1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * (C) Copyright Linus Torvalds 1999
4 * (C) Copyright Johannes Erdfelt 1999-2001
5 * (C) Copyright Andreas Gal 1999
6 * (C) Copyright Gregory P. Smith 1999
7 * (C) Copyright Deti Fliegl 1999
8 * (C) Copyright Randy Dunlap 2000
9 * (C) Copyright David Brownell 2000-2002
10 */
11
12 #include <linux/bcd.h>
13 #include <linux/module.h>
14 #include <linux/version.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/slab.h>
18 #include <linux/completion.h>
19 #include <linux/utsname.h>
20 #include <linux/mm.h>
21 #include <asm/io.h>
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/mutex.h>
25 #include <asm/irq.h>
26 #include <asm/byteorder.h>
27 #include <asm/unaligned.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/types.h>
32
33 #include <linux/phy/phy.h>
34 #include <linux/usb.h>
35 #include <linux/usb/hcd.h>
36 #include <linux/usb/otg.h>
37
38 #include "usb.h"
39 #include "phy.h"
40
41
42 /*-------------------------------------------------------------------------*/
43
44 /*
45 * USB Host Controller Driver framework
46 *
47 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
48 * HCD-specific behaviors/bugs.
49 *
50 * This does error checks, tracks devices and urbs, and delegates to a
51 * "hc_driver" only for code (and data) that really needs to know about
52 * hardware differences. That includes root hub registers, i/o queues,
53 * and so on ... but as little else as possible.
54 *
55 * Shared code includes most of the "root hub" code (these are emulated,
56 * though each HC's hardware works differently) and PCI glue, plus request
57 * tracking overhead. The HCD code should only block on spinlocks or on
58 * hardware handshaking; blocking on software events (such as other kernel
59 * threads releasing resources, or completing actions) is all generic.
60 *
61 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
62 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
63 * only by the hub driver ... and that neither should be seen or used by
64 * usb client device drivers.
65 *
66 * Contributors of ideas or unattributed patches include: David Brownell,
67 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
68 *
69 * HISTORY:
70 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
71 * associated cleanup. "usb_hcd" still != "usb_bus".
72 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
73 */
74
75 /*-------------------------------------------------------------------------*/
76
77 /* Keep track of which host controller drivers are loaded */
78 unsigned long usb_hcds_loaded;
79 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
80
81 /* host controllers we manage */
82 DEFINE_IDR (usb_bus_idr);
83 EXPORT_SYMBOL_GPL (usb_bus_idr);
84
85 /* used when allocating bus numbers */
86 #define USB_MAXBUS 64
87
88 /* used when updating list of hcds */
89 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
90 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
91
92 /* used for controlling access to virtual root hubs */
93 static DEFINE_SPINLOCK(hcd_root_hub_lock);
94
95 /* used when updating an endpoint's URB list */
96 static DEFINE_SPINLOCK(hcd_urb_list_lock);
97
98 /* used to protect against unlinking URBs after the device is gone */
99 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
100
101 /* wait queue for synchronous unlinks */
102 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
103
is_root_hub(struct usb_device * udev)104 static inline int is_root_hub(struct usb_device *udev)
105 {
106 return (udev->parent == NULL);
107 }
108
109 /*-------------------------------------------------------------------------*/
110
111 /*
112 * Sharable chunks of root hub code.
113 */
114
115 /*-------------------------------------------------------------------------*/
116 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
117 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
118
119 /* usb 3.1 root hub device descriptor */
120 static const u8 usb31_rh_dev_descriptor[18] = {
121 0x12, /* __u8 bLength; */
122 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
123 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
124
125 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
126 0x00, /* __u8 bDeviceSubClass; */
127 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
128 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
129
130 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
131 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
132 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
133
134 0x03, /* __u8 iManufacturer; */
135 0x02, /* __u8 iProduct; */
136 0x01, /* __u8 iSerialNumber; */
137 0x01 /* __u8 bNumConfigurations; */
138 };
139
140 /* usb 3.0 root hub device descriptor */
141 static const u8 usb3_rh_dev_descriptor[18] = {
142 0x12, /* __u8 bLength; */
143 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
144 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
145
146 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
147 0x00, /* __u8 bDeviceSubClass; */
148 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
149 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
150
151 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
152 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
153 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
154
155 0x03, /* __u8 iManufacturer; */
156 0x02, /* __u8 iProduct; */
157 0x01, /* __u8 iSerialNumber; */
158 0x01 /* __u8 bNumConfigurations; */
159 };
160
161 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
162 static const u8 usb25_rh_dev_descriptor[18] = {
163 0x12, /* __u8 bLength; */
164 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
165 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
166
167 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
168 0x00, /* __u8 bDeviceSubClass; */
169 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
170 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
171
172 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
173 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
174 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
175
176 0x03, /* __u8 iManufacturer; */
177 0x02, /* __u8 iProduct; */
178 0x01, /* __u8 iSerialNumber; */
179 0x01 /* __u8 bNumConfigurations; */
180 };
181
182 /* usb 2.0 root hub device descriptor */
183 static const u8 usb2_rh_dev_descriptor[18] = {
184 0x12, /* __u8 bLength; */
185 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
186 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
187
188 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
189 0x00, /* __u8 bDeviceSubClass; */
190 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
191 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
192
193 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
194 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
195 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
196
197 0x03, /* __u8 iManufacturer; */
198 0x02, /* __u8 iProduct; */
199 0x01, /* __u8 iSerialNumber; */
200 0x01 /* __u8 bNumConfigurations; */
201 };
202
203 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
204
205 /* usb 1.1 root hub device descriptor */
206 static const u8 usb11_rh_dev_descriptor[18] = {
207 0x12, /* __u8 bLength; */
208 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
209 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
210
211 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
212 0x00, /* __u8 bDeviceSubClass; */
213 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
214 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
215
216 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
217 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
218 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
219
220 0x03, /* __u8 iManufacturer; */
221 0x02, /* __u8 iProduct; */
222 0x01, /* __u8 iSerialNumber; */
223 0x01 /* __u8 bNumConfigurations; */
224 };
225
226
227 /*-------------------------------------------------------------------------*/
228
229 /* Configuration descriptors for our root hubs */
230
231 static const u8 fs_rh_config_descriptor[] = {
232
233 /* one configuration */
234 0x09, /* __u8 bLength; */
235 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
236 0x19, 0x00, /* __le16 wTotalLength; */
237 0x01, /* __u8 bNumInterfaces; (1) */
238 0x01, /* __u8 bConfigurationValue; */
239 0x00, /* __u8 iConfiguration; */
240 0xc0, /* __u8 bmAttributes;
241 Bit 7: must be set,
242 6: Self-powered,
243 5: Remote wakeup,
244 4..0: resvd */
245 0x00, /* __u8 MaxPower; */
246
247 /* USB 1.1:
248 * USB 2.0, single TT organization (mandatory):
249 * one interface, protocol 0
250 *
251 * USB 2.0, multiple TT organization (optional):
252 * two interfaces, protocols 1 (like single TT)
253 * and 2 (multiple TT mode) ... config is
254 * sometimes settable
255 * NOT IMPLEMENTED
256 */
257
258 /* one interface */
259 0x09, /* __u8 if_bLength; */
260 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
261 0x00, /* __u8 if_bInterfaceNumber; */
262 0x00, /* __u8 if_bAlternateSetting; */
263 0x01, /* __u8 if_bNumEndpoints; */
264 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
265 0x00, /* __u8 if_bInterfaceSubClass; */
266 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
267 0x00, /* __u8 if_iInterface; */
268
269 /* one endpoint (status change endpoint) */
270 0x07, /* __u8 ep_bLength; */
271 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
272 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
273 0x03, /* __u8 ep_bmAttributes; Interrupt */
274 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
275 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
276 };
277
278 static const u8 hs_rh_config_descriptor[] = {
279
280 /* one configuration */
281 0x09, /* __u8 bLength; */
282 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
283 0x19, 0x00, /* __le16 wTotalLength; */
284 0x01, /* __u8 bNumInterfaces; (1) */
285 0x01, /* __u8 bConfigurationValue; */
286 0x00, /* __u8 iConfiguration; */
287 0xc0, /* __u8 bmAttributes;
288 Bit 7: must be set,
289 6: Self-powered,
290 5: Remote wakeup,
291 4..0: resvd */
292 0x00, /* __u8 MaxPower; */
293
294 /* USB 1.1:
295 * USB 2.0, single TT organization (mandatory):
296 * one interface, protocol 0
297 *
298 * USB 2.0, multiple TT organization (optional):
299 * two interfaces, protocols 1 (like single TT)
300 * and 2 (multiple TT mode) ... config is
301 * sometimes settable
302 * NOT IMPLEMENTED
303 */
304
305 /* one interface */
306 0x09, /* __u8 if_bLength; */
307 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
308 0x00, /* __u8 if_bInterfaceNumber; */
309 0x00, /* __u8 if_bAlternateSetting; */
310 0x01, /* __u8 if_bNumEndpoints; */
311 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
312 0x00, /* __u8 if_bInterfaceSubClass; */
313 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
314 0x00, /* __u8 if_iInterface; */
315
316 /* one endpoint (status change endpoint) */
317 0x07, /* __u8 ep_bLength; */
318 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
319 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
320 0x03, /* __u8 ep_bmAttributes; Interrupt */
321 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
322 * see hub.c:hub_configure() for details. */
323 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
324 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
325 };
326
327 static const u8 ss_rh_config_descriptor[] = {
328 /* one configuration */
329 0x09, /* __u8 bLength; */
330 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
331 0x1f, 0x00, /* __le16 wTotalLength; */
332 0x01, /* __u8 bNumInterfaces; (1) */
333 0x01, /* __u8 bConfigurationValue; */
334 0x00, /* __u8 iConfiguration; */
335 0xc0, /* __u8 bmAttributes;
336 Bit 7: must be set,
337 6: Self-powered,
338 5: Remote wakeup,
339 4..0: resvd */
340 0x00, /* __u8 MaxPower; */
341
342 /* one interface */
343 0x09, /* __u8 if_bLength; */
344 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
345 0x00, /* __u8 if_bInterfaceNumber; */
346 0x00, /* __u8 if_bAlternateSetting; */
347 0x01, /* __u8 if_bNumEndpoints; */
348 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
349 0x00, /* __u8 if_bInterfaceSubClass; */
350 0x00, /* __u8 if_bInterfaceProtocol; */
351 0x00, /* __u8 if_iInterface; */
352
353 /* one endpoint (status change endpoint) */
354 0x07, /* __u8 ep_bLength; */
355 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
356 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
357 0x03, /* __u8 ep_bmAttributes; Interrupt */
358 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
359 * see hub.c:hub_configure() for details. */
360 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
361 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
362
363 /* one SuperSpeed endpoint companion descriptor */
364 0x06, /* __u8 ss_bLength */
365 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
366 /* Companion */
367 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
368 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
369 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
370 };
371
372 /* authorized_default behaviour:
373 * -1 is authorized for all devices except wireless (old behaviour)
374 * 0 is unauthorized for all devices
375 * 1 is authorized for all devices
376 */
377 static int authorized_default = -1;
378 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
379 MODULE_PARM_DESC(authorized_default,
380 "Default USB device authorization: 0 is not authorized, 1 is "
381 "authorized, -1 is authorized except for wireless USB (default, "
382 "old behaviour");
383 /*-------------------------------------------------------------------------*/
384
385 /**
386 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
387 * @s: Null-terminated ASCII (actually ISO-8859-1) string
388 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
389 * @len: Length (in bytes; may be odd) of descriptor buffer.
390 *
391 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
392 * whichever is less.
393 *
394 * Note:
395 * USB String descriptors can contain at most 126 characters; input
396 * strings longer than that are truncated.
397 */
398 static unsigned
ascii2desc(char const * s,u8 * buf,unsigned len)399 ascii2desc(char const *s, u8 *buf, unsigned len)
400 {
401 unsigned n, t = 2 + 2*strlen(s);
402
403 if (t > 254)
404 t = 254; /* Longest possible UTF string descriptor */
405 if (len > t)
406 len = t;
407
408 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
409
410 n = len;
411 while (n--) {
412 *buf++ = t;
413 if (!n--)
414 break;
415 *buf++ = t >> 8;
416 t = (unsigned char)*s++;
417 }
418 return len;
419 }
420
421 /**
422 * rh_string() - provides string descriptors for root hub
423 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
424 * @hcd: the host controller for this root hub
425 * @data: buffer for output packet
426 * @len: length of the provided buffer
427 *
428 * Produces either a manufacturer, product or serial number string for the
429 * virtual root hub device.
