1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/usb/core/usb.c
4 *
5 * (C) Copyright Linus Torvalds 1999
6 * (C) Copyright Johannes Erdfelt 1999-2001
7 * (C) Copyright Andreas Gal 1999
8 * (C) Copyright Gregory P. Smith 1999
9 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
10 * (C) Copyright Randy Dunlap 2000
11 * (C) Copyright David Brownell 2000-2004
12 * (C) Copyright Yggdrasil Computing, Inc. 2000
13 * (usb_device_id matching changes by Adam J. Richter)
14 * (C) Copyright Greg Kroah-Hartman 2002-2003
15 *
16 * Released under the GPLv2 only.
17 *
18 * NOTE! This is not actually a driver at all, rather this is
19 * just a collection of helper routines that implement the
20 * generic USB things that the real drivers can use..
21 *
22 * Think of this as a "USB library" rather than anything else.
23 * It should be considered a slave, with no callbacks. Callbacks
24 * are evil.
25 */
26
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/string.h>
30 #include <linux/bitops.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h> /* for in_interrupt() */
33 #include <linux/kmod.h>
34 #include <linux/init.h>
35 #include <linux/spinlock.h>
36 #include <linux/errno.h>
37 #include <linux/usb.h>
38 #include <linux/usb/hcd.h>
39 #include <linux/mutex.h>
40 #include <linux/workqueue.h>
41 #include <linux/debugfs.h>
42 #include <linux/usb/of.h>
43
44 #include <asm/io.h>
45 #include <linux/scatterlist.h>
46 #include <linux/mm.h>
47 #include <linux/dma-mapping.h>
48
49 #include "usb.h"
50
51
52 const char *usbcore_name = "usbcore";
53
54 static bool nousb; /* Disable USB when built into kernel image */
55
56 module_param(nousb, bool, 0444);
57
58 /*
59 * for external read access to <nousb>
60 */
usb_disabled(void)61 int usb_disabled(void)
62 {
63 return nousb;
64 }
65 EXPORT_SYMBOL_GPL(usb_disabled);
66
67 #ifdef CONFIG_PM
68 static int usb_autosuspend_delay = 2; /* Default delay value,
69 * in seconds */
70 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
71 MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
72
73 #else
74 #define usb_autosuspend_delay 0
75 #endif
76
match_endpoint(struct usb_endpoint_descriptor * epd,struct usb_endpoint_descriptor ** bulk_in,struct usb_endpoint_descriptor ** bulk_out,struct usb_endpoint_descriptor ** int_in,struct usb_endpoint_descriptor ** int_out)77 static bool match_endpoint(struct usb_endpoint_descriptor *epd,
78 struct usb_endpoint_descriptor **bulk_in,
79 struct usb_endpoint_descriptor **bulk_out,
80 struct usb_endpoint_descriptor **int_in,
81 struct usb_endpoint_descriptor **int_out)
82 {
83 switch (usb_endpoint_type(epd)) {
84 case USB_ENDPOINT_XFER_BULK:
85 if (usb_endpoint_dir_in(epd)) {
86 if (bulk_in && !*bulk_in) {
87 *bulk_in = epd;
88 break;
89 }
90 } else {
91 if (bulk_out && !*bulk_out) {
92 *bulk_out = epd;
93 break;
94 }
95 }
96
97 return false;
98 case USB_ENDPOINT_XFER_INT:
99 if (usb_endpoint_dir_in(epd)) {
100 if (int_in && !*int_in) {
101 *int_in = epd;
102 break;
103 }
104 } else {
105 if (int_out && !*int_out) {
106 *int_out = epd;
107 break;
108 }
109 }
110
111 return false;
112 default:
113 return false;
114 }
115
116 return (!bulk_in || *bulk_in) && (!bulk_out || *bulk_out) &&
117 (!int_in || *int_in) && (!int_out || *int_out);
118 }
119
120 /**
121 * usb_find_common_endpoints() -- look up common endpoint descriptors
122 * @alt: alternate setting to search
123 * @bulk_in: pointer to descriptor pointer, or NULL
124 * @bulk_out: pointer to descriptor pointer, or NULL
125 * @int_in: pointer to descriptor pointer, or NULL
126 * @int_out: pointer to descriptor pointer, or NULL
127 *
128 * Search the alternate setting's endpoint descriptors for the first bulk-in,
129 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
130 * provided pointers (unless they are NULL).
131 *
132 * If a requested endpoint is not found, the corresponding pointer is set to
133 * NULL.
134 *
135 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
136 */
usb_find_common_endpoints(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in,struct usb_endpoint_descriptor ** bulk_out,struct usb_endpoint_descriptor ** int_in,struct usb_endpoint_descriptor ** int_out)137 int usb_find_common_endpoints(struct usb_host_interface *alt,
138 struct usb_endpoint_descriptor **bulk_in,
139 struct usb_endpoint_descriptor **bulk_out,
140 struct usb_endpoint_descriptor **int_in,
141 struct usb_endpoint_descriptor **int_out)
142 {
143 struct usb_endpoint_descriptor *epd;
144 int i;
145
146 if (bulk_in)
147 *bulk_in = NULL;
148 if (bulk_out)
149 *bulk_out = NULL;
150 if (int_in)
151 *int_in = NULL;
152 if (int_out)
153 *int_out = NULL;
154
155 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
156 epd = &alt->endpoint[i].desc;
157
158 if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
159 return 0;
160 }
161
162 return -ENXIO;
163 }
164 EXPORT_SYMBOL_GPL(usb_find_common_endpoints);
165
166 /**
167 * usb_find_common_endpoints_reverse() -- look up common endpoint descriptors
168 * @alt: alternate setting to search
169 * @bulk_in: pointer to descriptor pointer, or NULL
170 * @bulk_out: pointer to descriptor pointer, or NULL
171 * @int_in: pointer to descriptor pointer, or NULL
172 * @int_out: pointer to descriptor pointer, or NULL
173 *
174 * Search the alternate setting's endpoint descriptors for the last bulk-in,
175 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
176 * provided pointers (unless they are NULL).
