1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * udc.c - Core UDC Framework
4 *
5 * Copyright (C) 2010 Texas Instruments
6 * Author: Felipe Balbi <balbi@ti.com>
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/device.h>
12 #include <linux/list.h>
13 #include <linux/err.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/workqueue.h>
17
18 #include <linux/usb/ch9.h>
19 #include <linux/usb/gadget.h>
20 #include <linux/usb.h>
21
22 #include "trace.h"
23
24 /**
25 * struct usb_udc - describes one usb device controller
26 * @driver: the gadget driver pointer. For use by the class code
27 * @dev: the child device to the actual controller
28 * @gadget: the gadget. For use by the class code
29 * @list: for use by the udc class driver
30 * @vbus: for udcs who care about vbus status, this value is real vbus status;
31 * for udcs who do not care about vbus status, this value is always true
32 * @started: the UDC's started state. True if the UDC had started.
33 *
34 * This represents the internal data structure which is used by the UDC-class
35 * to hold information about udc driver and gadget together.
36 */
37 struct usb_udc {
38 struct usb_gadget_driver *driver;
39 struct usb_gadget *gadget;
40 struct device dev;
41 struct list_head list;
42 bool vbus;
43 bool started;
44 };
45
46 static struct class *udc_class;
47 static LIST_HEAD(udc_list);
48 static LIST_HEAD(gadget_driver_pending_list);
49 static DEFINE_MUTEX(udc_lock);
50
51 static int udc_bind_to_driver(struct usb_udc *udc,
52 struct usb_gadget_driver *driver);
53
54 /* ------------------------------------------------------------------------- */
55
56 /**
57 * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
58 * @ep:the endpoint being configured
59 * @maxpacket_limit:value of maximum packet size limit
60 *
61 * This function should be used only in UDC drivers to initialize endpoint
62 * (usually in probe function).
63 */
usb_ep_set_maxpacket_limit(struct usb_ep * ep,unsigned maxpacket_limit)64 void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
65 unsigned maxpacket_limit)
66 {
67 ep->maxpacket_limit = maxpacket_limit;
68 ep->maxpacket = maxpacket_limit;
69
70 trace_usb_ep_set_maxpacket_limit(ep, 0);
71 }
72 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit);
73
74 /**
75 * usb_ep_enable - configure endpoint, making it usable
76 * @ep:the endpoint being configured. may not be the endpoint named "ep0".
77 * drivers discover endpoints through the ep_list of a usb_gadget.
78 *
79 * When configurations are set, or when interface settings change, the driver
80 * will enable or disable the relevant endpoints. while it is enabled, an
81 * endpoint may be used for i/o until the driver receives a disconnect() from
82 * the host or until the endpoint is disabled.
83 *
84 * the ep0 implementation (which calls this routine) must ensure that the
85 * hardware capabilities of each endpoint match the descriptor provided
86 * for it. for example, an endpoint named "ep2in-bulk" would be usable
87 * for interrupt transfers as well as bulk, but it likely couldn't be used
88 * for iso transfers or for endpoint 14. some endpoints are fully
89 * configurable, with more generic names like "ep-a". (remember that for
90 * USB, "in" means "towards the USB host".)
91 *
92 * This routine must be called in process context.
93 *
94 * returns zero, or a negative error code.
95 */
usb_ep_enable(struct usb_ep * ep)96 int usb_ep_enable(struct usb_ep *ep)
97 {
98 int ret = 0;
99
100 if (ep->enabled)
101 goto out;
102
103 /* UDC drivers can't handle endpoints with maxpacket size 0 */
104 if (usb_endpoint_maxp(ep->desc) == 0) {
105 /*
106 * We should log an error message here, but we can't call
107 * dev_err() because there's no way to find the gadget
108 * given only ep.
109 */
110 ret = -EINVAL;
111 goto out;
112 }
113
114 ret = ep->ops->enable(ep, ep->desc);
115 if (ret)
116 goto out;
117
118 ep->enabled = true;
119
120 out:
121 trace_usb_ep_enable(ep, ret);
122
123 return ret;
124 }
125 EXPORT_SYMBOL_GPL(usb_ep_enable);
126
127 /**
128 * usb_ep_disable - endpoint is no longer usable
129 * @ep:the endpoint being unconfigured. may not be the endpoint named "ep0".
130 *
131 * no other task may be using this endpoint when this is called.
132 * any pending and uncompleted requests will complete with status
133 * indicating disconnect (-ESHUTDOWN) before this call returns.
134 * gadget drivers must call usb_ep_enable() again before queueing
135 * requests to the endpoint.
136 *
137 * This routine must be called in process context.
138 *
139 * returns zero, or a negative error code.
140 */
usb_ep_disable(struct usb_ep * ep)141 int usb_ep_disable(struct usb_ep *ep)
142 {
143 int ret = 0;
144
145 if (!ep->enabled)
146 goto out;
147
148 ret = ep->ops->disable(ep);
149 if (ret)
150 goto out;
151
152 ep->enabled = false;
153
154 out:
155 trace_usb_ep_disable(ep, ret);
156
157 return ret;
158 }
159 EXPORT_SYMBOL_GPL(usb_ep_disable);
160
161 /**
162 * usb_ep_alloc_request - allocate a request object to use with this endpoint
163 * @ep:the endpoint to be used with with the request
164 * @gfp_flags:GFP_* flags to use
165 *
166 * Request objects must be allocated with this call, since they normally
167 * need controller-specific setup and may even need endpoint-specific
168 * resources such as allocation of DMA descriptors.
169 * Requests may be submitted with usb_ep_queue(), and receive a single
170 * completion callback. Free requests with usb_ep_free_request(), when
171 * they are no longer needed.
172 *
173 * Returns the request, or null if one could not be allocated.
174 */
usb_ep_alloc_request(struct usb_ep * ep,gfp_t gfp_flags)175 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
176 gfp_t gfp_flags)
177 {
178 struct usb_request *req = NULL;
179
180 req = ep->ops->alloc_request(ep, gfp_flags);
181
182 trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM);
183
184 return req;
185 }
186 EXPORT_SYMBOL_GPL(usb_ep_alloc_request);
187
188 /**
189 * usb_ep_free_request - frees a request object
190 * @ep:the endpoint associated with the request
191 * @req:the request being freed
192 *
193 * Reverses the effect of usb_ep_alloc_request().
194 * Caller guarantees the request is not queued, and that it will
195 * no longer be requeued (or otherwise used).
196 */
usb_ep_free_request(struct usb_ep * ep,struct usb_request * req)197 void usb_ep_free_request(struct usb_ep *ep,
198 struct usb_request *req)
199 {
200 trace_usb_ep_free_request(ep, req, 0);
201 ep->ops->free_request(ep, req);
202 }
203 EXPORT_SYMBOL_GPL(usb_ep_free_request);
204
205 /**
206 * usb_ep_queue - queues (submits) an I/O request to an endpoint.
207 * @ep:the endpoint associated with the request
208 * @req:the request being submitted
209 * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
210 * pre-allocate all necessary memory with the request.
211 *
212 * This tells the device controller to perform the specified request through
213 * that endpoint (reading or writing a buffer). When the request completes,
214 * including being canceled by usb_ep_dequeue(), the request's completion
215 * routine is called to return the request to the driver. Any endpoint
216 * (except control endpoints like ep0) may have more than one transfer
217 * request queued; they complete in FIFO order. Once a gadget driver
218 * submits a request, that request may not be examined or modified until it
219 * is given back to that driver through the completion callback.
220 *
221 * Each request is turned into one or more packets. The controller driver
222 * never merges adjacent requests into the same packet. OUT transfers
223 * will sometimes use data that's already buffered in the hardware.
224 * Drivers can rely on the fact that the first byte of the request's buffer
225 * always corresponds to the first byte of some USB packet, for both
226 * IN and OUT transfers.