430 *
431 * Return: The number of bytes filled in: the length of the descriptor or
432 * of the provided buffer, whichever is less.
433 */
434 static unsigned
rh_string(int id,struct usb_hcd const * hcd,u8 * data,unsigned len)435 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
436 {
437 char buf[100];
438 char const *s;
439 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
440
441 /* language ids */
442 switch (id) {
443 case 0:
444 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
445 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
446 if (len > 4)
447 len = 4;
448 memcpy(data, langids, len);
449 return len;
450 case 1:
451 /* Serial number */
452 s = hcd->self.bus_name;
453 break;
454 case 2:
455 /* Product name */
456 s = hcd->product_desc;
457 break;
458 case 3:
459 /* Manufacturer */
460 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
461 init_utsname()->release, hcd->driver->description);
462 s = buf;
463 break;
464 default:
465 /* Can't happen; caller guarantees it */
466 return 0;
467 }
468
469 return ascii2desc(s, data, len);
470 }
471
472
473 /* Root hub control transfers execute synchronously */
rh_call_control(struct usb_hcd * hcd,struct urb * urb)474 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
475 {
476 struct usb_ctrlrequest *cmd;
477 u16 typeReq, wValue, wIndex, wLength;
478 u8 *ubuf = urb->transfer_buffer;
479 unsigned len = 0;
480 int status;
481 u8 patch_wakeup = 0;
482 u8 patch_protocol = 0;
483 u16 tbuf_size;
484 u8 *tbuf = NULL;
485 const u8 *bufp;
486
487 might_sleep();
488
489 spin_lock_irq(&hcd_root_hub_lock);
490 status = usb_hcd_link_urb_to_ep(hcd, urb);
491 spin_unlock_irq(&hcd_root_hub_lock);
492 if (status)
493 return status;
494 urb->hcpriv = hcd; /* Indicate it's queued */
495
496 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
497 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
498 wValue = le16_to_cpu (cmd->wValue);
499 wIndex = le16_to_cpu (cmd->wIndex);
500 wLength = le16_to_cpu (cmd->wLength);
501
502 if (wLength > urb->transfer_buffer_length)
503 goto error;
504
505 /*
506 * tbuf should be at least as big as the
507 * USB hub descriptor.
508 */
509 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
510 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
511 if (!tbuf) {
512 status = -ENOMEM;
513 goto err_alloc;
514 }
515
516 bufp = tbuf;
517
518
519 urb->actual_length = 0;
520 switch (typeReq) {
521
522 /* DEVICE REQUESTS */
523
524 /* The root hub's remote wakeup enable bit is implemented using
525 * driver model wakeup flags. If this system supports wakeup
526 * through USB, userspace may change the default "allow wakeup"
527 * policy through sysfs or these calls.
528 *
529 * Most root hubs support wakeup from downstream devices, for
530 * runtime power management (disabling USB clocks and reducing
531 * VBUS power usage). However, not all of them do so; silicon,
532 * board, and BIOS bugs here are not uncommon, so these can't
533 * be treated quite like external hubs.
534 *
535 * Likewise, not all root hubs will pass wakeup events upstream,
536 * to wake up the whole system. So don't assume root hub and
537 * controller capabilities are identical.
538 */
539
540 case DeviceRequest | USB_REQ_GET_STATUS:
541 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
542 << USB_DEVICE_REMOTE_WAKEUP)
543 | (1 << USB_DEVICE_SELF_POWERED);
544 tbuf[1] = 0;
545 len = 2;
546 break;
547 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
548 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
549 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
550 else
551 goto error;
552 break;
553 case DeviceOutRequest | USB_REQ_SET_FEATURE:
554 if (device_can_wakeup(&hcd->self.root_hub->dev)
555 && wValue == USB_DEVICE_REMOTE_WAKEUP)
556 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
557 else
558 goto error;
559 break;
560 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
561 tbuf[0] = 1;
562 len = 1;
563 /* FALLTHROUGH */
564 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
565 break;
566 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
567 switch (wValue & 0xff00) {
568 case USB_DT_DEVICE << 8:
569 switch (hcd->speed) {
570 case HCD_USB32:
571 case HCD_USB31:
572 bufp = usb31_rh_dev_descriptor;
573 break;
574 case HCD_USB3:
575 bufp = usb3_rh_dev_descriptor;
576 break;
577 case HCD_USB25:
578 bufp = usb25_rh_dev_descriptor;
579 break;
580 case HCD_USB2:
581 bufp = usb2_rh_dev_descriptor;
582 break;
583 case HCD_USB11:
584 bufp = usb11_rh_dev_descriptor;
585 break;
586 default:
587 goto error;
588 }
589 len = 18;
590 if (hcd->has_tt)
591 patch_protocol = 1;
592 break;
593 case USB_DT_CONFIG << 8:
594 switch (hcd->speed) {
595 case HCD_USB32:
596 case HCD_USB31:
597 case HCD_USB3:
598 bufp = ss_rh_config_descriptor;
599 len = sizeof ss_rh_config_descriptor;
600 break;
601 case HCD_USB25:
602 case HCD_USB2:
603 bufp = hs_rh_config_descriptor;
604 len = sizeof hs_rh_config_descriptor;
605 break;
606 case HCD_USB11:
607 bufp = fs_rh_config_descriptor;
608 len = sizeof fs_rh_config_descriptor;
609 break;
610 default:
611 goto error;
612 }
613 if (device_can_wakeup(&hcd->self.root_hub->dev))
614 patch_wakeup = 1;
615 break;
616 case USB_DT_STRING << 8:
617 if ((wValue & 0xff) < 4)
618 urb->actual_length = rh_string(wValue & 0xff,
619 hcd, ubuf, wLength);
620 else /* unsupported IDs --> "protocol stall" */
621 goto error;
622 break;
623 case USB_DT_BOS << 8:
624 goto nongeneric;
625 default:
626 goto error;
627 }
628 break;
629 case DeviceRequest | USB_REQ_GET_INTERFACE:
630 tbuf[0] = 0;
631 len = 1;
632 /* FALLTHROUGH */
633 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
634 break;
635 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
636 /* wValue == urb->dev->devaddr */
637 dev_dbg (hcd->self.controller, "root hub device address %d\n",
638 wValue);
639 break;
640
641 /* INTERFACE REQUESTS (no defined feature/status flags) */
642
643 /* ENDPOINT REQUESTS */
644
645 case EndpointRequest | USB_REQ_GET_STATUS:
646 /* ENDPOINT_HALT flag */
647 tbuf[0] = 0;
648 tbuf[1] = 0;
649 len = 2;
650 /* FALLTHROUGH */
651 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
652 case EndpointOutRequest | USB_REQ_SET_FEATURE:
653 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
654 break;
655
656 /* CLASS REQUESTS (and errors) */
657
658 default:
659 nongeneric:
660 /* non-generic request */
661 switch (typeReq) {
662 case GetHubStatus:
663 len = 4;
664 break;
665 case GetPortStatus:
666 if (wValue == HUB_PORT_STATUS)
667 len = 4;
668 else
669 /* other port status types return 8 bytes */
670 len = 8;
671 break;
672 case GetHubDescriptor:
673 len = sizeof (struct usb_hub_descriptor);
674 break;
675 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
676 /* len is returned by hub_control */
677 break;
678 }
679 status = hcd->driver->hub_control (hcd,
680 typeReq, wValue, wIndex,
681 tbuf, wLength);
682
683 if (typeReq == GetHubDescriptor)
684 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
685 (struct usb_hub_descriptor *)tbuf);
686 break;
687 error:
688 /* "protocol stall" on error */
689 status = -EPIPE;
690 }
691
692 if (status < 0) {
693 len = 0;
694 if (status != -EPIPE) {
695 dev_dbg (hcd->self.controller,
696 "CTRL: TypeReq=0x%x val=0x%x "
697 "idx=0x%x len=%d ==> %d\n",
698 typeReq, wValue, wIndex,
699 wLength, status);
700 }
701 } else if (status > 0) {
702 /* hub_control may return the length of data copied. */
703 len = status;
704 status = 0;
705 }
706 if (len) {
707 if (urb->transfer_buffer_length < len)
708 len = urb->transfer_buffer_length;
709 urb->actual_length = len;
710 /* always USB_DIR_IN, toward host */
711 memcpy (ubuf, bufp, len);
712
713 /* report whether RH hardware supports remote wakeup */
714 if (patch_wakeup &&
715 len > offsetof (struct usb_config_descriptor,
716 bmAttributes))
717 ((struct usb_config_descriptor *)ubuf)->bmAttributes
718 |= USB_CONFIG_ATT_WAKEUP;
719
720 /* report whether RH hardware has an integrated TT */
721 if (patch_protocol &&
722 len > offsetof(struct usb_device_descriptor,
723 bDeviceProtocol))
724 ((struct usb_device_descriptor *) ubuf)->
725 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
726 }
727
728 kfree(tbuf);
729 err_alloc:
730
731 /* any errors get returned through the urb completion */
732 spin_lock_irq(&hcd_root_hub_lock);
733 usb_hcd_unlink_urb_from_ep(hcd, urb);
734 usb_hcd_giveback_urb(hcd, urb, status);
735 spin_unlock_irq(&hcd_root_hub_lock);
736 return 0;
737 }
738
739 /*-------------------------------------------------------------------------*/
740
741 /*
742 * Root Hub interrupt transfers are polled using a timer if the
743 * driver requests it; otherwise the driver is responsible for
744 * calling usb_hcd_poll_rh_status() when an event occurs.
745 *
746 * Completions are called in_interrupt(), but they may or may not
747 * be in_irq().
748 */
usb_hcd_poll_rh_status(struct usb_hcd * hcd)749 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
750 {
751 struct urb *urb;
752 int length;
753 unsigned long flags;
754 char buffer[6]; /* Any root hubs with > 31 ports? */
755
756 if (unlikely(!hcd->rh_pollable))
757 return;
758 if (!hcd->uses_new_polling && !hcd->status_urb)
759 return;
760
761 length = hcd->driver->hub_status_data(hcd, buffer);
762 if (length > 0) {
763
764 /* try to complete the status urb */
765 spin_lock_irqsave(&hcd_root_hub_lock, flags);
766 urb = hcd->status_urb;
767 if (urb) {
768 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
769 hcd->status_urb = NULL;
770 urb->actual_length = length;
771 memcpy(urb->transfer_buffer, buffer, length);
772
773 usb_hcd_unlink_urb_from_ep(hcd, urb);
774 usb_hcd_giveback_urb(hcd, urb, 0);
775 } else {
776 length = 0;
777 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
778 }
779 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
780 }
781
782 /* The USB 2.0 spec says 256 ms. This is close enough and won't
783 * exceed that limit if HZ is 100. The math is more clunky than
784 * maybe expected, this is to make sure that all timers for USB devices
785 * fire at the same time to give the CPU a break in between */
786 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
787 (length == 0 && hcd->status_urb != NULL))
788 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
789 }
790 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
791
792 /* timer callback */
rh_timer_func(struct timer_list * t)793 static void rh_timer_func (struct timer_list *t)
794 {
795 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
796
797 usb_hcd_poll_rh_status(_hcd);
798 }
799
800 /*-------------------------------------------------------------------------*/
801
rh_queue_status(struct usb_hcd * hcd,struct urb * urb)802 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
803 {
804 int retval;
805 unsigned long flags;
806 unsigned len = 1 + (urb->dev->maxchild / 8);
807
808 spin_lock_irqsave (&hcd_root_hub_lock, flags);
809 if (hcd->status_urb || urb->transfer_buffer_length < len) {
810 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
811 retval = -EINVAL;
812 goto done;
813 }
814
815 retval = usb_hcd_link_urb_to_ep(hcd, urb);
816 if (retval)
817 goto done;
818
819 hcd->status_urb = urb;
820 urb->hcpriv = hcd; /* indicate it's queued */
821 if (!hcd->uses_new_polling)
822 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
823
824 /* If a status change has already occurred, report it ASAP */
825 else if (HCD_POLL_PENDING(hcd))
826 mod_timer(&hcd->rh_timer, jiffies);
827 retval = 0;
828 done:
829 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
830 return retval;
831 }
832
rh_urb_enqueue(struct usb_hcd * hcd,struct urb * urb)833 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
834 {
835 if (usb_endpoint_xfer_int(&urb->ep->desc))
836 return rh_queue_status (hcd, urb);
837 if (usb_endpoint_xfer_control(&urb->ep->desc))
838 return rh_call_control (hcd, urb);
839 return -EINVAL;
840 }
841
842 /*-------------------------------------------------------------------------*/
843
844 /* Unlinks of root-hub control URBs are legal, but they don't do anything
845 * since these URBs always execute synchronously.
