1555 					 * current owner */
1556 	struct list_head anchor_list;	/* the URB may be anchored */
1557 	struct usb_anchor *anchor;
1558 	struct usb_device *dev;		/* (in) pointer to associated device */
1559 	struct usb_host_endpoint *ep;	/* (internal) pointer to endpoint */
1560 	unsigned int pipe;		/* (in) pipe information */
1561 	unsigned int stream_id;		/* (in) stream ID */
1562 	int status;			/* (return) non-ISO status */
1563 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1564 	void *transfer_buffer;		/* (in) associated data buffer */
1565 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1566 	struct scatterlist *sg;		/* (in) scatter gather buffer list */
1567 	int num_mapped_sgs;		/* (internal) mapped sg entries */
1568 	int num_sgs;			/* (in) number of entries in the sg list */
1569 	u32 transfer_buffer_length;	/* (in) data buffer length */
1570 	u32 actual_length;		/* (return) actual transfer length */
1571 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1572 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1573 	int start_frame;		/* (modify) start frame (ISO) */
1574 	int number_of_packets;		/* (in) number of ISO packets */
1575 	int interval;			/* (modify) transfer interval
1576 					 * (INT/ISO) */
1577 	int error_count;		/* (return) number of ISO errors */
1578 	void *context;			/* (in) context for completion */
1579 	usb_complete_t complete;	/* (in) completion routine */
1580 	struct usb_iso_packet_descriptor iso_frame_desc[0];
1581 					/* (in) ISO ONLY */
1582 };
1583 
1584 /* ----------------------------------------------------------------------- */
1585 
1586 /**
1587  * usb_fill_control_urb - initializes a control urb
1588  * @urb: pointer to the urb to initialize.
1589  * @dev: pointer to the struct usb_device for this urb.
1590  * @pipe: the endpoint pipe
1591  * @setup_packet: pointer to the setup_packet buffer
1592  * @transfer_buffer: pointer to the transfer buffer
1593  * @buffer_length: length of the transfer buffer
1594  * @complete_fn: pointer to the usb_complete_t function
1595  * @context: what to set the urb context to.
1596  *
1597  * Initializes a control urb with the proper information needed to submit
1598  * it to a device.
1599  */
usb_fill_control_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,unsigned char * setup_packet,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1600 static inline void usb_fill_control_urb(struct urb *urb,
1601 					struct usb_device *dev,
1602 					unsigned int pipe,
1603 					unsigned char *setup_packet,
1604 					void *transfer_buffer,
1605 					int buffer_length,
1606 					usb_complete_t complete_fn,
1607 					void *context)
1608 {
1609 	urb->dev = dev;
1610 	urb->pipe = pipe;
1611 	urb->setup_packet = setup_packet;
1612 	urb->transfer_buffer = transfer_buffer;
1613 	urb->transfer_buffer_length = buffer_length;
1614 	urb->complete = complete_fn;
1615 	urb->context = context;
1616 }
1617 
1618 /**
1619  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1620  * @urb: pointer to the urb to initialize.
1621  * @dev: pointer to the struct usb_device for this urb.
1622  * @pipe: the endpoint pipe
1623  * @transfer_buffer: pointer to the transfer buffer
1624  * @buffer_length: length of the transfer buffer
1625  * @complete_fn: pointer to the usb_complete_t function
1626  * @context: what to set the urb context to.
1627  *
1628  * Initializes a bulk urb with the proper information needed to submit it
1629  * to a device.
1630  */
usb_fill_bulk_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1631 static inline void usb_fill_bulk_urb(struct urb *urb,
1632 				     struct usb_device *dev,
1633 				     unsigned int pipe,
1634 				     void *transfer_buffer,
1635 				     int buffer_length,
1636 				     usb_complete_t complete_fn,
1637 				     void *context)
1638 {
1639 	urb->dev = dev;
1640 	urb->pipe = pipe;
1641 	urb->transfer_buffer = transfer_buffer;
1642 	urb->transfer_buffer_length = buffer_length;
1643 	urb->complete = complete_fn;
1644 	urb->context = context;
1645 }
1646 
1647 /**
1648  * usb_fill_int_urb - macro to help initialize a interrupt urb
1649  * @urb: pointer to the urb to initialize.
