1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_USB_H
3 #define __LINUX_USB_H
4
5 #include <linux/mod_devicetable.h>
6 #include <linux/usb/ch9.h>
7
8 #define USB_MAJOR 180
9 #define USB_DEVICE_MAJOR 189
10
11
12 #ifdef __KERNEL__
13
14 #include <linux/errno.h> /* for -ENODEV */
15 #include <linux/delay.h> /* for mdelay() */
16 #include <linux/interrupt.h> /* for in_interrupt() */
17 #include <linux/list.h> /* for struct list_head */
18 #include <linux/kref.h> /* for struct kref */
19 #include <linux/device.h> /* for struct device */
20 #include <linux/fs.h> /* for struct file_operations */
21 #include <linux/completion.h> /* for struct completion */
22 #include <linux/sched.h> /* for current && schedule_timeout */
23 #include <linux/mutex.h> /* for struct mutex */
24 #include <linux/pm_runtime.h> /* for runtime PM */
25
26 struct usb_device;
27 struct usb_driver;
28 struct wusb_dev;
29
30 /*-------------------------------------------------------------------------*/
31
32 /*
33 * Host-side wrappers for standard USB descriptors ... these are parsed
34 * from the data provided by devices. Parsing turns them from a flat
35 * sequence of descriptors into a hierarchy:
36 *
37 * - devices have one (usually) or more configs;
38 * - configs have one (often) or more interfaces;
39 * - interfaces have one (usually) or more settings;
40 * - each interface setting has zero or (usually) more endpoints.
41 * - a SuperSpeed endpoint has a companion descriptor
42 *
43 * And there might be other descriptors mixed in with those.
44 *
45 * Devices may also have class-specific or vendor-specific descriptors.
46 */
47
48 struct ep_device;
49
50 /**
51 * struct usb_host_endpoint - host-side endpoint descriptor and queue
52 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
53 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
54 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
55 * @urb_list: urbs queued to this endpoint; maintained by usbcore
56 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
57 * with one or more transfer descriptors (TDs) per urb
58 * @ep_dev: ep_device for sysfs info
59 * @extra: descriptors following this endpoint in the configuration
60 * @extralen: how many bytes of "extra" are valid
61 * @enabled: URBs may be submitted to this endpoint
62 * @streams: number of USB-3 streams allocated on the endpoint
63 *
64 * USB requests are always queued to a given endpoint, identified by a
65 * descriptor within an active interface in a given USB configuration.
66 */
67 struct usb_host_endpoint {
68 struct usb_endpoint_descriptor desc;
69 struct usb_ss_ep_comp_descriptor ss_ep_comp;
70 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp;
71 struct list_head urb_list;
72 void *hcpriv;
73 struct ep_device *ep_dev; /* For sysfs info */
74
75 unsigned char *extra; /* Extra descriptors */
76 int extralen;
77 int enabled;
78 int streams;
79 };
80
81 /* host-side wrapper for one interface setting's parsed descriptors */
82 struct usb_host_interface {
83 struct usb_interface_descriptor desc;
84
85 int extralen;
86 unsigned char *extra; /* Extra descriptors */
87
88 /* array of desc.bNumEndpoints endpoints associated with this
89 * interface setting. these will be in no particular order.
90 */
91 struct usb_host_endpoint *endpoint;
92
93 char *string; /* iInterface string, if present */
94 };
95
96 enum usb_interface_condition {
97 USB_INTERFACE_UNBOUND = 0,
98 USB_INTERFACE_BINDING,
99 USB_INTERFACE_BOUND,
100 USB_INTERFACE_UNBINDING,
101 };
102
103 int __must_check
104 usb_find_common_endpoints(struct usb_host_interface *alt,
105 struct usb_endpoint_descriptor **bulk_in,
106 struct usb_endpoint_descriptor **bulk_out,
107 struct usb_endpoint_descriptor **int_in,
108 struct usb_endpoint_descriptor **int_out);
109
110 int __must_check
111 usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
112 struct usb_endpoint_descriptor **bulk_in,
113 struct usb_endpoint_descriptor **bulk_out,
114 struct usb_endpoint_descriptor **int_in,
115 struct usb_endpoint_descriptor **int_out);
116
117 static inline int __must_check
usb_find_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)118 usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
119 struct usb_endpoint_descriptor **bulk_in)
120 {
121 return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
122 }
123
124 static inline int __must_check
usb_find_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)125 usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
126 struct usb_endpoint_descriptor **bulk_out)
127 {
128 return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
129 }
130
131 static inline int __must_check
usb_find_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)132 usb_find_int_in_endpoint(struct usb_host_interface *alt,
133 struct usb_endpoint_descriptor **int_in)
134 {
135 return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
136 }
137
138 static inline int __must_check
usb_find_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)139 usb_find_int_out_endpoint(struct usb_host_interface *alt,
140 struct usb_endpoint_descriptor **int_out)
141 {
142 return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
143 }
144
145 static inline int __must_check
usb_find_last_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)146 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
147 struct usb_endpoint_descriptor **bulk_in)
148 {
149 return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
150 }
151
152 static inline int __must_check
usb_find_last_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)153 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
154 struct usb_endpoint_descriptor **bulk_out)
155 {
156 return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
157 }
158
159 static inline int __must_check
usb_find_last_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)160 usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
161 struct usb_endpoint_descriptor **int_in)
162 {
163 return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
164 }
165
166 static inline int __must_check
usb_find_last_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)167 usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
168 struct usb_endpoint_descriptor **int_out)
169 {
170 return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
171 }
172
173 /**
174 * struct usb_interface - what usb device drivers talk to
175 * @altsetting: array of interface structures, one for each alternate
176 * setting that may be selected. Each one includes a set of
177 * endpoint configurations. They will be in no particular order.
178 * @cur_altsetting: the current altsetting.
179 * @num_altsetting: number of altsettings defined.
180 * @intf_assoc: interface association descriptor
181 * @minor: the minor number assigned to this interface, if this
182 * interface is bound to a driver that uses the USB major number.
183 * If this interface does not use the USB major, this field should
184 * be unused. The driver should set this value in the probe()
185 * function of the driver, after it has been assigned a minor
186 * number from the USB core by calling usb_register_dev().
187 * @condition: binding state of the interface: not bound, binding
188 * (in probe()), bound to a driver, or unbinding (in disconnect())
189 * @sysfs_files_created: sysfs attributes exist
190 * @ep_devs_created: endpoint child pseudo-devices exist
191 * @unregistering: flag set when the interface is being unregistered
192 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
193 * capability during autosuspend.
194 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
195 * has been deferred.
196 * @needs_binding: flag set when the driver should be re-probed or unbound
197 * following a reset or suspend operation it doesn't support.
198 * @authorized: This allows to (de)authorize individual interfaces instead
199 * a whole device in contrast to the device authorization.
200 * @dev: driver model's view of this device
201 * @usb_dev: if an interface is bound to the USB major, this will point
202 * to the sysfs representation for that device.
203 * @pm_usage_cnt: PM usage counter for this interface
204 * @reset_ws: Used for scheduling resets from atomic context.
205 * @resetting_device: USB core reset the device, so use alt setting 0 as
206 * current; needs bandwidth alloc after reset.
207 *
208 * USB device drivers attach to interfaces on a physical device. Each
209 * interface encapsulates a single high level function, such as feeding
210 * an audio stream to a speaker or reporting a change in a volume control.
211 * Many USB devices only have one interface. The protocol used to talk to
212 * an interface's endpoints can be defined in a usb "class" specification,
213 * or by a product's vendor. The (default) control endpoint is part of
214 * every interface, but is never listed among the interface's descriptors.
215 *
216 * The driver that is bound to the interface can use standard driver model
217 * calls such as dev_get_drvdata() on the dev member of this structure.
218 *
219 * Each interface may have alternate settings. The initial configuration
220 * of a device sets altsetting 0, but the device driver can change
221 * that setting using usb_set_interface(). Alternate settings are often
222 * used to control the use of periodic endpoints, such as by having
223 * different endpoints use different amounts of reserved USB bandwidth.
224 * All standards-conformant USB devices that use isochronous endpoints
225 * will use them in non-default settings.
226 *
227 * The USB specification says that alternate setting numbers must run from
228 * 0 to one less than the total number of alternate settings. But some
229 * devices manage to mess this up, and the structures aren't necessarily
230 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
231 * look up an alternate setting in the altsetting array based on its number.
