1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * USB4 specific functionality
4  *
5  * Copyright (C) 2019, Intel Corporation
6  * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7  *	    Rajmohan Mani <rajmohan.mani@intel.com>
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/ktime.h>
12 
13 #include "sb_regs.h"
14 #include "tb.h"
15 
16 #define USB4_DATA_DWORDS		16
17 #define USB4_DATA_RETRIES		3
18 
19 enum usb4_switch_op {
20 	USB4_SWITCH_OP_QUERY_DP_RESOURCE = 0x10,
21 	USB4_SWITCH_OP_ALLOC_DP_RESOURCE = 0x11,
22 	USB4_SWITCH_OP_DEALLOC_DP_RESOURCE = 0x12,
23 	USB4_SWITCH_OP_NVM_WRITE = 0x20,
24 	USB4_SWITCH_OP_NVM_AUTH = 0x21,
25 	USB4_SWITCH_OP_NVM_READ = 0x22,
26 	USB4_SWITCH_OP_NVM_SET_OFFSET = 0x23,
27 	USB4_SWITCH_OP_DROM_READ = 0x24,
28 	USB4_SWITCH_OP_NVM_SECTOR_SIZE = 0x25,
29 };
30 
31 enum usb4_sb_target {
32 	USB4_SB_TARGET_ROUTER,
33 	USB4_SB_TARGET_PARTNER,
34 	USB4_SB_TARGET_RETIMER,
35 };
36 
37 #define USB4_NVM_READ_OFFSET_MASK	GENMASK(23, 2)
38 #define USB4_NVM_READ_OFFSET_SHIFT	2
39 #define USB4_NVM_READ_LENGTH_MASK	GENMASK(27, 24)
40 #define USB4_NVM_READ_LENGTH_SHIFT	24
41 
42 #define USB4_NVM_SET_OFFSET_MASK	USB4_NVM_READ_OFFSET_MASK
43 #define USB4_NVM_SET_OFFSET_SHIFT	USB4_NVM_READ_OFFSET_SHIFT
44 
45 #define USB4_DROM_ADDRESS_MASK		GENMASK(14, 2)
46 #define USB4_DROM_ADDRESS_SHIFT		2
47 #define USB4_DROM_SIZE_MASK		GENMASK(19, 15)
48 #define USB4_DROM_SIZE_SHIFT		15
49 
50 #define USB4_NVM_SECTOR_SIZE_MASK	GENMASK(23, 0)
51 
52 typedef int (*read_block_fn)(void *, unsigned int, void *, size_t);
53 typedef int (*write_block_fn)(void *, const void *, size_t);
54 
usb4_switch_wait_for_bit(struct tb_switch * sw,u32 offset,u32 bit,u32 value,int timeout_msec)55 static int usb4_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
56 				    u32 value, int timeout_msec)
57 {
58 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
59 
60 	do {
61 		u32 val;
62 		int ret;
63 
64 		ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
65 		if (ret)
66 			return ret;
67 
68 		if ((val & bit) == value)
69 			return 0;
70 
71 		usleep_range(50, 100);
72 	} while (ktime_before(ktime_get(), timeout));
73 
74 	return -ETIMEDOUT;
75 }
76 
usb4_switch_op_read_data(struct tb_switch * sw,void * data,size_t dwords)77 static int usb4_switch_op_read_data(struct tb_switch *sw, void *data,
78 				    size_t dwords)
79 {
80 	if (dwords > USB4_DATA_DWORDS)
81 		return -EINVAL;
82 
83 	return tb_sw_read(sw, data, TB_CFG_SWITCH, ROUTER_CS_9, dwords);
84 }
85 
usb4_switch_op_write_data(struct tb_switch * sw,const void * data,size_t dwords)86 static int usb4_switch_op_write_data(struct tb_switch *sw, const void *data,
87 				     size_t dwords)
88 {
89 	if (dwords > USB4_DATA_DWORDS)
90 		return -EINVAL;
91 
92 	return tb_sw_write(sw, data, TB_CFG_SWITCH, ROUTER_CS_9, dwords);
93 }
94 
usb4_switch_op_read_metadata(struct tb_switch * sw,u32 * metadata)95 static int usb4_switch_op_read_metadata(struct tb_switch *sw, u32 *metadata)
96 {
97 	return tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
98 }
99 
usb4_switch_op_write_metadata(struct tb_switch * sw,u32 metadata)100 static int usb4_switch_op_write_metadata(struct tb_switch *sw, u32 metadata)
101 {
102 	return tb_sw_write(sw, &metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
103 }
104 
usb4_do_read_data(u16 address,void * buf,size_t size,read_block_fn read_block,void * read_block_data)105 static int usb4_do_read_data(u16 address, void *buf, size_t size,
106 			     read_block_fn read_block, void *read_block_data)
107 {
108 	unsigned int retries = USB4_DATA_RETRIES;
109 	unsigned int offset;
110 
111 	offset = address & 3;
112 	address = address & ~3;
113 
114 	do {
115 		size_t nbytes = min_t(size_t, size, USB4_DATA_DWORDS * 4);
116 		unsigned int dwaddress, dwords;
117 		u8 data[USB4_DATA_DWORDS * 4];
118 		int ret;
119 
120 		dwaddress = address / 4;
121 		dwords = ALIGN(nbytes, 4) / 4;
122 
123 		ret = read_block(read_block_data, dwaddress, data, dwords);
124 		if (ret) {
125 			if (ret != -ENODEV && retries--)
126 				continue;
127 			return ret;
128 		}
129 
130 		memcpy(buf, data + offset, nbytes);
131 
132 		size -= nbytes;
133 		address += nbytes;
134 		buf += nbytes;
135 	} while (size > 0);
136 
137 	return 0;
138 }
139 
usb4_do_write_data(unsigned int address,const void * buf,size_t size,write_block_fn write_next_block,void * write_block_data)140 static int usb4_do_write_data(unsigned int address, const void *buf, size_t size,
141 	write_block_fn write_next_block, void *write_block_data)
142 {
143 	unsigned int retries = USB4_DATA_RETRIES;
144 	unsigned int offset;
145 
146 	offset = address & 3;
147 	address = address & ~3;
148 
149 	do {
150 		u32 nbytes = min_t(u32, size, USB4_DATA_DWORDS * 4);
151 		u8 data[USB4_DATA_DWORDS * 4];
152 		int ret;
153 
154 		memcpy(data + offset, buf, nbytes);
155 
156 		ret = write_next_block(write_block_data, data, nbytes / 4);
157 		if (ret) {
158 			if (ret == -ETIMEDOUT) {
159 				if (retries--)
160 					continue;
161 				ret = -EIO;
162 			}
163 			return ret;
164 		}
165 
166 		size -= nbytes;
167 		address += nbytes;
168 		buf += nbytes;
169 	} while (size > 0);
170 
171 	return 0;
172 }
173 
usb4_switch_op(struct tb_switch * sw,u16 opcode,u8 * status)174 static int usb4_switch_op(struct tb_switch *sw, u16 opcode, u8 *status)
175 {
176 	u32 val;
177 	int ret;
178 
179 	val = opcode | ROUTER_CS_26_OV;
180 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
181 	if (ret)
182 		return ret;
183 
184 	ret = usb4_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500);
185 	if (ret)
186 		return ret;
187 
188 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
189 	if (ret)
190 		return ret;
191 
192 	if (val & ROUTER_CS_26_ONS)
193 		return -EOPNOTSUPP;
194 
195 	*status = (val & ROUTER_CS_26_STATUS_MASK) >> ROUTER_CS_26_STATUS_SHIFT;
196 	return 0;
197 }
198 