1650  * @dev: pointer to the struct usb_device for this urb.
1651  * @pipe: the endpoint pipe
1652  * @transfer_buffer: pointer to the transfer buffer
1653  * @buffer_length: length of the transfer buffer
1654  * @complete_fn: pointer to the usb_complete_t function
1655  * @context: what to set the urb context to.
1656  * @interval: what to set the urb interval to, encoded like
1657  *	the endpoint descriptor's bInterval value.
1658  *
1659  * Initializes a interrupt urb with the proper information needed to submit
1660  * it to a device.
1661  *
1662  * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1663  * encoding of the endpoint interval, and express polling intervals in
1664  * microframes (eight per millisecond) rather than in frames (one per
1665  * millisecond).
1666  *
1667  * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1668  * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1669  * through to the host controller, rather than being translated into microframe
1670  * units.
1671  */
usb_fill_int_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context,int interval)1672 static inline void usb_fill_int_urb(struct urb *urb,
1673 				    struct usb_device *dev,
1674 				    unsigned int pipe,
1675 				    void *transfer_buffer,
1676 				    int buffer_length,
1677 				    usb_complete_t complete_fn,
1678 				    void *context,
1679 				    int interval)
1680 {
1681 	urb->dev = dev;
1682 	urb->pipe = pipe;
1683 	urb->transfer_buffer = transfer_buffer;
1684 	urb->transfer_buffer_length = buffer_length;
1685 	urb->complete = complete_fn;
1686 	urb->context = context;
1687 
1688 	if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1689 		/* make sure interval is within allowed range */
1690 		interval = clamp(interval, 1, 16);
1691 
1692 		urb->interval = 1 << (interval - 1);
1693 	} else {
1694 		urb->interval = interval;
1695 	}
1696 
1697 	urb->start_frame = -1;
1698 }
1699 
1700 extern void usb_init_urb(struct urb *urb);
1701 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1702 extern void usb_free_urb(struct urb *urb);
1703 #define usb_put_urb usb_free_urb
1704 extern struct urb *usb_get_urb(struct urb *urb);
1705 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1706 extern int usb_unlink_urb(struct urb *urb);
1707 extern void usb_kill_urb(struct urb *urb);
1708 extern void usb_poison_urb(struct urb *urb);
1709 extern void usb_unpoison_urb(struct urb *urb);
1710 extern void usb_block_urb(struct urb *urb);
1711 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1712 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1713 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1714 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1715 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1716 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1717 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1718 extern void usb_unanchor_urb(struct urb *urb);
1719 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1720 					 unsigned int timeout);
1721 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1722 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1723 extern int usb_anchor_empty(struct usb_anchor *anchor);
1724 
1725 #define usb_unblock_urb	usb_unpoison_urb
1726 
1727 /**
1728  * usb_urb_dir_in - check if an URB describes an IN transfer
1729  * @urb: URB to be checked
1730  *
1731  * Return: 1 if @urb describes an IN transfer (device-to-host),
1732  * otherwise 0.
1733  */
usb_urb_dir_in(struct urb * urb)1734 static inline int usb_urb_dir_in(struct urb *urb)
1735 {
1736 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1737 }
1738 
1739 /**
1740  * usb_urb_dir_out - check if an URB describes an OUT transfer
1741  * @urb: URB to be checked
1742  *
1743  * Return: 1 if @urb describes an OUT transfer (host-to-device),
1744  * otherwise 0.