177 *
178 * If a requested endpoint is not found, the corresponding pointer is set to
179 * NULL.
180 *
181 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
182 */
usb_find_common_endpoints_reverse(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in,struct usb_endpoint_descriptor ** bulk_out,struct usb_endpoint_descriptor ** int_in,struct usb_endpoint_descriptor ** int_out)183 int usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
184 struct usb_endpoint_descriptor **bulk_in,
185 struct usb_endpoint_descriptor **bulk_out,
186 struct usb_endpoint_descriptor **int_in,
187 struct usb_endpoint_descriptor **int_out)
188 {
189 struct usb_endpoint_descriptor *epd;
190 int i;
191
192 if (bulk_in)
193 *bulk_in = NULL;
194 if (bulk_out)
195 *bulk_out = NULL;
196 if (int_in)
197 *int_in = NULL;
198 if (int_out)
199 *int_out = NULL;
200
201 for (i = alt->desc.bNumEndpoints - 1; i >= 0; --i) {
202 epd = &alt->endpoint[i].desc;
203
204 if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
205 return 0;
206 }
207
208 return -ENXIO;
209 }
210 EXPORT_SYMBOL_GPL(usb_find_common_endpoints_reverse);
211
212 /**
213 * usb_find_alt_setting() - Given a configuration, find the alternate setting
214 * for the given interface.
215 * @config: the configuration to search (not necessarily the current config).
216 * @iface_num: interface number to search in
217 * @alt_num: alternate interface setting number to search for.
218 *
219 * Search the configuration's interface cache for the given alt setting.
220 *
221 * Return: The alternate setting, if found. %NULL otherwise.
222 */
usb_find_alt_setting(struct usb_host_config * config,unsigned int iface_num,unsigned int alt_num)223 struct usb_host_interface *usb_find_alt_setting(
224 struct usb_host_config *config,
225 unsigned int iface_num,
226 unsigned int alt_num)
227 {
228 struct usb_interface_cache *intf_cache = NULL;
229 int i;
230
231 if (!config)
232 return NULL;
233 for (i = 0; i < config->desc.bNumInterfaces; i++) {
234 if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
235 == iface_num) {
236 intf_cache = config->intf_cache[i];
237 break;
238 }
239 }
240 if (!intf_cache)
241 return NULL;
242 for (i = 0; i < intf_cache->num_altsetting; i++)
243 if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
244 return &intf_cache->altsetting[i];
245
246 printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
247 "config %u\n", alt_num, iface_num,
248 config->desc.bConfigurationValue);
249 return NULL;
250 }
251 EXPORT_SYMBOL_GPL(usb_find_alt_setting);
252
253 /**
254 * usb_ifnum_to_if - get the interface object with a given interface number
255 * @dev: the device whose current configuration is considered
256 * @ifnum: the desired interface
257 *
258 * This walks the device descriptor for the currently active configuration
259 * to find the interface object with the particular interface number.
260 *
261 * Note that configuration descriptors are not required to assign interface
262 * numbers sequentially, so that it would be incorrect to assume that
263 * the first interface in that descriptor corresponds to interface zero.
264 * This routine helps device drivers avoid such mistakes.
265 * However, you should make sure that you do the right thing with any
266 * alternate settings available for this interfaces.
267 *
268 * Don't call this function unless you are bound to one of the interfaces
269 * on this device or you have locked the device!
270 *
271 * Return: A pointer to the interface that has @ifnum as interface number,
272 * if found. %NULL otherwise.
273 */
usb_ifnum_to_if(const struct usb_device * dev,unsigned ifnum)274 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
275 unsigned ifnum)
276 {
277 struct usb_host_config *config = dev->actconfig;
278 int i;
279
280 if (!config)
281 return NULL;
282 for (i = 0; i < config->desc.bNumInterfaces; i++)
283 if (config->interface[i]->altsetting[0]
284 .desc.bInterfaceNumber == ifnum)
285 return config->interface[i];
286
287 return NULL;
288 }
289 EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
290
291 /**
292 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
293 * @intf: the interface containing the altsetting in question
294 * @altnum: the desired alternate setting number
295 *
296 * This searches the altsetting array of the specified interface for
297 * an entry with the correct bAlternateSetting value.
298 *
299 * Note that altsettings need not be stored sequentially by number, so
300 * it would be incorrect to assume that the first altsetting entry in
301 * the array corresponds to altsetting zero. This routine helps device
302 * drivers avoid such mistakes.
303 *
304 * Don't call this function unless you are bound to the intf interface
305 * or you have locked the device!
306 *
307 * Return: A pointer to the entry of the altsetting array of @intf that
308 * has @altnum as the alternate setting number. %NULL if not found.