232 */
233 struct usb_interface {
234 /* array of alternate settings for this interface,
235 * stored in no particular order */
236 struct usb_host_interface *altsetting;
237
238 struct usb_host_interface *cur_altsetting; /* the currently
239 * active alternate setting */
240 unsigned num_altsetting; /* number of alternate settings */
241
242 /* If there is an interface association descriptor then it will list
243 * the associated interfaces */
244 struct usb_interface_assoc_descriptor *intf_assoc;
245
246 int minor; /* minor number this interface is
247 * bound to */
248 enum usb_interface_condition condition; /* state of binding */
249 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
250 unsigned ep_devs_created:1; /* endpoint "devices" exist */
251 unsigned unregistering:1; /* unregistration is in progress */
252 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
253 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
254 unsigned needs_binding:1; /* needs delayed unbind/rebind */
255 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
256 unsigned authorized:1; /* used for interface authorization */
257
258 struct device dev; /* interface specific device info */
259 struct device *usb_dev;
260 atomic_t pm_usage_cnt; /* usage counter for autosuspend */
261 struct work_struct reset_ws; /* for resets in atomic context */
262 };
263 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
264
usb_get_intfdata(struct usb_interface * intf)265 static inline void *usb_get_intfdata(struct usb_interface *intf)
266 {
267 return dev_get_drvdata(&intf->dev);
268 }
269
usb_set_intfdata(struct usb_interface * intf,void * data)270 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
271 {
272 dev_set_drvdata(&intf->dev, data);
273 }
274
275 struct usb_interface *usb_get_intf(struct usb_interface *intf);
276 void usb_put_intf(struct usb_interface *intf);
277
278 /* Hard limit */
279 #define USB_MAXENDPOINTS 30
280 /* this maximum is arbitrary */
281 #define USB_MAXINTERFACES 32
282 #define USB_MAXIADS (USB_MAXINTERFACES/2)
283
284 /*
285 * USB Resume Timer: Every Host controller driver should drive the resume
286 * signalling on the bus for the amount of time defined by this macro.
287 *
288 * That way we will have a 'stable' behavior among all HCDs supported by Linux.
289 *
290 * Note that the USB Specification states we should drive resume for *at least*
291 * 20 ms, but it doesn't give an upper bound. This creates two possible
292 * situations which we want to avoid:
293 *
294 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
295 * us to fail USB Electrical Tests, thus failing Certification
296 *
297 * (b) Some (many) devices actually need more than 20 ms of resume signalling,
298 * and while we can argue that's against the USB Specification, we don't have
299 * control over which devices a certification laboratory will be using for
300 * certification. If CertLab uses a device which was tested against Windows and
301 * that happens to have relaxed resume signalling rules, we might fall into
302 * situations where we fail interoperability and electrical tests.
303 *
304 * In order to avoid both conditions, we're using a 40 ms resume timeout, which
305 * should cope with both LPJ calibration errors and devices not following every
306 * detail of the USB Specification.
307 */
308 #define USB_RESUME_TIMEOUT 40 /* ms */
309
310 /**
311 * struct usb_interface_cache - long-term representation of a device interface
312 * @num_altsetting: number of altsettings defined.
313 * @ref: reference counter.
314 * @altsetting: variable-length array of interface structures, one for
315 * each alternate setting that may be selected. Each one includes a
316 * set of endpoint configurations. They will be in no particular order.
317 *
318 * These structures persist for the lifetime of a usb_device, unlike
319 * struct usb_interface (which persists only as long as its configuration
320 * is installed). The altsetting arrays can be accessed through these
321 * structures at any time, permitting comparison of configurations and
322 * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
323 */
324 struct usb_interface_cache {
325 unsigned num_altsetting; /* number of alternate settings */
326 struct kref ref; /* reference counter */
327
328 /* variable-length array of alternate settings for this interface,
329 * stored in no particular order */
330 struct usb_host_interface altsetting[0];
331 };
332 #define ref_to_usb_interface_cache(r) \
333 container_of(r, struct usb_interface_cache, ref)
334 #define altsetting_to_usb_interface_cache(a) \
335 container_of(a, struct usb_interface_cache, altsetting[0])
336
337 /**
338 * struct usb_host_config - representation of a device's configuration
339 * @desc: the device's configuration descriptor.
340 * @string: pointer to the cached version of the iConfiguration string, if
341 * present for this configuration.
342 * @intf_assoc: list of any interface association descriptors in this config
343 * @interface: array of pointers to usb_interface structures, one for each
344 * interface in the configuration. The number of interfaces is stored
345 * in desc.bNumInterfaces. These pointers are valid only while the
346 * the configuration is active.
347 * @intf_cache: array of pointers to usb_interface_cache structures, one
348 * for each interface in the configuration. These structures exist
349 * for the entire life of the device.
350 * @extra: pointer to buffer containing all extra descriptors associated
351 * with this configuration (those preceding the first interface
352 * descriptor).
353 * @extralen: length of the extra descriptors buffer.
354 *
355 * USB devices may have multiple configurations, but only one can be active
356 * at any time. Each encapsulates a different operational environment;
357 * for example, a dual-speed device would have separate configurations for
358 * full-speed and high-speed operation. The number of configurations
359 * available is stored in the device descriptor as bNumConfigurations.
360 *
361 * A configuration can contain multiple interfaces. Each corresponds to
362 * a different function of the USB device, and all are available whenever
363 * the configuration is active. The USB standard says that interfaces
364 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
365 * of devices get this wrong. In addition, the interface array is not
366 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
367 * look up an interface entry based on its number.
368 *
369 * Device drivers should not attempt to activate configurations. The choice
370 * of which configuration to install is a policy decision based on such
371 * considerations as available power, functionality provided, and the user's
372 * desires (expressed through userspace tools). However, drivers can call
373 * usb_reset_configuration() to reinitialize the current configuration and
374 * all its interfaces.
375 */
376 struct usb_host_config {
377 struct usb_config_descriptor desc;
378
379 char *string; /* iConfiguration string, if present */
380
381 /* List of any Interface Association Descriptors in this
382 * configuration. */
383 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
384
385 /* the interfaces associated with this configuration,
386 * stored in no particular order */
387 struct usb_interface *interface[USB_MAXINTERFACES];
388
389 /* Interface information available even when this is not the
390 * active configuration */
391 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
392
393 unsigned char *extra; /* Extra descriptors */
394 int extralen;
395 };
396
397 /* USB2.0 and USB3.0 device BOS descriptor set */
398 struct usb_host_bos {
399 struct usb_bos_descriptor *desc;
400
401 /* wireless cap descriptor is handled by wusb */
402 struct usb_ext_cap_descriptor *ext_cap;
403 struct usb_ss_cap_descriptor *ss_cap;
404 struct usb_ssp_cap_descriptor *ssp_cap;
405 struct usb_ss_container_id_descriptor *ss_id;
406 struct usb_ptm_cap_descriptor *ptm_cap;
407 };
408
409 int __usb_get_extra_descriptor(char *buffer, unsigned size,
410 unsigned char type, void **ptr);
411 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
412 __usb_get_extra_descriptor((ifpoint)->extra, \
413 (ifpoint)->extralen, \
414 type, (void **)ptr)
415
416 /* ----------------------------------------------------------------------- */
417
418 /* USB device number allocation bitmap */
419 struct usb_devmap {
420 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
421 };
422
423 /*
424 * Allocated per bus (tree of devices) we have:
425 */
426 struct usb_bus {
427 struct device *controller; /* host/master side hardware */
428 struct device *sysdev; /* as seen from firmware or bus */
429 int busnum; /* Bus number (in order of reg) */
430 const char *bus_name; /* stable id (PCI slot_name etc) */
431 u8 uses_dma; /* Does the host controller use DMA? */
432 u8 uses_pio_for_control; /*
433 * Does the host controller use PIO
434 * for control transfers?
435 */
436 u8 otg_port; /* 0, or number of OTG/HNP port */
437 unsigned is_b_host:1; /* true during some HNP roleswitches */
438 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
439 unsigned no_stop_on_short:1; /*
440 * Quirk: some controllers don't stop
441 * the ep queue on a short transfer
442 * with the URB_SHORT_NOT_OK flag set.
443 */
444 unsigned no_sg_constraint:1; /* no sg constraint */
445 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
446
447 int devnum_next; /* Next open device number in
448 * round-robin allocation */
449 struct mutex devnum_next_mutex; /* devnum_next mutex */
450
451 struct usb_devmap devmap; /* device address allocation map */
452 struct usb_device *root_hub; /* Root hub */
453 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
454
455 int bandwidth_allocated; /* on this bus: how much of the time
456 * reserved for periodic (intr/iso)
457 * requests is used, on average?
458 * Units: microseconds/frame.
459 * Limits: Full/low speed reserve 90%,
460 * while high speed reserves 80%.
461 */
462 int bandwidth_int_reqs; /* number of Interrupt requests */
463 int bandwidth_isoc_reqs; /* number of Isoc. requests */
464
465 unsigned resuming_ports; /* bit array: resuming root-hub ports */
466
467 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
468 struct mon_bus *mon_bus; /* non-null when associated */
469 int monitored; /* non-zero when monitored */
470 #endif
471 };
472
473 struct usb_dev_state;
474
475 /* ----------------------------------------------------------------------- */
476
477 struct usb_tt;
478
479 enum usb_device_removable {
480 USB_DEVICE_REMOVABLE_UNKNOWN = 0,
481 USB_DEVICE_REMOVABLE,
482 USB_DEVICE_FIXED,
483 };
484
485 enum usb_port_connect_type {
486 USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
487 USB_PORT_CONNECT_TYPE_HOT_PLUG,
488 USB_PORT_CONNECT_TYPE_HARD_WIRED,
489 USB_PORT_NOT_USED,
490 };
491
492 /*
493 * USB port quirks.