227 *
228 * Bulk endpoints can queue any amount of data; the transfer is packetized
229 * automatically. The last packet will be short if the request doesn't fill it
230 * out completely. Zero length packets (ZLPs) should be avoided in portable
231 * protocols since not all usb hardware can successfully handle zero length
232 * packets. (ZLPs may be explicitly written, and may be implicitly written if
233 * the request 'zero' flag is set.) Bulk endpoints may also be used
234 * for interrupt transfers; but the reverse is not true, and some endpoints
235 * won't support every interrupt transfer. (Such as 768 byte packets.)
236 *
237 * Interrupt-only endpoints are less functional than bulk endpoints, for
238 * example by not supporting queueing or not handling buffers that are
239 * larger than the endpoint's maxpacket size. They may also treat data
240 * toggle differently.
241 *
242 * Control endpoints ... after getting a setup() callback, the driver queues
243 * one response (even if it would be zero length). That enables the
244 * status ack, after transferring data as specified in the response. Setup
245 * functions may return negative error codes to generate protocol stalls.
246 * (Note that some USB device controllers disallow protocol stall responses
247 * in some cases.) When control responses are deferred (the response is
248 * written after the setup callback returns), then usb_ep_set_halt() may be
249 * used on ep0 to trigger protocol stalls. Depending on the controller,
250 * it may not be possible to trigger a status-stage protocol stall when the
251 * data stage is over, that is, from within the response's completion
252 * routine.
253 *
254 * For periodic endpoints, like interrupt or isochronous ones, the usb host
255 * arranges to poll once per interval, and the gadget driver usually will
256 * have queued some data to transfer at that time.
257 *
258 * Note that @req's ->complete() callback must never be called from
259 * within usb_ep_queue() as that can create deadlock situations.
260 *
261 * This routine may be called in interrupt context.
262 *
263 * Returns zero, or a negative error code. Endpoints that are not enabled
264 * report errors; errors will also be
265 * reported when the usb peripheral is disconnected.
266 *
267 * If and only if @req is successfully queued (the return value is zero),
268 * @req->complete() will be called exactly once, when the Gadget core and
269 * UDC are finished with the request. When the completion function is called,
270 * control of the request is returned to the device driver which submitted it.
271 * The completion handler may then immediately free or reuse @req.
272 */
usb_ep_queue(struct usb_ep * ep,struct usb_request * req,gfp_t gfp_flags)273 int usb_ep_queue(struct usb_ep *ep,
274 struct usb_request *req, gfp_t gfp_flags)
275 {
276 int ret = 0;
277
278 if (WARN_ON_ONCE(!ep->enabled && ep->address)) {
279 ret = -ESHUTDOWN;
280 goto out;
281 }
282
283 ret = ep->ops->queue(ep, req, gfp_flags);
284
285 out:
286 trace_usb_ep_queue(ep, req, ret);
287
288 return ret;
289 }
290 EXPORT_SYMBOL_GPL(usb_ep_queue);
291
292 /**
293 * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
294 * @ep:the endpoint associated with the request
295 * @req:the request being canceled
296 *
297 * If the request is still active on the endpoint, it is dequeued and
298 * eventually its completion routine is called (with status -ECONNRESET);
299 * else a negative error code is returned. This routine is asynchronous,
300 * that is, it may return before the completion routine runs.
301 *
302 * Note that some hardware can't clear out write fifos (to unlink the request
303 * at the head of the queue) except as part of disconnecting from usb. Such
304 * restrictions prevent drivers from supporting configuration changes,
305 * even to configuration zero (a "chapter 9" requirement).
306 *
307 * This routine may be called in interrupt context.
308 */
usb_ep_dequeue(struct usb_ep * ep,struct usb_request * req)309 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
310 {
311 int ret;
312
313 ret = ep->ops->dequeue(ep, req);
314 trace_usb_ep_dequeue(ep, req, ret);
315
316 return ret;
317 }
318 EXPORT_SYMBOL_GPL(usb_ep_dequeue);
319
320 /**
321 * usb_ep_set_halt - sets the endpoint halt feature.
322 * @ep: the non-isochronous endpoint being stalled
323 *
324 * Use this to stall an endpoint, perhaps as an error report.
325 * Except for control endpoints,
326 * the endpoint stays halted (will not stream any data) until the host
327 * clears this feature; drivers may need to empty the endpoint's request
328 * queue first, to make sure no inappropriate transfers happen.
329 *
330 * Note that while an endpoint CLEAR_FEATURE will be invisible to the
331 * gadget driver, a SET_INTERFACE will not be. To reset endpoints for the
332 * current altsetting, see usb_ep_clear_halt(). When switching altsettings,
333 * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
334 *
335 * This routine may be called in interrupt context.
336 *
337 * Returns zero, or a negative error code. On success, this call sets
338 * underlying hardware state that blocks data transfers.
339 * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
340 * transfer requests are still queued, or if the controller hardware
341 * (usually a FIFO) still holds bytes that the host hasn't collected.
342 */
usb_ep_set_halt(struct usb_ep * ep)343 int usb_ep_set_halt(struct usb_ep *ep)
344 {
345 int ret;
346
347 ret = ep->ops->set_halt(ep, 1);
348 trace_usb_ep_set_halt(ep, ret);
349
350 return ret;
351 }
352 EXPORT_SYMBOL_GPL(usb_ep_set_halt);
353
354 /**
355 * usb_ep_clear_halt - clears endpoint halt, and resets toggle
356 * @ep:the bulk or interrupt endpoint being reset
357 *
358 * Use this when responding to the standard usb "set interface" request,
359 * for endpoints that aren't reconfigured, after clearing any other state
360 * in the endpoint's i/o queue.
361 *
362 * This routine may be called in interrupt context.
363 *
364 * Returns zero, or a negative error code. On success, this call clears
365 * the underlying hardware state reflecting endpoint halt and data toggle.
366 * Note that some hardware can't support this request (like pxa2xx_udc),
367 * and accordingly can't correctly implement interface altsettings.
368 */
usb_ep_clear_halt(struct usb_ep * ep)369 int usb_ep_clear_halt(struct usb_ep *ep)
370 {
371 int ret;
372
373 ret = ep->ops->set_halt(ep, 0);
374 trace_usb_ep_clear_halt(ep, ret);
375
376 return ret;
377 }
378 EXPORT_SYMBOL_GPL(usb_ep_clear_halt);
379
380 /**
381 * usb_ep_set_wedge - sets the halt feature and ignores clear requests
382 * @ep: the endpoint being wedged
383 *
384 * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
385 * requests. If the gadget driver clears the halt status, it will
386 * automatically unwedge the endpoint.
387 *
388 * This routine may be called in interrupt context.
389 *
390 * Returns zero on success, else negative errno.
391 */
usb_ep_set_wedge(struct usb_ep * ep)392 int usb_ep_set_wedge(struct usb_ep *ep)
393 {
394 int ret;
395
396 if (ep->ops->set_wedge)
397 ret = ep->ops->set_wedge(ep);
398 else
399 ret = ep->ops->set_halt(ep, 1);
400
401 trace_usb_ep_set_wedge(ep, ret);
402
403 return ret;
404 }
405 EXPORT_SYMBOL_GPL(usb_ep_set_wedge);
406
407 /**
408 * usb_ep_fifo_status - returns number of bytes in fifo, or error
409 * @ep: the endpoint whose fifo status is being checked.
410 *
411 * FIFO endpoints may have "unclaimed data" in them in certain cases,
412 * such as after aborted transfers. Hosts may not have collected all
413 * the IN data written by the gadget driver (and reported by a request
414 * completion). The gadget driver may not have collected all the data
415 * written OUT to it by the host. Drivers that need precise handling for
416 * fault reporting or recovery may need to use this call.
417 *
418 * This routine may be called in interrupt context.
419 *
420 * This returns the number of such bytes in the fifo, or a negative
421 * errno if the endpoint doesn't use a FIFO or doesn't support such
422 * precise handling.