usb4_switch_check_wakes(struct tb_switch * sw)199 static void usb4_switch_check_wakes(struct tb_switch *sw)
200 {
201 	struct tb_port *port;
202 	bool wakeup = false;
203 	u32 val;
204 
205 	if (!device_may_wakeup(&sw->dev))
206 		return;
207 
208 	if (tb_route(sw)) {
209 		if (tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1))
210 			return;
211 
212 		tb_sw_dbg(sw, "PCIe wake: %s, USB3 wake: %s\n",
213 			  (val & ROUTER_CS_6_WOPS) ? "yes" : "no",
214 			  (val & ROUTER_CS_6_WOUS) ? "yes" : "no");
215 
216 		wakeup = val & (ROUTER_CS_6_WOPS | ROUTER_CS_6_WOUS);
217 	}
218 
219 	/* Check for any connected downstream ports for USB4 wake */
220 	tb_switch_for_each_port(sw, port) {
221 		if (!tb_port_has_remote(port))
222 			continue;
223 
224 		if (tb_port_read(port, &val, TB_CFG_PORT,
225 				 port->cap_usb4 + PORT_CS_18, 1))
226 			break;
227 
228 		tb_port_dbg(port, "USB4 wake: %s\n",
229 			    (val & PORT_CS_18_WOU4S) ? "yes" : "no");
230 
231 		if (val & PORT_CS_18_WOU4S)
232 			wakeup = true;
233 	}
234 
235 	if (wakeup)
236 		pm_wakeup_event(&sw->dev, 0);
237 }
238 
link_is_usb4(struct tb_port * port)239 static bool link_is_usb4(struct tb_port *port)
240 {
241 	u32 val;
242 
243 	if (!port->cap_usb4)
244 		return false;
245 
246 	if (tb_port_read(port, &val, TB_CFG_PORT,
247 			 port->cap_usb4 + PORT_CS_18, 1))
248 		return false;
249 
250 	return !(val & PORT_CS_18_TCM);
251 }
252 
253 /**
254  * usb4_switch_setup() - Additional setup for USB4 device
255  * @sw: USB4 router to setup
256  *
257  * USB4 routers need additional settings in order to enable all the
258  * tunneling. This function enables USB and PCIe tunneling if it can be
259  * enabled (e.g the parent switch also supports them). If USB tunneling
260  * is not available for some reason (like that there is Thunderbolt 3
261  * switch upstream) then the internal xHCI controller is enabled
262  * instead.
263  */
usb4_switch_setup(struct tb_switch * sw)264 int usb4_switch_setup(struct tb_switch *sw)
265 {
266 	struct tb_port *downstream_port;
267 	struct tb_switch *parent;
268 	bool tbt3, xhci;
269 	u32 val = 0;
270 	int ret;
271 
272 	usb4_switch_check_wakes(sw);
273 
274 	if (!tb_route(sw))
275 		return 0;
276 
277 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1);
278 	if (ret)
279 		return ret;
280 
281 	parent = tb_switch_parent(sw);
282 	downstream_port = tb_port_at(tb_route(sw), parent);
283 	sw->link_usb4 = link_is_usb4(downstream_port);
284 	tb_sw_dbg(sw, "link: %s\n", sw->link_usb4 ? "USB4" : "TBT3");
285 
286 	xhci = val & ROUTER_CS_6_HCI;
287 	tbt3 = !(val & ROUTER_CS_6_TNS);
288 
289 	tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n",
290 		  tbt3 ? "yes" : "no", xhci ? "yes" : "no");
291 
292 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
293 	if (ret)
294 		return ret;
295 
296 	if (sw->link_usb4 && tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) {
297 		val |= ROUTER_CS_5_UTO;
298 		xhci = false;
299 	}
300 
301 	/* Only enable PCIe tunneling if the parent router supports it */
302 	if (tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) {
303 		val |= ROUTER_CS_5_PTO;
304 		/*
305 		 * xHCI can be enabled if PCIe tunneling is supported
306 		 * and the parent does not have any USB3 dowstream
307 		 * adapters (so we cannot do USB 3.x tunneling).
308 		 */
309 		if (xhci)
310 			val |= ROUTER_CS_5_HCO;
311 	}
312 
313 	/* TBT3 supported by the CM */
314 	val |= ROUTER_CS_5_C3S;
315 	/* Tunneling configuration is ready now */
316 	val |= ROUTER_CS_5_CV;
317 
318 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
319 	if (ret)
320 		return ret;
321 
322 	return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR,
323 					ROUTER_CS_6_CR, 50);
324 }
325 
326 /**
327  * usb4_switch_read_uid() - Read UID from USB4 router
328  * @sw: USB4 router
329  * @uid: UID is stored here
330  *
331  * Reads 64-bit UID from USB4 router config space.
332  */
usb4_switch_read_uid(struct tb_switch * sw,u64 * uid)333 int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid)
334 {
335 	return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2);
336 }
337 
usb4_switch_drom_read_block(void * data,unsigned int dwaddress,void * buf,size_t dwords)338 static int usb4_switch_drom_read_block(void *data,
339 				       unsigned int dwaddress, void *buf,
340 				       size_t dwords)
341 {
342 	struct tb_switch *sw = data;
343 	u8 status = 0;
344 	u32 metadata;
345 	int ret;
346 
347 	metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK;
348 	metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) &
349 		USB4_DROM_ADDRESS_MASK;
350 
351 	ret = usb4_switch_op_write_metadata(sw, metadata);
352 	if (ret)
353 		return ret;
354 
355 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_DROM_READ, &status);
356 	if (ret)
357 		return ret;
358 
359 	if (status)
360 		return -EIO;
361 
362 	return usb4_switch_op_read_data(sw, buf, dwords);
363 }
364 
365 /**
366  * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM
367  * @sw: USB4 router
368  * @address: Byte address inside DROM to start reading
369  * @buf: Buffer where the DROM content is stored
370  * @size: Number of bytes to read from DROM
371  *
372  * Uses USB4 router operations to read router DROM. For devices this
373  * should always work but for hosts it may return %-EOPNOTSUPP in which
374  * case the host router does not have DROM.
375  */
usb4_switch_drom_read(struct tb_switch * sw,unsigned int address,void * buf,size_t size)376 int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
377 			  size_t size)
378 {
379 	return usb4_do_read_data(address, buf, size,
380 				 usb4_switch_drom_read_block, sw);
381 }
382 
383 /**
384  * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding
385  * @sw: USB4 router
386  *
387  * Checks whether conditions are met so that lane bonding can be
388  * established with the upstream router. Call only for device routers.