494 */
495
496 /* For the given port, prefer the old (faster) enumeration scheme. */
497 #define USB_PORT_QUIRK_OLD_SCHEME BIT(0)
498
499 /* Decrease TRSTRCY to 10ms during device enumeration. */
500 #define USB_PORT_QUIRK_FAST_ENUM BIT(1)
501
502 /*
503 * USB 2.0 Link Power Management (LPM) parameters.
504 */
505 struct usb2_lpm_parameters {
506 /* Best effort service latency indicate how long the host will drive
507 * resume on an exit from L1.
508 */
509 unsigned int besl;
510
511 /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
512 * When the timer counts to zero, the parent hub will initiate a LPM
513 * transition to L1.
514 */
515 int timeout;
516 };
517
518 /*
519 * USB 3.0 Link Power Management (LPM) parameters.
520 *
521 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
522 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
523 * All three are stored in nanoseconds.
524 */
525 struct usb3_lpm_parameters {
526 /*
527 * Maximum exit latency (MEL) for the host to send a packet to the
528 * device (either a Ping for isoc endpoints, or a data packet for
529 * interrupt endpoints), the hubs to decode the packet, and for all hubs
530 * in the path to transition the links to U0.
531 */
532 unsigned int mel;
533 /*
534 * Maximum exit latency for a device-initiated LPM transition to bring
535 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB
536 * 3.0 spec, with no explanation of what "P" stands for. "Path"?
537 */
538 unsigned int pel;
539
540 /*
541 * The System Exit Latency (SEL) includes PEL, and three other
542 * latencies. After a device initiates a U0 transition, it will take
543 * some time from when the device sends the ERDY to when it will finally
544 * receive the data packet. Basically, SEL should be the worse-case
545 * latency from when a device starts initiating a U0 transition to when
546 * it will get data.
547 */
548 unsigned int sel;
549 /*
550 * The idle timeout value that is currently programmed into the parent
551 * hub for this device. When the timer counts to zero, the parent hub
552 * will initiate an LPM transition to either U1 or U2.
553 */
554 int timeout;
555 };
556
557 /**
558 * struct usb_device - kernel's representation of a USB device
559 * @devnum: device number; address on a USB bus
560 * @devpath: device ID string for use in messages (e.g., /port/...)
561 * @route: tree topology hex string for use with xHCI
562 * @state: device state: configured, not attached, etc.
563 * @speed: device speed: high/full/low (or error)
564 * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support
565 * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support
566 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
567 * @ttport: device port on that tt hub
568 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
569 * @parent: our hub, unless we're the root
570 * @bus: bus we're part of
571 * @ep0: endpoint 0 data (default control pipe)
572 * @dev: generic device interface
573 * @descriptor: USB device descriptor
574 * @bos: USB device BOS descriptor set
575 * @config: all of the device's configs
576 * @actconfig: the active configuration
577 * @ep_in: array of IN endpoints
578 * @ep_out: array of OUT endpoints
579 * @rawdescriptors: raw descriptors for each config
580 * @bus_mA: Current available from the bus
581 * @portnum: parent port number (origin 1)
582 * @level: number of USB hub ancestors
583 * @can_submit: URBs may be submitted
584 * @persist_enabled: USB_PERSIST enabled for this device
585 * @have_langid: whether string_langid is valid
586 * @authorized: policy has said we can use it;
587 * (user space) policy determines if we authorize this device to be
588 * used or not. By default, wired USB devices are authorized.
589 * WUSB devices are not, until we authorize them from user space.
590 * FIXME -- complete doc
591 * @authenticated: Crypto authentication passed
592 * @wusb: device is Wireless USB
593 * @lpm_capable: device supports LPM
594 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
595 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
596 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
597 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
598 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
599 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
600 * @string_langid: language ID for strings
601 * @product: iProduct string, if present (static)
602 * @manufacturer: iManufacturer string, if present (static)
603 * @serial: iSerialNumber string, if present (static)
604 * @filelist: usbfs files that are open to this device
605 * @maxchild: number of ports if hub
606 * @quirks: quirks of the whole device
607 * @urbnum: number of URBs submitted for the whole device
608 * @active_duration: total time device is not suspended
609 * @connect_time: time device was first connected
610 * @do_remote_wakeup: remote wakeup should be enabled
611 * @reset_resume: needs reset instead of resume
612 * @port_is_suspended: the upstream port is suspended (L2 or U3)
613 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
614 * specific data for the device.
615 * @slot_id: Slot ID assigned by xHCI
616 * @removable: Device can be physically removed from this port
617 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
618 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
619 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
620 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
621 * to keep track of the number of functions that require USB 3.0 Link Power
622 * Management to be disabled for this usb_device. This count should only
623 * be manipulated by those functions, with the bandwidth_mutex is held.
624 * @hub_delay: cached value consisting of:
625 * parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
626 *
627 * Will be used as wValue for SetIsochDelay requests.
628 *
629 * Notes:
630 * Usbcore drivers should not set usbdev->state directly. Instead use
631 * usb_set_device_state().
632 */
633 struct usb_device {
634 int devnum;
635 char devpath[16];
636 u32 route;
637 enum usb_device_state state;
638 enum usb_device_speed speed;
639 unsigned int rx_lanes;
640 unsigned int tx_lanes;
641
642 struct usb_tt *tt;
643 int ttport;
644
645 unsigned int toggle[2];
646
647 struct usb_device *parent;
648 struct usb_bus *bus;
649 struct usb_host_endpoint ep0;
650
651 struct device dev;
652
653 struct usb_device_descriptor descriptor;
654 struct usb_host_bos *bos;
655 struct usb_host_config *config;
656
657 struct usb_host_config *actconfig;
658 struct usb_host_endpoint *ep_in[16];
659 struct usb_host_endpoint *ep_out[16];
660
661 char **rawdescriptors;
662
663 unsigned short bus_mA;
664 u8 portnum;
665 u8 level;
666
667 unsigned can_submit:1;
668 unsigned persist_enabled:1;
669 unsigned have_langid:1;
670 unsigned authorized:1;
671 unsigned authenticated:1;
672 unsigned wusb:1;
673 unsigned lpm_capable:1;
674 unsigned usb2_hw_lpm_capable:1;
675 unsigned usb2_hw_lpm_besl_capable:1;
676 unsigned usb2_hw_lpm_enabled:1;
677 unsigned usb2_hw_lpm_allowed:1;
678 unsigned usb3_lpm_u1_enabled:1;
679 unsigned usb3_lpm_u2_enabled:1;
680 int string_langid;
681
682 /* static strings from the device */
683 char *product;
684 char *manufacturer;
685 char *serial;
686
687 struct list_head filelist;
688
689 int maxchild;
690
691 u32 quirks;
692 atomic_t urbnum;
693
694 unsigned long active_duration;
695
696 #ifdef CONFIG_PM
697 unsigned long connect_time;
698
699 unsigned do_remote_wakeup:1;
700 unsigned reset_resume:1;
701 unsigned port_is_suspended:1;
702 #endif
703 struct wusb_dev *wusb_dev;
704 int slot_id;
705 enum usb_device_removable removable;
706 struct usb2_lpm_parameters l1_params;
707 struct usb3_lpm_parameters u1_params;
708 struct usb3_lpm_parameters u2_params;
709 unsigned lpm_disable_count;
710
711 u16 hub_delay;
712 };
713 #define to_usb_device(d) container_of(d, struct usb_device, dev)
714
interface_to_usbdev(struct usb_interface * intf)715 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
716 {
717 return to_usb_device(intf->dev.parent);
718 }
719
720 extern struct usb_device *usb_get_dev(struct usb_device *dev);
721 extern void usb_put_dev(struct usb_device *dev);
722 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
723 int port1);
724
725 /**
726 * usb_hub_for_each_child - iterate over all child devices on the hub
727 * @hdev: USB device belonging to the usb hub
728 * @port1: portnum associated with child device
729 * @child: child device pointer
730 */
731 #define usb_hub_for_each_child(hdev, port1, child) \
732 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
733 port1 <= hdev->maxchild; \
734 child = usb_hub_find_child(hdev, ++port1)) \
735 if (!child) continue; else
736
737 /* USB device locking */
738 #define usb_lock_device(udev) device_lock(&(udev)->dev)
739 #define usb_unlock_device(udev) device_unlock(&(udev)->dev)
740 #define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev)
741 #define usb_trylock_device(udev) device_trylock(&(udev)->dev)
742 extern int usb_lock_device_for_reset(struct usb_device *udev,
743 const struct usb_interface *iface);
744
745 /* USB port reset for device reinitialization */
746 extern int usb_reset_device(struct usb_device *dev);
747 extern void usb_queue_reset_device(struct usb_interface *dev);
748
749 #ifdef CONFIG_ACPI
750 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
751 bool enable);
752 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
753 #else
usb_acpi_set_power_state(struct usb_device * hdev,int index,bool enable)754 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
755 bool enable) { return 0; }
usb_acpi_power_manageable(struct usb_device * hdev,int index)756 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
757 { return true; }
758 #endif
759
760 /* USB autosuspend and autoresume */
761 #ifdef CONFIG_PM
762 extern void usb_enable_autosuspend(struct usb_device *udev);
763 extern void usb_disable_autosuspend(struct usb_device *udev);
764
765 extern int usb_autopm_get_interface(struct usb_interface *intf);
766 extern void usb_autopm_put_interface(struct usb_interface *intf);
767 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
768 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
769 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