423 */
usb_ep_fifo_status(struct usb_ep * ep)424 int usb_ep_fifo_status(struct usb_ep *ep)
425 {
426 int ret;
427
428 if (ep->ops->fifo_status)
429 ret = ep->ops->fifo_status(ep);
430 else
431 ret = -EOPNOTSUPP;
432
433 trace_usb_ep_fifo_status(ep, ret);
434
435 return ret;
436 }
437 EXPORT_SYMBOL_GPL(usb_ep_fifo_status);
438
439 /**
440 * usb_ep_fifo_flush - flushes contents of a fifo
441 * @ep: the endpoint whose fifo is being flushed.
442 *
443 * This call may be used to flush the "unclaimed data" that may exist in
444 * an endpoint fifo after abnormal transaction terminations. The call
445 * must never be used except when endpoint is not being used for any
446 * protocol translation.
447 *
448 * This routine may be called in interrupt context.
449 */
usb_ep_fifo_flush(struct usb_ep * ep)450 void usb_ep_fifo_flush(struct usb_ep *ep)
451 {
452 if (ep->ops->fifo_flush)
453 ep->ops->fifo_flush(ep);
454
455 trace_usb_ep_fifo_flush(ep, 0);
456 }
457 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush);
458
459 /* ------------------------------------------------------------------------- */
460
461 /**
462 * usb_gadget_frame_number - returns the current frame number
463 * @gadget: controller that reports the frame number
464 *
465 * Returns the usb frame number, normally eleven bits from a SOF packet,
466 * or negative errno if this device doesn't support this capability.
467 */
usb_gadget_frame_number(struct usb_gadget * gadget)468 int usb_gadget_frame_number(struct usb_gadget *gadget)
469 {
470 int ret;
471
472 ret = gadget->ops->get_frame(gadget);
473
474 trace_usb_gadget_frame_number(gadget, ret);
475
476 return ret;
477 }
478 EXPORT_SYMBOL_GPL(usb_gadget_frame_number);
479
480 /**
481 * usb_gadget_wakeup - tries to wake up the host connected to this gadget
482 * @gadget: controller used to wake up the host
483 *
484 * Returns zero on success, else negative error code if the hardware
485 * doesn't support such attempts, or its support has not been enabled
486 * by the usb host. Drivers must return device descriptors that report
487 * their ability to support this, or hosts won't enable it.
488 *
489 * This may also try to use SRP to wake the host and start enumeration,
490 * even if OTG isn't otherwise in use. OTG devices may also start
491 * remote wakeup even when hosts don't explicitly enable it.
492 */
usb_gadget_wakeup(struct usb_gadget * gadget)493 int usb_gadget_wakeup(struct usb_gadget *gadget)
494 {
495 int ret = 0;
496
497 if (!gadget->ops->wakeup) {
498 ret = -EOPNOTSUPP;
499 goto out;
500 }
501
502 ret = gadget->ops->wakeup(gadget);
503
504 out:
505 trace_usb_gadget_wakeup(gadget, ret);
506
507 return ret;
508 }
509 EXPORT_SYMBOL_GPL(usb_gadget_wakeup);
510
511 /**
512 * usb_gadget_set_selfpowered - sets the device selfpowered feature.
513 * @gadget:the device being declared as self-powered
514 *
515 * this affects the device status reported by the hardware driver
516 * to reflect that it now has a local power supply.
517 *
518 * returns zero on success, else negative errno.
519 */
usb_gadget_set_selfpowered(struct usb_gadget * gadget)520 int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
521 {
522 int ret = 0;
523
524 if (!gadget->ops->set_selfpowered) {
525 ret = -EOPNOTSUPP;
526 goto out;
527 }
528
529 ret = gadget->ops->set_selfpowered(gadget, 1);
530
531 out:
532 trace_usb_gadget_set_selfpowered(gadget, ret);
533
534 return ret;
535 }
536 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered);
537
538 /**
539 * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
540 * @gadget:the device being declared as bus-powered
541 *
542 * this affects the device status reported by the hardware driver.
543 * some hardware may not support bus-powered operation, in which
544 * case this feature's value can never change.
545 *
546 * returns zero on success, else negative errno.
547 */
usb_gadget_clear_selfpowered(struct usb_gadget * gadget)548 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
549 {
550 int ret = 0;
551
552 if (!gadget->ops->set_selfpowered) {
553 ret = -EOPNOTSUPP;
554 goto out;
555 }
556
557 ret = gadget->ops->set_selfpowered(gadget, 0);
558
559 out:
560 trace_usb_gadget_clear_selfpowered(gadget, ret);
561
562 return ret;
563 }
564 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered);
565
566 /**
567 * usb_gadget_vbus_connect - Notify controller that VBUS is powered
568 * @gadget:The device which now has VBUS power.
569 * Context: can sleep
570 *
571 * This call is used by a driver for an external transceiver (or GPIO)
572 * that detects a VBUS power session starting. Common responses include
573 * resuming the controller, activating the D+ (or D-) pullup to let the
574 * host detect that a USB device is attached, and starting to draw power
575 * (8mA or possibly more, especially after SET_CONFIGURATION).
576 *
577 * Returns zero on success, else negative errno.
578 */
usb_gadget_vbus_connect(struct usb_gadget * gadget)579 int usb_gadget_vbus_connect(struct usb_gadget *gadget)
580 {
581 int ret = 0;
582
583 if (!gadget->ops->vbus_session) {
584 ret = -EOPNOTSUPP;
585 goto out;
586 }
587
588 ret = gadget->ops->vbus_session(gadget, 1);
589
590 out:
591 trace_usb_gadget_vbus_connect(gadget, ret);
592
593 return ret;
594 }
595 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect);
596
597 /**
598 * usb_gadget_vbus_draw - constrain controller's VBUS power usage
599 * @gadget:The device whose VBUS usage is being described
600 * @mA:How much current to draw, in milliAmperes. This should be twice
601 * the value listed in the configuration descriptor bMaxPower field.
602 *
603 * This call is used by gadget drivers during SET_CONFIGURATION calls,
604 * reporting how much power the device may consume. For example, this
605 * could affect how quickly batteries are recharged.
606 *
607 * Returns zero on success, else negative errno.
608 */
usb_gadget_vbus_draw(struct usb_gadget * gadget,unsigned mA)609 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
610 {
611 int ret = 0;
612
613 if (!gadget->ops->vbus_draw) {
614 ret = -EOPNOTSUPP;
615 goto out;
616 }
617
618 ret = gadget->ops->vbus_draw(gadget, mA);
619 if (!ret)
620 gadget->mA = mA;
621
622 out:
623 trace_usb_gadget_vbus_draw(gadget, ret);
624
625 return ret;
626 }
627 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw);
628
629 /**
630 * usb_gadget_vbus_disconnect - notify controller about VBUS session end
631 * @gadget:the device whose VBUS supply is being described
632 * Context: can sleep
633 *
634 * This call is used by a driver for an external transceiver (or GPIO)
635 * that detects a VBUS power session ending. Common responses include
636 * reversing everything done in usb_gadget_vbus_connect().
637 *
638 * Returns zero on success, else negative errno.
639 */
usb_gadget_vbus_disconnect(struct usb_gadget * gadget)640 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
641 {
642 int ret = 0;
643
644 if (!gadget->ops->vbus_session) {
645 ret = -EOPNOTSUPP;
646 goto out;
647 }
648
649 ret = gadget->ops->vbus_session(gadget, 0);
650
651 out:
652 trace_usb_gadget_vbus_disconnect(gadget, ret);
653
654 return ret;
655 }
656 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect);
657
658 /**
659 * usb_gadget_connect - software-controlled connect to USB host
660 * @gadget:the peripheral being connected
661 *
662 * Enables the D+ (or potentially D-) pullup. The host will start
663 * enumerating this gadget when the pullup is active and a VBUS session
664 * is active (the link is powered).
665 *
666 * Returns zero on success, else negative errno.