389  */
usb4_switch_lane_bonding_possible(struct tb_switch * sw)390 bool usb4_switch_lane_bonding_possible(struct tb_switch *sw)
391 {
392 	struct tb_port *up;
393 	int ret;
394 	u32 val;
395 
396 	up = tb_upstream_port(sw);
397 	ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1);
398 	if (ret)
399 		return false;
400 
401 	return !!(val & PORT_CS_18_BE);
402 }
403 
404 /**
405  * usb4_switch_set_wake() - Enabled/disable wake
406  * @sw: USB4 router
407  * @flags: Wakeup flags (%0 to disable)
408  *
409  * Enables/disables router to wake up from sleep.
410  */
usb4_switch_set_wake(struct tb_switch * sw,unsigned int flags)411 int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags)
412 {
413 	struct tb_port *port;
414 	u64 route = tb_route(sw);
415 	u32 val;
416 	int ret;
417 
418 	/*
419 	 * Enable wakes coming from all USB4 downstream ports (from
420 	 * child routers). For device routers do this also for the
421 	 * upstream USB4 port.
422 	 */
423 	tb_switch_for_each_port(sw, port) {
424 		if (!tb_port_is_null(port))
425 			continue;
426 		if (!route && tb_is_upstream_port(port))
427 			continue;
428 		if (!port->cap_usb4)
429 			continue;
430 
431 		ret = tb_port_read(port, &val, TB_CFG_PORT,
432 				   port->cap_usb4 + PORT_CS_19, 1);
433 		if (ret)
434 			return ret;
435 
436 		val &= ~(PORT_CS_19_WOC | PORT_CS_19_WOD | PORT_CS_19_WOU4);
437 
438 		if (flags & TB_WAKE_ON_CONNECT)
439 			val |= PORT_CS_19_WOC;
440 		if (flags & TB_WAKE_ON_DISCONNECT)
441 			val |= PORT_CS_19_WOD;
442 		if (flags & TB_WAKE_ON_USB4)
443 			val |= PORT_CS_19_WOU4;
444 
445 		ret = tb_port_write(port, &val, TB_CFG_PORT,
446 				    port->cap_usb4 + PORT_CS_19, 1);
447 		if (ret)
448 			return ret;
449 	}
450 
451 	/*
452 	 * Enable wakes from PCIe and USB 3.x on this router. Only
453 	 * needed for device routers.
454 	 */
455 	if (route) {
456 		ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
457 		if (ret)
458 			return ret;
459 
460 		val &= ~(ROUTER_CS_5_WOP | ROUTER_CS_5_WOU);
461 		if (flags & TB_WAKE_ON_USB3)
462 			val |= ROUTER_CS_5_WOU;
463 		if (flags & TB_WAKE_ON_PCIE)
464 			val |= ROUTER_CS_5_WOP;
465 
466 		ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
467 		if (ret)
468 			return ret;
469 	}
470 
471 	return 0;
472 }
473 
474 /**
475  * usb4_switch_set_sleep() - Prepare the router to enter sleep
476  * @sw: USB4 router
477  *
478  * Sets sleep bit for the router. Returns when the router sleep ready
479  * bit has been asserted.
480  */
usb4_switch_set_sleep(struct tb_switch * sw)481 int usb4_switch_set_sleep(struct tb_switch *sw)
482 {
483 	int ret;
484 	u32 val;
485 
486 	/* Set sleep bit and wait for sleep ready to be asserted */
487 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
488 	if (ret)
489 		return ret;
490 
491 	val |= ROUTER_CS_5_SLP;
492 
493 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
494 	if (ret)
495 		return ret;
496 
497 	return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR,
498 					ROUTER_CS_6_SLPR, 500);
499 }
500 
501 /**
502  * usb4_switch_nvm_sector_size() - Return router NVM sector size
503  * @sw: USB4 router
504  *
505  * If the router supports NVM operations this function returns the NVM
506  * sector size in bytes. If NVM operations are not supported returns
507  * %-EOPNOTSUPP.
508  */
usb4_switch_nvm_sector_size(struct tb_switch * sw)509 int usb4_switch_nvm_sector_size(struct tb_switch *sw)
510 {
511 	u32 metadata;
512 	u8 status;
513 	int ret;
514 
515 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &status);
516 	if (ret)
517 		return ret;
518 
519 	if (status)
520 		return status == 0x2 ? -EOPNOTSUPP : -EIO;
521 
522 	ret = usb4_switch_op_read_metadata(sw, &metadata);
523 	if (ret)
524 		return ret;
525 
526 	return metadata & USB4_NVM_SECTOR_SIZE_MASK;
527 }
528 
usb4_switch_nvm_read_block(void * data,unsigned int dwaddress,void * buf,size_t dwords)529 static int usb4_switch_nvm_read_block(void *data,
530 	unsigned int dwaddress, void *buf, size_t dwords)
531 {
532 	struct tb_switch *sw = data;
533 	u8 status = 0;
534 	u32 metadata;
535 	int ret;
536 
537 	metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) &
538 		   USB4_NVM_READ_LENGTH_MASK;
539 	metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) &
540 		   USB4_NVM_READ_OFFSET_MASK;
541 
542 	ret = usb4_switch_op_write_metadata(sw, metadata);
543 	if (ret)
544 		return ret;
545 
546 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_READ, &status);
547 	if (ret)
548 		return ret;
549 
550 	if (status)
551 		return -EIO;
552 
553 	return usb4_switch_op_read_data(sw, buf, dwords);
554 }
555 
556 /**
557  * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM
558  * @sw: USB4 router
559  * @address: Starting address in bytes
560  * @buf: Read data is placed here
561  * @size: How many bytes to read
562  *
563  * Reads NVM contents of the router. If NVM is not supported returns
564  * %-EOPNOTSUPP.
565  */
usb4_switch_nvm_read(struct tb_switch * sw,unsigned int address,void * buf,size_t size)566 int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
567 			 size_t size)
568 {
569 	return usb4_do_read_data(address, buf, size,
570 				 usb4_switch_nvm_read_block, sw);
571 }
572 
usb4_switch_nvm_set_offset(struct tb_switch * sw,unsigned int address)573 static int usb4_switch_nvm_set_offset(struct tb_switch *sw,
574 				      unsigned int address)
575 {
576 	u32 metadata, dwaddress;
577 	u8 status = 0;
578 	int ret;
579 
580 	dwaddress = address / 4;
581 	metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
582 		   USB4_NVM_SET_OFFSET_MASK;
583 
584 	ret = usb4_switch_op_write_metadata(sw, metadata);
585 	if (ret)
586 		return ret;
587 
588 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &status);
589 	if (ret)
590 		return ret;
591 
592 	return status ? -EIO : 0;
593 }
594 
usb4_switch_nvm_write_next_block(void * data,const void * buf,size_t dwords)595 static int usb4_switch_nvm_write_next_block(void *data, const void *buf,
596 					    size_t dwords)
597 {
598 	struct tb_switch *sw = data;
599 	u8 status;
600 	int ret;
601 
602 	ret = usb4_switch_op_write_data(sw, buf, dwords);
603 	if (ret)
604 		return ret;
605 
606 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_WRITE, &status);
607 	if (ret)
608 		return ret;
609 
610 	return status ? -EIO : 0;
611 }
612 
613 /**
614  * usb4_switch_nvm_write() - Write to the router NVM
615  * @sw: USB4 router
616  * @address: Start address where to write in bytes
617  * @buf: Pointer to the data to write
618  * @size: Size of @buf in bytes
619  *
620  * Writes @buf to the router NVM using USB4 router operations. If NVM
621  * write is not supported returns %-EOPNOTSUPP.