309 */
usb_altnum_to_altsetting(const struct usb_interface * intf,unsigned int altnum)310 struct usb_host_interface *usb_altnum_to_altsetting(
311 const struct usb_interface *intf,
312 unsigned int altnum)
313 {
314 int i;
315
316 for (i = 0; i < intf->num_altsetting; i++) {
317 if (intf->altsetting[i].desc.bAlternateSetting == altnum)
318 return &intf->altsetting[i];
319 }
320 return NULL;
321 }
322 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
323
324 struct find_interface_arg {
325 int minor;
326 struct device_driver *drv;
327 };
328
__find_interface(struct device * dev,void * data)329 static int __find_interface(struct device *dev, void *data)
330 {
331 struct find_interface_arg *arg = data;
332 struct usb_interface *intf;
333
334 if (!is_usb_interface(dev))
335 return 0;
336
337 if (dev->driver != arg->drv)
338 return 0;
339 intf = to_usb_interface(dev);
340 return intf->minor == arg->minor;
341 }
342
343 /**
344 * usb_find_interface - find usb_interface pointer for driver and device
345 * @drv: the driver whose current configuration is considered
346 * @minor: the minor number of the desired device
347 *
348 * This walks the bus device list and returns a pointer to the interface
349 * with the matching minor and driver. Note, this only works for devices
350 * that share the USB major number.
351 *
352 * Return: A pointer to the interface with the matching major and @minor.
353 */
usb_find_interface(struct usb_driver * drv,int minor)354 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
355 {
356 struct find_interface_arg argb;
357 struct device *dev;
358
359 argb.minor = minor;
360 argb.drv = &drv->drvwrap.driver;
361
362 dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
363
364 /* Drop reference count from bus_find_device */
365 put_device(dev);
366
367 return dev ? to_usb_interface(dev) : NULL;
368 }
369 EXPORT_SYMBOL_GPL(usb_find_interface);
370
371 struct each_dev_arg {
372 void *data;
373 int (*fn)(struct usb_device *, void *);
374 };
375
__each_dev(struct device * dev,void * data)376 static int __each_dev(struct device *dev, void *data)
377 {
378 struct each_dev_arg *arg = (struct each_dev_arg *)data;
379
380 /* There are struct usb_interface on the same bus, filter them out */
381 if (!is_usb_device(dev))
382 return 0;
383
384 return arg->fn(to_usb_device(dev), arg->data);
385 }
386
387 /**
388 * usb_for_each_dev - iterate over all USB devices in the system
389 * @data: data pointer that will be handed to the callback function
390 * @fn: callback function to be called for each USB device
391 *
392 * Iterate over all USB devices and call @fn for each, passing it @data. If it
393 * returns anything other than 0, we break the iteration prematurely and return
394 * that value.
395 */
usb_for_each_dev(void * data,int (* fn)(struct usb_device *,void *))396 int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *))
397 {
398 struct each_dev_arg arg = {data, fn};
399
400 return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev);
401 }
402 EXPORT_SYMBOL_GPL(usb_for_each_dev);
403
404 /**
405 * usb_release_dev - free a usb device structure when all users of it are finished.
406 * @dev: device that's been disconnected
407 *
408 * Will be called only by the device core when all users of this usb device are
409 * done.
410 */
usb_release_dev(struct device * dev)411 static void usb_release_dev(struct device *dev)
412 {
413 struct usb_device *udev;
414 struct usb_hcd *hcd;
415
416 udev = to_usb_device(dev);
417 hcd = bus_to_hcd(udev->bus);
418
419 usb_destroy_configuration(udev);
420 usb_release_bos_descriptor(udev);
421 of_node_put(dev->of_node);
422 usb_put_hcd(hcd);
423 kfree(udev->product);
424 kfree(udev->manufacturer);
425 kfree(udev->serial);
426 kfree(udev);
427 }
428
usb_dev_uevent(struct device * dev,struct kobj_uevent_env * env)429 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
430 {
431 struct usb_device *usb_dev;
432
433 usb_dev = to_usb_device(dev);
434
435 if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
436 return -ENOMEM;
437
438 if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
439 return -ENOMEM;
440
441 return 0;
442 }
443
444 #ifdef CONFIG_PM
445
446 /* USB device Power-Management thunks.
447 * There's no need to distinguish here between quiescing a USB device
448 * and powering it down; the generic_suspend() routine takes care of
449 * it by skipping the usb_port_suspend() call for a quiesce. And for
450 * USB interfaces there's no difference at all.