770 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
771
usb_mark_last_busy(struct usb_device * udev)772 static inline void usb_mark_last_busy(struct usb_device *udev)
773 {
774 pm_runtime_mark_last_busy(&udev->dev);
775 }
776
777 #else
778
usb_enable_autosuspend(struct usb_device * udev)779 static inline int usb_enable_autosuspend(struct usb_device *udev)
780 { return 0; }
usb_disable_autosuspend(struct usb_device * udev)781 static inline int usb_disable_autosuspend(struct usb_device *udev)
782 { return 0; }
783
usb_autopm_get_interface(struct usb_interface * intf)784 static inline int usb_autopm_get_interface(struct usb_interface *intf)
785 { return 0; }
usb_autopm_get_interface_async(struct usb_interface * intf)786 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
787 { return 0; }
788
usb_autopm_put_interface(struct usb_interface * intf)789 static inline void usb_autopm_put_interface(struct usb_interface *intf)
790 { }
usb_autopm_put_interface_async(struct usb_interface * intf)791 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
792 { }
usb_autopm_get_interface_no_resume(struct usb_interface * intf)793 static inline void usb_autopm_get_interface_no_resume(
794 struct usb_interface *intf)
795 { }
usb_autopm_put_interface_no_suspend(struct usb_interface * intf)796 static inline void usb_autopm_put_interface_no_suspend(
797 struct usb_interface *intf)
798 { }
usb_mark_last_busy(struct usb_device * udev)799 static inline void usb_mark_last_busy(struct usb_device *udev)
800 { }
801 #endif
802
803 extern int usb_disable_lpm(struct usb_device *udev);
804 extern void usb_enable_lpm(struct usb_device *udev);
805 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
806 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
807 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
808
809 extern int usb_disable_ltm(struct usb_device *udev);
810 extern void usb_enable_ltm(struct usb_device *udev);
811
usb_device_supports_ltm(struct usb_device * udev)812 static inline bool usb_device_supports_ltm(struct usb_device *udev)
813 {
814 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
815 return false;
816 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
817 }
818
usb_device_no_sg_constraint(struct usb_device * udev)819 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
820 {
821 return udev && udev->bus && udev->bus->no_sg_constraint;
822 }
823
824
825 /*-------------------------------------------------------------------------*/
826
827 /* for drivers using iso endpoints */
828 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
829
830 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
831 extern int usb_alloc_streams(struct usb_interface *interface,
832 struct usb_host_endpoint **eps, unsigned int num_eps,
833 unsigned int num_streams, gfp_t mem_flags);
834
835 /* Reverts a group of bulk endpoints back to not using stream IDs. */
836 extern int usb_free_streams(struct usb_interface *interface,
837 struct usb_host_endpoint **eps, unsigned int num_eps,
838 gfp_t mem_flags);
839
840 /* used these for multi-interface device registration */
841 extern int usb_driver_claim_interface(struct usb_driver *driver,
842 struct usb_interface *iface, void *priv);
843
844 /**
845 * usb_interface_claimed - returns true iff an interface is claimed
846 * @iface: the interface being checked
847 *
848 * Return: %true (nonzero) iff the interface is claimed, else %false
849 * (zero).
850 *
851 * Note:
852 * Callers must own the driver model's usb bus readlock. So driver
853 * probe() entries don't need extra locking, but other call contexts
854 * may need to explicitly claim that lock.
855 *
856 */
usb_interface_claimed(struct usb_interface * iface)857 static inline int usb_interface_claimed(struct usb_interface *iface)
858 {
859 return (iface->dev.driver != NULL);
860 }
861
862 extern void usb_driver_release_interface(struct usb_driver *driver,
863 struct usb_interface *iface);
864 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
865 const struct usb_device_id *id);
866 extern int usb_match_one_id(struct usb_interface *interface,
867 const struct usb_device_id *id);
868
869 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
870 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
871 int minor);
872 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
873 unsigned ifnum);
874 extern struct usb_host_interface *usb_altnum_to_altsetting(
875 const struct usb_interface *intf, unsigned int altnum);
876 extern struct usb_host_interface *usb_find_alt_setting(
877 struct usb_host_config *config,
878 unsigned int iface_num,
879 unsigned int alt_num);
880
881 /* port claiming functions */
882 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
883 struct usb_dev_state *owner);
884 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
885 struct usb_dev_state *owner);
886
887 /**
888 * usb_make_path - returns stable device path in the usb tree
889 * @dev: the device whose path is being constructed
890 * @buf: where to put the string
891 * @size: how big is "buf"?
892 *
893 * Return: Length of the string (> 0) or negative if size was too small.
894 *
895 * Note:
896 * This identifier is intended to be "stable", reflecting physical paths in
897 * hardware such as physical bus addresses for host controllers or ports on
898 * USB hubs. That makes it stay the same until systems are physically
899 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
900 * controllers. Adding and removing devices, including virtual root hubs
901 * in host controller driver modules, does not change these path identifiers;
902 * neither does rebooting or re-enumerating. These are more useful identifiers
903 * than changeable ("unstable") ones like bus numbers or device addresses.
904 *
905 * With a partial exception for devices connected to USB 2.0 root hubs, these
906 * identifiers are also predictable. So long as the device tree isn't changed,
907 * plugging any USB device into a given hub port always gives it the same path.
908 * Because of the use of "companion" controllers, devices connected to ports on
909 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
910 * high speed, and a different one if they are full or low speed.
911 */
usb_make_path(struct usb_device * dev,char * buf,size_t size)912 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
913 {
914 int actual;
915 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
916 dev->devpath);
917 return (actual >= (int)size) ? -1 : actual;
918 }
919
920 /*-------------------------------------------------------------------------*/
921
922 #define USB_DEVICE_ID_MATCH_DEVICE \
923 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
924 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
925 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
926 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
927 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
928 #define USB_DEVICE_ID_MATCH_DEV_INFO \
929 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
930 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
931 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
932 #define USB_DEVICE_ID_MATCH_INT_INFO \
933 (USB_DEVICE_ID_MATCH_INT_CLASS | \
934 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
935 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
936
937 /**
938 * USB_DEVICE - macro used to describe a specific usb device
939 * @vend: the 16 bit USB Vendor ID
940 * @prod: the 16 bit USB Product ID
941 *
942 * This macro is used to create a struct usb_device_id that matches a
943 * specific device.
944 */
945 #define USB_DEVICE(vend, prod) \
946 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
947 .idVendor = (vend), \
948 .idProduct = (prod)
949 /**
950 * USB_DEVICE_VER - describe a specific usb device with a version range
951 * @vend: the 16 bit USB Vendor ID
952 * @prod: the 16 bit USB Product ID
953 * @lo: the bcdDevice_lo value
954 * @hi: the bcdDevice_hi value
955 *
956 * This macro is used to create a struct usb_device_id that matches a
957 * specific device, with a version range.
958 */
959 #define USB_DEVICE_VER(vend, prod, lo, hi) \
960 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
961 .idVendor = (vend), \
962 .idProduct = (prod), \
963 .bcdDevice_lo = (lo), \
964 .bcdDevice_hi = (hi)
965
966 /**
967 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
968 * @vend: the 16 bit USB Vendor ID
969 * @prod: the 16 bit USB Product ID
970 * @cl: bInterfaceClass value
971 *
972 * This macro is used to create a struct usb_device_id that matches a
973 * specific interface class of devices.
974 */
975 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
976 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
977 USB_DEVICE_ID_MATCH_INT_CLASS, \
978 .idVendor = (vend), \
979 .idProduct = (prod), \
980 .bInterfaceClass = (cl)
981
982 /**
983 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
984 * @vend: the 16 bit USB Vendor ID
985 * @prod: the 16 bit USB Product ID
986 * @pr: bInterfaceProtocol value
987 *
988 * This macro is used to create a struct usb_device_id that matches a
989 * specific interface protocol of devices.
990 */
991 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
992 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
993 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
994 .idVendor = (vend), \
995 .idProduct = (prod), \
996 .bInterfaceProtocol = (pr)
997
998 /**
999 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
1000 * @vend: the 16 bit USB Vendor ID
1001 * @prod: the 16 bit USB Product ID
1002 * @num: bInterfaceNumber value
1003 *
1004 * This macro is used to create a struct usb_device_id that matches a
1005 * specific interface number of devices.
1006 */
1007 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
1008 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1009 USB_DEVICE_ID_MATCH_INT_NUMBER, \
1010 .idVendor = (vend), \
1011 .idProduct = (prod), \
1012 .bInterfaceNumber = (num)
1013
1014 /**
1015 * USB_DEVICE_INFO - macro used to describe a class of usb devices
1016 * @cl: bDeviceClass value
1017 * @sc: bDeviceSubClass value
1018 * @pr: bDeviceProtocol value
1019 *
1020 * This macro is used to create a struct usb_device_id that matches a
1021 * specific class of devices.