622  */
usb4_switch_nvm_write(struct tb_switch * sw,unsigned int address,const void * buf,size_t size)623 int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
624 			  const void *buf, size_t size)
625 {
626 	int ret;
627 
628 	ret = usb4_switch_nvm_set_offset(sw, address);
629 	if (ret)
630 		return ret;
631 
632 	return usb4_do_write_data(address, buf, size,
633 				  usb4_switch_nvm_write_next_block, sw);
634 }
635 
636 /**
637  * usb4_switch_nvm_authenticate() - Authenticate new NVM
638  * @sw: USB4 router
639  *
640  * After the new NVM has been written via usb4_switch_nvm_write(), this
641  * function triggers NVM authentication process. If the authentication
642  * is successful the router is power cycled and the new NVM starts
643  * running. In case of failure returns negative errno.
644  */
usb4_switch_nvm_authenticate(struct tb_switch * sw)645 int usb4_switch_nvm_authenticate(struct tb_switch *sw)
646 {
647 	u8 status = 0;
648 	int ret;
649 
650 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, &status);
651 	if (ret)
652 		return ret;
653 
654 	switch (status) {
655 	case 0x0:
656 		tb_sw_dbg(sw, "NVM authentication successful\n");
657 		return 0;
658 	case 0x1:
659 		return -EINVAL;
660 	case 0x2:
661 		return -EAGAIN;
662 	case 0x3:
663 		return -EOPNOTSUPP;
664 	default:
665 		return -EIO;
666 	}
667 }
668 
669 /**
670  * usb4_switch_query_dp_resource() - Query availability of DP IN resource
671  * @sw: USB4 router
672  * @in: DP IN adapter
673  *
674  * For DP tunneling this function can be used to query availability of
675  * DP IN resource. Returns true if the resource is available for DP
676  * tunneling, false otherwise.
677  */
usb4_switch_query_dp_resource(struct tb_switch * sw,struct tb_port * in)678 bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
679 {
680 	u8 status;
681 	int ret;
682 
683 	ret = usb4_switch_op_write_metadata(sw, in->port);
684 	if (ret)
685 		return false;
686 
687 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &status);
688 	/*
689 	 * If DP resource allocation is not supported assume it is
690 	 * always available.
691 	 */
692 	if (ret == -EOPNOTSUPP)
693 		return true;
694 	else if (ret)
695 		return false;
696 
697 	return !status;
698 }
699 
700 /**
701  * usb4_switch_alloc_dp_resource() - Allocate DP IN resource
702  * @sw: USB4 router
703  * @in: DP IN adapter
704  *
705  * Allocates DP IN resource for DP tunneling using USB4 router
706  * operations. If the resource was allocated returns %0. Otherwise
707  * returns negative errno, in particular %-EBUSY if the resource is
708  * already allocated.
709  */
usb4_switch_alloc_dp_resource(struct tb_switch * sw,struct tb_port * in)710 int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
711 {
712 	u8 status;
713 	int ret;
714 
715 	ret = usb4_switch_op_write_metadata(sw, in->port);
716 	if (ret)
717 		return ret;
718 
719 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &status);
720 	if (ret == -EOPNOTSUPP)
721 		return 0;
722 	else if (ret)
723 		return ret;
724 
725 	return status ? -EBUSY : 0;
726 }
727 
728 /**
729  * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource
730  * @sw: USB4 router
731  * @in: DP IN adapter
732  *
733  * Releases the previously allocated DP IN resource.
734  */
usb4_switch_dealloc_dp_resource(struct tb_switch * sw,struct tb_port * in)735 int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
736 {
737 	u8 status;
738 	int ret;
739 
740 	ret = usb4_switch_op_write_metadata(sw, in->port);
741 	if (ret)
742 		return ret;
743 
744 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &status);
745 	if (ret == -EOPNOTSUPP)
746 		return 0;
747 	else if (ret)
748 		return ret;
749 
750 	return status ? -EIO : 0;
751 }
752 
usb4_port_idx(const struct tb_switch * sw,const struct tb_port * port)753 static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port)
754 {
755 	struct tb_port *p;
756 	int usb4_idx = 0;
757 
758 	/* Assume port is primary */
759 	tb_switch_for_each_port(sw, p) {
760 		if (!tb_port_is_null(p))
761 			continue;
762 		if (tb_is_upstream_port(p))
763 			continue;
764 		if (!p->link_nr) {
765 			if (p == port)
766 				break;
767 			usb4_idx++;
768 		}
769 	}
770 
771 	return usb4_idx;
772 }
773 
774 /**
775  * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter
776  * @sw: USB4 router
777  * @port: USB4 port
778  *
779  * USB4 routers have direct mapping between USB4 ports and PCIe
780  * downstream adapters where the PCIe topology is extended. This
781  * function returns the corresponding downstream PCIe adapter or %NULL
782  * if no such mapping was possible.
783  */
usb4_switch_map_pcie_down(struct tb_switch * sw,const struct tb_port * port)784 struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
785 					  const struct tb_port *port)
786 {
787 	int usb4_idx = usb4_port_idx(sw, port);
788 	struct tb_port *p;
789 	int pcie_idx = 0;
790 
791 	/* Find PCIe down port matching usb4_port */
792 	tb_switch_for_each_port(sw, p) {
793 		if (!tb_port_is_pcie_down(p))
794 			continue;
795 
796 		if (pcie_idx == usb4_idx)
797 			return p;
798 
799 		pcie_idx++;
800 	}
801 
802 	return NULL;
803 }
804 
805 /**
806  * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter
807  * @sw: USB4 router
808  * @port: USB4 port
809  *
810  * USB4 routers have direct mapping between USB4 ports and USB 3.x
811  * downstream adapters where the USB 3.x topology is extended. This
812  * function returns the corresponding downstream USB 3.x adapter or
813  * %NULL if no such mapping was possible.
814  */
usb4_switch_map_usb3_down(struct tb_switch * sw,const struct tb_port * port)815 struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
816 					  const struct tb_port *port)
817 {
818 	int usb4_idx = usb4_port_idx(sw, port);
819 	struct tb_port *p;
820 	int usb_idx = 0;
821 
822 	/* Find USB3 down port matching usb4_port */
823 	tb_switch_for_each_port(sw, p) {
824 		if (!tb_port_is_usb3_down(p))
825 			continue;
826 
827 		if (usb_idx == usb4_idx)
828 			return p;
829 
830 		usb_idx++;
831 	}
832 
833 	return NULL;
834 }
835 
836 /**
837  * usb4_port_unlock() - Unlock USB4 downstream port
838  * @port: USB4 port to unlock
839  *
840  * Unlocks USB4 downstream port so that the connection manager can
841  * access the router below this port.