846 */
usb_rh_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)847 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
848 {
849 unsigned long flags;
850 int rc;
851
852 spin_lock_irqsave(&hcd_root_hub_lock, flags);
853 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
854 if (rc)
855 goto done;
856
857 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
858 ; /* Do nothing */
859
860 } else { /* Status URB */
861 if (!hcd->uses_new_polling)
862 del_timer (&hcd->rh_timer);
863 if (urb == hcd->status_urb) {
864 hcd->status_urb = NULL;
865 usb_hcd_unlink_urb_from_ep(hcd, urb);
866 usb_hcd_giveback_urb(hcd, urb, status);
867 }
868 }
869 done:
870 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
871 return rc;
872 }
873
874
875
876 /*
877 * Show & store the current value of authorized_default
878 */
authorized_default_show(struct device * dev,struct device_attribute * attr,char * buf)879 static ssize_t authorized_default_show(struct device *dev,
880 struct device_attribute *attr, char *buf)
881 {
882 struct usb_device *rh_usb_dev = to_usb_device(dev);
883 struct usb_bus *usb_bus = rh_usb_dev->bus;
884 struct usb_hcd *hcd;
885
886 hcd = bus_to_hcd(usb_bus);
887 return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
888 }
889
authorized_default_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)890 static ssize_t authorized_default_store(struct device *dev,
891 struct device_attribute *attr,
892 const char *buf, size_t size)
893 {
894 ssize_t result;
895 unsigned val;
896 struct usb_device *rh_usb_dev = to_usb_device(dev);
897 struct usb_bus *usb_bus = rh_usb_dev->bus;
898 struct usb_hcd *hcd;
899
900 hcd = bus_to_hcd(usb_bus);
901 result = sscanf(buf, "%u\n", &val);
902 if (result == 1) {
903 if (val)
904 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
905 else
906 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
907
908 result = size;
909 } else {
910 result = -EINVAL;
911 }
912 return result;
913 }
914 static DEVICE_ATTR_RW(authorized_default);
915
916 /*
917 * interface_authorized_default_show - show default authorization status
918 * for USB interfaces
919 *
920 * note: interface_authorized_default is the default value
921 * for initializing the authorized attribute of interfaces
922 */
interface_authorized_default_show(struct device * dev,struct device_attribute * attr,char * buf)923 static ssize_t interface_authorized_default_show(struct device *dev,
924 struct device_attribute *attr, char *buf)
925 {
926 struct usb_device *usb_dev = to_usb_device(dev);
927 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
928
929 return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
930 }
931
932 /*
933 * interface_authorized_default_store - store default authorization status
934 * for USB interfaces
935 *
936 * note: interface_authorized_default is the default value
937 * for initializing the authorized attribute of interfaces
938 */
interface_authorized_default_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)939 static ssize_t interface_authorized_default_store(struct device *dev,
940 struct device_attribute *attr, const char *buf, size_t count)
941 {
942 struct usb_device *usb_dev = to_usb_device(dev);
943 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
944 int rc = count;
945 bool val;
946
947 if (strtobool(buf, &val) != 0)
948 return -EINVAL;
949
950 if (val)
951 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
952 else
953 clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
954
955 return rc;
956 }
957 static DEVICE_ATTR_RW(interface_authorized_default);
958
959 /* Group all the USB bus attributes */
960 static struct attribute *usb_bus_attrs[] = {
961 &dev_attr_authorized_default.attr,
962 &dev_attr_interface_authorized_default.attr,
963 NULL,
964 };
965
966 static const struct attribute_group usb_bus_attr_group = {
967 .name = NULL, /* we want them in the same directory */
968 .attrs = usb_bus_attrs,
969 };
970
971
972
973 /*-------------------------------------------------------------------------*/
974
975 /**
976 * usb_bus_init - shared initialization code
977 * @bus: the bus structure being initialized
978 *
979 * This code is used to initialize a usb_bus structure, memory for which is
980 * separately managed.
981 */
usb_bus_init(struct usb_bus * bus)982 static void usb_bus_init (struct usb_bus *bus)
983 {
984 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
985
986 bus->devnum_next = 1;
987
988 bus->root_hub = NULL;
989 bus->busnum = -1;
990 bus->bandwidth_allocated = 0;
991 bus->bandwidth_int_reqs = 0;
992 bus->bandwidth_isoc_reqs = 0;
993 mutex_init(&bus->devnum_next_mutex);
994 }
995
996 /*-------------------------------------------------------------------------*/
997
998 /**
999 * usb_register_bus - registers the USB host controller with the usb core
1000 * @bus: pointer to the bus to register
1001 * Context: !in_interrupt()
1002 *
1003 * Assigns a bus number, and links the controller into usbcore data
1004 * structures so that it can be seen by scanning the bus list.
1005 *
1006 * Return: 0 if successful. A negative error code otherwise.
1007 */
usb_register_bus(struct usb_bus * bus)1008 static int usb_register_bus(struct usb_bus *bus)
1009 {
1010 int result = -E2BIG;
1011 int busnum;
1012
1013 mutex_lock(&usb_bus_idr_lock);
1014 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
1015 if (busnum < 0) {
1016 pr_err("%s: failed to get bus number\n", usbcore_name);
1017 goto error_find_busnum;
1018 }
1019 bus->busnum = busnum;
1020 mutex_unlock(&usb_bus_idr_lock);
1021
1022 usb_notify_add_bus(bus);
1023
1024 dev_info (bus->controller, "new USB bus registered, assigned bus "
1025 "number %d\n", bus->busnum);
1026 return 0;
1027
1028 error_find_busnum:
1029 mutex_unlock(&usb_bus_idr_lock);
1030 return result;
1031 }
1032
1033 /**
1034 * usb_deregister_bus - deregisters the USB host controller
1035 * @bus: pointer to the bus to deregister
1036 * Context: !in_interrupt()
1037 *
1038 * Recycles the bus number, and unlinks the controller from usbcore data
1039 * structures so that it won't be seen by scanning the bus list.
1040 */
usb_deregister_bus(struct usb_bus * bus)1041 static void usb_deregister_bus (struct usb_bus *bus)
1042 {
1043 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1044
1045 /*
1046 * NOTE: make sure that all the devices are removed by the
1047 * controller code, as well as having it call this when cleaning
1048 * itself up
1049 */
1050 mutex_lock(&usb_bus_idr_lock);
1051 idr_remove(&usb_bus_idr, bus->busnum);
1052 mutex_unlock(&usb_bus_idr_lock);
1053
1054 usb_notify_remove_bus(bus);
1055 }
1056
1057 /**
1058 * register_root_hub - called by usb_add_hcd() to register a root hub
1059 * @hcd: host controller for this root hub
1060 *
1061 * This function registers the root hub with the USB subsystem. It sets up
1062 * the device properly in the device tree and then calls usb_new_device()
1063 * to register the usb device. It also assigns the root hub's USB address
1064 * (always 1).
1065 *
1066 * Return: 0 if successful. A negative error code otherwise.
1067 */
register_root_hub(struct usb_hcd * hcd)1068 static int register_root_hub(struct usb_hcd *hcd)
1069 {
1070 struct device *parent_dev = hcd->self.controller;
1071 struct usb_device *usb_dev = hcd->self.root_hub;
1072 const int devnum = 1;
1073 int retval;
1074
1075 usb_dev->devnum = devnum;
1076 usb_dev->bus->devnum_next = devnum + 1;
1077 memset (&usb_dev->bus->devmap.devicemap, 0,
1078 sizeof usb_dev->bus->devmap.devicemap);
1079 set_bit (devnum, usb_dev->bus->devmap.devicemap);
1080 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1081
1082 mutex_lock(&usb_bus_idr_lock);
1083
1084 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1085 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1086 if (retval != sizeof usb_dev->descriptor) {
1087 mutex_unlock(&usb_bus_idr_lock);
1088 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1089 dev_name(&usb_dev->dev), retval);
1090 return (retval < 0) ? retval : -EMSGSIZE;
1091 }
1092
1093 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1094 retval = usb_get_bos_descriptor(usb_dev);
1095 if (!retval) {
1096 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1097 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1098 mutex_unlock(&usb_bus_idr_lock);
1099 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1100 dev_name(&usb_dev->dev), retval);
1101 return retval;
1102 }
1103 }
1104
1105 retval = usb_new_device (usb_dev);
1106 if (retval) {
1107 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1108 dev_name(&usb_dev->dev), retval);
1109 } else {
1110 spin_lock_irq (&hcd_root_hub_lock);
1111 hcd->rh_registered = 1;
1112 spin_unlock_irq (&hcd_root_hub_lock);
1113
1114 /* Did the HC die before the root hub was registered? */
1115 if (HCD_DEAD(hcd))
1116 usb_hc_died (hcd); /* This time clean up */
1117 }
1118 mutex_unlock(&usb_bus_idr_lock);
1119
1120 return retval;
1121 }
1122
1123 /*
1124 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1125 * @bus: the bus which the root hub belongs to
1126 * @portnum: the port which is being resumed
1127 *
1128 * HCDs should call this function when they know that a resume signal is
1129 * being sent to a root-hub port. The root hub will be prevented from
1130 * going into autosuspend until usb_hcd_end_port_resume() is called.
1131 *
1132 * The bus's private lock must be held by the caller.
1133 */
usb_hcd_start_port_resume(struct usb_bus * bus,int portnum)1134 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1135 {
1136 unsigned bit = 1 << portnum;
1137
1138 if (!(bus->resuming_ports & bit)) {
1139 bus->resuming_ports |= bit;
1140 pm_runtime_get_noresume(&bus->root_hub->dev);
1141 }
1142 }
1143 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1144
1145 /*
1146 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1147 * @bus: the bus which the root hub belongs to
1148 * @portnum: the port which is being resumed
1149 *
1150 * HCDs should call this function when they know that a resume signal has
1151 * stopped being sent to a root-hub port. The root hub will be allowed to
1152 * autosuspend again.
1153 *
1154 * The bus's private lock must be held by the caller.
1155 */
usb_hcd_end_port_resume(struct usb_bus * bus,int portnum)1156 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1157 {
1158 unsigned bit = 1 << portnum;
1159
1160 if (bus->resuming_ports & bit) {
1161 bus->resuming_ports &= ~bit;
1162 pm_runtime_put_noidle(&bus->root_hub->dev);
1163 }
1164 }
1165 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1166
1167 /*-------------------------------------------------------------------------*/
1168
1169 /**
1170 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1171 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1172 * @is_input: true iff the transaction sends data to the host
1173 * @isoc: true for isochronous transactions, false for interrupt ones
1174 * @bytecount: how many bytes in the transaction.
1175 *
1176 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1177 *
1178 * Note:
1179 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1180 * scheduled in software, this function is only used for such scheduling.
1181 */
usb_calc_bus_time(int speed,int is_input,int isoc,int bytecount)1182 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1183 {
1184 unsigned long tmp;
1185
1186 switch (speed) {
1187 case USB_SPEED_LOW: /* INTR only */
1188 if (is_input) {
1189 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1190 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1191 } else {
1192 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1193 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1194 }
1195 case USB_SPEED_FULL: /* ISOC or INTR */
1196 if (isoc) {
1197 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1198 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1199 } else {
1200 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1201 return 9107L + BW_HOST_DELAY + tmp;
1202 }
1203 case USB_SPEED_HIGH: /* ISOC or INTR */
1204 /* FIXME adjust for input vs output */
1205 if (isoc)
1206 tmp = HS_NSECS_ISO (bytecount);
1207 else
1208 tmp = HS_NSECS (bytecount);
1209 return tmp;
1210 default:
1211 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1212 return -1;
1213 }
1214 }
1215 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1216
1217
1218 /*-------------------------------------------------------------------------*/
1219
1220 /*
1221 * Generic HC operations.