667 */
usb_gadget_connect(struct usb_gadget * gadget)668 int usb_gadget_connect(struct usb_gadget *gadget)
669 {
670 int ret = 0;
671
672 if (!gadget->ops->pullup) {
673 ret = -EOPNOTSUPP;
674 goto out;
675 }
676
677 if (gadget->deactivated) {
678 /*
679 * If gadget is deactivated we only save new state.
680 * Gadget will be connected automatically after activation.
681 */
682 gadget->connected = true;
683 goto out;
684 }
685
686 ret = gadget->ops->pullup(gadget, 1);
687 if (!ret)
688 gadget->connected = 1;
689
690 out:
691 trace_usb_gadget_connect(gadget, ret);
692
693 return ret;
694 }
695 EXPORT_SYMBOL_GPL(usb_gadget_connect);
696
697 /**
698 * usb_gadget_disconnect - software-controlled disconnect from USB host
699 * @gadget:the peripheral being disconnected
700 *
701 * Disables the D+ (or potentially D-) pullup, which the host may see
702 * as a disconnect (when a VBUS session is active). Not all systems
703 * support software pullup controls.
704 *
705 * Following a successful disconnect, invoke the ->disconnect() callback
706 * for the current gadget driver so that UDC drivers don't need to.
707 *
708 * Returns zero on success, else negative errno.
709 */
usb_gadget_disconnect(struct usb_gadget * gadget)710 int usb_gadget_disconnect(struct usb_gadget *gadget)
711 {
712 int ret = 0;
713
714 if (!gadget->ops->pullup) {
715 ret = -EOPNOTSUPP;
716 goto out;
717 }
718
719 if (!gadget->connected)
720 goto out;
721
722 if (gadget->deactivated) {
723 /*
724 * If gadget is deactivated we only save new state.
725 * Gadget will stay disconnected after activation.
726 */
727 gadget->connected = false;
728 goto out;
729 }
730
731 ret = gadget->ops->pullup(gadget, 0);
732 if (!ret) {
733 gadget->connected = 0;
734 gadget->udc->driver->disconnect(gadget);
735 }
736
737 out:
738 trace_usb_gadget_disconnect(gadget, ret);
739
740 return ret;
741 }
742 EXPORT_SYMBOL_GPL(usb_gadget_disconnect);
743
744 /**
745 * usb_gadget_deactivate - deactivate function which is not ready to work
746 * @gadget: the peripheral being deactivated
747 *
748 * This routine may be used during the gadget driver bind() call to prevent
749 * the peripheral from ever being visible to the USB host, unless later
750 * usb_gadget_activate() is called. For example, user mode components may
751 * need to be activated before the system can talk to hosts.
752 *
753 * Returns zero on success, else negative errno.
754 */
usb_gadget_deactivate(struct usb_gadget * gadget)755 int usb_gadget_deactivate(struct usb_gadget *gadget)
756 {
757 int ret = 0;
758
759 if (gadget->deactivated)
760 goto out;
761
762 if (gadget->connected) {
763 ret = usb_gadget_disconnect(gadget);
764 if (ret)
765 goto out;
766
767 /*
768 * If gadget was being connected before deactivation, we want
769 * to reconnect it in usb_gadget_activate().
770 */
771 gadget->connected = true;
772 }
773 gadget->deactivated = true;
774
775 out:
776 trace_usb_gadget_deactivate(gadget, ret);
777
778 return ret;
779 }
780 EXPORT_SYMBOL_GPL(usb_gadget_deactivate);
781
782 /**
783 * usb_gadget_activate - activate function which is not ready to work
784 * @gadget: the peripheral being activated
785 *
786 * This routine activates gadget which was previously deactivated with
787 * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
788 *
789 * Returns zero on success, else negative errno.
790 */
usb_gadget_activate(struct usb_gadget * gadget)791 int usb_gadget_activate(struct usb_gadget *gadget)
792 {
793 int ret = 0;
794
795 if (!gadget->deactivated)
796 goto out;
797
798 gadget->deactivated = false;
799
800 /*
801 * If gadget has been connected before deactivation, or became connected
802 * while it was being deactivated, we call usb_gadget_connect().
803 */
804 if (gadget->connected)
805 ret = usb_gadget_connect(gadget);
806
807 out:
808 trace_usb_gadget_activate(gadget, ret);
809
810 return ret;
811 }
812 EXPORT_SYMBOL_GPL(usb_gadget_activate);
813
814 /* ------------------------------------------------------------------------- */
815
816 #ifdef CONFIG_HAS_DMA
817
usb_gadget_map_request_by_dev(struct device * dev,struct usb_request * req,int is_in)818 int usb_gadget_map_request_by_dev(struct device *dev,
819 struct usb_request *req, int is_in)
820 {
821 if (req->length == 0)
822 return 0;
823
824 if (req->num_sgs) {
825 int mapped;
826
827 mapped = dma_map_sg(dev, req->sg, req->num_sgs,
828 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
829 if (mapped == 0) {
830 dev_err(dev, "failed to map SGs\n");
831 return -EFAULT;
832 }
833
834 req->num_mapped_sgs = mapped;
835 } else {
836 if (is_vmalloc_addr(req->buf)) {
837 dev_err(dev, "buffer is not dma capable\n");
838 return -EFAULT;
839 } else if (object_is_on_stack(req->buf)) {
840 dev_err(dev, "buffer is on stack\n");
841 return -EFAULT;
842 }
843
844 req->dma = dma_map_single(dev, req->buf, req->length,
845 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
846
847 if (dma_mapping_error(dev, req->dma)) {
848 dev_err(dev, "failed to map buffer\n");
849 return -EFAULT;
850 }
851
852 req->dma_mapped = 1;
853 }
854
855 return 0;
856 }
857 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev);
858
usb_gadget_map_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)859 int usb_gadget_map_request(struct usb_gadget *gadget,
860 struct usb_request *req, int is_in)
861 {
862 return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in);
863 }
864 EXPORT_SYMBOL_GPL(usb_gadget_map_request);
865
usb_gadget_unmap_request_by_dev(struct device * dev,struct usb_request * req,int is_in)866 void usb_gadget_unmap_request_by_dev(struct device *dev,
867 struct usb_request *req, int is_in)
868 {
869 if (req->length == 0)
870 return;
871
872 if (req->num_mapped_sgs) {
873 dma_unmap_sg(dev, req->sg, req->num_sgs,
874 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
875
876 req->num_mapped_sgs = 0;
877 } else if (req->dma_mapped) {
878 dma_unmap_single(dev, req->dma, req->length,
879 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
880 req->dma_mapped = 0;
881 }
882 }
883 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev);
884
usb_gadget_unmap_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)885 void usb_gadget_unmap_request(struct usb_gadget *gadget,
886 struct usb_request *req, int is_in)
887 {
888 usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in);
889 }
890 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request);
891
892 #endif /* CONFIG_HAS_DMA */
893
894 /* ------------------------------------------------------------------------- */
895
896 /**
897 * usb_gadget_giveback_request - give the request back to the gadget layer
898 * @ep: the endpoint to be used with with the request
899 * @req: the request being given back
900 *
901 * This is called by device controller drivers in order to return the
902 * completed request back to the gadget layer.