842  */
usb4_port_unlock(struct tb_port * port)843 int usb4_port_unlock(struct tb_port *port)
844 {
845 	int ret;
846 	u32 val;
847 
848 	ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
849 	if (ret)
850 		return ret;
851 
852 	val &= ~ADP_CS_4_LCK;
853 	return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
854 }
855 
usb4_port_set_configured(struct tb_port * port,bool configured)856 static int usb4_port_set_configured(struct tb_port *port, bool configured)
857 {
858 	int ret;
859 	u32 val;
860 
861 	if (!port->cap_usb4)
862 		return -EINVAL;
863 
864 	ret = tb_port_read(port, &val, TB_CFG_PORT,
865 			   port->cap_usb4 + PORT_CS_19, 1);
866 	if (ret)
867 		return ret;
868 
869 	if (configured)
870 		val |= PORT_CS_19_PC;
871 	else
872 		val &= ~PORT_CS_19_PC;
873 
874 	return tb_port_write(port, &val, TB_CFG_PORT,
875 			     port->cap_usb4 + PORT_CS_19, 1);
876 }
877 
878 /**
879  * usb4_port_configure() - Set USB4 port configured
880  * @port: USB4 router
881  *
882  * Sets the USB4 link to be configured for power management purposes.
883  */
usb4_port_configure(struct tb_port * port)884 int usb4_port_configure(struct tb_port *port)
885 {
886 	return usb4_port_set_configured(port, true);
887 }
888 
889 /**
890  * usb4_port_unconfigure() - Set USB4 port unconfigured
891  * @port: USB4 router
892  *
893  * Sets the USB4 link to be unconfigured for power management purposes.
894  */
usb4_port_unconfigure(struct tb_port * port)895 void usb4_port_unconfigure(struct tb_port *port)
896 {
897 	usb4_port_set_configured(port, false);
898 }
899 
usb4_set_xdomain_configured(struct tb_port * port,bool configured)900 static int usb4_set_xdomain_configured(struct tb_port *port, bool configured)
901 {
902 	int ret;
903 	u32 val;
904 
905 	if (!port->cap_usb4)
906 		return -EINVAL;
907 
908 	ret = tb_port_read(port, &val, TB_CFG_PORT,
909 			   port->cap_usb4 + PORT_CS_19, 1);
910 	if (ret)
911 		return ret;
912 
913 	if (configured)
914 		val |= PORT_CS_19_PID;
915 	else
916 		val &= ~PORT_CS_19_PID;
917 
918 	return tb_port_write(port, &val, TB_CFG_PORT,
919 			     port->cap_usb4 + PORT_CS_19, 1);
920 }
921 
922 /**
923  * usb4_port_configure_xdomain() - Configure port for XDomain
924  * @port: USB4 port connected to another host
925  *
926  * Marks the USB4 port as being connected to another host. Returns %0 in
927  * success and negative errno in failure.
928  */
usb4_port_configure_xdomain(struct tb_port * port)929 int usb4_port_configure_xdomain(struct tb_port *port)
930 {
931 	return usb4_set_xdomain_configured(port, true);
932 }
933 
934 /**
935  * usb4_port_unconfigure_xdomain() - Unconfigure port for XDomain
936  * @port: USB4 port that was connected to another host
937  *
938  * Clears USB4 port from being marked as XDomain.
939  */
usb4_port_unconfigure_xdomain(struct tb_port * port)940 void usb4_port_unconfigure_xdomain(struct tb_port *port)
941 {
942 	usb4_set_xdomain_configured(port, false);
943 }
944 
usb4_port_wait_for_bit(struct tb_port * port,u32 offset,u32 bit,u32 value,int timeout_msec)945 static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit,
946 				  u32 value, int timeout_msec)
947 {
948 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
949 
950 	do {
951 		u32 val;
952 		int ret;
953 
954 		ret = tb_port_read(port, &val, TB_CFG_PORT, offset, 1);
955 		if (ret)
956 			return ret;
957 
958 		if ((val & bit) == value)
959 			return 0;
960 
961 		usleep_range(50, 100);
962 	} while (ktime_before(ktime_get(), timeout));
963 
964 	return -ETIMEDOUT;
965 }
966 
usb4_port_read_data(struct tb_port * port,void * data,size_t dwords)967 static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords)
968 {
969 	if (dwords > USB4_DATA_DWORDS)
970 		return -EINVAL;
971 
972 	return tb_port_read(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
973 			    dwords);
974 }
975 
usb4_port_write_data(struct tb_port * port,const void * data,size_t dwords)976 static int usb4_port_write_data(struct tb_port *port, const void *data,
977 				size_t dwords)
978 {
979 	if (dwords > USB4_DATA_DWORDS)
980 		return -EINVAL;
981 
982 	return tb_port_write(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
983 			     dwords);
984 }
985 
usb4_port_sb_read(struct tb_port * port,enum usb4_sb_target target,u8 index,u8 reg,void * buf,u8 size)986 static int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target,
987 			     u8 index, u8 reg, void *buf, u8 size)
988 {
989 	size_t dwords = DIV_ROUND_UP(size, 4);
990 	int ret;
991 	u32 val;
992 
993 	if (!port->cap_usb4)
994 		return -EINVAL;
995 
996 	val = reg;
997 	val |= size << PORT_CS_1_LENGTH_SHIFT;
998 	val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
999 	if (target == USB4_SB_TARGET_RETIMER)
1000 		val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1001 	val |= PORT_CS_1_PND;
1002 
1003 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1004 			    port->cap_usb4 + PORT_CS_1, 1);
1005 	if (ret)
1006 		return ret;
1007 
1008 	ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1009 				     PORT_CS_1_PND, 0, 500);
1010 	if (ret)
1011 		return ret;
1012 
1013 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1014 			    port->cap_usb4 + PORT_CS_1, 1);
1015 	if (ret)
1016 		return ret;
1017 
1018 	if (val & PORT_CS_1_NR)
1019 		return -ENODEV;
1020 	if (val & PORT_CS_1_RC)
1021 		return -EIO;
1022 
1023 	return buf ? usb4_port_read_data(port, buf, dwords) : 0;
1024 }
1025 
usb4_port_sb_write(struct tb_port * port,enum usb4_sb_target target,u8 index,u8 reg,const void * buf,u8 size)1026 static int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target,
1027 			      u8 index, u8 reg, const void *buf, u8 size)
1028 {
1029 	size_t dwords = DIV_ROUND_UP(size, 4);
1030 	int ret;
1031 	u32 val;
1032 
1033 	if (!port->cap_usb4)
1034 		return -EINVAL;
1035 
1036 	if (buf) {
1037 		ret = usb4_port_write_data(port, buf, dwords);
1038 		if (ret)
1039 			return ret;
1040 	}
1041 
1042 	val = reg;