451 */
452
usb_dev_prepare(struct device * dev)453 static int usb_dev_prepare(struct device *dev)
454 {
455 return 0; /* Implement eventually? */
456 }
457
usb_dev_complete(struct device * dev)458 static void usb_dev_complete(struct device *dev)
459 {
460 /* Currently used only for rebinding interfaces */
461 usb_resume_complete(dev);
462 }
463
usb_dev_suspend(struct device * dev)464 static int usb_dev_suspend(struct device *dev)
465 {
466 return usb_suspend(dev, PMSG_SUSPEND);
467 }
468
usb_dev_resume(struct device * dev)469 static int usb_dev_resume(struct device *dev)
470 {
471 return usb_resume(dev, PMSG_RESUME);
472 }
473
usb_dev_freeze(struct device * dev)474 static int usb_dev_freeze(struct device *dev)
475 {
476 return usb_suspend(dev, PMSG_FREEZE);
477 }
478
usb_dev_thaw(struct device * dev)479 static int usb_dev_thaw(struct device *dev)
480 {
481 return usb_resume(dev, PMSG_THAW);
482 }
483
usb_dev_poweroff(struct device * dev)484 static int usb_dev_poweroff(struct device *dev)
485 {
486 return usb_suspend(dev, PMSG_HIBERNATE);
487 }
488
usb_dev_restore(struct device * dev)489 static int usb_dev_restore(struct device *dev)
490 {
491 return usb_resume(dev, PMSG_RESTORE);
492 }
493
494 static const struct dev_pm_ops usb_device_pm_ops = {
495 .prepare = usb_dev_prepare,
496 .complete = usb_dev_complete,
497 .suspend = usb_dev_suspend,
498 .resume = usb_dev_resume,
499 .freeze = usb_dev_freeze,
500 .thaw = usb_dev_thaw,
501 .poweroff = usb_dev_poweroff,
502 .restore = usb_dev_restore,
503 .runtime_suspend = usb_runtime_suspend,
504 .runtime_resume = usb_runtime_resume,
505 .runtime_idle = usb_runtime_idle,
506 };
507
508 #endif /* CONFIG_PM */
509
510
usb_devnode(struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid)511 static char *usb_devnode(struct device *dev,
512 umode_t *mode, kuid_t *uid, kgid_t *gid)
513 {
514 struct usb_device *usb_dev;
515
516 usb_dev = to_usb_device(dev);
517 return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
518 usb_dev->bus->busnum, usb_dev->devnum);
519 }
520
521 struct device_type usb_device_type = {
522 .name = "usb_device",
523 .release = usb_release_dev,
524 .uevent = usb_dev_uevent,
525 .devnode = usb_devnode,
526 #ifdef CONFIG_PM
527 .pm = &usb_device_pm_ops,
528 #endif
529 };
530
531
532 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */
usb_bus_is_wusb(struct usb_bus * bus)533 static unsigned usb_bus_is_wusb(struct usb_bus *bus)
534 {
535 struct usb_hcd *hcd = bus_to_hcd(bus);
536 return hcd->wireless;
537 }
538
539
540 /**
541 * usb_alloc_dev - usb device constructor (usbcore-internal)
542 * @parent: hub to which device is connected; null to allocate a root hub
543 * @bus: bus used to access the device
544 * @port1: one-based index of port; ignored for root hubs
545 * Context: !in_interrupt()
546 *
547 * Only hub drivers (including virtual root hub drivers for host
548 * controllers) should ever call this.
549 *
550 * This call may not be used in a non-sleeping context.
551 *
552 * Return: On success, a pointer to the allocated usb device. %NULL on
553 * failure.
554 */
usb_alloc_dev(struct usb_device * parent,struct usb_bus * bus,unsigned port1)555 struct usb_device *usb_alloc_dev(struct usb_device *parent,
556 struct usb_bus *bus, unsigned port1)
557 {
558 struct usb_device *dev;
559 struct usb_hcd *usb_hcd = bus_to_hcd(bus);
560 unsigned root_hub = 0;
561 unsigned raw_port = port1;
562
563 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
564 if (!dev)
565 return NULL;
566
567 if (!usb_get_hcd(usb_hcd)) {
568 kfree(dev);
569 return NULL;
570 }
571 /* Root hubs aren't true devices, so don't allocate HCD resources */
572 if (usb_hcd->driver->alloc_dev && parent &&
573 !usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
574 usb_put_hcd(bus_to_hcd(bus));
575 kfree(dev);
576 return NULL;
577 }
578
579 device_initialize(&dev->dev);
580 dev->dev.bus = &usb_bus_type;
581 dev->dev.type = &usb_device_type;
582 dev->dev.groups = usb_device_groups;
583 /*
584 * Fake a dma_mask/offset for the USB device:
585 * We cannot really use the dma-mapping API (dma_alloc_* and
586 * dma_map_*) for USB devices but instead need to use
587 * usb_alloc_coherent and pass data in 'urb's, but some subsystems
588 * manually look into the mask/offset pair to determine whether
589 * they need bounce buffers.
590 * Note: calling dma_set_mask() on a USB device would set the
591 * mask for the entire HCD, so don't do that.
592 */
593 dev->dev.dma_mask = bus->sysdev->dma_mask;
594 dev->dev.dma_pfn_offset = bus->sysdev->dma_pfn_offset;
595 set_dev_node(&dev->dev, dev_to_node(bus->sysdev));
596 dev->state = USB_STATE_ATTACHED;
597 dev->lpm_disable_count = 1;
598 atomic_set(&dev->urbnum, 0);
599
600 INIT_LIST_HEAD(&dev->ep0.urb_list);
601 dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
602 dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
603 /* ep0 maxpacket comes later, from device descriptor */
604 usb_enable_endpoint(dev, &dev->ep0, false);
605 dev->can_submit = 1;
606
607 /* Save readable and stable topology id, distinguishing devices
608 * by location for diagnostics, tools, driver model, etc. The
609 * string is a path along hub ports, from the root. Each device's
610 * dev->devpath will be stable until USB is re-cabled, and hubs
611 * are often labeled with these port numbers. The name isn't
612 * as stable: bus->busnum changes easily from modprobe order,
613 * cardbus or pci hotplugging, and so on.