903 */
usb_gadget_giveback_request(struct usb_ep * ep,struct usb_request * req)904 void usb_gadget_giveback_request(struct usb_ep *ep,
905 struct usb_request *req)
906 {
907 if (likely(req->status == 0))
908 usb_led_activity(USB_LED_EVENT_GADGET);
909
910 trace_usb_gadget_giveback_request(ep, req, 0);
911
912 req->complete(ep, req);
913 }
914 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request);
915
916 /* ------------------------------------------------------------------------- */
917
918 /**
919 * gadget_find_ep_by_name - returns ep whose name is the same as sting passed
920 * in second parameter or NULL if searched endpoint not found
921 * @g: controller to check for quirk
922 * @name: name of searched endpoint
923 */
gadget_find_ep_by_name(struct usb_gadget * g,const char * name)924 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name)
925 {
926 struct usb_ep *ep;
927
928 gadget_for_each_ep(ep, g) {
929 if (!strcmp(ep->name, name))
930 return ep;
931 }
932
933 return NULL;
934 }
935 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name);
936
937 /* ------------------------------------------------------------------------- */
938
usb_gadget_ep_match_desc(struct usb_gadget * gadget,struct usb_ep * ep,struct usb_endpoint_descriptor * desc,struct usb_ss_ep_comp_descriptor * ep_comp)939 int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
940 struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
941 struct usb_ss_ep_comp_descriptor *ep_comp)
942 {
943 u8 type;
944 u16 max;
945 int num_req_streams = 0;
946
947 /* endpoint already claimed? */
948 if (ep->claimed)
949 return 0;
950
951 type = usb_endpoint_type(desc);
952 max = usb_endpoint_maxp(desc);
953
954 if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in)
955 return 0;
956 if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out)
957 return 0;
958
959 if (max > ep->maxpacket_limit)
960 return 0;
961
962 /* "high bandwidth" works only at high speed */
963 if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1)
964 return 0;
965
966 switch (type) {
967 case USB_ENDPOINT_XFER_CONTROL:
968 /* only support ep0 for portable CONTROL traffic */
969 return 0;
970 case USB_ENDPOINT_XFER_ISOC:
971 if (!ep->caps.type_iso)
972 return 0;
973 /* ISO: limit 1023 bytes full speed, 1024 high/super speed */
974 if (!gadget_is_dualspeed(gadget) && max > 1023)
975 return 0;
976 break;
977 case USB_ENDPOINT_XFER_BULK:
978 if (!ep->caps.type_bulk)
979 return 0;
980 if (ep_comp && gadget_is_superspeed(gadget)) {
981 /* Get the number of required streams from the
982 * EP companion descriptor and see if the EP
983 * matches it
984 */
985 num_req_streams = ep_comp->bmAttributes & 0x1f;
986 if (num_req_streams > ep->max_streams)
987 return 0;
988 }
989 break;
990 case USB_ENDPOINT_XFER_INT:
991 /* Bulk endpoints handle interrupt transfers,
992 * except the toggle-quirky iso-synch kind
993 */
994 if (!ep->caps.type_int && !ep->caps.type_bulk)
995 return 0;
996 /* INT: limit 64 bytes full speed, 1024 high/super speed */
997 if (!gadget_is_dualspeed(gadget) && max > 64)
998 return 0;
999 break;
1000 }
1001
1002 return 1;
1003 }
1004 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc);
1005
1006 /**
1007 * usb_gadget_check_config - checks if the UDC can support the binded
1008 * configuration
1009 * @gadget: controller to check the USB configuration
1010 *
1011 * Ensure that a UDC is able to support the requested resources by a
1012 * configuration, and that there are no resource limitations, such as
1013 * internal memory allocated to all requested endpoints.
1014 *
1015 * Returns zero on success, else a negative errno.
1016 */
usb_gadget_check_config(struct usb_gadget * gadget)1017 int usb_gadget_check_config(struct usb_gadget *gadget)
1018 {
1019 if (gadget->ops->check_config)
1020 return gadget->ops->check_config(gadget);
1021 return 0;
1022 }
1023 EXPORT_SYMBOL_GPL(usb_gadget_check_config);
1024
1025 /* ------------------------------------------------------------------------- */
1026
usb_gadget_state_work(struct work_struct * work)1027 static void usb_gadget_state_work(struct work_struct *work)
1028 {
1029 struct usb_gadget *gadget = work_to_gadget(work);
1030 struct usb_udc *udc = gadget->udc;
1031
1032 if (udc)
1033 sysfs_notify(&udc->dev.kobj, NULL, "state");
1034 }
1035
usb_gadget_set_state(struct usb_gadget * gadget,enum usb_device_state state)1036 void usb_gadget_set_state(struct usb_gadget *gadget,
1037 enum usb_device_state state)
1038 {
1039 gadget->state = state;
1040 schedule_work(&gadget->work);
1041 }
1042 EXPORT_SYMBOL_GPL(usb_gadget_set_state);
1043
1044 /* ------------------------------------------------------------------------- */
1045
usb_udc_connect_control(struct usb_udc * udc)1046 static void usb_udc_connect_control(struct usb_udc *udc)
1047 {
1048 if (udc->vbus)
1049 usb_gadget_connect(udc->gadget);
1050 else
1051 usb_gadget_disconnect(udc->gadget);
1052 }
1053
1054 /**
1055 * usb_udc_vbus_handler - updates the udc core vbus status, and try to
1056 * connect or disconnect gadget
1057 * @gadget: The gadget which vbus change occurs
1058 * @status: The vbus status
1059 *
1060 * The udc driver calls it when it wants to connect or disconnect gadget
1061 * according to vbus status.
1062 */
usb_udc_vbus_handler(struct usb_gadget * gadget,bool status)1063 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status)
1064 {
1065 struct usb_udc *udc = gadget->udc;
1066
1067 if (udc) {
1068 udc->vbus = status;
1069 usb_udc_connect_control(udc);
1070 }
1071 }
1072 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler);
1073
1074 /**
1075 * usb_gadget_udc_reset - notifies the udc core that bus reset occurs
1076 * @gadget: The gadget which bus reset occurs
1077 * @driver: The gadget driver we want to notify
1078 *
1079 * If the udc driver has bus reset handler, it needs to call this when the bus
1080 * reset occurs, it notifies the gadget driver that the bus reset occurs as
1081 * well as updates gadget state.
1082 */
usb_gadget_udc_reset(struct usb_gadget * gadget,struct usb_gadget_driver * driver)1083 void usb_gadget_udc_reset(struct usb_gadget *gadget,
1084 struct usb_gadget_driver *driver)
1085 {
1086 driver->reset(gadget);
1087 usb_gadget_set_state(gadget, USB_STATE_DEFAULT);
1088 }
1089 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset);
1090
1091 /**
1092 * usb_gadget_udc_start - tells usb device controller to start up
1093 * @udc: The UDC to be started
1094 *
1095 * This call is issued by the UDC Class driver when it's about
1096 * to register a gadget driver to the device controller, before
1097 * calling gadget driver's bind() method.
1098 *
1099 * It allows the controller to be powered off until strictly
1100 * necessary to have it powered on.
1101 *
1102 * Returns zero on success, else negative errno.
1103 */
usb_gadget_udc_start(struct usb_udc * udc)1104 static inline int usb_gadget_udc_start(struct usb_udc *udc)
1105 {
1106 int ret;
1107
1108 if (udc->started) {
1109 dev_err(&udc->dev, "UDC had already started\n");
1110 return -EBUSY;
1111 }
1112
1113 ret = udc->gadget->ops->udc_start(udc->gadget, udc->driver);
1114 if (!ret)
1115 udc->started = true;
1116
1117 return ret;
1118 }
1119
1120 /**
1121 * usb_gadget_udc_stop - tells usb device controller we don't need it anymore
1122 * @udc: The UDC to be stopped
1123 *
1124 * This call is issued by the UDC Class driver after calling
1125 * gadget driver's unbind() method.
1126 *
1127 * The details are implementation specific, but it can go as
1128 * far as powering off UDC completely and disable its data
1129 * line pullups.
1130 */
usb_gadget_udc_stop(struct usb_udc * udc)1131 static inline void usb_gadget_udc_stop(struct usb_udc *udc)
1132 {
1133 if (!udc->started) {
1134 dev_err(&udc->dev, "UDC had already stopped\n");
1135 return;
1136 }
1137
1138 udc->gadget->ops->udc_stop(udc->gadget);
1139 udc->started = false;
1140 }
1141
1142 /**
1143 * usb_gadget_udc_set_speed - tells usb device controller speed supported by
1144 * current driver
1145 * @udc: The device we want to set maximum speed
1146 * @speed: The maximum speed to allowed to run
1147 *
1148 * This call is issued by the UDC Class driver before calling
1149 * usb_gadget_udc_start() in order to make sure that we don't try to
1150 * connect on speeds the gadget driver doesn't support.