1043 	val |= size << PORT_CS_1_LENGTH_SHIFT;
1044 	val |= PORT_CS_1_WNR_WRITE;
1045 	val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1046 	if (target == USB4_SB_TARGET_RETIMER)
1047 		val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1048 	val |= PORT_CS_1_PND;
1049 
1050 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1051 			    port->cap_usb4 + PORT_CS_1, 1);
1052 	if (ret)
1053 		return ret;
1054 
1055 	ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1056 				     PORT_CS_1_PND, 0, 500);
1057 	if (ret)
1058 		return ret;
1059 
1060 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1061 			    port->cap_usb4 + PORT_CS_1, 1);
1062 	if (ret)
1063 		return ret;
1064 
1065 	if (val & PORT_CS_1_NR)
1066 		return -ENODEV;
1067 	if (val & PORT_CS_1_RC)
1068 		return -EIO;
1069 
1070 	return 0;
1071 }
1072 
usb4_port_sb_op(struct tb_port * port,enum usb4_sb_target target,u8 index,enum usb4_sb_opcode opcode,int timeout_msec)1073 static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target,
1074 			   u8 index, enum usb4_sb_opcode opcode, int timeout_msec)
1075 {
1076 	ktime_t timeout;
1077 	u32 val;
1078 	int ret;
1079 
1080 	val = opcode;
1081 	ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, &val,
1082 				 sizeof(val));
1083 	if (ret)
1084 		return ret;
1085 
1086 	timeout = ktime_add_ms(ktime_get(), timeout_msec);
1087 
1088 	do {
1089 		/* Check results */
1090 		ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE,
1091 					&val, sizeof(val));
1092 		if (ret)
1093 			return ret;
1094 
1095 		switch (val) {
1096 		case 0:
1097 			return 0;
1098 
1099 		case USB4_SB_OPCODE_ERR:
1100 			return -EAGAIN;
1101 
1102 		case USB4_SB_OPCODE_ONS:
1103 			return -EOPNOTSUPP;
1104 
1105 		default:
1106 			if (val != opcode)
1107 				return -EIO;
1108 			break;
1109 		}
1110 	} while (ktime_before(ktime_get(), timeout));
1111 
1112 	return -ETIMEDOUT;
1113 }
1114 
1115 /**
1116  * usb4_port_enumerate_retimers() - Send RT broadcast transaction
1117  * @port: USB4 port
1118  *
1119  * This forces the USB4 port to send broadcast RT transaction which
1120  * makes the retimers on the link to assign index to themselves. Returns
1121  * %0 in case of success and negative errno if there was an error.
1122  */
usb4_port_enumerate_retimers(struct tb_port * port)1123 int usb4_port_enumerate_retimers(struct tb_port *port)
1124 {
1125 	u32 val;
1126 
1127 	val = USB4_SB_OPCODE_ENUMERATE_RETIMERS;
1128 	return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1129 				  USB4_SB_OPCODE, &val, sizeof(val));
1130 }
1131 
usb4_port_retimer_op(struct tb_port * port,u8 index,enum usb4_sb_opcode opcode,int timeout_msec)1132 static inline int usb4_port_retimer_op(struct tb_port *port, u8 index,
1133 				       enum usb4_sb_opcode opcode,
1134 				       int timeout_msec)
1135 {
1136 	return usb4_port_sb_op(port, USB4_SB_TARGET_RETIMER, index, opcode,
1137 			       timeout_msec);
1138 }
1139 
1140 /**
1141  * usb4_port_retimer_read() - Read from retimer sideband registers
1142  * @port: USB4 port
1143  * @index: Retimer index
1144  * @reg: Sideband register to read
1145  * @buf: Data from @reg is stored here
1146  * @size: Number of bytes to read
1147  *
1148  * Function reads retimer sideband registers starting from @reg. The
1149  * retimer is connected to @port at @index. Returns %0 in case of
1150  * success, and read data is copied to @buf. If there is no retimer
1151  * present at given @index returns %-ENODEV. In any other failure
1152  * returns negative errno.
1153  */
usb4_port_retimer_read(struct tb_port * port,u8 index,u8 reg,void * buf,u8 size)1154 int usb4_port_retimer_read(struct tb_port *port, u8 index, u8 reg, void *buf,
1155 			   u8 size)
1156 {
1157 	return usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1158 				 size);
1159 }
1160 
1161 /**
1162  * usb4_port_retimer_write() - Write to retimer sideband registers
1163  * @port: USB4 port
1164  * @index: Retimer index
1165  * @reg: Sideband register to write
1166  * @buf: Data that is written starting from @reg
1167  * @size: Number of bytes to write
1168  *
1169  * Writes retimer sideband registers starting from @reg. The retimer is
1170  * connected to @port at @index. Returns %0 in case of success. If there
1171  * is no retimer present at given @index returns %-ENODEV. In any other
1172  * failure returns negative errno.
1173  */
usb4_port_retimer_write(struct tb_port * port,u8 index,u8 reg,const void * buf,u8 size)1174 int usb4_port_retimer_write(struct tb_port *port, u8 index, u8 reg,
1175 			    const void *buf, u8 size)
1176 {
1177 	return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1178 				  size);
1179 }
1180 
1181 /**
1182  * usb4_port_retimer_is_last() - Is the retimer last on-board retimer
1183  * @port: USB4 port
1184  * @index: Retimer index
1185  *
1186  * If the retimer at @index is last one (connected directly to the
1187  * Type-C port) this function returns %1. If it is not returns %0. If
1188  * the retimer is not present returns %-ENODEV. Otherwise returns
1189  * negative errno.
1190  */
usb4_port_retimer_is_last(struct tb_port * port,u8 index)1191 int usb4_port_retimer_is_last(struct tb_port *port, u8 index)
1192 {
1193 	u32 metadata;
1194 	int ret;
1195 
1196 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_LAST_RETIMER,
1197 				   500);
1198 	if (ret)
1199 		return ret;
1200 
1201 	ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1202 				     sizeof(metadata));
1203 	return ret ? ret : metadata & 1;
1204 }
1205 
1206 /**
1207  * usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size
1208  * @port: USB4 port
1209  * @index: Retimer index
1210  *
1211  * Reads NVM sector size (in bytes) of a retimer at @index. This
1212  * operation can be used to determine whether the retimer supports NVM
1213  * upgrade for example. Returns sector size in bytes or negative errno
1214  * in case of error. Specifically returns %-ENODEV if there is no
1215  * retimer at @index.