614 */
615 if (unlikely(!parent)) {
616 dev->devpath[0] = '0';
617 dev->route = 0;
618
619 dev->dev.parent = bus->controller;
620 device_set_of_node_from_dev(&dev->dev, bus->sysdev);
621 dev_set_name(&dev->dev, "usb%d", bus->busnum);
622 root_hub = 1;
623 } else {
624 /* match any labeling on the hubs; it's one-based */
625 if (parent->devpath[0] == '0') {
626 snprintf(dev->devpath, sizeof dev->devpath,
627 "%d", port1);
628 /* Root ports are not counted in route string */
629 dev->route = 0;
630 } else {
631 snprintf(dev->devpath, sizeof dev->devpath,
632 "%s.%d", parent->devpath, port1);
633 /* Route string assumes hubs have less than 16 ports */
634 if (port1 < 15)
635 dev->route = parent->route +
636 (port1 << ((parent->level - 1)*4));
637 else
638 dev->route = parent->route +
639 (15 << ((parent->level - 1)*4));
640 }
641
642 dev->dev.parent = &parent->dev;
643 dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
644
645 if (!parent->parent) {
646 /* device under root hub's port */
647 raw_port = usb_hcd_find_raw_port_number(usb_hcd,
648 port1);
649 }
650 dev->dev.of_node = usb_of_get_device_node(parent, raw_port);
651
652 /* hub driver sets up TT records */
653 }
654
655 dev->portnum = port1;
656 dev->bus = bus;
657 dev->parent = parent;
658 INIT_LIST_HEAD(&dev->filelist);
659
660 #ifdef CONFIG_PM
661 pm_runtime_set_autosuspend_delay(&dev->dev,
662 usb_autosuspend_delay * 1000);
663 dev->connect_time = jiffies;
664 dev->active_duration = -jiffies;
665 #endif
666 if (root_hub) /* Root hub always ok [and always wired] */
667 dev->authorized = 1;
668 else {
669 dev->authorized = !!HCD_DEV_AUTHORIZED(usb_hcd);
670 dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0;
671 }
672 return dev;
673 }
674 EXPORT_SYMBOL_GPL(usb_alloc_dev);
675
676 /**
677 * usb_get_dev - increments the reference count of the usb device structure
678 * @dev: the device being referenced
679 *
680 * Each live reference to a device should be refcounted.
681 *
682 * Drivers for USB interfaces should normally record such references in
683 * their probe() methods, when they bind to an interface, and release
684 * them by calling usb_put_dev(), in their disconnect() methods.
685 *
686 * Return: A pointer to the device with the incremented reference counter.
687 */
usb_get_dev(struct usb_device * dev)688 struct usb_device *usb_get_dev(struct usb_device *dev)
689 {
690 if (dev)
691 get_device(&dev->dev);
692 return dev;
693 }
694 EXPORT_SYMBOL_GPL(usb_get_dev);
695
696 /**
697 * usb_put_dev - release a use of the usb device structure
698 * @dev: device that's been disconnected
699 *
700 * Must be called when a user of a device is finished with it. When the last
701 * user of the device calls this function, the memory of the device is freed.
702 */
usb_put_dev(struct usb_device * dev)703 void usb_put_dev(struct usb_device *dev)
704 {
705 if (dev)
706 put_device(&dev->dev);
707 }
708 EXPORT_SYMBOL_GPL(usb_put_dev);
709
710 /**
711 * usb_get_intf - increments the reference count of the usb interface structure
712 * @intf: the interface being referenced
713 *
714 * Each live reference to a interface must be refcounted.
715 *
716 * Drivers for USB interfaces should normally record such references in
717 * their probe() methods, when they bind to an interface, and release
718 * them by calling usb_put_intf(), in their disconnect() methods.
719 *
720 * Return: A pointer to the interface with the incremented reference counter.
721 */
usb_get_intf(struct usb_interface * intf)722 struct usb_interface *usb_get_intf(struct usb_interface *intf)
723 {
724 if (intf)
725 get_device(&intf->dev);
726 return intf;
727 }
728 EXPORT_SYMBOL_GPL(usb_get_intf);
729
730 /**
731 * usb_put_intf - release a use of the usb interface structure
732 * @intf: interface that's been decremented
733 *
734 * Must be called when a user of an interface is finished with it. When the
735 * last user of the interface calls this function, the memory of the interface
736 * is freed.
737 */
usb_put_intf(struct usb_interface * intf)738 void usb_put_intf(struct usb_interface *intf)
739 {
740 if (intf)
741 put_device(&intf->dev);
742 }
743 EXPORT_SYMBOL_GPL(usb_put_intf);
744
745 /* USB device locking
746 *
747 * USB devices and interfaces are locked using the semaphore in their
748 * embedded struct device. The hub driver guarantees that whenever a
749 * device is connected or disconnected, drivers are called with the
750 * USB device locked as well as their particular interface.
751 *
752 * Complications arise when several devices are to be locked at the same
753 * time. Only hub-aware drivers that are part of usbcore ever have to
754 * do this; nobody else needs to worry about it. The rule for locking
755 * is simple:
756 *
757 * When locking both a device and its parent, always lock the
758 * the parent first.
759 */
760
761 /**
762 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
763 * @udev: device that's being locked
764 * @iface: interface bound to the driver making the request (optional)
765 *
766 * Attempts to acquire the device lock, but fails if the device is
767 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
768 * is neither BINDING nor BOUND. Rather than sleeping to wait for the
769 * lock, the routine polls repeatedly. This is to prevent deadlock with
770 * disconnect; in some drivers (such as usb-storage) the disconnect()
771 * or suspend() method will block waiting for a device reset to complete.
772 *
773 * Return: A negative error code for failure, otherwise 0.