1222 */
1223
1224 /*-------------------------------------------------------------------------*/
1225
1226 /**
1227 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1228 * @hcd: host controller to which @urb was submitted
1229 * @urb: URB being submitted
1230 *
1231 * Host controller drivers should call this routine in their enqueue()
1232 * method. The HCD's private spinlock must be held and interrupts must
1233 * be disabled. The actions carried out here are required for URB
1234 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1235 *
1236 * Return: 0 for no error, otherwise a negative error code (in which case
1237 * the enqueue() method must fail). If no error occurs but enqueue() fails
1238 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1239 * the private spinlock and returning.
1240 */
usb_hcd_link_urb_to_ep(struct usb_hcd * hcd,struct urb * urb)1241 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1242 {
1243 int rc = 0;
1244
1245 spin_lock(&hcd_urb_list_lock);
1246
1247 /* Check that the URB isn't being killed */
1248 if (unlikely(atomic_read(&urb->reject))) {
1249 rc = -EPERM;
1250 goto done;
1251 }
1252
1253 if (unlikely(!urb->ep->enabled)) {
1254 rc = -ENOENT;
1255 goto done;
1256 }
1257
1258 if (unlikely(!urb->dev->can_submit)) {
1259 rc = -EHOSTUNREACH;
1260 goto done;
1261 }
1262
1263 /*
1264 * Check the host controller's state and add the URB to the
1265 * endpoint's queue.
1266 */
1267 if (HCD_RH_RUNNING(hcd)) {
1268 urb->unlinked = 0;
1269 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1270 } else {
1271 rc = -ESHUTDOWN;
1272 goto done;
1273 }
1274 done:
1275 spin_unlock(&hcd_urb_list_lock);
1276 return rc;
1277 }
1278 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1279
1280 /**
1281 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1282 * @hcd: host controller to which @urb was submitted
1283 * @urb: URB being checked for unlinkability
1284 * @status: error code to store in @urb if the unlink succeeds
1285 *
1286 * Host controller drivers should call this routine in their dequeue()
1287 * method. The HCD's private spinlock must be held and interrupts must
1288 * be disabled. The actions carried out here are required for making
1289 * sure than an unlink is valid.
1290 *
1291 * Return: 0 for no error, otherwise a negative error code (in which case
1292 * the dequeue() method must fail). The possible error codes are:
1293 *
1294 * -EIDRM: @urb was not submitted or has already completed.
1295 * The completion function may not have been called yet.
1296 *
1297 * -EBUSY: @urb has already been unlinked.
1298 */
usb_hcd_check_unlink_urb(struct usb_hcd * hcd,struct urb * urb,int status)1299 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1300 int status)
1301 {
1302 struct list_head *tmp;
1303
1304 /* insist the urb is still queued */
1305 list_for_each(tmp, &urb->ep->urb_list) {
1306 if (tmp == &urb->urb_list)
1307 break;
1308 }
1309 if (tmp != &urb->urb_list)
1310 return -EIDRM;
1311
1312 /* Any status except -EINPROGRESS means something already started to
1313 * unlink this URB from the hardware. So there's no more work to do.
1314 */
1315 if (urb->unlinked)
1316 return -EBUSY;
1317 urb->unlinked = status;
1318 return 0;
1319 }
1320 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1321
1322 /**
1323 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1324 * @hcd: host controller to which @urb was submitted
1325 * @urb: URB being unlinked
1326 *
1327 * Host controller drivers should call this routine before calling
1328 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1329 * interrupts must be disabled. The actions carried out here are required
1330 * for URB completion.
1331 */
usb_hcd_unlink_urb_from_ep(struct usb_hcd * hcd,struct urb * urb)1332 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1333 {
1334 /* clear all state linking urb to this dev (and hcd) */
1335 spin_lock(&hcd_urb_list_lock);
1336 list_del_init(&urb->urb_list);
1337 spin_unlock(&hcd_urb_list_lock);
1338 }
1339 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1340
1341 /*
1342 * Some usb host controllers can only perform dma using a small SRAM area.
1343 * The usb core itself is however optimized for host controllers that can dma
1344 * using regular system memory - like pci devices doing bus mastering.
1345 *
1346 * To support host controllers with limited dma capabilities we provide dma
1347 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1348 * For this to work properly the host controller code must first use the
1349 * function dma_declare_coherent_memory() to point out which memory area
1350 * that should be used for dma allocations.
1351 *
1352 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1353 * dma using dma_alloc_coherent() which in turn allocates from the memory
1354 * area pointed out with dma_declare_coherent_memory().
1355 *
1356 * So, to summarize...
1357 *
1358 * - We need "local" memory, canonical example being
1359 * a small SRAM on a discrete controller being the
1360 * only memory that the controller can read ...
1361 * (a) "normal" kernel memory is no good, and
1362 * (b) there's not enough to share
1363 *
1364 * - The only *portable* hook for such stuff in the
1365 * DMA framework is dma_declare_coherent_memory()
1366 *
1367 * - So we use that, even though the primary requirement
1368 * is that the memory be "local" (hence addressable
1369 * by that device), not "coherent".
1370 *
1371 */
1372
hcd_alloc_coherent(struct usb_bus * bus,gfp_t mem_flags,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1373 static int hcd_alloc_coherent(struct usb_bus *bus,
1374 gfp_t mem_flags, dma_addr_t *dma_handle,
1375 void **vaddr_handle, size_t size,
1376 enum dma_data_direction dir)
1377 {
1378 unsigned char *vaddr;
1379
1380 if (*vaddr_handle == NULL) {
1381 WARN_ON_ONCE(1);
1382 return -EFAULT;
1383 }
1384
1385 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1386 mem_flags, dma_handle);
1387 if (!vaddr)
1388 return -ENOMEM;
1389
1390 /*
1391 * Store the virtual address of the buffer at the end
1392 * of the allocated dma buffer. The size of the buffer
1393 * may be uneven so use unaligned functions instead
1394 * of just rounding up. It makes sense to optimize for
1395 * memory footprint over access speed since the amount
1396 * of memory available for dma may be limited.
1397 */
1398 put_unaligned((unsigned long)*vaddr_handle,
1399 (unsigned long *)(vaddr + size));
1400
1401 if (dir == DMA_TO_DEVICE)
1402 memcpy(vaddr, *vaddr_handle, size);
1403
1404 *vaddr_handle = vaddr;
1405 return 0;
1406 }
1407
hcd_free_coherent(struct usb_bus * bus,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1408 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1409 void **vaddr_handle, size_t size,
1410 enum dma_data_direction dir)
1411 {
1412 unsigned char *vaddr = *vaddr_handle;
1413
1414 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1415
1416 if (dir == DMA_FROM_DEVICE)
1417 memcpy(vaddr, *vaddr_handle, size);
1418
1419 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1420
1421 *vaddr_handle = vaddr;
1422 *dma_handle = 0;
1423 }
1424
usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd * hcd,struct urb * urb)1425 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1426 {
1427 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1428 (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1429 dma_unmap_single(hcd->self.sysdev,
1430 urb->setup_dma,
1431 sizeof(struct usb_ctrlrequest),
1432 DMA_TO_DEVICE);
1433 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1434 hcd_free_coherent(urb->dev->bus,
1435 &urb->setup_dma,
1436 (void **) &urb->setup_packet,
1437 sizeof(struct usb_ctrlrequest),
1438 DMA_TO_DEVICE);
1439
1440 /* Make it safe to call this routine more than once */
1441 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1442 }
1443 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1444
unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1445 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1446 {
1447 if (hcd->driver->unmap_urb_for_dma)
1448 hcd->driver->unmap_urb_for_dma(hcd, urb);
1449 else
1450 usb_hcd_unmap_urb_for_dma(hcd, urb);
1451 }
1452
usb_hcd_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1453 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1454 {
1455 enum dma_data_direction dir;
1456
1457 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1458
1459 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1460 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1461 (urb->transfer_flags & URB_DMA_MAP_SG))
1462 dma_unmap_sg(hcd->self.sysdev,
1463 urb->sg,
1464 urb->num_sgs,
1465 dir);
1466 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1467 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1468 dma_unmap_page(hcd->self.sysdev,
1469 urb->transfer_dma,
1470 urb->transfer_buffer_length,
1471 dir);
1472 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1473 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1474 dma_unmap_single(hcd->self.sysdev,
1475 urb->transfer_dma,
1476 urb->transfer_buffer_length,
1477 dir);
1478 else if (urb->transfer_flags & URB_MAP_LOCAL)
1479 hcd_free_coherent(urb->dev->bus,
1480 &urb->transfer_dma,
1481 &urb->transfer_buffer,
1482 urb->transfer_buffer_length,
1483 dir);
1484
1485 /* Make it safe to call this routine more than once */
1486 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1487 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1488 }
1489 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1490
map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1491 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1492 gfp_t mem_flags)
1493 {
1494 if (hcd->driver->map_urb_for_dma)
1495 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1496 else
1497 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1498 }
1499
usb_hcd_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1500 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1501 gfp_t mem_flags)
1502 {
1503 enum dma_data_direction dir;
1504 int ret = 0;
1505
1506 /* Map the URB's buffers for DMA access.
1507 * Lower level HCD code should use *_dma exclusively,
1508 * unless it uses pio or talks to another transport,
1509 * or uses the provided scatter gather list for bulk.
1510 */
1511
1512 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1513 if (hcd->self.uses_pio_for_control)
1514 return ret;
1515 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1516 if (is_vmalloc_addr(urb->setup_packet)) {
1517 WARN_ONCE(1, "setup packet is not dma capable\n");
1518 return -EAGAIN;
1519 } else if (object_is_on_stack(urb->setup_packet)) {
1520 WARN_ONCE(1, "setup packet is on stack\n");
1521 return -EAGAIN;
1522 }
1523
1524 urb->setup_dma = dma_map_single(
1525 hcd->self.sysdev,
1526 urb->setup_packet,
1527 sizeof(struct usb_ctrlrequest),
1528 DMA_TO_DEVICE);
1529 if (dma_mapping_error(hcd->self.sysdev,
1530 urb->setup_dma))
1531 return -EAGAIN;
1532 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1533 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1534 ret = hcd_alloc_coherent(
1535 urb->dev->bus, mem_flags,
1536 &urb->setup_dma,
1537 (void **)&urb->setup_packet,
1538 sizeof(struct usb_ctrlrequest),
1539 DMA_TO_DEVICE);
1540 if (ret)
1541 return ret;
1542 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1543 }
1544 }
1545
1546 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1547 if (urb->transfer_buffer_length != 0
1548 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1549 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1550 if (urb->num_sgs) {
1551 int n;
1552
1553 /* We don't support sg for isoc transfers ! */
1554 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1555 WARN_ON(1);
1556 return -EINVAL;
1557 }
1558
1559 n = dma_map_sg(
1560 hcd->self.sysdev,
1561 urb->sg,
1562 urb->num_sgs,
1563 dir);
1564 if (n <= 0)
1565 ret = -EAGAIN;
1566 else
1567 urb->transfer_flags |= URB_DMA_MAP_SG;
1568 urb->num_mapped_sgs = n;
1569 if (n != urb->num_sgs)
1570 urb->transfer_flags |=
1571 URB_DMA_SG_COMBINED;
1572 } else if (urb->sg) {
1573 struct scatterlist *sg = urb->sg;
1574 urb->transfer_dma = dma_map_page(
1575 hcd->self.sysdev,
1576 sg_page(sg),
1577 sg->offset,
1578 urb->transfer_buffer_length,
1579 dir);
1580 if (dma_mapping_error(hcd->self.sysdev,
1581 urb->transfer_dma))
1582 ret = -EAGAIN;
1583 else
1584 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1585 } else if (is_vmalloc_addr(urb->transfer_buffer)) {
1586 WARN_ONCE(1, "transfer buffer not dma capable\n");
1587 ret = -EAGAIN;
1588 } else if (object_is_on_stack(urb->transfer_buffer)) {
1589 WARN_ONCE(1, "transfer buffer is on stack\n");
1590 ret = -EAGAIN;
1591 } else {
1592 urb->transfer_dma = dma_map_single(
1593 hcd->self.sysdev,
1594 urb->transfer_buffer,
1595 urb->transfer_buffer_length,
1596 dir);
1597 if (dma_mapping_error(hcd->self.sysdev,
1598 urb->transfer_dma))
1599 ret = -EAGAIN;
1600 else
1601 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1602 }
1603 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1604 ret = hcd_alloc_coherent(
1605 urb->dev->bus, mem_flags,
1606 &urb->transfer_dma,
1607 &urb->transfer_buffer,
1608 urb->transfer_buffer_length,
1609 dir);
1610 if (ret == 0)
1611 urb->transfer_flags |= URB_MAP_LOCAL;
1612 }
1613 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1614 URB_SETUP_MAP_LOCAL)))
1615 usb_hcd_unmap_urb_for_dma(hcd, urb);
1616 }
1617 return ret;
1618 }
1619 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1620
1621 /*-------------------------------------------------------------------------*/
1622
1623 /* may be called in any context with a valid urb->dev usecount
1624 * caller surrenders "ownership" of urb
1625 * expects usb_submit_urb() to have sanity checked and conditioned all
1626 * inputs in the urb
1627 */
usb_hcd_submit_urb(struct urb * urb,gfp_t mem_flags)1628 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1629 {
1630 int status;
1631 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1632
1633 /* increment urb's reference count as part of giving it to the HCD
1634 * (which will control it). HCD guarantees that it either returns
1635 * an error or calls giveback(), but not both.