1151 */
usb_gadget_udc_set_speed(struct usb_udc * udc,enum usb_device_speed speed)1152 static inline void usb_gadget_udc_set_speed(struct usb_udc *udc,
1153 enum usb_device_speed speed)
1154 {
1155 struct usb_gadget *gadget = udc->gadget;
1156 enum usb_device_speed s;
1157
1158 if (speed == USB_SPEED_UNKNOWN)
1159 s = gadget->max_speed;
1160 else
1161 s = min(speed, gadget->max_speed);
1162
1163 if (s == USB_SPEED_SUPER_PLUS && gadget->ops->udc_set_ssp_rate)
1164 gadget->ops->udc_set_ssp_rate(gadget, gadget->max_ssp_rate);
1165 else if (gadget->ops->udc_set_speed)
1166 gadget->ops->udc_set_speed(gadget, s);
1167 }
1168
1169 /**
1170 * usb_gadget_enable_async_callbacks - tell usb device controller to enable asynchronous callbacks
1171 * @udc: The UDC which should enable async callbacks
1172 *
1173 * This routine is used when binding gadget drivers. It undoes the effect
1174 * of usb_gadget_disable_async_callbacks(); the UDC driver should enable IRQs
1175 * (if necessary) and resume issuing callbacks.
1176 *
1177 * This routine will always be called in process context.
1178 */
usb_gadget_enable_async_callbacks(struct usb_udc * udc)1179 static inline void usb_gadget_enable_async_callbacks(struct usb_udc *udc)
1180 {
1181 struct usb_gadget *gadget = udc->gadget;
1182
1183 if (gadget->ops->udc_async_callbacks)
1184 gadget->ops->udc_async_callbacks(gadget, true);
1185 }
1186
1187 /**
1188 * usb_gadget_disable_async_callbacks - tell usb device controller to disable asynchronous callbacks
1189 * @udc: The UDC which should disable async callbacks
1190 *
1191 * This routine is used when unbinding gadget drivers. It prevents a race:
1192 * The UDC driver doesn't know when the gadget driver's ->unbind callback
1193 * runs, so unless it is told to disable asynchronous callbacks, it might
1194 * issue a callback (such as ->disconnect) after the unbind has completed.
1195 *
1196 * After this function runs, the UDC driver must suppress all ->suspend,
1197 * ->resume, ->disconnect, ->reset, and ->setup callbacks to the gadget driver
1198 * until async callbacks are again enabled. A simple-minded but effective
1199 * way to accomplish this is to tell the UDC hardware not to generate any
1200 * more IRQs.
1201 *
1202 * Request completion callbacks must still be issued. However, it's okay
1203 * to defer them until the request is cancelled, since the pull-up will be
1204 * turned off during the time period when async callbacks are disabled.
1205 *
1206 * This routine will always be called in process context.
1207 */
usb_gadget_disable_async_callbacks(struct usb_udc * udc)1208 static inline void usb_gadget_disable_async_callbacks(struct usb_udc *udc)
1209 {
1210 struct usb_gadget *gadget = udc->gadget;
1211
1212 if (gadget->ops->udc_async_callbacks)
1213 gadget->ops->udc_async_callbacks(gadget, false);
1214 }
1215
1216 /**
1217 * usb_udc_release - release the usb_udc struct
1218 * @dev: the dev member within usb_udc
1219 *
1220 * This is called by driver's core in order to free memory once the last
1221 * reference is released.
1222 */
usb_udc_release(struct device * dev)1223 static void usb_udc_release(struct device *dev)
1224 {
1225 struct usb_udc *udc;
1226
1227 udc = container_of(dev, struct usb_udc, dev);
1228 dev_dbg(dev, "releasing '%s'\n", dev_name(dev));
1229 kfree(udc);
1230 }
1231
1232 static const struct attribute_group *usb_udc_attr_groups[];
1233
usb_udc_nop_release(struct device * dev)1234 static void usb_udc_nop_release(struct device *dev)
1235 {
1236 dev_vdbg(dev, "%s\n", __func__);
1237 }
1238
1239 /* should be called with udc_lock held */
check_pending_gadget_drivers(struct usb_udc * udc)1240 static int check_pending_gadget_drivers(struct usb_udc *udc)
1241 {
1242 struct usb_gadget_driver *driver;
1243 int ret = 0;
1244
1245 list_for_each_entry(driver, &gadget_driver_pending_list, pending)
1246 if (!driver->udc_name || strcmp(driver->udc_name,
1247 dev_name(&udc->dev)) == 0) {
1248 ret = udc_bind_to_driver(udc, driver);
1249 if (ret != -EPROBE_DEFER)
1250 list_del_init(&driver->pending);
1251 break;
1252 }
1253
1254 return ret;
1255 }
1256
1257 /**
1258 * usb_initialize_gadget - initialize a gadget and its embedded struct device
1259 * @parent: the parent device to this udc. Usually the controller driver's
1260 * device.
1261 * @gadget: the gadget to be initialized.
1262 * @release: a gadget release function.
1263 *
1264 * Returns zero on success, negative errno otherwise.
1265 * Calls the gadget release function in the latter case.
1266 */
usb_initialize_gadget(struct device * parent,struct usb_gadget * gadget,void (* release)(struct device * dev))1267 void usb_initialize_gadget(struct device *parent, struct usb_gadget *gadget,
1268 void (*release)(struct device *dev))
1269 {
1270 dev_set_name(&gadget->dev, "gadget");
1271 INIT_WORK(&gadget->work, usb_gadget_state_work);
1272 gadget->dev.parent = parent;
1273
1274 if (release)
1275 gadget->dev.release = release;
1276 else
1277 gadget->dev.release = usb_udc_nop_release;
1278
1279 device_initialize(&gadget->dev);
1280 }
1281 EXPORT_SYMBOL_GPL(usb_initialize_gadget);
1282
1283 /**
1284 * usb_add_gadget - adds a new gadget to the udc class driver list
1285 * @gadget: the gadget to be added to the list.
1286 *
1287 * Returns zero on success, negative errno otherwise.
1288 * Does not do a final usb_put_gadget() if an error occurs.
1289 */
usb_add_gadget(struct usb_gadget * gadget)1290 int usb_add_gadget(struct usb_gadget *gadget)
1291 {
1292 struct usb_udc *udc;
1293 int ret = -ENOMEM;
1294
1295 udc = kzalloc(sizeof(*udc), GFP_KERNEL);
1296 if (!udc)
1297 goto error;
1298
1299 device_initialize(&udc->dev);
1300 udc->dev.release = usb_udc_release;
1301 udc->dev.class = udc_class;
1302 udc->dev.groups = usb_udc_attr_groups;
1303 udc->dev.parent = gadget->dev.parent;
1304 ret = dev_set_name(&udc->dev, "%s",
1305 kobject_name(&gadget->dev.parent->kobj));
1306 if (ret)
1307 goto err_put_udc;
1308
1309 ret = device_add(&gadget->dev);
1310 if (ret)
1311 goto err_put_udc;
1312
1313 udc->gadget = gadget;
1314 gadget->udc = udc;
1315
1316 udc->started = false;
1317
1318 mutex_lock(&udc_lock);
1319 list_add_tail(&udc->list, &udc_list);
1320
1321 ret = device_add(&udc->dev);
1322 if (ret)
1323 goto err_unlist_udc;
1324
1325 usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED);
1326 udc->vbus = true;
1327
1328 /* pick up one of pending gadget drivers */
1329 ret = check_pending_gadget_drivers(udc);
1330 if (ret)
1331 goto err_del_udc;
1332
1333 mutex_unlock(&udc_lock);
1334
1335 return 0;
1336
1337 err_del_udc:
1338 flush_work(&gadget->work);
1339 device_del(&udc->dev);
1340
1341 err_unlist_udc:
1342 list_del(&udc->list);
1343 mutex_unlock(&udc_lock);
1344
1345 device_del(&gadget->dev);
1346
1347 err_put_udc:
1348 put_device(&udc->dev);
1349
1350 error:
1351 return ret;
1352 }
1353 EXPORT_SYMBOL_GPL(usb_add_gadget);
1354
1355 /**
1356 * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list
1357 * @parent: the parent device to this udc. Usually the controller driver's
1358 * device.