774 */
usb_lock_device_for_reset(struct usb_device * udev,const struct usb_interface * iface)775 int usb_lock_device_for_reset(struct usb_device *udev,
776 const struct usb_interface *iface)
777 {
778 unsigned long jiffies_expire = jiffies + HZ;
779
780 if (udev->state == USB_STATE_NOTATTACHED)
781 return -ENODEV;
782 if (udev->state == USB_STATE_SUSPENDED)
783 return -EHOSTUNREACH;
784 if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
785 iface->condition == USB_INTERFACE_UNBOUND))
786 return -EINTR;
787
788 while (!usb_trylock_device(udev)) {
789
790 /* If we can't acquire the lock after waiting one second,
791 * we're probably deadlocked */
792 if (time_after(jiffies, jiffies_expire))
793 return -EBUSY;
794
795 msleep(15);
796 if (udev->state == USB_STATE_NOTATTACHED)
797 return -ENODEV;
798 if (udev->state == USB_STATE_SUSPENDED)
799 return -EHOSTUNREACH;
800 if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
801 iface->condition == USB_INTERFACE_UNBOUND))
802 return -EINTR;
803 }
804 return 0;
805 }
806 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
807
808 /**
809 * usb_get_current_frame_number - return current bus frame number
810 * @dev: the device whose bus is being queried
811 *
812 * Return: The current frame number for the USB host controller used
813 * with the given USB device. This can be used when scheduling
814 * isochronous requests.
815 *
816 * Note: Different kinds of host controller have different "scheduling
817 * horizons". While one type might support scheduling only 32 frames
818 * into the future, others could support scheduling up to 1024 frames
819 * into the future.
820 *
821 */
usb_get_current_frame_number(struct usb_device * dev)822 int usb_get_current_frame_number(struct usb_device *dev)
823 {
824 return usb_hcd_get_frame_number(dev);
825 }
826 EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
827
828 /*-------------------------------------------------------------------*/
829 /*
830 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
831 * extra field of the interface and endpoint descriptor structs.
832 */
833
__usb_get_extra_descriptor(char * buffer,unsigned size,unsigned char type,void ** ptr)834 int __usb_get_extra_descriptor(char *buffer, unsigned size,
835 unsigned char type, void **ptr)
836 {
837 struct usb_descriptor_header *header;
838
839 while (size >= sizeof(struct usb_descriptor_header)) {
840 header = (struct usb_descriptor_header *)buffer;
841
842 if (header->bLength < 2) {
843 printk(KERN_ERR
844 "%s: bogus descriptor, type %d length %d\n",
845 usbcore_name,
846 header->bDescriptorType,
847 header->bLength);
848 return -1;
849 }
850
851 if (header->bDescriptorType == type) {
852 *ptr = header;
853 return 0;
854 }
855
856 buffer += header->bLength;
857 size -= header->bLength;
858 }
859 return -1;
860 }
861 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
862
863 /**
864 * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
865 * @dev: device the buffer will be used with
866 * @size: requested buffer size
867 * @mem_flags: affect whether allocation may block
868 * @dma: used to return DMA address of buffer
869 *
870 * Return: Either null (indicating no buffer could be allocated), or the
871 * cpu-space pointer to a buffer that may be used to perform DMA to the
872 * specified device. Such cpu-space buffers are returned along with the DMA
873 * address (through the pointer provided).
874 *
875 * Note:
876 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
877 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
878 * hardware during URB completion/resubmit. The implementation varies between
879 * platforms, depending on details of how DMA will work to this device.
880 * Using these buffers also eliminates cacheline sharing problems on
881 * architectures where CPU caches are not DMA-coherent. On systems without
882 * bus-snooping caches, these buffers are uncached.
883 *
884 * When the buffer is no longer used, free it with usb_free_coherent().
885 */
usb_alloc_coherent(struct usb_device * dev,size_t size,gfp_t mem_flags,dma_addr_t * dma)886 void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
887 dma_addr_t *dma)
888 {
889 if (!dev || !dev->bus)
890 return NULL;
891 return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
892 }
893 EXPORT_SYMBOL_GPL(usb_alloc_coherent);
894
895 /**
896 * usb_free_coherent - free memory allocated with usb_alloc_coherent()
897 * @dev: device the buffer was used with
898 * @size: requested buffer size
899 * @addr: CPU address of buffer
900 * @dma: DMA address of buffer
901 *
902 * This reclaims an I/O buffer, letting it be reused. The memory must have
903 * been allocated using usb_alloc_coherent(), and the parameters must match
904 * those provided in that allocation request.
905 */
usb_free_coherent(struct usb_device * dev,size_t size,void * addr,dma_addr_t dma)906 void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
907 dma_addr_t dma)
908 {
909 if (!dev || !dev->bus)
910 return;
911 if (!addr)
912 return;
913 hcd_buffer_free(dev->bus, size, addr, dma);
914 }
915 EXPORT_SYMBOL_GPL(usb_free_coherent);
916
917 /**
918 * usb_buffer_map - create DMA mapping(s) for an urb
919 * @urb: urb whose transfer_buffer/setup_packet will be mapped
920 *
921 * URB_NO_TRANSFER_DMA_MAP is added to urb->transfer_flags if the operation
922 * succeeds. If the device is connected to this system through a non-DMA
923 * controller, this operation always succeeds.
924 *
925 * This call would normally be used for an urb which is reused, perhaps
926 * as the target of a large periodic transfer, with usb_buffer_dmasync()
927 * calls to synchronize memory and dma state.