1216  */
usb4_port_retimer_nvm_sector_size(struct tb_port * port,u8 index)1217 int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index)
1218 {
1219 	u32 metadata;
1220 	int ret;
1221 
1222 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE,
1223 				   500);
1224 	if (ret)
1225 		return ret;
1226 
1227 	ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1228 				     sizeof(metadata));
1229 	return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK;
1230 }
1231 
usb4_port_retimer_nvm_set_offset(struct tb_port * port,u8 index,unsigned int address)1232 static int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index,
1233 					    unsigned int address)
1234 {
1235 	u32 metadata, dwaddress;
1236 	int ret;
1237 
1238 	dwaddress = address / 4;
1239 	metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
1240 		  USB4_NVM_SET_OFFSET_MASK;
1241 
1242 	ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1243 				      sizeof(metadata));
1244 	if (ret)
1245 		return ret;
1246 
1247 	return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_SET_OFFSET,
1248 				    500);
1249 }
1250 
1251 struct retimer_info {
1252 	struct tb_port *port;
1253 	u8 index;
1254 };
1255 
usb4_port_retimer_nvm_write_next_block(void * data,const void * buf,size_t dwords)1256 static int usb4_port_retimer_nvm_write_next_block(void *data, const void *buf,
1257 						  size_t dwords)
1258 
1259 {
1260 	const struct retimer_info *info = data;
1261 	struct tb_port *port = info->port;
1262 	u8 index = info->index;
1263 	int ret;
1264 
1265 	ret = usb4_port_retimer_write(port, index, USB4_SB_DATA,
1266 				      buf, dwords * 4);
1267 	if (ret)
1268 		return ret;
1269 
1270 	return usb4_port_retimer_op(port, index,
1271 			USB4_SB_OPCODE_NVM_BLOCK_WRITE, 1000);
1272 }
1273 
1274 /**
1275  * usb4_port_retimer_nvm_write() - Write to retimer NVM
1276  * @port: USB4 port
1277  * @index: Retimer index
1278  * @address: Byte address where to start the write
1279  * @buf: Data to write
1280  * @size: Size in bytes how much to write
1281  *
1282  * Writes @size bytes from @buf to the retimer NVM. Used for NVM
1283  * upgrade. Returns %0 if the data was written successfully and negative
1284  * errno in case of failure. Specifically returns %-ENODEV if there is
1285  * no retimer at @index.
1286  */
usb4_port_retimer_nvm_write(struct tb_port * port,u8 index,unsigned int address,const void * buf,size_t size)1287 int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address,
1288 				const void *buf, size_t size)
1289 {
1290 	struct retimer_info info = { .port = port, .index = index };
1291 	int ret;
1292 
1293 	ret = usb4_port_retimer_nvm_set_offset(port, index, address);
1294 	if (ret)
1295 		return ret;
1296 
1297 	return usb4_do_write_data(address, buf, size,
1298 			usb4_port_retimer_nvm_write_next_block, &info);
1299 }
1300 
1301 /**
1302  * usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade
1303  * @port: USB4 port
1304  * @index: Retimer index
1305  *
1306  * After the new NVM image has been written via usb4_port_retimer_nvm_write()
1307  * this function can be used to trigger the NVM upgrade process. If
1308  * successful the retimer restarts with the new NVM and may not have the
1309  * index set so one needs to call usb4_port_enumerate_retimers() to
1310  * force index to be assigned.
1311  */
usb4_port_retimer_nvm_authenticate(struct tb_port * port,u8 index)1312 int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index)
1313 {
1314 	u32 val;
1315 
1316 	/*
1317 	 * We need to use the raw operation here because once the
1318 	 * authentication completes the retimer index is not set anymore
1319 	 * so we do not get back the status now.
1320 	 */
1321 	val = USB4_SB_OPCODE_NVM_AUTH_WRITE;
1322 	return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
1323 				  USB4_SB_OPCODE, &val, sizeof(val));
1324 }
1325 
1326 /**
1327  * usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade
1328  * @port: USB4 port
1329  * @index: Retimer index
1330  * @status: Raw status code read from metadata
1331  *
1332  * This can be called after usb4_port_retimer_nvm_authenticate() and
1333  * usb4_port_enumerate_retimers() to fetch status of the NVM upgrade.
1334  *
1335  * Returns %0 if the authentication status was successfully read. The
1336  * completion metadata (the result) is then stored into @status. If
1337  * reading the status fails, returns negative errno.
1338  */
usb4_port_retimer_nvm_authenticate_status(struct tb_port * port,u8 index,u32 * status)1339 int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index,
1340 					      u32 *status)
1341 {
1342 	u32 metadata, val;
1343 	int ret;
1344 
1345 	ret = usb4_port_retimer_read(port, index, USB4_SB_OPCODE, &val,
1346 				     sizeof(val));
1347 	if (ret)
1348 		return ret;
1349 
1350 	switch (val) {
1351 	case 0:
1352 		*status = 0;
1353 		return 0;
1354 
1355 	case USB4_SB_OPCODE_ERR:
1356 		ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA,
1357 					     &metadata, sizeof(metadata));
1358 		if (ret)
1359 			return ret;
1360 
1361 		*status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK;
1362 		return 0;
1363 
1364 	case USB4_SB_OPCODE_ONS:
1365 		return -EOPNOTSUPP;
1366 
1367 	default:
1368 		return -EIO;
1369 	}
1370 }
1371 
usb4_port_retimer_nvm_read_block(void * data,unsigned int dwaddress,void * buf,size_t dwords)1372 static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress,
1373 					    void *buf, size_t dwords)
1374 {
1375 	const struct retimer_info *info = data;
1376 	struct tb_port *port = info->port;
1377 	u8 index = info->index;
1378 	u32 metadata;
1379 	int ret;
1380 
1381 	metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT;
1382 	if (dwords < USB4_DATA_DWORDS)
1383 		metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT;
1384 
1385 	ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1386 				      sizeof(metadata));
1387 	if (ret)
1388 		return ret;
1389 
1390 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_READ, 500);
1391 	if (ret)
1392 		return ret;
1393 
1394 	return usb4_port_retimer_read(port, index, USB4_SB_DATA, buf,
1395 				      dwords * 4);
1396 }
1397 
1398 /**
1399  * usb4_port_retimer_nvm_read() - Read contents of retimer NVM
1400  * @port: USB4 port
1401  * @index: Retimer index
1402  * @address: NVM address (in bytes) to start reading
1403  * @buf: Data read from NVM is stored here
1404  * @size: Number of bytes to read
1405  *
1406  * Reads retimer NVM and copies the contents to @buf. Returns %0 if the
1407  * read was successful and negative errno in case of failure.
1408  * Specifically returns %-ENODEV if there is no retimer at @index.
1409  */
usb4_port_retimer_nvm_read(struct tb_port * port,u8 index,unsigned int address,void * buf,size_t size)1410 int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index,
1411 			       unsigned int address, void *buf, size_t size)
1412 {
1413 	struct retimer_info info = { .port = port, .index = index };
1414 
1415 	return usb4_do_read_data(address, buf, size,
1416 			usb4_port_retimer_nvm_read_block, &info);
1417 }
1418 
1419 /**
1420  * usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate
1421  * @port: USB3 adapter port
1422  *
1423  * Return maximum supported link rate of a USB3 adapter in Mb/s.
1424  * Negative errno in case of error.
1425  */
usb4_usb3_port_max_link_rate(struct tb_port * port)1426 int usb4_usb3_port_max_link_rate(struct tb_port *port)
1427 {
1428 	int ret, lr;
1429 	u32 val;
1430 
1431 	if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
1432 		return -EINVAL;
1433 
1434 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1435 			   port->cap_adap + ADP_USB3_CS_4, 1);
1436 	if (ret)
1437 		return ret;
1438 
1439 	lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT;
1440 	return lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000;
1441 }
1442 
1443 /**
1444  * usb4_usb3_port_actual_link_rate() - Established USB3 link rate
1445  * @port: USB3 adapter port
1446  *
1447  * Return actual established link rate of a USB3 adapter in Mb/s. If the
1448  * link is not up returns %0 and negative errno in case of failure.