1359 * @gadget: the gadget to be added to the list.
1360 * @release: a gadget release function.
1361 *
1362 * Returns zero on success, negative errno otherwise.
1363 * Calls the gadget release function in the latter case.
1364 */
usb_add_gadget_udc_release(struct device * parent,struct usb_gadget * gadget,void (* release)(struct device * dev))1365 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget,
1366 void (*release)(struct device *dev))
1367 {
1368 int ret;
1369
1370 usb_initialize_gadget(parent, gadget, release);
1371 ret = usb_add_gadget(gadget);
1372 if (ret)
1373 usb_put_gadget(gadget);
1374 return ret;
1375 }
1376 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release);
1377
1378 /**
1379 * usb_get_gadget_udc_name - get the name of the first UDC controller
1380 * This functions returns the name of the first UDC controller in the system.
1381 * Please note that this interface is usefull only for legacy drivers which
1382 * assume that there is only one UDC controller in the system and they need to
1383 * get its name before initialization. There is no guarantee that the UDC
1384 * of the returned name will be still available, when gadget driver registers
1385 * itself.
1386 *
1387 * Returns pointer to string with UDC controller name on success, NULL
1388 * otherwise. Caller should kfree() returned string.
1389 */
usb_get_gadget_udc_name(void)1390 char *usb_get_gadget_udc_name(void)
1391 {
1392 struct usb_udc *udc;
1393 char *name = NULL;
1394
1395 /* For now we take the first available UDC */
1396 mutex_lock(&udc_lock);
1397 list_for_each_entry(udc, &udc_list, list) {
1398 if (!udc->driver) {
1399 name = kstrdup(udc->gadget->name, GFP_KERNEL);
1400 break;
1401 }
1402 }
1403 mutex_unlock(&udc_lock);
1404 return name;
1405 }
1406 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name);
1407
1408 /**
1409 * usb_add_gadget_udc - adds a new gadget to the udc class driver list
1410 * @parent: the parent device to this udc. Usually the controller
1411 * driver's device.
1412 * @gadget: the gadget to be added to the list
1413 *
1414 * Returns zero on success, negative errno otherwise.
1415 */
usb_add_gadget_udc(struct device * parent,struct usb_gadget * gadget)1416 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget)
1417 {
1418 return usb_add_gadget_udc_release(parent, gadget, NULL);
1419 }
1420 EXPORT_SYMBOL_GPL(usb_add_gadget_udc);
1421
usb_gadget_remove_driver(struct usb_udc * udc)1422 static void usb_gadget_remove_driver(struct usb_udc *udc)
1423 {
1424 dev_dbg(&udc->dev, "unregistering UDC driver [%s]\n",
1425 udc->driver->function);
1426
1427 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1428
1429 usb_gadget_disconnect(udc->gadget);
1430 usb_gadget_disable_async_callbacks(udc);
1431 if (udc->gadget->irq)
1432 synchronize_irq(udc->gadget->irq);
1433 udc->driver->unbind(udc->gadget);
1434 usb_gadget_udc_stop(udc);
1435
1436 udc->driver = NULL;
1437 udc->dev.driver = NULL;
1438 udc->gadget->dev.driver = NULL;
1439 }
1440
1441 /**
1442 * usb_del_gadget - deletes @udc from udc_list
1443 * @gadget: the gadget to be removed.
1444 *
1445 * This will call usb_gadget_unregister_driver() if
1446 * the @udc is still busy.
1447 * It will not do a final usb_put_gadget().
1448 */
usb_del_gadget(struct usb_gadget * gadget)1449 void usb_del_gadget(struct usb_gadget *gadget)
1450 {
1451 struct usb_udc *udc = gadget->udc;
1452
1453 if (!udc)
1454 return;
1455
1456 dev_vdbg(gadget->dev.parent, "unregistering gadget\n");
1457
1458 mutex_lock(&udc_lock);
1459 list_del(&udc->list);
1460
1461 if (udc->driver) {
1462 struct usb_gadget_driver *driver = udc->driver;
1463
1464 usb_gadget_remove_driver(udc);
1465 list_add(&driver->pending, &gadget_driver_pending_list);
1466 }
1467 mutex_unlock(&udc_lock);
1468
1469 kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE);
1470 flush_work(&gadget->work);
1471 device_unregister(&udc->dev);
1472 device_del(&gadget->dev);
1473 }
1474 EXPORT_SYMBOL_GPL(usb_del_gadget);
1475
1476 /**
1477 * usb_del_gadget_udc - deletes @udc from udc_list
1478 * @gadget: the gadget to be removed.
1479 *
1480 * Calls usb_del_gadget() and does a final usb_put_gadget().
1481 */
usb_del_gadget_udc(struct usb_gadget * gadget)1482 void usb_del_gadget_udc(struct usb_gadget *gadget)
1483 {
1484 usb_del_gadget(gadget);
1485 usb_put_gadget(gadget);
1486 }
1487 EXPORT_SYMBOL_GPL(usb_del_gadget_udc);
1488
1489 /* ------------------------------------------------------------------------- */
1490
udc_bind_to_driver(struct usb_udc * udc,struct usb_gadget_driver * driver)1491 static int udc_bind_to_driver(struct usb_udc *udc, struct usb_gadget_driver *driver)
1492 {
1493 int ret;
1494
1495 dev_dbg(&udc->dev, "registering UDC driver [%s]\n",
1496 driver->function);
1497
1498 udc->driver = driver;
1499 udc->dev.driver = &driver->driver;
1500 udc->gadget->dev.driver = &driver->driver;
1501
1502 usb_gadget_udc_set_speed(udc, driver->max_speed);
1503
1504 ret = driver->bind(udc->gadget, driver);
1505 if (ret)
1506 goto err1;
1507 ret = usb_gadget_udc_start(udc);
1508 if (ret) {
1509 driver->unbind(udc->gadget);
1510 goto err1;
1511 }
1512 usb_gadget_enable_async_callbacks(udc);
1513 usb_udc_connect_control(udc);
1514
1515 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1516 return 0;
1517 err1:
1518 if (ret != -EISNAM)
1519 dev_err(&udc->dev, "failed to start %s: %d\n",
1520 udc->driver->function, ret);
1521 udc->driver = NULL;
1522 udc->dev.driver = NULL;
1523 udc->gadget->dev.driver = NULL;
1524 return ret;
1525 }
1526
usb_gadget_probe_driver(struct usb_gadget_driver * driver)1527 int usb_gadget_probe_driver(struct usb_gadget_driver *driver)
1528 {
1529 struct usb_udc *udc = NULL;
1530 int ret = -ENODEV;
1531
1532 if (!driver || !driver->bind || !driver->setup)
1533 return -EINVAL;
1534
1535 mutex_lock(&udc_lock);
1536 if (driver->udc_name) {
1537 list_for_each_entry(udc, &udc_list, list) {
1538 ret = strcmp(driver->udc_name, dev_name(&udc->dev));
1539 if (!ret)
1540 break;
1541 }
1542 if (ret)
1543 ret = -ENODEV;
1544 else if (udc->driver)
1545 ret = -EBUSY;
1546 else
1547 goto found;
1548 } else {
1549 list_for_each_entry(udc, &udc_list, list) {
1550 /* For now we take the first one */
1551 if (!udc->driver)
1552 goto found;
1553 }
1554 }
1555
1556 if (!driver->match_existing_only) {
1557 list_add_tail(&driver->pending, &gadget_driver_pending_list);
1558 pr_info("udc-core: couldn't find an available UDC - added [%s] to list of pending drivers\n",
1559 driver->function);
1560 ret = 0;
1561 }
1562
1563 mutex_unlock(&udc_lock);