1636 */
1637 usb_get_urb(urb);
1638 atomic_inc(&urb->use_count);
1639 atomic_inc(&urb->dev->urbnum);
1640 usbmon_urb_submit(&hcd->self, urb);
1641
1642 /* NOTE requirements on root-hub callers (usbfs and the hub
1643 * driver, for now): URBs' urb->transfer_buffer must be
1644 * valid and usb_buffer_{sync,unmap}() not be needed, since
1645 * they could clobber root hub response data. Also, control
1646 * URBs must be submitted in process context with interrupts
1647 * enabled.
1648 */
1649
1650 if (is_root_hub(urb->dev)) {
1651 status = rh_urb_enqueue(hcd, urb);
1652 } else {
1653 status = map_urb_for_dma(hcd, urb, mem_flags);
1654 if (likely(status == 0)) {
1655 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1656 if (unlikely(status))
1657 unmap_urb_for_dma(hcd, urb);
1658 }
1659 }
1660
1661 if (unlikely(status)) {
1662 usbmon_urb_submit_error(&hcd->self, urb, status);
1663 urb->hcpriv = NULL;
1664 INIT_LIST_HEAD(&urb->urb_list);
1665 atomic_dec(&urb->use_count);
1666 atomic_dec(&urb->dev->urbnum);
1667 if (atomic_read(&urb->reject))
1668 wake_up(&usb_kill_urb_queue);
1669 usb_put_urb(urb);
1670 }
1671 return status;
1672 }
1673
1674 /*-------------------------------------------------------------------------*/
1675
1676 /* this makes the hcd giveback() the urb more quickly, by kicking it
1677 * off hardware queues (which may take a while) and returning it as
1678 * soon as practical. we've already set up the urb's return status,
1679 * but we can't know if the callback completed already.
1680 */
unlink1(struct usb_hcd * hcd,struct urb * urb,int status)1681 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1682 {
1683 int value;
1684
1685 if (is_root_hub(urb->dev))
1686 value = usb_rh_urb_dequeue(hcd, urb, status);
1687 else {
1688
1689 /* The only reason an HCD might fail this call is if
1690 * it has not yet fully queued the urb to begin with.
1691 * Such failures should be harmless. */
1692 value = hcd->driver->urb_dequeue(hcd, urb, status);
1693 }
1694 return value;
1695 }
1696
1697 /*
1698 * called in any context
1699 *
1700 * caller guarantees urb won't be recycled till both unlink()
1701 * and the urb's completion function return
1702 */
usb_hcd_unlink_urb(struct urb * urb,int status)1703 int usb_hcd_unlink_urb (struct urb *urb, int status)
1704 {
1705 struct usb_hcd *hcd;
1706 struct usb_device *udev = urb->dev;
1707 int retval = -EIDRM;
1708 unsigned long flags;
1709
1710 /* Prevent the device and bus from going away while
1711 * the unlink is carried out. If they are already gone
1712 * then urb->use_count must be 0, since disconnected
1713 * devices can't have any active URBs.
1714 */
1715 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1716 if (atomic_read(&urb->use_count) > 0) {
1717 retval = 0;
1718 usb_get_dev(udev);
1719 }
1720 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1721 if (retval == 0) {
1722 hcd = bus_to_hcd(urb->dev->bus);
1723 retval = unlink1(hcd, urb, status);
1724 if (retval == 0)
1725 retval = -EINPROGRESS;
1726 else if (retval != -EIDRM && retval != -EBUSY)
1727 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1728 urb, retval);
1729 usb_put_dev(udev);
1730 }
1731 return retval;
1732 }
1733
1734 /*-------------------------------------------------------------------------*/
1735
__usb_hcd_giveback_urb(struct urb * urb)1736 static void __usb_hcd_giveback_urb(struct urb *urb)
1737 {
1738 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1739 struct usb_anchor *anchor = urb->anchor;
1740 int status = urb->unlinked;
1741 unsigned long flags;
1742
1743 urb->hcpriv = NULL;
1744 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1745 urb->actual_length < urb->transfer_buffer_length &&
1746 !status))
1747 status = -EREMOTEIO;
1748
1749 unmap_urb_for_dma(hcd, urb);
1750 usbmon_urb_complete(&hcd->self, urb, status);
1751 usb_anchor_suspend_wakeups(anchor);
1752 usb_unanchor_urb(urb);
1753 if (likely(status == 0))
1754 usb_led_activity(USB_LED_EVENT_HOST);
1755
1756 /* pass ownership to the completion handler */
1757 urb->status = status;
1758
1759 /*
1760 * We disable local IRQs here avoid possible deadlock because
1761 * drivers may call spin_lock() to hold lock which might be
1762 * acquired in one hard interrupt handler.
1763 *
1764 * The local_irq_save()/local_irq_restore() around complete()
1765 * will be removed if current USB drivers have been cleaned up
1766 * and no one may trigger the above deadlock situation when
1767 * running complete() in tasklet.
1768 */
1769 local_irq_save(flags);
1770 urb->complete(urb);
1771 local_irq_restore(flags);
1772
1773 usb_anchor_resume_wakeups(anchor);
1774 atomic_dec(&urb->use_count);
1775 if (unlikely(atomic_read(&urb->reject)))
1776 wake_up(&usb_kill_urb_queue);
1777 usb_put_urb(urb);
1778 }
1779
usb_giveback_urb_bh(unsigned long param)1780 static void usb_giveback_urb_bh(unsigned long param)
1781 {
1782 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1783 struct list_head local_list;
1784
1785 spin_lock_irq(&bh->lock);
1786 bh->running = true;
1787 restart:
1788 list_replace_init(&bh->head, &local_list);
1789 spin_unlock_irq(&bh->lock);
1790
1791 while (!list_empty(&local_list)) {
1792 struct urb *urb;
1793
1794 urb = list_entry(local_list.next, struct urb, urb_list);
1795 list_del_init(&urb->urb_list);
1796 bh->completing_ep = urb->ep;
1797 __usb_hcd_giveback_urb(urb);
1798 bh->completing_ep = NULL;
1799 }
1800
1801 /* check if there are new URBs to giveback */
1802 spin_lock_irq(&bh->lock);
1803 if (!list_empty(&bh->head))
1804 goto restart;
1805 bh->running = false;
1806 spin_unlock_irq(&bh->lock);
1807 }
1808
1809 /**
1810 * usb_hcd_giveback_urb - return URB from HCD to device driver
1811 * @hcd: host controller returning the URB
1812 * @urb: urb being returned to the USB device driver.
1813 * @status: completion status code for the URB.
1814 * Context: in_interrupt()
1815 *
1816 * This hands the URB from HCD to its USB device driver, using its
1817 * completion function. The HCD has freed all per-urb resources
1818 * (and is done using urb->hcpriv). It also released all HCD locks;
1819 * the device driver won't cause problems if it frees, modifies,
1820 * or resubmits this URB.
1821 *
1822 * If @urb was unlinked, the value of @status will be overridden by
1823 * @urb->unlinked. Erroneous short transfers are detected in case
1824 * the HCD hasn't checked for them.
1825 */
usb_hcd_giveback_urb(struct usb_hcd * hcd,struct urb * urb,int status)1826 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1827 {
1828 struct giveback_urb_bh *bh;
1829 bool running, high_prio_bh;
1830
1831 /* pass status to tasklet via unlinked */
1832 if (likely(!urb->unlinked))
1833 urb->unlinked = status;
1834
1835 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1836 __usb_hcd_giveback_urb(urb);
1837 return;
1838 }
1839
1840 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1841 bh = &hcd->high_prio_bh;
1842 high_prio_bh = true;
1843 } else {
1844 bh = &hcd->low_prio_bh;
1845 high_prio_bh = false;
1846 }
1847
1848 spin_lock(&bh->lock);
1849 list_add_tail(&urb->urb_list, &bh->head);
1850 running = bh->running;
1851 spin_unlock(&bh->lock);
1852
1853 if (running)
1854 ;
1855 else if (high_prio_bh)
1856 tasklet_hi_schedule(&bh->bh);
1857 else
1858 tasklet_schedule(&bh->bh);
1859 }
1860 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1861
1862 /*-------------------------------------------------------------------------*/
1863
1864 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1865 * queue to drain completely. The caller must first insure that no more
1866 * URBs can be submitted for this endpoint.
1867 */
usb_hcd_flush_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1868 void usb_hcd_flush_endpoint(struct usb_device *udev,
1869 struct usb_host_endpoint *ep)
1870 {
1871 struct usb_hcd *hcd;
1872 struct urb *urb;
1873
1874 if (!ep)
1875 return;
1876 might_sleep();
1877 hcd = bus_to_hcd(udev->bus);
1878
1879 /* No more submits can occur */
1880 spin_lock_irq(&hcd_urb_list_lock);
1881 rescan:
1882 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1883 int is_in;
1884
1885 if (urb->unlinked)
1886 continue;
1887 usb_get_urb (urb);
1888 is_in = usb_urb_dir_in(urb);
1889 spin_unlock(&hcd_urb_list_lock);
1890
1891 /* kick hcd */
1892 unlink1(hcd, urb, -ESHUTDOWN);
1893 dev_dbg (hcd->self.controller,
1894 "shutdown urb %pK ep%d%s%s\n",
1895 urb, usb_endpoint_num(&ep->desc),
1896 is_in ? "in" : "out",
1897 ({ char *s;
1898
1899 switch (usb_endpoint_type(&ep->desc)) {
1900 case USB_ENDPOINT_XFER_CONTROL:
1901 s = ""; break;
1902 case USB_ENDPOINT_XFER_BULK:
1903 s = "-bulk"; break;
1904 case USB_ENDPOINT_XFER_INT:
1905 s = "-intr"; break;
1906 default:
1907 s = "-iso"; break;
1908 };
1909 s;
1910 }));
1911 usb_put_urb (urb);
1912
1913 /* list contents may have changed */
1914 spin_lock(&hcd_urb_list_lock);
1915 goto rescan;
1916 }
1917 spin_unlock_irq(&hcd_urb_list_lock);
1918
1919 /* Wait until the endpoint queue is completely empty */
1920 while (!list_empty (&ep->urb_list)) {
1921 spin_lock_irq(&hcd_urb_list_lock);
1922
1923 /* The list may have changed while we acquired the spinlock */
1924 urb = NULL;
1925 if (!list_empty (&ep->urb_list)) {
1926 urb = list_entry (ep->urb_list.prev, struct urb,
1927 urb_list);
1928 usb_get_urb (urb);
1929 }
1930 spin_unlock_irq(&hcd_urb_list_lock);
1931
1932 if (urb) {
1933 usb_kill_urb (urb);
1934 usb_put_urb (urb);
1935 }
1936 }
1937 }
1938
1939 /**
1940 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1941 * the bus bandwidth
1942 * @udev: target &usb_device
1943 * @new_config: new configuration to install
1944 * @cur_alt: the current alternate interface setting
1945 * @new_alt: alternate interface setting that is being installed
1946 *
1947 * To change configurations, pass in the new configuration in new_config,
1948 * and pass NULL for cur_alt and new_alt.
1949 *
1950 * To reset a device's configuration (put the device in the ADDRESSED state),
1951 * pass in NULL for new_config, cur_alt, and new_alt.
1952 *
1953 * To change alternate interface settings, pass in NULL for new_config,
1954 * pass in the current alternate interface setting in cur_alt,
1955 * and pass in the new alternate interface setting in new_alt.