1022 */
1023 #define USB_DEVICE_INFO(cl, sc, pr) \
1024 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1025 .bDeviceClass = (cl), \
1026 .bDeviceSubClass = (sc), \
1027 .bDeviceProtocol = (pr)
1028
1029 /**
1030 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1031 * @cl: bInterfaceClass value
1032 * @sc: bInterfaceSubClass value
1033 * @pr: bInterfaceProtocol value
1034 *
1035 * This macro is used to create a struct usb_device_id that matches a
1036 * specific class of interfaces.
1037 */
1038 #define USB_INTERFACE_INFO(cl, sc, pr) \
1039 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1040 .bInterfaceClass = (cl), \
1041 .bInterfaceSubClass = (sc), \
1042 .bInterfaceProtocol = (pr)
1043
1044 /**
1045 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1046 * @vend: the 16 bit USB Vendor ID
1047 * @prod: the 16 bit USB Product ID
1048 * @cl: bInterfaceClass value
1049 * @sc: bInterfaceSubClass value
1050 * @pr: bInterfaceProtocol value
1051 *
1052 * This macro is used to create a struct usb_device_id that matches a
1053 * specific device with a specific class of interfaces.
1054 *
1055 * This is especially useful when explicitly matching devices that have
1056 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1057 */
1058 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1059 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1060 | USB_DEVICE_ID_MATCH_DEVICE, \
1061 .idVendor = (vend), \
1062 .idProduct = (prod), \
1063 .bInterfaceClass = (cl), \
1064 .bInterfaceSubClass = (sc), \
1065 .bInterfaceProtocol = (pr)
1066
1067 /**
1068 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1069 * @vend: the 16 bit USB Vendor ID
1070 * @cl: bInterfaceClass value
1071 * @sc: bInterfaceSubClass value
1072 * @pr: bInterfaceProtocol value
1073 *
1074 * This macro is used to create a struct usb_device_id that matches a
1075 * specific vendor with a specific class of interfaces.
1076 *
1077 * This is especially useful when explicitly matching devices that have
1078 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1079 */
1080 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1081 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1082 | USB_DEVICE_ID_MATCH_VENDOR, \
1083 .idVendor = (vend), \
1084 .bInterfaceClass = (cl), \
1085 .bInterfaceSubClass = (sc), \
1086 .bInterfaceProtocol = (pr)
1087
1088 /* ----------------------------------------------------------------------- */
1089
1090 /* Stuff for dynamic usb ids */
1091 struct usb_dynids {
1092 spinlock_t lock;
1093 struct list_head list;
1094 };
1095
1096 struct usb_dynid {
1097 struct list_head node;
1098 struct usb_device_id id;
1099 };
1100
1101 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1102 const struct usb_device_id *id_table,
1103 struct device_driver *driver,
1104 const char *buf, size_t count);
1105
1106 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1107
1108 /**
1109 * struct usbdrv_wrap - wrapper for driver-model structure
1110 * @driver: The driver-model core driver structure.
1111 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1112 */
1113 struct usbdrv_wrap {
1114 struct device_driver driver;
1115 int for_devices;
1116 };
1117
1118 /**
1119 * struct usb_driver - identifies USB interface driver to usbcore
1120 * @name: The driver name should be unique among USB drivers,
1121 * and should normally be the same as the module name.
1122 * @probe: Called to see if the driver is willing to manage a particular
1123 * interface on a device. If it is, probe returns zero and uses
1124 * usb_set_intfdata() to associate driver-specific data with the
1125 * interface. It may also use usb_set_interface() to specify the
1126 * appropriate altsetting. If unwilling to manage the interface,
1127 * return -ENODEV, if genuine IO errors occurred, an appropriate
1128 * negative errno value.
1129 * @disconnect: Called when the interface is no longer accessible, usually
1130 * because its device has been (or is being) disconnected or the
1131 * driver module is being unloaded.
1132 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1133 * the "usbfs" filesystem. This lets devices provide ways to
1134 * expose information to user space regardless of where they
1135 * do (or don't) show up otherwise in the filesystem.
1136 * @suspend: Called when the device is going to be suspended by the
1137 * system either from system sleep or runtime suspend context. The
1138 * return value will be ignored in system sleep context, so do NOT
1139 * try to continue using the device if suspend fails in this case.
1140 * Instead, let the resume or reset-resume routine recover from
1141 * the failure.
1142 * @resume: Called when the device is being resumed by the system.
1143 * @reset_resume: Called when the suspended device has been reset instead
1144 * of being resumed.
1145 * @pre_reset: Called by usb_reset_device() when the device is about to be
1146 * reset. This routine must not return until the driver has no active
1147 * URBs for the device, and no more URBs may be submitted until the
1148 * post_reset method is called.
1149 * @post_reset: Called by usb_reset_device() after the device
1150 * has been reset
1151 * @id_table: USB drivers use ID table to support hotplugging.
1152 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
1153 * or your driver's probe function will never get called.
1154 * @dynids: used internally to hold the list of dynamically added device
1155 * ids for this driver.
1156 * @drvwrap: Driver-model core structure wrapper.
1157 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1158 * added to this driver by preventing the sysfs file from being created.
1159 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1160 * for interfaces bound to this driver.
1161 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1162 * endpoints before calling the driver's disconnect method.
1163 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1164 * to initiate lower power link state transitions when an idle timeout
1165 * occurs. Device-initiated USB 3.0 link PM will still be allowed.
1166 *
1167 * USB interface drivers must provide a name, probe() and disconnect()
1168 * methods, and an id_table. Other driver fields are optional.
1169 *
1170 * The id_table is used in hotplugging. It holds a set of descriptors,
1171 * and specialized data may be associated with each entry. That table
1172 * is used by both user and kernel mode hotplugging support.
1173 *
1174 * The probe() and disconnect() methods are called in a context where
1175 * they can sleep, but they should avoid abusing the privilege. Most
1176 * work to connect to a device should be done when the device is opened,
1177 * and undone at the last close. The disconnect code needs to address
1178 * concurrency issues with respect to open() and close() methods, as
1179 * well as forcing all pending I/O requests to complete (by unlinking
1180 * them as necessary, and blocking until the unlinks complete).
1181 */
1182 struct usb_driver {
1183 const char *name;
1184
1185 int (*probe) (struct usb_interface *intf,
1186 const struct usb_device_id *id);
1187
1188 void (*disconnect) (struct usb_interface *intf);
1189
1190 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1191 void *buf);
1192
1193 int (*suspend) (struct usb_interface *intf, pm_message_t message);
1194 int (*resume) (struct usb_interface *intf);
1195 int (*reset_resume)(struct usb_interface *intf);
1196
1197 int (*pre_reset)(struct usb_interface *intf);
1198 int (*post_reset)(struct usb_interface *intf);
1199
1200 const struct usb_device_id *id_table;
1201
1202 struct usb_dynids dynids;
1203 struct usbdrv_wrap drvwrap;
1204 unsigned int no_dynamic_id:1;
1205 unsigned int supports_autosuspend:1;
1206 unsigned int disable_hub_initiated_lpm:1;
1207 unsigned int soft_unbind:1;
1208 };
1209 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1210
1211 /**
1212 * struct usb_device_driver - identifies USB device driver to usbcore
1213 * @name: The driver name should be unique among USB drivers,
1214 * and should normally be the same as the module name.
1215 * @probe: Called to see if the driver is willing to manage a particular
1216 * device. If it is, probe returns zero and uses dev_set_drvdata()
1217 * to associate driver-specific data with the device. If unwilling
1218 * to manage the device, return a negative errno value.
1219 * @disconnect: Called when the device is no longer accessible, usually
1220 * because it has been (or is being) disconnected or the driver's
1221 * module is being unloaded.
1222 * @suspend: Called when the device is going to be suspended by the system.
1223 * @resume: Called when the device is being resumed by the system.
1224 * @drvwrap: Driver-model core structure wrapper.
1225 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1226 * for devices bound to this driver.
1227 *
1228 * USB drivers must provide all the fields listed above except drvwrap.
1229 */
1230 struct usb_device_driver {
1231 const char *name;
1232
1233 int (*probe) (struct usb_device *udev);
1234 void (*disconnect) (struct usb_device *udev);
1235
1236 int (*suspend) (struct usb_device *udev, pm_message_t message);
1237 int (*resume) (struct usb_device *udev, pm_message_t message);
1238 struct usbdrv_wrap drvwrap;
1239 unsigned int supports_autosuspend:1;
1240 };
1241 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1242 drvwrap.driver)
1243
1244 extern struct bus_type usb_bus_type;
1245
1246 /**
1247 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1248 * @name: the usb class device name for this driver. Will show up in sysfs.
1249 * @devnode: Callback to provide a naming hint for a possible
1250 * device node to create.
1251 * @fops: pointer to the struct file_operations of this driver.
1252 * @minor_base: the start of the minor range for this driver.
1253 *
1254 * This structure is used for the usb_register_dev() and
1255 * usb_deregister_dev() functions, to consolidate a number of the
1256 * parameters used for them.