928 *
929 * Reverse the effect of this call with usb_buffer_unmap().
930 *
931 * Return: Either %NULL (indicating no buffer could be mapped), or @urb.
932 *
933 */
934 #if 0
935 struct urb *usb_buffer_map(struct urb *urb)
936 {
937 struct usb_bus *bus;
938 struct device *controller;
939
940 if (!urb
941 || !urb->dev
942 || !(bus = urb->dev->bus)
943 || !(controller = bus->sysdev))
944 return NULL;
945
946 if (controller->dma_mask) {
947 urb->transfer_dma = dma_map_single(controller,
948 urb->transfer_buffer, urb->transfer_buffer_length,
949 usb_pipein(urb->pipe)
950 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
951 /* FIXME generic api broken like pci, can't report errors */
952 /* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
953 } else
954 urb->transfer_dma = ~0;
955 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
956 return urb;
957 }
958 EXPORT_SYMBOL_GPL(usb_buffer_map);
959 #endif /* 0 */
960
961 /* XXX DISABLED, no users currently. If you wish to re-enable this
962 * XXX please determine whether the sync is to transfer ownership of
963 * XXX the buffer from device to cpu or vice verse, and thusly use the
964 * XXX appropriate _for_{cpu,device}() method. -DaveM
965 */
966 #if 0
967
968 /**
969 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
970 * @urb: urb whose transfer_buffer/setup_packet will be synchronized
971 */
972 void usb_buffer_dmasync(struct urb *urb)
973 {
974 struct usb_bus *bus;
975 struct device *controller;
976
977 if (!urb
978 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
979 || !urb->dev
980 || !(bus = urb->dev->bus)
981 || !(controller = bus->sysdev))
982 return;
983
984 if (controller->dma_mask) {
985 dma_sync_single_for_cpu(controller,
986 urb->transfer_dma, urb->transfer_buffer_length,
987 usb_pipein(urb->pipe)
988 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
989 if (usb_pipecontrol(urb->pipe))
990 dma_sync_single_for_cpu(controller,
991 urb->setup_dma,
992 sizeof(struct usb_ctrlrequest),
993 DMA_TO_DEVICE);
994 }
995 }
996 EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
997 #endif
998
999 /**
1000 * usb_buffer_unmap - free DMA mapping(s) for an urb
1001 * @urb: urb whose transfer_buffer will be unmapped
1002 *
1003 * Reverses the effect of usb_buffer_map().
1004 */
1005 #if 0
1006 void usb_buffer_unmap(struct urb *urb)
1007 {
1008 struct usb_bus *bus;
1009 struct device *controller;
1010
1011 if (!urb
1012 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
1013 || !urb->dev
1014 || !(bus = urb->dev->bus)
1015 || !(controller = bus->sysdev))
1016 return;
1017
1018 if (controller->dma_mask) {
1019 dma_unmap_single(controller,
1020 urb->transfer_dma, urb->transfer_buffer_length,
1021 usb_pipein(urb->pipe)
1022 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1023 }
1024 urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP;
1025 }
1026 EXPORT_SYMBOL_GPL(usb_buffer_unmap);
1027 #endif /* 0 */
1028
1029 #if 0
1030 /**
1031 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
1032 * @dev: device to which the scatterlist will be mapped
1033 * @is_in: mapping transfer direction
1034 * @sg: the scatterlist to map
1035 * @nents: the number of entries in the scatterlist
1036 *
1037 * Return: Either < 0 (indicating no buffers could be mapped), or the
1038 * number of DMA mapping array entries in the scatterlist.
1039 *
1040 * Note:
1041 * The caller is responsible for placing the resulting DMA addresses from
1042 * the scatterlist into URB transfer buffer pointers, and for setting the
1043 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
1044 *
1045 * Top I/O rates come from queuing URBs, instead of waiting for each one
1046 * to complete before starting the next I/O. This is particularly easy
1047 * to do with scatterlists. Just allocate and submit one URB for each DMA
1048 * mapping entry returned, stopping on the first error or when all succeed.
1049 * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
1050 *
1051 * This call would normally be used when translating scatterlist requests,
1052 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
1053 * may be able to coalesce mappings for improved I/O efficiency.
1054 *
1055 * Reverse the effect of this call with usb_buffer_unmap_sg().
1056 */
1057 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1058 struct scatterlist *sg, int nents)
1059 {
1060 struct usb_bus *bus;
1061 struct device *controller;
1062
1063 if (!dev
1064 || !(bus = dev->bus)
1065 || !(controller = bus->sysdev)
1066 || !controller->dma_mask)
1067 return -EINVAL;
1068
1069 /* FIXME generic api broken like pci, can't report errors */
1070 return dma_map_sg(controller, sg, nents,
1071 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM;
1072 }
1073 EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
1074 #endif
1075
1076 /* XXX DISABLED, no users currently. If you wish to re-enable this
1077 * XXX please determine whether the sync is to transfer ownership of
1078 * XXX the buffer from device to cpu or vice verse, and thusly use the
1079 * XXX appropriate _for_{cpu,device}() method. -DaveM
1080 */
1081 #if 0
1082
1083 /**
1084 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
1085 * @dev: device to which the scatterlist will be mapped
1086 * @is_in: mapping transfer direction
1087 * @sg: the scatterlist to synchronize
1088 * @n_hw_ents: the positive return value from usb_buffer_map_sg
1089 *
1090 * Use this when you are re-using a scatterlist's data buffers for
1091 * another USB request.