1956 *
1957 * Return: An error if the requested bandwidth change exceeds the
1958 * bus bandwidth or host controller internal resources.
1959 */
usb_hcd_alloc_bandwidth(struct usb_device * udev,struct usb_host_config * new_config,struct usb_host_interface * cur_alt,struct usb_host_interface * new_alt)1960 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1961 struct usb_host_config *new_config,
1962 struct usb_host_interface *cur_alt,
1963 struct usb_host_interface *new_alt)
1964 {
1965 int num_intfs, i, j;
1966 struct usb_host_interface *alt = NULL;
1967 int ret = 0;
1968 struct usb_hcd *hcd;
1969 struct usb_host_endpoint *ep;
1970
1971 hcd = bus_to_hcd(udev->bus);
1972 if (!hcd->driver->check_bandwidth)
1973 return 0;
1974
1975 /* Configuration is being removed - set configuration 0 */
1976 if (!new_config && !cur_alt) {
1977 for (i = 1; i < 16; ++i) {
1978 ep = udev->ep_out[i];
1979 if (ep)
1980 hcd->driver->drop_endpoint(hcd, udev, ep);
1981 ep = udev->ep_in[i];
1982 if (ep)
1983 hcd->driver->drop_endpoint(hcd, udev, ep);
1984 }
1985 hcd->driver->check_bandwidth(hcd, udev);
1986 return 0;
1987 }
1988 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1989 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1990 * of the bus. There will always be bandwidth for endpoint 0, so it's
1991 * ok to exclude it.
1992 */
1993 if (new_config) {
1994 num_intfs = new_config->desc.bNumInterfaces;
1995 /* Remove endpoints (except endpoint 0, which is always on the
1996 * schedule) from the old config from the schedule
1997 */
1998 for (i = 1; i < 16; ++i) {
1999 ep = udev->ep_out[i];
2000 if (ep) {
2001 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2002 if (ret < 0)
2003 goto reset;
2004 }
2005 ep = udev->ep_in[i];
2006 if (ep) {
2007 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2008 if (ret < 0)
2009 goto reset;
2010 }
2011 }
2012 for (i = 0; i < num_intfs; ++i) {
2013 struct usb_host_interface *first_alt;
2014 int iface_num;
2015
2016 first_alt = &new_config->intf_cache[i]->altsetting[0];
2017 iface_num = first_alt->desc.bInterfaceNumber;
2018 /* Set up endpoints for alternate interface setting 0 */
2019 alt = usb_find_alt_setting(new_config, iface_num, 0);
2020 if (!alt)
2021 /* No alt setting 0? Pick the first setting. */
2022 alt = first_alt;
2023
2024 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
2025 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
2026 if (ret < 0)
2027 goto reset;
2028 }
2029 }
2030 }
2031 if (cur_alt && new_alt) {
2032 struct usb_interface *iface = usb_ifnum_to_if(udev,
2033 cur_alt->desc.bInterfaceNumber);
2034
2035 if (!iface)
2036 return -EINVAL;
2037 if (iface->resetting_device) {
2038 /*
2039 * The USB core just reset the device, so the xHCI host
2040 * and the device will think alt setting 0 is installed.
2041 * However, the USB core will pass in the alternate
2042 * setting installed before the reset as cur_alt. Dig
2043 * out the alternate setting 0 structure, or the first
2044 * alternate setting if a broken device doesn't have alt
2045 * setting 0.
2046 */
2047 cur_alt = usb_altnum_to_altsetting(iface, 0);
2048 if (!cur_alt)
2049 cur_alt = &iface->altsetting[0];
2050 }
2051
2052 /* Drop all the endpoints in the current alt setting */
2053 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2054 ret = hcd->driver->drop_endpoint(hcd, udev,
2055 &cur_alt->endpoint[i]);
2056 if (ret < 0)
2057 goto reset;
2058 }
2059 /* Add all the endpoints in the new alt setting */
2060 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2061 ret = hcd->driver->add_endpoint(hcd, udev,
2062 &new_alt->endpoint[i]);
2063 if (ret < 0)
2064 goto reset;
2065 }
2066 }
2067 ret = hcd->driver->check_bandwidth(hcd, udev);
2068 reset:
2069 if (ret < 0)
2070 hcd->driver->reset_bandwidth(hcd, udev);
2071 return ret;
2072 }
2073
2074 /* Disables the endpoint: synchronizes with the hcd to make sure all
2075 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
2076 * have been called previously. Use for set_configuration, set_interface,
2077 * driver removal, physical disconnect.
2078 *
2079 * example: a qh stored in ep->hcpriv, holding state related to endpoint
2080 * type, maxpacket size, toggle, halt status, and scheduling.
2081 */
usb_hcd_disable_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)2082 void usb_hcd_disable_endpoint(struct usb_device *udev,
2083 struct usb_host_endpoint *ep)
2084 {
2085 struct usb_hcd *hcd;
2086
2087 might_sleep();
2088 hcd = bus_to_hcd(udev->bus);
2089 if (hcd->driver->endpoint_disable)
2090 hcd->driver->endpoint_disable(hcd, ep);
2091 }
2092
2093 /**
2094 * usb_hcd_reset_endpoint - reset host endpoint state
2095 * @udev: USB device.
2096 * @ep: the endpoint to reset.
2097 *
2098 * Resets any host endpoint state such as the toggle bit, sequence
2099 * number and current window.
2100 */
usb_hcd_reset_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)2101 void usb_hcd_reset_endpoint(struct usb_device *udev,
2102 struct usb_host_endpoint *ep)
2103 {
2104 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2105
2106 if (hcd->driver->endpoint_reset)
2107 hcd->driver->endpoint_reset(hcd, ep);
2108 else {
2109 int epnum = usb_endpoint_num(&ep->desc);
2110 int is_out = usb_endpoint_dir_out(&ep->desc);
2111 int is_control = usb_endpoint_xfer_control(&ep->desc);
2112
2113 usb_settoggle(udev, epnum, is_out, 0);
2114 if (is_control)
2115 usb_settoggle(udev, epnum, !is_out, 0);
2116 }
2117 }
2118
2119 /**
2120 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2121 * @interface: alternate setting that includes all endpoints.
2122 * @eps: array of endpoints that need streams.
2123 * @num_eps: number of endpoints in the array.
2124 * @num_streams: number of streams to allocate.
2125 * @mem_flags: flags hcd should use to allocate memory.
2126 *
2127 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2128 * Drivers may queue multiple transfers to different stream IDs, which may
2129 * complete in a different order than they were queued.
2130 *
2131 * Return: On success, the number of allocated streams. On failure, a negative
2132 * error code.
2133 */
usb_alloc_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)2134 int usb_alloc_streams(struct usb_interface *interface,
2135 struct usb_host_endpoint **eps, unsigned int num_eps,
2136 unsigned int num_streams, gfp_t mem_flags)
2137 {
2138 struct usb_hcd *hcd;
2139 struct usb_device *dev;
2140 int i, ret;
2141
2142 dev = interface_to_usbdev(interface);
2143 hcd = bus_to_hcd(dev->bus);
2144 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2145 return -EINVAL;
2146 if (dev->speed < USB_SPEED_SUPER)
2147 return -EINVAL;
2148 if (dev->state < USB_STATE_CONFIGURED)
2149 return -ENODEV;
2150
2151 for (i = 0; i < num_eps; i++) {
2152 /* Streams only apply to bulk endpoints. */
2153 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2154 return -EINVAL;
2155 /* Re-alloc is not allowed */
2156 if (eps[i]->streams)
2157 return -EINVAL;
2158 }
2159
2160 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2161 num_streams, mem_flags);
2162 if (ret < 0)
2163 return ret;
2164
2165 for (i = 0; i < num_eps; i++)
2166 eps[i]->streams = ret;
2167
2168 return ret;
2169 }
2170 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2171
2172 /**
2173 * usb_free_streams - free bulk endpoint stream IDs.
2174 * @interface: alternate setting that includes all endpoints.
2175 * @eps: array of endpoints to remove streams from.
2176 * @num_eps: number of endpoints in the array.
2177 * @mem_flags: flags hcd should use to allocate memory.
2178 *
2179 * Reverts a group of bulk endpoints back to not using stream IDs.
2180 * Can fail if we are given bad arguments, or HCD is broken.
2181 *
2182 * Return: 0 on success. On failure, a negative error code.
2183 */
usb_free_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)2184 int usb_free_streams(struct usb_interface *interface,
2185 struct usb_host_endpoint **eps, unsigned int num_eps,
2186 gfp_t mem_flags)
2187 {
2188 struct usb_hcd *hcd;
2189 struct usb_device *dev;
2190 int i, ret;
2191
2192 dev = interface_to_usbdev(interface);
2193 hcd = bus_to_hcd(dev->bus);
2194 if (dev->speed < USB_SPEED_SUPER)
2195 return -EINVAL;
2196
2197 /* Double-free is not allowed */
2198 for (i = 0; i < num_eps; i++)
2199 if (!eps[i] || !eps[i]->streams)
2200 return -EINVAL;
2201
2202 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2203 if (ret < 0)
2204 return ret;
2205
2206 for (i = 0; i < num_eps; i++)
2207 eps[i]->streams = 0;
2208
2209 return ret;
2210 }
2211 EXPORT_SYMBOL_GPL(usb_free_streams);
2212
2213 /* Protect against drivers that try to unlink URBs after the device
2214 * is gone, by waiting until all unlinks for @udev are finished.
2215 * Since we don't currently track URBs by device, simply wait until
2216 * nothing is running in the locked region of usb_hcd_unlink_urb().
2217 */
usb_hcd_synchronize_unlinks(struct usb_device * udev)2218 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2219 {
2220 spin_lock_irq(&hcd_urb_unlink_lock);
2221 spin_unlock_irq(&hcd_urb_unlink_lock);
2222 }
2223
2224 /*-------------------------------------------------------------------------*/
2225
2226 /* called in any context */
usb_hcd_get_frame_number(struct usb_device * udev)2227 int usb_hcd_get_frame_number (struct usb_device *udev)
2228 {
2229 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2230
2231 if (!HCD_RH_RUNNING(hcd))
2232 return -ESHUTDOWN;
2233 return hcd->driver->get_frame_number (hcd);
2234 }
2235
2236 /*-------------------------------------------------------------------------*/
2237
2238 #ifdef CONFIG_PM
2239
hcd_bus_suspend(struct usb_device * rhdev,pm_message_t msg)2240 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2241 {
2242 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2243 int status;
2244 int old_state = hcd->state;
2245
2246 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2247 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2248 rhdev->do_remote_wakeup);
2249 if (HCD_DEAD(hcd)) {
2250 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2251 return 0;
2252 }
2253
2254 if (!hcd->driver->bus_suspend) {
2255 status = -ENOENT;
2256 } else {
2257 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2258 hcd->state = HC_STATE_QUIESCING;
2259 status = hcd->driver->bus_suspend(hcd);
2260 }
2261 if (status == 0) {
2262 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2263 hcd->state = HC_STATE_SUSPENDED;
2264
2265 if (!PMSG_IS_AUTO(msg))
2266 usb_phy_roothub_suspend(hcd->self.sysdev,
2267 hcd->phy_roothub);
2268
2269 /* Did we race with a root-hub wakeup event? */
2270 if (rhdev->do_remote_wakeup) {
2271 char buffer[6];
2272
2273 status = hcd->driver->hub_status_data(hcd, buffer);
2274 if (status != 0) {
2275 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2276 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2277 status = -EBUSY;
2278 }
2279 }
2280 } else {
2281 spin_lock_irq(&hcd_root_hub_lock);
2282 if (!HCD_DEAD(hcd)) {
2283 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2284 hcd->state = old_state;
2285 }
2286 spin_unlock_irq(&hcd_root_hub_lock);
2287 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2288 "suspend", status);
2289 }
2290 return status;
2291 }
2292
hcd_bus_resume(struct usb_device * rhdev,pm_message_t msg)2293 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2294 {
2295 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2296 int status;
2297 int old_state = hcd->state;
2298
2299 dev_dbg(&rhdev->dev, "usb %sresume\n",
2300 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2301 if (HCD_DEAD(hcd)) {
2302 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2303 return 0;
2304 }
2305
2306 if (!PMSG_IS_AUTO(msg)) {
2307 status = usb_phy_roothub_resume(hcd->self.sysdev,
2308 hcd->phy_roothub);
2309 if (status)
2310 return status;
2311 }
2312
2313 if (!hcd->driver->bus_resume)
2314 return -ENOENT;
2315 if (HCD_RH_RUNNING(hcd))
2316 return 0;
2317
2318 hcd->state = HC_STATE_RESUMING;
2319 status = hcd->driver->bus_resume(hcd);
2320 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2321 if (status == 0) {
2322 struct usb_device *udev;
2323 int port1;
2324
2325 spin_lock_irq(&hcd_root_hub_lock);
2326 if (!HCD_DEAD(hcd)) {
2327 usb_set_device_state(rhdev, rhdev->actconfig
2328 ? USB_STATE_CONFIGURED
2329 : USB_STATE_ADDRESS);
2330 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2331 hcd->state = HC_STATE_RUNNING;
2332 }
2333 spin_unlock_irq(&hcd_root_hub_lock);
2334
2335 /*
2336 * Check whether any of the enabled ports on the root hub are
2337 * unsuspended. If they are then a TRSMRCY delay is needed
2338 * (this is what the USB-2 spec calls a "global resume").