1257 */
1258 struct usb_class_driver {
1259 char *name;
1260 char *(*devnode)(struct device *dev, umode_t *mode);
1261 const struct file_operations *fops;
1262 int minor_base;
1263 };
1264
1265 /*
1266 * use these in module_init()/module_exit()
1267 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1268 */
1269 extern int usb_register_driver(struct usb_driver *, struct module *,
1270 const char *);
1271
1272 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1273 #define usb_register(driver) \
1274 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1275
1276 extern void usb_deregister(struct usb_driver *);
1277
1278 /**
1279 * module_usb_driver() - Helper macro for registering a USB driver
1280 * @__usb_driver: usb_driver struct
1281 *
1282 * Helper macro for USB drivers which do not do anything special in module
1283 * init/exit. This eliminates a lot of boilerplate. Each module may only
1284 * use this macro once, and calling it replaces module_init() and module_exit()
1285 */
1286 #define module_usb_driver(__usb_driver) \
1287 module_driver(__usb_driver, usb_register, \
1288 usb_deregister)
1289
1290 extern int usb_register_device_driver(struct usb_device_driver *,
1291 struct module *);
1292 extern void usb_deregister_device_driver(struct usb_device_driver *);
1293
1294 extern int usb_register_dev(struct usb_interface *intf,
1295 struct usb_class_driver *class_driver);
1296 extern void usb_deregister_dev(struct usb_interface *intf,
1297 struct usb_class_driver *class_driver);
1298
1299 extern int usb_disabled(void);
1300
1301 /* ----------------------------------------------------------------------- */
1302
1303 /*
1304 * URB support, for asynchronous request completions
1305 */
1306
1307 /*
1308 * urb->transfer_flags:
1309 *
1310 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1311 */
1312 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1313 #define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired
1314 * slot in the schedule */
1315 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1316 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1317 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1318 * needed */
1319 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1320
1321 /* The following flags are used internally by usbcore and HCDs */
1322 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
1323 #define URB_DIR_OUT 0
1324 #define URB_DIR_MASK URB_DIR_IN
1325
1326 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
1327 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
1328 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
1329 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
1330 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
1331 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
1332 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
1333 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
1334
1335 struct usb_iso_packet_descriptor {
1336 unsigned int offset;
1337 unsigned int length; /* expected length */
1338 unsigned int actual_length;
1339 int status;
1340 };
1341
1342 struct urb;
1343
1344 struct usb_anchor {
1345 struct list_head urb_list;
1346 wait_queue_head_t wait;
1347 spinlock_t lock;
1348 atomic_t suspend_wakeups;
1349 unsigned int poisoned:1;
1350 };
1351
init_usb_anchor(struct usb_anchor * anchor)1352 static inline void init_usb_anchor(struct usb_anchor *anchor)
1353 {
1354 memset(anchor, 0, sizeof(*anchor));
1355 INIT_LIST_HEAD(&anchor->urb_list);
1356 init_waitqueue_head(&anchor->wait);
1357 spin_lock_init(&anchor->lock);
1358 }
1359
1360 typedef void (*usb_complete_t)(struct urb *);
1361
1362 /**
1363 * struct urb - USB Request Block
1364 * @urb_list: For use by current owner of the URB.
1365 * @anchor_list: membership in the list of an anchor
1366 * @anchor: to anchor URBs to a common mooring
1367 * @ep: Points to the endpoint's data structure. Will eventually
1368 * replace @pipe.
1369 * @pipe: Holds endpoint number, direction, type, and more.
1370 * Create these values with the eight macros available;
1371 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1372 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1373 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1374 * numbers range from zero to fifteen. Note that "in" endpoint two
1375 * is a different endpoint (and pipe) from "out" endpoint two.
1376 * The current configuration controls the existence, type, and
1377 * maximum packet size of any given endpoint.
1378 * @stream_id: the endpoint's stream ID for bulk streams
1379 * @dev: Identifies the USB device to perform the request.
1380 * @status: This is read in non-iso completion functions to get the
1381 * status of the particular request. ISO requests only use it
1382 * to tell whether the URB was unlinked; detailed status for
1383 * each frame is in the fields of the iso_frame-desc.
1384 * @transfer_flags: A variety of flags may be used to affect how URB
1385 * submission, unlinking, or operation are handled. Different
1386 * kinds of URB can use different flags.
1387 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1388 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1389 * (however, do not leave garbage in transfer_buffer even then).
1390 * This buffer must be suitable for DMA; allocate it with
1391 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1392 * of this buffer will be modified. This buffer is used for the data
1393 * stage of control transfers.
1394 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1395 * the device driver is saying that it provided this DMA address,
1396 * which the host controller driver should use in preference to the
1397 * transfer_buffer.
1398 * @sg: scatter gather buffer list, the buffer size of each element in
1399 * the list (except the last) must be divisible by the endpoint's
1400 * max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1401 * @num_mapped_sgs: (internal) number of mapped sg entries
1402 * @num_sgs: number of entries in the sg list
1403 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1404 * be broken up into chunks according to the current maximum packet
1405 * size for the endpoint, which is a function of the configuration
1406 * and is encoded in the pipe. When the length is zero, neither
1407 * transfer_buffer nor transfer_dma is used.
1408 * @actual_length: This is read in non-iso completion functions, and
1409 * it tells how many bytes (out of transfer_buffer_length) were
1410 * transferred. It will normally be the same as requested, unless
1411 * either an error was reported or a short read was performed.
1412 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1413 * short reads be reported as errors.
1414 * @setup_packet: Only used for control transfers, this points to eight bytes
1415 * of setup data. Control transfers always start by sending this data
1416 * to the device. Then transfer_buffer is read or written, if needed.
1417 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1418 * this field; setup_packet must point to a valid buffer.
1419 * @start_frame: Returns the initial frame for isochronous transfers.
1420 * @number_of_packets: Lists the number of ISO transfer buffers.
1421 * @interval: Specifies the polling interval for interrupt or isochronous
1422 * transfers. The units are frames (milliseconds) for full and low
1423 * speed devices, and microframes (1/8 millisecond) for highspeed
1424 * and SuperSpeed devices.
1425 * @error_count: Returns the number of ISO transfers that reported errors.
1426 * @context: For use in completion functions. This normally points to
1427 * request-specific driver context.
1428 * @complete: Completion handler. This URB is passed as the parameter to the
1429 * completion function. The completion function may then do what
1430 * it likes with the URB, including resubmitting or freeing it.
1431 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1432 * collect the transfer status for each buffer.
1433 *
1434 * This structure identifies USB transfer requests. URBs must be allocated by
1435 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1436 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1437 * are submitted using usb_submit_urb(), and pending requests may be canceled
1438 * using usb_unlink_urb() or usb_kill_urb().
1439 *
1440 * Data Transfer Buffers:
1441 *
1442 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1443 * taken from the general page pool. That is provided by transfer_buffer
1444 * (control requests also use setup_packet), and host controller drivers
1445 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1446 * mapping operations can be expensive on some platforms (perhaps using a dma
1447 * bounce buffer or talking to an IOMMU),
1448 * although they're cheap on commodity x86 and ppc hardware.
1449 *
1450 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1451 * which tells the host controller driver that no such mapping is needed for
1452 * the transfer_buffer since
1453 * the device driver is DMA-aware. For example, a device driver might
1454 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1455 * When this transfer flag is provided, host controller drivers will
1456 * attempt to use the dma address found in the transfer_dma
1457 * field rather than determining a dma address themselves.
1458 *
1459 * Note that transfer_buffer must still be set if the controller
1460 * does not support DMA (as indicated by bus.uses_dma) and when talking
1461 * to root hub. If you have to trasfer between highmem zone and the device
1462 * on such controller, create a bounce buffer or bail out with an error.
1463 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1464 * capable, assign NULL to it, so that usbmon knows not to use the value.
1465 * The setup_packet must always be set, so it cannot be located in highmem.
1466 *
1467 * Initialization:
1468 *
1469 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1470 * zero), and complete fields. All URBs must also initialize
1471 * transfer_buffer and transfer_buffer_length. They may provide the
1472 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1473 * to be treated as errors; that flag is invalid for write requests.
1474 *
1475 * Bulk URBs may
1476 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1477 * should always terminate with a short packet, even if it means adding an
1478 * extra zero length packet.
1479 *
1480 * Control URBs must provide a valid pointer in the setup_packet field.
1481 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1482 * beforehand.
1483 *
1484 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1485 * or, for highspeed devices, 125 microsecond units)
1486 * to poll for transfers. After the URB has been submitted, the interval
1487 * field reflects how the transfer was actually scheduled.
1488 * The polling interval may be more frequent than requested.
1489 * For example, some controllers have a maximum interval of 32 milliseconds,
1490 * while others support intervals of up to 1024 milliseconds.
1491 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1492 * endpoints, as well as high speed interrupt endpoints, the encoding of
1493 * the transfer interval in the endpoint descriptor is logarithmic.
1494 * Device drivers must convert that value to linear units themselves.)
1495 *
1496 * If an isochronous endpoint queue isn't already running, the host
1497 * controller will schedule a new URB to start as soon as bandwidth
1498 * utilization allows. If the queue is running then a new URB will be
1499 * scheduled to start in the first transfer slot following the end of the
1500 * preceding URB, if that slot has not already expired. If the slot has
1501 * expired (which can happen when IRQ delivery is delayed for a long time),
1502 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag
1503 * is clear then the URB will be scheduled to start in the expired slot,
1504 * implying that some of its packets will not be transferred; if the flag
1505 * is set then the URB will be scheduled in the first unexpired slot,
1506 * breaking the queue's synchronization. Upon URB completion, the
1507 * start_frame field will be set to the (micro)frame number in which the
1508 * transfer was scheduled. Ranges for frame counter values are HC-specific
1509 * and can go from as low as 256 to as high as 65536 frames.