1564 if (ret)
1565 pr_warn("udc-core: couldn't find an available UDC or it's busy\n");
1566 return ret;
1567 found:
1568 ret = udc_bind_to_driver(udc, driver);
1569 mutex_unlock(&udc_lock);
1570 return ret;
1571 }
1572 EXPORT_SYMBOL_GPL(usb_gadget_probe_driver);
1573
usb_gadget_unregister_driver(struct usb_gadget_driver * driver)1574 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
1575 {
1576 struct usb_udc *udc = NULL;
1577 int ret = -ENODEV;
1578
1579 if (!driver || !driver->unbind)
1580 return -EINVAL;
1581
1582 mutex_lock(&udc_lock);
1583 list_for_each_entry(udc, &udc_list, list) {
1584 if (udc->driver == driver) {
1585 usb_gadget_remove_driver(udc);
1586 usb_gadget_set_state(udc->gadget,
1587 USB_STATE_NOTATTACHED);
1588
1589 /* Maybe there is someone waiting for this UDC? */
1590 check_pending_gadget_drivers(udc);
1591 /*
1592 * For now we ignore bind errors as probably it's
1593 * not a valid reason to fail other's gadget unbind
1594 */
1595 ret = 0;
1596 break;
1597 }
1598 }
1599
1600 if (ret) {
1601 list_del(&driver->pending);
1602 ret = 0;
1603 }
1604 mutex_unlock(&udc_lock);
1605 return ret;
1606 }
1607 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver);
1608
1609 /* ------------------------------------------------------------------------- */
1610
srp_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t n)1611 static ssize_t srp_store(struct device *dev,
1612 struct device_attribute *attr, const char *buf, size_t n)
1613 {
1614 struct usb_udc *udc = container_of(dev, struct usb_udc, dev);
1615
1616 if (sysfs_streq(buf, "1"))
1617 usb_gadget_wakeup(udc->gadget);
1618
1619 return n;
1620 }
1621 static DEVICE_ATTR_WO(srp);
1622
soft_connect_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t n)1623 static ssize_t soft_connect_store(struct device *dev,
1624 struct device_attribute *attr, const char *buf, size_t n)
1625 {
1626 struct usb_udc *udc = container_of(dev, struct usb_udc, dev);
1627 ssize_t ret;
1628
1629 mutex_lock(&udc_lock);
1630 if (!udc->driver) {
1631 dev_err(dev, "soft-connect without a gadget driver\n");
1632 ret = -EOPNOTSUPP;
1633 goto out;
1634 }
1635
1636 if (sysfs_streq(buf, "connect")) {
1637 usb_gadget_udc_start(udc);
1638 usb_gadget_connect(udc->gadget);
1639 } else if (sysfs_streq(buf, "disconnect")) {
1640 usb_gadget_disconnect(udc->gadget);
1641 usb_gadget_udc_stop(udc);
1642 } else {
1643 dev_err(dev, "unsupported command '%s'\n", buf);
1644 ret = -EINVAL;
1645 goto out;
1646 }
1647
1648 ret = n;
1649 out:
1650 mutex_unlock(&udc_lock);
1651 return ret;
1652 }
1653 static DEVICE_ATTR_WO(soft_connect);
1654
state_show(struct device * dev,struct device_attribute * attr,char * buf)1655 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
1656 char *buf)
1657 {
1658 struct usb_udc *udc = container_of(dev, struct usb_udc, dev);
1659 struct usb_gadget *gadget = udc->gadget;
1660
1661 return sprintf(buf, "%s\n", usb_state_string(gadget->state));
1662 }
1663 static DEVICE_ATTR_RO(state);
1664
function_show(struct device * dev,struct device_attribute * attr,char * buf)1665 static ssize_t function_show(struct device *dev, struct device_attribute *attr,
1666 char *buf)
1667 {
1668 struct usb_udc *udc = container_of(dev, struct usb_udc, dev);
1669 struct usb_gadget_driver *drv = udc->driver;
1670
1671 if (!drv || !drv->function)
1672 return 0;
1673 return scnprintf(buf, PAGE_SIZE, "%s\n", drv->function);
1674 }
1675 static DEVICE_ATTR_RO(function);
1676
1677 #define USB_UDC_SPEED_ATTR(name, param) \
1678 ssize_t name##_show(struct device *dev, \
1679 struct device_attribute *attr, char *buf) \
1680 { \
1681 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \
1682 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1683 usb_speed_string(udc->gadget->param)); \
1684 } \
1685 static DEVICE_ATTR_RO(name)
1686
1687 static USB_UDC_SPEED_ATTR(current_speed, speed);
1688 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed);
1689
1690 #define USB_UDC_ATTR(name) \
1691 ssize_t name##_show(struct device *dev, \
1692 struct device_attribute *attr, char *buf) \
1693 { \
1694 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \
1695 struct usb_gadget *gadget = udc->gadget; \
1696 \
1697 return scnprintf(buf, PAGE_SIZE, "%d\n", gadget->name); \
1698 } \
1699 static DEVICE_ATTR_RO(name)
1700
1701 static USB_UDC_ATTR(is_otg);
1702 static USB_UDC_ATTR(is_a_peripheral);
1703 static USB_UDC_ATTR(b_hnp_enable);
1704 static USB_UDC_ATTR(a_hnp_support);
1705 static USB_UDC_ATTR(a_alt_hnp_support);
1706 static USB_UDC_ATTR(is_selfpowered);
1707
1708 static struct attribute *usb_udc_attrs[] = {
1709 &dev_attr_srp.attr,
1710 &dev_attr_soft_connect.attr,
1711 &dev_attr_state.attr,
1712 &dev_attr_function.attr,
1713 &dev_attr_current_speed.attr,
1714 &dev_attr_maximum_speed.attr,
1715
1716 &dev_attr_is_otg.attr,
1717 &dev_attr_is_a_peripheral.attr,
1718 &dev_attr_b_hnp_enable.attr,
1719 &dev_attr_a_hnp_support.attr,
1720 &dev_attr_a_alt_hnp_support.attr,
1721 &dev_attr_is_selfpowered.attr,
1722 NULL,
1723 };
1724
1725 static const struct attribute_group usb_udc_attr_group = {
1726 .attrs = usb_udc_attrs,
1727 };
1728
1729 static const struct attribute_group *usb_udc_attr_groups[] = {
1730 &usb_udc_attr_group,
1731 NULL,
1732 };
1733
usb_udc_uevent(struct device * dev,struct kobj_uevent_env * env)1734 static int usb_udc_uevent(struct device *dev, struct kobj_uevent_env *env)
1735 {
1736 struct usb_udc *udc = container_of(dev, struct usb_udc, dev);
1737 int ret;
1738
1739 ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name);
1740 if (ret) {
1741 dev_err(dev, "failed to add uevent USB_UDC_NAME\n");
1742 return ret;
1743 }
1744
1745 if (udc->driver) {
1746 ret = add_uevent_var(env, "USB_UDC_DRIVER=%s",
1747 udc->driver->function);
1748 if (ret) {
1749 dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n");
1750 return ret;
1751 }
1752 }
1753
1754 return 0;
1755 }
1756
usb_udc_init(void)1757 static int __init usb_udc_init(void)
1758 {
1759 udc_class = class_create(THIS_MODULE, "udc");
1760 if (IS_ERR(udc_class)) {
1761 pr_err("failed to create udc class --> %ld\n",
1762 PTR_ERR(udc_class));
1763 return PTR_ERR(udc_class);
1764 }
1765
1766 udc_class->dev_uevent = usb_udc_uevent;
1767 return 0;
1768 }
1769 subsys_initcall(usb_udc_init);
1770
usb_udc_exit(void)1771 static void __exit usb_udc_exit(void)
1772 {
1773 class_destroy(udc_class);
1774 }
1775 module_exit(usb_udc_exit);
1776
1777 MODULE_DESCRIPTION("UDC Framework");
1778 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>");
1779 MODULE_LICENSE("GPL v2");
1780