1092 */
1093 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1094 struct scatterlist *sg, int n_hw_ents)
1095 {
1096 struct usb_bus *bus;
1097 struct device *controller;
1098
1099 if (!dev
1100 || !(bus = dev->bus)
1101 || !(controller = bus->sysdev)
1102 || !controller->dma_mask)
1103 return;
1104
1105 dma_sync_sg_for_cpu(controller, sg, n_hw_ents,
1106 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1107 }
1108 EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
1109 #endif
1110
1111 #if 0
1112 /**
1113 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
1114 * @dev: device to which the scatterlist will be mapped
1115 * @is_in: mapping transfer direction
1116 * @sg: the scatterlist to unmap
1117 * @n_hw_ents: the positive return value from usb_buffer_map_sg
1118 *
1119 * Reverses the effect of usb_buffer_map_sg().
1120 */
1121 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1122 struct scatterlist *sg, int n_hw_ents)
1123 {
1124 struct usb_bus *bus;
1125 struct device *controller;
1126
1127 if (!dev
1128 || !(bus = dev->bus)
1129 || !(controller = bus->sysdev)
1130 || !controller->dma_mask)
1131 return;
1132
1133 dma_unmap_sg(controller, sg, n_hw_ents,
1134 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1135 }
1136 EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
1137 #endif
1138
1139 /*
1140 * Notifications of device and interface registration
1141 */
usb_bus_notify(struct notifier_block * nb,unsigned long action,void * data)1142 static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
1143 void *data)
1144 {
1145 struct device *dev = data;
1146
1147 switch (action) {
1148 case BUS_NOTIFY_ADD_DEVICE:
1149 if (dev->type == &usb_device_type)
1150 (void) usb_create_sysfs_dev_files(to_usb_device(dev));
1151 else if (dev->type == &usb_if_device_type)
1152 usb_create_sysfs_intf_files(to_usb_interface(dev));
1153 break;
1154
1155 case BUS_NOTIFY_DEL_DEVICE:
1156 if (dev->type == &usb_device_type)
1157 usb_remove_sysfs_dev_files(to_usb_device(dev));
1158 else if (dev->type == &usb_if_device_type)
1159 usb_remove_sysfs_intf_files(to_usb_interface(dev));
1160 break;
1161 }
1162 return 0;
1163 }
1164
1165 static struct notifier_block usb_bus_nb = {
1166 .notifier_call = usb_bus_notify,
1167 };
1168
1169 struct dentry *usb_debug_root;
1170 EXPORT_SYMBOL_GPL(usb_debug_root);
1171
usb_debugfs_init(void)1172 static void usb_debugfs_init(void)
1173 {
1174 usb_debug_root = debugfs_create_dir("usb", NULL);
1175 debugfs_create_file("devices", 0444, usb_debug_root, NULL,
1176 &usbfs_devices_fops);
1177 }
1178
usb_debugfs_cleanup(void)1179 static void usb_debugfs_cleanup(void)
1180 {
1181 debugfs_remove_recursive(usb_debug_root);
1182 }
1183
1184 /*
1185 * Init
1186 */
usb_init(void)1187 static int __init usb_init(void)
1188 {
1189 int retval;
1190 if (usb_disabled()) {
1191 pr_info("%s: USB support disabled\n", usbcore_name);
1192 return 0;
1193 }
1194 usb_init_pool_max();
1195
1196 usb_debugfs_init();
1197
1198 usb_acpi_register();
1199 retval = bus_register(&usb_bus_type);
1200 if (retval)
1201 goto bus_register_failed;
1202 retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1203 if (retval)
1204 goto bus_notifier_failed;
1205 retval = usb_major_init();
1206 if (retval)
1207 goto major_init_failed;
1208 retval = usb_register(&usbfs_driver);
1209 if (retval)
1210 goto driver_register_failed;
1211 retval = usb_devio_init();
1212 if (retval)
1213 goto usb_devio_init_failed;
1214 retval = usb_hub_init();
1215 if (retval)
1216 goto hub_init_failed;
1217 retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1218 if (!retval)
1219 goto out;
1220
1221 usb_hub_cleanup();
1222 hub_init_failed:
1223 usb_devio_cleanup();
1224 usb_devio_init_failed:
1225 usb_deregister(&usbfs_driver);
1226 driver_register_failed:
1227 usb_major_cleanup();
1228 major_init_failed:
1229 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1230 bus_notifier_failed:
1231 bus_unregister(&usb_bus_type);
1232 bus_register_failed:
1233 usb_acpi_unregister();
1234 usb_debugfs_cleanup();
1235 out:
1236 return retval;
1237 }
1238
1239 /*
1240 * Cleanup
1241 */
usb_exit(void)1242 static void __exit usb_exit(void)
1243 {
1244 /* This will matter if shutdown/reboot does exitcalls. */
1245 if (usb_disabled())
1246 return;
1247
1248 usb_release_quirk_list();
1249 usb_deregister_device_driver(&usb_generic_driver);
1250 usb_major_cleanup();
1251 usb_deregister(&usbfs_driver);
1252 usb_devio_cleanup();
1253 usb_hub_cleanup();
1254 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1255 bus_unregister(&usb_bus_type);
1256 usb_acpi_unregister();
1257 usb_debugfs_cleanup();
1258 idr_destroy(&usb_bus_idr);
1259 }
1260
1261 subsys_initcall(usb_init);
1262 module_exit(usb_exit);
1263 MODULE_LICENSE("GPL");
1264