1510 *
1511 * Isochronous URBs have a different data transfer model, in part because
1512 * the quality of service is only "best effort". Callers provide specially
1513 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1514 * at the end. Each such packet is an individual ISO transfer. Isochronous
1515 * URBs are normally queued, submitted by drivers to arrange that
1516 * transfers are at least double buffered, and then explicitly resubmitted
1517 * in completion handlers, so
1518 * that data (such as audio or video) streams at as constant a rate as the
1519 * host controller scheduler can support.
1520 *
1521 * Completion Callbacks:
1522 *
1523 * The completion callback is made in_interrupt(), and one of the first
1524 * things that a completion handler should do is check the status field.
1525 * The status field is provided for all URBs. It is used to report
1526 * unlinked URBs, and status for all non-ISO transfers. It should not
1527 * be examined before the URB is returned to the completion handler.
1528 *
1529 * The context field is normally used to link URBs back to the relevant
1530 * driver or request state.
1531 *
1532 * When the completion callback is invoked for non-isochronous URBs, the
1533 * actual_length field tells how many bytes were transferred. This field
1534 * is updated even when the URB terminated with an error or was unlinked.
1535 *
1536 * ISO transfer status is reported in the status and actual_length fields
1537 * of the iso_frame_desc array, and the number of errors is reported in
1538 * error_count. Completion callbacks for ISO transfers will normally
1539 * (re)submit URBs to ensure a constant transfer rate.
1540 *
1541 * Note that even fields marked "public" should not be touched by the driver
1542 * when the urb is owned by the hcd, that is, since the call to
1543 * usb_submit_urb() till the entry into the completion routine.
1544 */
1545 struct urb {
1546 /* private: usb core and host controller only fields in the urb */
1547 struct kref kref; /* reference count of the URB */
1548 void *hcpriv; /* private data for host controller */
1549 atomic_t use_count; /* concurrent submissions counter */
1550 atomic_t reject; /* submissions will fail */
1551 int unlinked; /* unlink error code */
1552
1553 /* public: documented fields in the urb that can be used by drivers */
1554 struct list_head urb_list; /* list head for use by the urb's
1555 * current owner */
1556 struct list_head anchor_list; /* the URB may be anchored */
1557 struct usb_anchor *anchor;
1558 struct usb_device *dev; /* (in) pointer to associated device */
1559 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1560 unsigned int pipe; /* (in) pipe information */
1561 unsigned int stream_id; /* (in) stream ID */
1562 int status; /* (return) non-ISO status */
1563 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1564 void *transfer_buffer; /* (in) associated data buffer */
1565 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1566 struct scatterlist *sg; /* (in) scatter gather buffer list */
1567 int num_mapped_sgs; /* (internal) mapped sg entries */
1568 int num_sgs; /* (in) number of entries in the sg list */
1569 u32 transfer_buffer_length; /* (in) data buffer length */
1570 u32 actual_length; /* (return) actual transfer length */
1571 unsigned char *setup_packet; /* (in) setup packet (control only) */
1572 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1573 int start_frame; /* (modify) start frame (ISO) */
1574 int number_of_packets; /* (in) number of ISO packets */
1575 int interval; /* (modify) transfer interval
1576 * (INT/ISO) */
1577 int error_count; /* (return) number of ISO errors */
1578 void *context; /* (in) context for completion */
1579 usb_complete_t complete; /* (in) completion routine */
1580 struct usb_iso_packet_descriptor iso_frame_desc[0];
1581 /* (in) ISO ONLY */
1582 };
1583
1584 /* ----------------------------------------------------------------------- */
1585
1586 /**
1587 * usb_fill_control_urb - initializes a control urb
1588 * @urb: pointer to the urb to initialize.
1589 * @dev: pointer to the struct usb_device for this urb.
1590 * @pipe: the endpoint pipe
1591 * @setup_packet: pointer to the setup_packet buffer
1592 * @transfer_buffer: pointer to the transfer buffer
1593 * @buffer_length: length of the transfer buffer
1594 * @complete_fn: pointer to the usb_complete_t function
1595 * @context: what to set the urb context to.
1596 *
1597 * Initializes a control urb with the proper information needed to submit
1598 * it to a device.
1599 */
usb_fill_control_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,unsigned char * setup_packet,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1600 static inline void usb_fill_control_urb(struct urb *urb,
1601 struct usb_device *dev,
1602 unsigned int pipe,
1603 unsigned char *setup_packet,
1604 void *transfer_buffer,
1605 int buffer_length,
1606 usb_complete_t complete_fn,
1607 void *context)
1608 {
1609 urb->dev = dev;
1610 urb->pipe = pipe;
1611 urb->setup_packet = setup_packet;
1612 urb->transfer_buffer = transfer_buffer;
1613 urb->transfer_buffer_length = buffer_length;
1614 urb->complete = complete_fn;
1615 urb->context = context;
1616 }
1617
1618 /**
1619 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1620 * @urb: pointer to the urb to initialize.
1621 * @dev: pointer to the struct usb_device for this urb.
1622 * @pipe: the endpoint pipe
1623 * @transfer_buffer: pointer to the transfer buffer
1624 * @buffer_length: length of the transfer buffer
1625 * @complete_fn: pointer to the usb_complete_t function
1626 * @context: what to set the urb context to.
1627 *
1628 * Initializes a bulk urb with the proper information needed to submit it
1629 * to a device.
1630 */
usb_fill_bulk_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1631 static inline void usb_fill_bulk_urb(struct urb *urb,
1632 struct usb_device *dev,
1633 unsigned int pipe,
1634 void *transfer_buffer,
1635 int buffer_length,
1636 usb_complete_t complete_fn,
1637 void *context)
1638 {
1639 urb->dev = dev;
1640 urb->pipe = pipe;
1641 urb->transfer_buffer = transfer_buffer;
1642 urb->transfer_buffer_length = buffer_length;
1643 urb->complete = complete_fn;
1644 urb->context = context;
1645 }
1646
1647 /**
1648 * usb_fill_int_urb - macro to help initialize a interrupt urb
1649 * @urb: pointer to the urb to initialize.
1650 * @dev: pointer to the struct usb_device for this urb.
1651 * @pipe: the endpoint pipe
1652 * @transfer_buffer: pointer to the transfer buffer
1653 * @buffer_length: length of the transfer buffer
1654 * @complete_fn: pointer to the usb_complete_t function
1655 * @context: what to set the urb context to.
1656 * @interval: what to set the urb interval to, encoded like
1657 * the endpoint descriptor's bInterval value.
1658 *
1659 * Initializes a interrupt urb with the proper information needed to submit
1660 * it to a device.
1661 *
1662 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1663 * encoding of the endpoint interval, and express polling intervals in
1664 * microframes (eight per millisecond) rather than in frames (one per
1665 * millisecond).
1666 *
1667 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1668 * 128us instead of 125us. For Wireless USB devices, the interval is passed
1669 * through to the host controller, rather than being translated into microframe
1670 * units.
1671 */
usb_fill_int_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context,int interval)1672 static inline void usb_fill_int_urb(struct urb *urb,
1673 struct usb_device *dev,
1674 unsigned int pipe,
1675 void *transfer_buffer,
1676 int buffer_length,
1677 usb_complete_t complete_fn,
1678 void *context,
1679 int interval)
1680 {
1681 urb->dev = dev;
1682 urb->pipe = pipe;
1683 urb->transfer_buffer = transfer_buffer;
1684 urb->transfer_buffer_length = buffer_length;
1685 urb->complete = complete_fn;
1686 urb->context = context;
1687
1688 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1689 /* make sure interval is within allowed range */
1690 interval = clamp(interval, 1, 16);
1691
1692 urb->interval = 1 << (interval - 1);
1693 } else {
1694 urb->interval = interval;
1695 }
1696
1697 urb->start_frame = -1;
1698 }
1699
1700 extern void usb_init_urb(struct urb *urb);
1701 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1702 extern void usb_free_urb(struct urb *urb);
1703 #define usb_put_urb usb_free_urb
1704 extern struct urb *usb_get_urb(struct urb *urb);
1705 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1706 extern int usb_unlink_urb(struct urb *urb);
1707 extern void usb_kill_urb(struct urb *urb);
1708 extern void usb_poison_urb(struct urb *urb);
1709 extern void usb_unpoison_urb(struct urb *urb);
1710 extern void usb_block_urb(struct urb *urb);
1711 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1712 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1713 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1714 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1715 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1716 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1717 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1718 extern void usb_unanchor_urb(struct urb *urb);
1719 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1720 unsigned int timeout);
1721 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1722 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1723 extern int usb_anchor_empty(struct usb_anchor *anchor);
1724
1725 #define usb_unblock_urb usb_unpoison_urb
1726
1727 /**
1728 * usb_urb_dir_in - check if an URB describes an IN transfer
1729 * @urb: URB to be checked
1730 *
1731 * Return: 1 if @urb describes an IN transfer (device-to-host),
1732 * otherwise 0.