1745  */
usb_urb_dir_out(struct urb * urb)1746 static inline int usb_urb_dir_out(struct urb *urb)
1747 {
1748 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1749 }
1750 
1751 int usb_urb_ep_type_check(const struct urb *urb);
1752 
1753 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1754 	gfp_t mem_flags, dma_addr_t *dma);
1755 void usb_free_coherent(struct usb_device *dev, size_t size,
1756 	void *addr, dma_addr_t dma);
1757 
1758 #if 0
1759 struct urb *usb_buffer_map(struct urb *urb);
1760 void usb_buffer_dmasync(struct urb *urb);
1761 void usb_buffer_unmap(struct urb *urb);
1762 #endif
1763 
1764 struct scatterlist;
1765 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1766 		      struct scatterlist *sg, int nents);
1767 #if 0
1768 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1769 			   struct scatterlist *sg, int n_hw_ents);
1770 #endif
1771 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1772 			 struct scatterlist *sg, int n_hw_ents);
1773 
1774 /*-------------------------------------------------------------------*
1775  *                         SYNCHRONOUS CALL SUPPORT                  *
1776  *-------------------------------------------------------------------*/
1777 
1778 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1779 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1780 	void *data, __u16 size, int timeout);
1781 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1782 	void *data, int len, int *actual_length, int timeout);
1783 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1784 	void *data, int len, int *actual_length,
1785 	int timeout);
1786 
1787 /* wrappers around usb_control_msg() for the most common standard requests */
1788 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1789 	unsigned char descindex, void *buf, int size);
1790 extern int usb_get_status(struct usb_device *dev,
1791 	int recip, int type, int target, void *data);
1792 
usb_get_std_status(struct usb_device * dev,int recip,int target,void * data)1793 static inline int usb_get_std_status(struct usb_device *dev,
1794 	int recip, int target, void *data)
1795 {
1796 	return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1797 		data);
1798 }
1799 
usb_get_ptm_status(struct usb_device * dev,void * data)1800 static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1801 {
1802 	return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1803 		0, data);
1804 }
1805 
1806 extern int usb_string(struct usb_device *dev, int index,
1807 	char *buf, size_t size);
1808 
1809 /* wrappers that also update important state inside usbcore */
1810 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1811 extern int usb_reset_configuration(struct usb_device *dev);
1812 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1813 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1814 
1815 /* this request isn't really synchronous, but it belongs with the others */
1816 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1817 
1818 /* choose and set configuration for device */
1819 extern int usb_choose_configuration(struct usb_device *udev);
1820 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1821 
1822 /*
1823  * timeouts, in milliseconds, used for sending/receiving control messages
1824  * they typically complete within a few frames (msec) after they're issued
1825  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1826  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1827  */
1828 #define USB_CTRL_GET_TIMEOUT	5000
1829 #define USB_CTRL_SET_TIMEOUT	5000
1830 
1831 
1832 /**
1833  * struct usb_sg_request - support for scatter/gather I/O
1834  * @status: zero indicates success, else negative errno
1835  * @bytes: counts bytes transferred.
1836  *
1837  * These requests are initialized using usb_sg_init(), and then are used
1838  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1839  * members of the request object aren't for driver access.
1840  *
1841  * The status and bytecount values are valid only after usb_sg_wait()
1842  * returns.  If the status is zero, then the bytecount matches the total
1843  * from the request.
1844  *
1845  * After an error completion, drivers may need to clear a halt condition
1846  * on the endpoint.
1847  */
1848 struct usb_sg_request {
1849 	int			status;
1850 	size_t			bytes;
1851 
1852 	/* private:
1853 	 * members below are private to usbcore,
1854 	 * and are not provided for driver access!
1855 	 */
1856 	spinlock_t		lock;
1857 
1858 	struct usb_device	*dev;
1859 	int			pipe;
1860 
1861 	int			entries;
1862 	struct urb		**urbs;
1863 
1864 	int			count;
1865 	struct completion	complete;
1866 };
1867 
1868 int usb_sg_init(
1869 	struct usb_sg_request	*io,
1870 	struct usb_device	*dev,
1871 	unsigned		pipe,
1872 	unsigned		period,
1873 	struct scatterlist	*sg,
1874 	int			nents,
1875 	size_t			length,
1876 	gfp_t			mem_flags
1877 );
1878 void usb_sg_cancel(struct usb_sg_request *io);
1879 void usb_sg_wait(struct usb_sg_request *io);
1880 
1881 
1882 /* ----------------------------------------------------------------------- */
1883 
1884 /*
1885  * For various legacy reasons, Linux has a small cookie that's paired with
1886  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1887  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1888  * an unsigned int encoded as:
1889  *
1890  *  - direction:	bit 7		(0 = Host-to-Device [Out],
1891  *					 1 = Device-to-Host [In] ...
1892  *					like endpoint bEndpointAddress)
1893  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1894  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1895  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1896  *					 10 = control, 11 = bulk)
1897  *
1898  * Given the device address and endpoint descriptor, pipes are redundant.