2339 * Otherwise we can skip the delay.
2340 */
2341 usb_hub_for_each_child(rhdev, port1, udev) {
2342 if (udev->state != USB_STATE_NOTATTACHED &&
2343 !udev->port_is_suspended) {
2344 usleep_range(10000, 11000); /* TRSMRCY */
2345 break;
2346 }
2347 }
2348 } else {
2349 hcd->state = old_state;
2350 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2351 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2352 "resume", status);
2353 if (status != -ESHUTDOWN)
2354 usb_hc_died(hcd);
2355 }
2356 return status;
2357 }
2358
2359 /* Workqueue routine for root-hub remote wakeup */
hcd_resume_work(struct work_struct * work)2360 static void hcd_resume_work(struct work_struct *work)
2361 {
2362 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2363 struct usb_device *udev = hcd->self.root_hub;
2364
2365 usb_remote_wakeup(udev);
2366 }
2367
2368 /**
2369 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2370 * @hcd: host controller for this root hub
2371 *
2372 * The USB host controller calls this function when its root hub is
2373 * suspended (with the remote wakeup feature enabled) and a remote
2374 * wakeup request is received. The routine submits a workqueue request
2375 * to resume the root hub (that is, manage its downstream ports again).
2376 */
usb_hcd_resume_root_hub(struct usb_hcd * hcd)2377 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2378 {
2379 unsigned long flags;
2380
2381 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2382 if (hcd->rh_registered) {
2383 pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2384 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2385 queue_work(pm_wq, &hcd->wakeup_work);
2386 }
2387 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2388 }
2389 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2390
2391 #endif /* CONFIG_PM */
2392
2393 /*-------------------------------------------------------------------------*/
2394
2395 #ifdef CONFIG_USB_OTG
2396
2397 /**
2398 * usb_bus_start_enum - start immediate enumeration (for OTG)
2399 * @bus: the bus (must use hcd framework)
2400 * @port_num: 1-based number of port; usually bus->otg_port
2401 * Context: in_interrupt()
2402 *
2403 * Starts enumeration, with an immediate reset followed later by
2404 * hub_wq identifying and possibly configuring the device.
2405 * This is needed by OTG controller drivers, where it helps meet
2406 * HNP protocol timing requirements for starting a port reset.
2407 *
2408 * Return: 0 if successful.
2409 */
usb_bus_start_enum(struct usb_bus * bus,unsigned port_num)2410 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2411 {
2412 struct usb_hcd *hcd;
2413 int status = -EOPNOTSUPP;
2414
2415 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2416 * boards with root hubs hooked up to internal devices (instead of
2417 * just the OTG port) may need more attention to resetting...
2418 */
2419 hcd = bus_to_hcd(bus);
2420 if (port_num && hcd->driver->start_port_reset)
2421 status = hcd->driver->start_port_reset(hcd, port_num);
2422
2423 /* allocate hub_wq shortly after (first) root port reset finishes;
2424 * it may issue others, until at least 50 msecs have passed.
2425 */
2426 if (status == 0)
2427 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2428 return status;
2429 }
2430 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2431
2432 #endif
2433
2434 /*-------------------------------------------------------------------------*/
2435
2436 /**
2437 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2438 * @irq: the IRQ being raised
2439 * @__hcd: pointer to the HCD whose IRQ is being signaled
2440 *
2441 * If the controller isn't HALTed, calls the driver's irq handler.
2442 * Checks whether the controller is now dead.
2443 *
2444 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2445 */
usb_hcd_irq(int irq,void * __hcd)2446 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2447 {
2448 struct usb_hcd *hcd = __hcd;
2449 irqreturn_t rc;
2450
2451 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2452 rc = IRQ_NONE;
2453 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2454 rc = IRQ_NONE;
2455 else
2456 rc = IRQ_HANDLED;
2457
2458 return rc;
2459 }
2460 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2461
2462 /*-------------------------------------------------------------------------*/
2463
2464 /**
2465 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2466 * @hcd: pointer to the HCD representing the controller
2467 *
2468 * This is called by bus glue to report a USB host controller that died
2469 * while operations may still have been pending. It's called automatically
2470 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2471 *
2472 * Only call this function with the primary HCD.
2473 */
usb_hc_died(struct usb_hcd * hcd)2474 void usb_hc_died (struct usb_hcd *hcd)
2475 {
2476 unsigned long flags;
2477
2478 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2479
2480 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2481 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2482 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2483 if (hcd->rh_registered) {
2484 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2485
2486 /* make hub_wq clean up old urbs and devices */
2487 usb_set_device_state (hcd->self.root_hub,
2488 USB_STATE_NOTATTACHED);
2489 usb_kick_hub_wq(hcd->self.root_hub);
2490 }
2491 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2492 hcd = hcd->shared_hcd;
2493 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2494 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2495 if (hcd->rh_registered) {
2496 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2497
2498 /* make hub_wq clean up old urbs and devices */
2499 usb_set_device_state(hcd->self.root_hub,
2500 USB_STATE_NOTATTACHED);
2501 usb_kick_hub_wq(hcd->self.root_hub);
2502 }
2503 }
2504 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2505 /* Make sure that the other roothub is also deallocated. */
2506 }
2507 EXPORT_SYMBOL_GPL (usb_hc_died);
2508
2509 /*-------------------------------------------------------------------------*/
2510
init_giveback_urb_bh(struct giveback_urb_bh * bh)2511 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2512 {
2513
2514 spin_lock_init(&bh->lock);
2515 INIT_LIST_HEAD(&bh->head);
2516 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2517 }
2518
__usb_create_hcd(const struct hc_driver * driver,struct device * sysdev,struct device * dev,const char * bus_name,struct usb_hcd * primary_hcd)2519 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2520 struct device *sysdev, struct device *dev, const char *bus_name,
2521 struct usb_hcd *primary_hcd)
2522 {
2523 struct usb_hcd *hcd;
2524
2525 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2526 if (!hcd)
2527 return NULL;
2528 if (primary_hcd == NULL) {
2529 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2530 GFP_KERNEL);
2531 if (!hcd->address0_mutex) {
2532 kfree(hcd);
2533 dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2534 return NULL;
2535 }
2536 mutex_init(hcd->address0_mutex);
2537 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2538 GFP_KERNEL);
2539 if (!hcd->bandwidth_mutex) {
2540 kfree(hcd->address0_mutex);
2541 kfree(hcd);
2542 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2543 return NULL;
2544 }
2545 mutex_init(hcd->bandwidth_mutex);
2546 dev_set_drvdata(dev, hcd);
2547 } else {
2548 mutex_lock(&usb_port_peer_mutex);
2549 hcd->address0_mutex = primary_hcd->address0_mutex;
2550 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2551 hcd->primary_hcd = primary_hcd;
2552 primary_hcd->primary_hcd = primary_hcd;
2553 hcd->shared_hcd = primary_hcd;
2554 primary_hcd->shared_hcd = hcd;
2555 mutex_unlock(&usb_port_peer_mutex);
2556 }
2557
2558 kref_init(&hcd->kref);
2559
2560 usb_bus_init(&hcd->self);
2561 hcd->self.controller = dev;
2562 hcd->self.sysdev = sysdev;
2563 hcd->self.bus_name = bus_name;
2564 hcd->self.uses_dma = (sysdev->dma_mask != NULL);
2565
2566 timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2567 #ifdef CONFIG_PM
2568 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2569 #endif
2570
2571 hcd->driver = driver;
2572 hcd->speed = driver->flags & HCD_MASK;
2573 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2574 "USB Host Controller";
2575 return hcd;
2576 }
2577 EXPORT_SYMBOL_GPL(__usb_create_hcd);
2578
2579 /**
2580 * usb_create_shared_hcd - create and initialize an HCD structure
2581 * @driver: HC driver that will use this hcd
2582 * @dev: device for this HC, stored in hcd->self.controller
2583 * @bus_name: value to store in hcd->self.bus_name
2584 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2585 * PCI device. Only allocate certain resources for the primary HCD
2586 * Context: !in_interrupt()
2587 *
2588 * Allocate a struct usb_hcd, with extra space at the end for the
2589 * HC driver's private data. Initialize the generic members of the
2590 * hcd structure.
2591 *
2592 * Return: On success, a pointer to the created and initialized HCD structure.
2593 * On failure (e.g. if memory is unavailable), %NULL.
2594 */
usb_create_shared_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name,struct usb_hcd * primary_hcd)2595 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2596 struct device *dev, const char *bus_name,
2597 struct usb_hcd *primary_hcd)
2598 {
2599 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2600 }
2601 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2602
2603 /**
2604 * usb_create_hcd - create and initialize an HCD structure
2605 * @driver: HC driver that will use this hcd
2606 * @dev: device for this HC, stored in hcd->self.controller
2607 * @bus_name: value to store in hcd->self.bus_name
2608 * Context: !in_interrupt()
2609 *
2610 * Allocate a struct usb_hcd, with extra space at the end for the
2611 * HC driver's private data. Initialize the generic members of the
2612 * hcd structure.
2613 *
2614 * Return: On success, a pointer to the created and initialized HCD
2615 * structure. On failure (e.g. if memory is unavailable), %NULL.
2616 */
usb_create_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name)2617 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2618 struct device *dev, const char *bus_name)
2619 {
2620 return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2621 }
2622 EXPORT_SYMBOL_GPL(usb_create_hcd);
2623
2624 /*
2625 * Roothubs that share one PCI device must also share the bandwidth mutex.
2626 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2627 * deallocated.
2628 *
2629 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2630 * freed. When hcd_release() is called for either hcd in a peer set,
2631 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2632 */
hcd_release(struct kref * kref)2633 static void hcd_release(struct kref *kref)
2634 {
2635 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2636
2637 mutex_lock(&usb_port_peer_mutex);
2638 if (hcd->shared_hcd) {
2639 struct usb_hcd *peer = hcd->shared_hcd;
2640
2641 peer->shared_hcd = NULL;
2642 peer->primary_hcd = NULL;
2643 } else {
2644 kfree(hcd->address0_mutex);
2645 kfree(hcd->bandwidth_mutex);
2646 }
2647 mutex_unlock(&usb_port_peer_mutex);
2648 kfree(hcd);
2649 }
2650
usb_get_hcd(struct usb_hcd * hcd)2651 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2652 {
2653 if (hcd)
2654 kref_get (&hcd->kref);
2655 return hcd;
2656 }
2657 EXPORT_SYMBOL_GPL(usb_get_hcd);
2658
usb_put_hcd(struct usb_hcd * hcd)2659 void usb_put_hcd (struct usb_hcd *hcd)
2660 {
2661 if (hcd)
2662 kref_put (&hcd->kref, hcd_release);
2663 }
2664 EXPORT_SYMBOL_GPL(usb_put_hcd);
2665
usb_hcd_is_primary_hcd(struct usb_hcd * hcd)2666 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2667 {
2668 if (!hcd->primary_hcd)
2669 return 1;
2670 return hcd == hcd->primary_hcd;
2671 }
2672 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2673
usb_hcd_find_raw_port_number(struct usb_hcd * hcd,int port1)2674 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2675 {
2676 if (!hcd->driver->find_raw_port_number)
2677 return port1;
2678
2679 return hcd->driver->find_raw_port_number(hcd, port1);
2680 }
2681
usb_hcd_request_irqs(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2682 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2683 unsigned int irqnum, unsigned long irqflags)
2684 {
2685 int retval;
2686
2687 if (hcd->driver->irq) {
2688
2689 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2690 hcd->driver->description, hcd->self.busnum);
2691 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2692 hcd->irq_descr, hcd);
2693 if (retval != 0) {
2694 dev_err(hcd->self.controller,
2695 "request interrupt %d failed\n",
2696 irqnum);
2697 return retval;
2698 }
2699 hcd->irq = irqnum;
2700 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2701 (hcd->driver->flags & HCD_MEMORY) ?