1733 */
usb_urb_dir_in(struct urb * urb)1734 static inline int usb_urb_dir_in(struct urb *urb)
1735 {
1736 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1737 }
1738
1739 /**
1740 * usb_urb_dir_out - check if an URB describes an OUT transfer
1741 * @urb: URB to be checked
1742 *
1743 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1744 * otherwise 0.
1745 */
usb_urb_dir_out(struct urb * urb)1746 static inline int usb_urb_dir_out(struct urb *urb)
1747 {
1748 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1749 }
1750
1751 int usb_urb_ep_type_check(const struct urb *urb);
1752
1753 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1754 gfp_t mem_flags, dma_addr_t *dma);
1755 void usb_free_coherent(struct usb_device *dev, size_t size,
1756 void *addr, dma_addr_t dma);
1757
1758 #if 0
1759 struct urb *usb_buffer_map(struct urb *urb);
1760 void usb_buffer_dmasync(struct urb *urb);
1761 void usb_buffer_unmap(struct urb *urb);
1762 #endif
1763
1764 struct scatterlist;
1765 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1766 struct scatterlist *sg, int nents);
1767 #if 0
1768 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1769 struct scatterlist *sg, int n_hw_ents);
1770 #endif
1771 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1772 struct scatterlist *sg, int n_hw_ents);
1773
1774 /*-------------------------------------------------------------------*
1775 * SYNCHRONOUS CALL SUPPORT *
1776 *-------------------------------------------------------------------*/
1777
1778 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1779 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1780 void *data, __u16 size, int timeout);
1781 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1782 void *data, int len, int *actual_length, int timeout);
1783 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1784 void *data, int len, int *actual_length,
1785 int timeout);
1786
1787 /* wrappers around usb_control_msg() for the most common standard requests */
1788 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1789 unsigned char descindex, void *buf, int size);
1790 extern int usb_get_status(struct usb_device *dev,
1791 int recip, int type, int target, void *data);
1792
usb_get_std_status(struct usb_device * dev,int recip,int target,void * data)1793 static inline int usb_get_std_status(struct usb_device *dev,
1794 int recip, int target, void *data)
1795 {
1796 return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1797 data);
1798 }
1799
usb_get_ptm_status(struct usb_device * dev,void * data)1800 static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1801 {
1802 return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1803 0, data);
1804 }
1805
1806 extern int usb_string(struct usb_device *dev, int index,
1807 char *buf, size_t size);
1808
1809 /* wrappers that also update important state inside usbcore */
1810 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1811 extern int usb_reset_configuration(struct usb_device *dev);
1812 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1813 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1814
1815 /* this request isn't really synchronous, but it belongs with the others */
1816 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1817
1818 /* choose and set configuration for device */
1819 extern int usb_choose_configuration(struct usb_device *udev);
1820 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1821
1822 /*
1823 * timeouts, in milliseconds, used for sending/receiving control messages
1824 * they typically complete within a few frames (msec) after they're issued
1825 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1826 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1827 */
1828 #define USB_CTRL_GET_TIMEOUT 5000
1829 #define USB_CTRL_SET_TIMEOUT 5000
1830
1831
1832 /**
1833 * struct usb_sg_request - support for scatter/gather I/O
1834 * @status: zero indicates success, else negative errno
1835 * @bytes: counts bytes transferred.
1836 *
1837 * These requests are initialized using usb_sg_init(), and then are used
1838 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1839 * members of the request object aren't for driver access.
1840 *
1841 * The status and bytecount values are valid only after usb_sg_wait()
1842 * returns. If the status is zero, then the bytecount matches the total
1843 * from the request.
1844 *
1845 * After an error completion, drivers may need to clear a halt condition
1846 * on the endpoint.
1847 */
1848 struct usb_sg_request {
1849 int status;
1850 size_t bytes;
1851
1852 /* private:
1853 * members below are private to usbcore,
1854 * and are not provided for driver access!
1855 */
1856 spinlock_t lock;
1857
1858 struct usb_device *dev;
1859 int pipe;
1860
1861 int entries;
1862 struct urb **urbs;
1863
1864 int count;
1865 struct completion complete;
1866 };
1867
1868 int usb_sg_init(
1869 struct usb_sg_request *io,
1870 struct usb_device *dev,
1871 unsigned pipe,
1872 unsigned period,
1873 struct scatterlist *sg,
1874 int nents,
1875 size_t length,
1876 gfp_t mem_flags
1877 );
1878 void usb_sg_cancel(struct usb_sg_request *io);
1879 void usb_sg_wait(struct usb_sg_request *io);
1880
1881
1882 /* ----------------------------------------------------------------------- */
1883
1884 /*
1885 * For various legacy reasons, Linux has a small cookie that's paired with
1886 * a struct usb_device to identify an endpoint queue. Queue characteristics
1887 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1888 * an unsigned int encoded as:
1889 *
1890 * - direction: bit 7 (0 = Host-to-Device [Out],
1891 * 1 = Device-to-Host [In] ...
1892 * like endpoint bEndpointAddress)
1893 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1894 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1895 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1896 * 10 = control, 11 = bulk)
1897 *
1898 * Given the device address and endpoint descriptor, pipes are redundant.
1899 */
1900
1901 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1902 /* (yet ... they're the values used by usbfs) */
1903 #define PIPE_ISOCHRONOUS 0
1904 #define PIPE_INTERRUPT 1
1905 #define PIPE_CONTROL 2
1906 #define PIPE_BULK 3
1907
1908 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1909 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1910
1911 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1912 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1913
1914 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1915 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1916 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1917 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1918 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1919
__create_pipe(struct usb_device * dev,unsigned int endpoint)1920 static inline unsigned int __create_pipe(struct usb_device *dev,
1921 unsigned int endpoint)
1922 {
1923 return (dev->devnum << 8) | (endpoint << 15);
1924 }
1925
1926 /* Create various pipes... */
1927 #define usb_sndctrlpipe(dev, endpoint) \
1928 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1929 #define usb_rcvctrlpipe(dev, endpoint) \
1930 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1931 #define usb_sndisocpipe(dev, endpoint) \
1932 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1933 #define usb_rcvisocpipe(dev, endpoint) \
1934 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1935 #define usb_sndbulkpipe(dev, endpoint) \
1936 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1937 #define usb_rcvbulkpipe(dev, endpoint) \
1938 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1939 #define usb_sndintpipe(dev, endpoint) \
1940 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1941 #define usb_rcvintpipe(dev, endpoint) \
1942 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1943
1944 static inline struct usb_host_endpoint *
usb_pipe_endpoint(struct usb_device * dev,unsigned int pipe)1945 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1946 {
1947 struct usb_host_endpoint **eps;
1948 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1949 return eps[usb_pipeendpoint(pipe)];
1950 }
1951
1952 /*-------------------------------------------------------------------------*/
1953
1954 static inline __u16
usb_maxpacket(struct usb_device * udev,int pipe,int is_out)1955 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1956 {
1957 struct usb_host_endpoint *ep;
1958 unsigned epnum = usb_pipeendpoint(pipe);
1959
1960 if (is_out) {
1961 WARN_ON(usb_pipein(pipe));
1962 ep = udev->ep_out[epnum];
1963 } else {
1964 WARN_ON(usb_pipeout(pipe));
1965 ep = udev->ep_in[epnum];
1966 }
1967 if (!ep)
1968 return 0;
1969
1970 /* NOTE: only 0x07ff bits are for packet size... */
1971 return usb_endpoint_maxp(&ep->desc);
1972 }
1973
1974 /* ----------------------------------------------------------------------- */
1975
1976 /* translate USB error codes to codes user space understands */
usb_translate_errors(int error_code)1977 static inline int usb_translate_errors(int error_code)
1978 {
1979 switch (error_code) {
1980 case 0:
1981 case -ENOMEM:
1982 case -ENODEV:
1983 case -EOPNOTSUPP:
1984 return error_code;
1985 default:
1986 return -EIO;
1987 }
1988 }
1989
1990 /* Events from the usb core */
1991 #define USB_DEVICE_ADD 0x0001
1992 #define USB_DEVICE_REMOVE 0x0002
1993 #define USB_BUS_ADD 0x0003
1994 #define USB_BUS_REMOVE 0x0004
1995 extern void usb_register_notify(struct notifier_block *nb);
1996 extern void usb_unregister_notify(struct notifier_block *nb);
1997
1998 /* debugfs stuff */
1999 extern struct dentry *usb_debug_root;
2000
2001 /* LED triggers */
2002 enum usb_led_event {
2003 USB_LED_EVENT_HOST = 0,
2004 USB_LED_EVENT_GADGET = 1,
2005 };
2006
2007 #ifdef CONFIG_USB_LED_TRIG
2008 extern void usb_led_activity(enum usb_led_event ev);
2009 #else
usb_led_activity(enum usb_led_event ev)2010 static inline void usb_led_activity(enum usb_led_event ev) {}
2011 #endif
2012
2013 #endif /* __KERNEL__ */
2014
2015 #endif
2016