1899  */
1900 
1901 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1902 /* (yet ... they're the values used by usbfs) */
1903 #define PIPE_ISOCHRONOUS		0
1904 #define PIPE_INTERRUPT			1
1905 #define PIPE_CONTROL			2
1906 #define PIPE_BULK			3
1907 
1908 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1909 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
1910 
1911 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1912 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1913 
1914 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1915 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1916 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1917 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1918 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1919 
__create_pipe(struct usb_device * dev,unsigned int endpoint)1920 static inline unsigned int __create_pipe(struct usb_device *dev,
1921 		unsigned int endpoint)
1922 {
1923 	return (dev->devnum << 8) | (endpoint << 15);
1924 }
1925 
1926 /* Create various pipes... */
1927 #define usb_sndctrlpipe(dev, endpoint)	\
1928 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1929 #define usb_rcvctrlpipe(dev, endpoint)	\
1930 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1931 #define usb_sndisocpipe(dev, endpoint)	\
1932 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1933 #define usb_rcvisocpipe(dev, endpoint)	\
1934 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1935 #define usb_sndbulkpipe(dev, endpoint)	\
1936 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1937 #define usb_rcvbulkpipe(dev, endpoint)	\
1938 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1939 #define usb_sndintpipe(dev, endpoint)	\
1940 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1941 #define usb_rcvintpipe(dev, endpoint)	\
1942 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1943 
1944 static inline struct usb_host_endpoint *
usb_pipe_endpoint(struct usb_device * dev,unsigned int pipe)1945 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1946 {
1947 	struct usb_host_endpoint **eps;
1948 	eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1949 	return eps[usb_pipeendpoint(pipe)];
1950 }
1951 
1952 /*-------------------------------------------------------------------------*/
1953 
1954 static inline __u16
usb_maxpacket(struct usb_device * udev,int pipe,int is_out)1955 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1956 {
1957 	struct usb_host_endpoint	*ep;
1958 	unsigned			epnum = usb_pipeendpoint(pipe);
1959 
1960 	if (is_out) {
1961 		WARN_ON(usb_pipein(pipe));
1962 		ep = udev->ep_out[epnum];
1963 	} else {
1964 		WARN_ON(usb_pipeout(pipe));
1965 		ep = udev->ep_in[epnum];
1966 	}
1967 	if (!ep)
1968 		return 0;
1969 
1970 	/* NOTE:  only 0x07ff bits are for packet size... */
1971 	return usb_endpoint_maxp(&ep->desc);
1972 }
1973 
1974 /* ----------------------------------------------------------------------- */
1975 
1976 /* translate USB error codes to codes user space understands */
usb_translate_errors(int error_code)1977 static inline int usb_translate_errors(int error_code)
1978 {
1979 	switch (error_code) {
1980 	case 0:
1981 	case -ENOMEM:
1982 	case -ENODEV:
1983 	case -EOPNOTSUPP:
1984 		return error_code;
1985 	default:
1986 		return -EIO;
1987 	}
1988 }
1989 
1990 /* Events from the usb core */
1991 #define USB_DEVICE_ADD		0x0001
1992 #define USB_DEVICE_REMOVE	0x0002
1993 #define USB_BUS_ADD		0x0003
1994 #define USB_BUS_REMOVE		0x0004
1995 extern void usb_register_notify(struct notifier_block *nb);
1996 extern void usb_unregister_notify(struct notifier_block *nb);
1997 
1998 /* debugfs stuff */
1999 extern struct dentry *usb_debug_root;
2000 
2001 /* LED triggers */
2002 enum usb_led_event {
2003 	USB_LED_EVENT_HOST = 0,
2004 	USB_LED_EVENT_GADGET = 1,
2005 };
2006 
2007 #ifdef CONFIG_USB_LED_TRIG
2008 extern void usb_led_activity(enum usb_led_event ev);
2009 #else
usb_led_activity(enum usb_led_event ev)2010 static inline void usb_led_activity(enum usb_led_event ev) {}
2011 #endif
2012 
2013 #endif  /* __KERNEL__ */
2014 
2015 #endif
2016