2702 "io mem" : "io base",
2703 (unsigned long long)hcd->rsrc_start);
2704 } else {
2705 hcd->irq = 0;
2706 if (hcd->rsrc_start)
2707 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2708 (hcd->driver->flags & HCD_MEMORY) ?
2709 "io mem" : "io base",
2710 (unsigned long long)hcd->rsrc_start);
2711 }
2712 return 0;
2713 }
2714
2715 /*
2716 * Before we free this root hub, flush in-flight peering attempts
2717 * and disable peer lookups
2718 */
usb_put_invalidate_rhdev(struct usb_hcd * hcd)2719 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2720 {
2721 struct usb_device *rhdev;
2722
2723 mutex_lock(&usb_port_peer_mutex);
2724 rhdev = hcd->self.root_hub;
2725 hcd->self.root_hub = NULL;
2726 mutex_unlock(&usb_port_peer_mutex);
2727 usb_put_dev(rhdev);
2728 }
2729
2730 /**
2731 * usb_add_hcd - finish generic HCD structure initialization and register
2732 * @hcd: the usb_hcd structure to initialize
2733 * @irqnum: Interrupt line to allocate
2734 * @irqflags: Interrupt type flags
2735 *
2736 * Finish the remaining parts of generic HCD initialization: allocate the
2737 * buffers of consistent memory, register the bus, request the IRQ line,
2738 * and call the driver's reset() and start() routines.
2739 */
usb_add_hcd(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2740 int usb_add_hcd(struct usb_hcd *hcd,
2741 unsigned int irqnum, unsigned long irqflags)
2742 {
2743 int retval;
2744 struct usb_device *rhdev;
2745
2746 if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
2747 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2748 if (IS_ERR(hcd->phy_roothub))
2749 return PTR_ERR(hcd->phy_roothub);
2750
2751 retval = usb_phy_roothub_init(hcd->phy_roothub);
2752 if (retval)
2753 return retval;
2754
2755 retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2756 if (retval)
2757 goto err_usb_phy_roothub_power_on;
2758 }
2759
2760 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2761
2762 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2763 if (authorized_default < 0 || authorized_default > 1) {
2764 if (hcd->wireless)
2765 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2766 else
2767 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2768 } else {
2769 if (authorized_default)
2770 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2771 else
2772 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2773 }
2774 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2775
2776 /* per default all interfaces are authorized */
2777 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2778
2779 /* HC is in reset state, but accessible. Now do the one-time init,
2780 * bottom up so that hcds can customize the root hubs before hub_wq
2781 * starts talking to them. (Note, bus id is assigned early too.)
2782 */
2783 retval = hcd_buffer_create(hcd);
2784 if (retval != 0) {
2785 dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2786 goto err_create_buf;
2787 }
2788
2789 retval = usb_register_bus(&hcd->self);
2790 if (retval < 0)
2791 goto err_register_bus;
2792
2793 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2794 if (rhdev == NULL) {
2795 dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2796 retval = -ENOMEM;
2797 goto err_allocate_root_hub;
2798 }
2799 mutex_lock(&usb_port_peer_mutex);
2800 hcd->self.root_hub = rhdev;
2801 mutex_unlock(&usb_port_peer_mutex);
2802
2803 rhdev->rx_lanes = 1;
2804 rhdev->tx_lanes = 1;
2805
2806 switch (hcd->speed) {
2807 case HCD_USB11:
2808 rhdev->speed = USB_SPEED_FULL;
2809 break;
2810 case HCD_USB2:
2811 rhdev->speed = USB_SPEED_HIGH;
2812 break;
2813 case HCD_USB25:
2814 rhdev->speed = USB_SPEED_WIRELESS;
2815 break;
2816 case HCD_USB3:
2817 rhdev->speed = USB_SPEED_SUPER;
2818 break;
2819 case HCD_USB32:
2820 rhdev->rx_lanes = 2;
2821 rhdev->tx_lanes = 2;
2822 /* fall through */
2823 case HCD_USB31:
2824 rhdev->speed = USB_SPEED_SUPER_PLUS;
2825 break;
2826 default:
2827 retval = -EINVAL;
2828 goto err_set_rh_speed;
2829 }
2830
2831 /* wakeup flag init defaults to "everything works" for root hubs,
2832 * but drivers can override it in reset() if needed, along with
2833 * recording the overall controller's system wakeup capability.
2834 */
2835 device_set_wakeup_capable(&rhdev->dev, 1);
2836
2837 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2838 * registered. But since the controller can die at any time,
2839 * let's initialize the flag before touching the hardware.
2840 */
2841 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2842
2843 /* "reset" is misnamed; its role is now one-time init. the controller
2844 * should already have been reset (and boot firmware kicked off etc).
2845 */
2846 if (hcd->driver->reset) {
2847 retval = hcd->driver->reset(hcd);
2848 if (retval < 0) {
2849 dev_err(hcd->self.controller, "can't setup: %d\n",
2850 retval);
2851 goto err_hcd_driver_setup;
2852 }
2853 }
2854 hcd->rh_pollable = 1;
2855
2856 /* NOTE: root hub and controller capabilities may not be the same */
2857 if (device_can_wakeup(hcd->self.controller)
2858 && device_can_wakeup(&hcd->self.root_hub->dev))
2859 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2860
2861 /* initialize tasklets */
2862 init_giveback_urb_bh(&hcd->high_prio_bh);
2863 init_giveback_urb_bh(&hcd->low_prio_bh);
2864
2865 /* enable irqs just before we start the controller,
2866 * if the BIOS provides legacy PCI irqs.
2867 */
2868 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2869 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2870 if (retval)
2871 goto err_request_irq;
2872 }
2873
2874 hcd->state = HC_STATE_RUNNING;
2875 retval = hcd->driver->start(hcd);
2876 if (retval < 0) {
2877 dev_err(hcd->self.controller, "startup error %d\n", retval);
2878 goto err_hcd_driver_start;
2879 }
2880
2881 /* starting here, usbcore will pay attention to this root hub */
2882 retval = register_root_hub(hcd);
2883 if (retval != 0)
2884 goto err_register_root_hub;
2885
2886 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2887 if (retval < 0) {
2888 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2889 retval);
2890 goto error_create_attr_group;
2891 }
2892 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2893 usb_hcd_poll_rh_status(hcd);
2894
2895 return retval;
2896
2897 error_create_attr_group:
2898 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2899 if (HC_IS_RUNNING(hcd->state))
2900 hcd->state = HC_STATE_QUIESCING;
2901 spin_lock_irq(&hcd_root_hub_lock);
2902 hcd->rh_registered = 0;
2903 spin_unlock_irq(&hcd_root_hub_lock);
2904
2905 #ifdef CONFIG_PM
2906 cancel_work_sync(&hcd->wakeup_work);
2907 #endif
2908 mutex_lock(&usb_bus_idr_lock);
2909 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2910 mutex_unlock(&usb_bus_idr_lock);
2911 err_register_root_hub:
2912 hcd->rh_pollable = 0;
2913 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2914 del_timer_sync(&hcd->rh_timer);
2915 hcd->driver->stop(hcd);
2916 hcd->state = HC_STATE_HALT;
2917 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2918 del_timer_sync(&hcd->rh_timer);
2919 err_hcd_driver_start:
2920 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2921 free_irq(irqnum, hcd);
2922 err_request_irq:
2923 err_hcd_driver_setup:
2924 err_set_rh_speed:
2925 usb_put_invalidate_rhdev(hcd);
2926 err_allocate_root_hub:
2927 usb_deregister_bus(&hcd->self);
2928 err_register_bus:
2929 hcd_buffer_destroy(hcd);
2930 err_create_buf:
2931 usb_phy_roothub_power_off(hcd->phy_roothub);
2932 err_usb_phy_roothub_power_on:
2933 usb_phy_roothub_exit(hcd->phy_roothub);
2934
2935 return retval;
2936 }
2937 EXPORT_SYMBOL_GPL(usb_add_hcd);
2938
2939 /**
2940 * usb_remove_hcd - shutdown processing for generic HCDs
2941 * @hcd: the usb_hcd structure to remove
2942 * Context: !in_interrupt()
2943 *
2944 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2945 * invoking the HCD's stop() method.
2946 */
usb_remove_hcd(struct usb_hcd * hcd)2947 void usb_remove_hcd(struct usb_hcd *hcd)
2948 {
2949 struct usb_device *rhdev = hcd->self.root_hub;
2950
2951 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2952
2953 usb_get_dev(rhdev);
2954 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2955
2956 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2957 if (HC_IS_RUNNING (hcd->state))
2958 hcd->state = HC_STATE_QUIESCING;
2959
2960 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2961 spin_lock_irq (&hcd_root_hub_lock);
2962 hcd->rh_registered = 0;
2963 spin_unlock_irq (&hcd_root_hub_lock);
2964
2965 #ifdef CONFIG_PM
2966 cancel_work_sync(&hcd->wakeup_work);
2967 #endif
2968
2969 mutex_lock(&usb_bus_idr_lock);
2970 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2971 mutex_unlock(&usb_bus_idr_lock);
2972
2973 /*
2974 * tasklet_kill() isn't needed here because:
2975 * - driver's disconnect() called from usb_disconnect() should
2976 * make sure its URBs are completed during the disconnect()
2977 * callback
2978 *
2979 * - it is too late to run complete() here since driver may have
2980 * been removed already now
2981 */
2982
2983 /* Prevent any more root-hub status calls from the timer.
2984 * The HCD might still restart the timer (if a port status change
2985 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2986 * the hub_status_data() callback.
2987 */
2988 hcd->rh_pollable = 0;
2989 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2990 del_timer_sync(&hcd->rh_timer);
2991
2992 hcd->driver->stop(hcd);
2993 hcd->state = HC_STATE_HALT;
2994
2995 /* In case the HCD restarted the timer, stop it again. */
2996 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2997 del_timer_sync(&hcd->rh_timer);
2998
2999 if (usb_hcd_is_primary_hcd(hcd)) {
3000 if (hcd->irq > 0)
3001 free_irq(hcd->irq, hcd);
3002 }
3003
3004 usb_deregister_bus(&hcd->self);
3005 hcd_buffer_destroy(hcd);
3006
3007 usb_phy_roothub_power_off(hcd->phy_roothub);
3008 usb_phy_roothub_exit(hcd->phy_roothub);
3009
3010 usb_put_invalidate_rhdev(hcd);
3011 hcd->flags = 0;
3012 }
3013 EXPORT_SYMBOL_GPL(usb_remove_hcd);
3014
3015 void
usb_hcd_platform_shutdown(struct platform_device * dev)3016 usb_hcd_platform_shutdown(struct platform_device *dev)
3017 {
3018 struct usb_hcd *hcd = platform_get_drvdata(dev);
3019
3020 if (hcd->driver->shutdown)
3021 hcd->driver->shutdown(hcd);
3022 }
3023 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3024
3025 /*-------------------------------------------------------------------------*/
3026
3027 #if IS_ENABLED(CONFIG_USB_MON)
3028
3029 const struct usb_mon_operations *mon_ops;
3030
3031 /*
3032 * The registration is unlocked.
3033 * We do it this way because we do not want to lock in hot paths.
3034 *
3035 * Notice that the code is minimally error-proof. Because usbmon needs
3036 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3037 */
3038
usb_mon_register(const struct usb_mon_operations * ops)3039 int usb_mon_register(const struct usb_mon_operations *ops)
3040 {
3041
3042 if (mon_ops)
3043 return -EBUSY;
3044
3045 mon_ops = ops;
3046 mb();
3047 return 0;
3048 }
3049 EXPORT_SYMBOL_GPL (usb_mon_register);
3050
usb_mon_deregister(void)3051 void usb_mon_deregister (void)
3052 {
3053
3054 if (mon_ops == NULL) {
3055 printk(KERN_ERR "USB: monitor was not registered\n");
3056 return;
3057 }
3058 mon_ops = NULL;
3059 mb();
3060 }
3061 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3062
3063 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
3064