1449  */
usb4_usb3_port_actual_link_rate(struct tb_port * port)1450 int usb4_usb3_port_actual_link_rate(struct tb_port *port)
1451 {
1452 	int ret, lr;
1453 	u32 val;
1454 
1455 	if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
1456 		return -EINVAL;
1457 
1458 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1459 			   port->cap_adap + ADP_USB3_CS_4, 1);
1460 	if (ret)
1461 		return ret;
1462 
1463 	if (!(val & ADP_USB3_CS_4_ULV))
1464 		return 0;
1465 
1466 	lr = val & ADP_USB3_CS_4_ALR_MASK;
1467 	return lr == ADP_USB3_CS_4_ALR_20G ? 20000 : 10000;
1468 }
1469 
usb4_usb3_port_cm_request(struct tb_port * port,bool request)1470 static int usb4_usb3_port_cm_request(struct tb_port *port, bool request)
1471 {
1472 	int ret;
1473 	u32 val;
1474 
1475 	if (!tb_port_is_usb3_down(port))
1476 		return -EINVAL;
1477 	if (tb_route(port->sw))
1478 		return -EINVAL;
1479 
1480 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1481 			   port->cap_adap + ADP_USB3_CS_2, 1);
1482 	if (ret)
1483 		return ret;
1484 
1485 	if (request)
1486 		val |= ADP_USB3_CS_2_CMR;
1487 	else
1488 		val &= ~ADP_USB3_CS_2_CMR;
1489 
1490 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1491 			    port->cap_adap + ADP_USB3_CS_2, 1);
1492 	if (ret)
1493 		return ret;
1494 
1495 	/*
1496 	 * We can use val here directly as the CMR bit is in the same place
1497 	 * as HCA. Just mask out others.
1498 	 */
1499 	val &= ADP_USB3_CS_2_CMR;
1500 	return usb4_port_wait_for_bit(port, port->cap_adap + ADP_USB3_CS_1,
1501 				      ADP_USB3_CS_1_HCA, val, 1500);
1502 }
1503 
usb4_usb3_port_set_cm_request(struct tb_port * port)1504 static inline int usb4_usb3_port_set_cm_request(struct tb_port *port)
1505 {
1506 	return usb4_usb3_port_cm_request(port, true);
1507 }
1508 
usb4_usb3_port_clear_cm_request(struct tb_port * port)1509 static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port)
1510 {
1511 	return usb4_usb3_port_cm_request(port, false);
1512 }
1513 
usb3_bw_to_mbps(u32 bw,u8 scale)1514 static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale)
1515 {
1516 	unsigned long uframes;
1517 
1518 	uframes = bw * 512UL << scale;
1519 	return DIV_ROUND_CLOSEST(uframes * 8000, 1000 * 1000);
1520 }
1521 
mbps_to_usb3_bw(unsigned int mbps,u8 scale)1522 static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale)
1523 {
1524 	unsigned long uframes;
1525 
1526 	/* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */
1527 	uframes = ((unsigned long)mbps * 1000 *  1000) / 8000;
1528 	return DIV_ROUND_UP(uframes, 512UL << scale);
1529 }
1530 
usb4_usb3_port_read_allocated_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)1531 static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port,
1532 						   int *upstream_bw,
1533 						   int *downstream_bw)
1534 {
1535 	u32 val, bw, scale;
1536 	int ret;
1537 
1538 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1539 			   port->cap_adap + ADP_USB3_CS_2, 1);
1540 	if (ret)
1541 		return ret;
1542 
1543 	ret = tb_port_read(port, &scale, TB_CFG_PORT,
1544 			   port->cap_adap + ADP_USB3_CS_3, 1);
1545 	if (ret)
1546 		return ret;
1547 
1548 	scale &= ADP_USB3_CS_3_SCALE_MASK;
1549 
1550 	bw = val & ADP_USB3_CS_2_AUBW_MASK;
1551 	*upstream_bw = usb3_bw_to_mbps(bw, scale);
1552 
1553 	bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT;
1554 	*downstream_bw = usb3_bw_to_mbps(bw, scale);
1555 
1556 	return 0;
1557 }
1558 
1559 /**
1560  * usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3
1561  * @port: USB3 adapter port
1562  * @upstream_bw: Allocated upstream bandwidth is stored here
1563  * @downstream_bw: Allocated downstream bandwidth is stored here
1564  *
1565  * Stores currently allocated USB3 bandwidth into @upstream_bw and
1566  * @downstream_bw in Mb/s. Returns %0 in case of success and negative
1567  * errno in failure.
1568  */
usb4_usb3_port_allocated_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)1569 int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw,
1570 				       int *downstream_bw)
1571 {
1572 	int ret;
1573 
1574 	ret = usb4_usb3_port_set_cm_request(port);
1575 	if (ret)
1576 		return ret;
1577 
1578 	ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw,
1579 						      downstream_bw);
1580 	usb4_usb3_port_clear_cm_request(port);
1581 
1582 	return ret;
1583 }
1584 
usb4_usb3_port_read_consumed_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)1585 static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port,
1586 						  int *upstream_bw,
1587 						  int *downstream_bw)
1588 {
1589 	u32 val, bw, scale;
1590 	int ret;
1591 
1592 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1593 			   port->cap_adap + ADP_USB3_CS_1, 1);
1594 	if (ret)
1595 		return ret;
1596 
1597 	ret = tb_port_read(port, &scale, TB_CFG_PORT,
1598 			   port->cap_adap + ADP_USB3_CS_3, 1);
1599 	if (ret)
1600 		return ret;
1601 
1602 	scale &= ADP_USB3_CS_3_SCALE_MASK;
1603 
1604 	bw = val & ADP_USB3_CS_1_CUBW_MASK;
1605 	*upstream_bw = usb3_bw_to_mbps(bw, scale);
1606 
1607 	bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT;
1608 	*downstream_bw = usb3_bw_to_mbps(bw, scale);
1609 
1610 	return 0;
1611 }
1612 
usb4_usb3_port_write_allocated_bandwidth(struct tb_port * port,int upstream_bw,int downstream_bw)1613 static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port,
1614 						    int upstream_bw,
1615 						    int downstream_bw)
1616 {
1617 	u32 val, ubw, dbw, scale;
1618 	int ret;
1619 
1620 	/* Read the used scale, hardware default is 0 */
1621 	ret = tb_port_read(port, &scale, TB_CFG_PORT,
1622 			   port->cap_adap + ADP_USB3_CS_3, 1);
1623 	if (ret)
1624 		return ret;
1625 
1626 	scale &= ADP_USB3_CS_3_SCALE_MASK;
1627 	ubw = mbps_to_usb3_bw(upstream_bw, scale);
1628 	dbw = mbps_to_usb3_bw(downstream_bw, scale);
1629 
1630 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1631 			   port->cap_adap + ADP_USB3_CS_2, 1);
1632 	if (ret)
1633 		return ret;
1634 
1635 	val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK);
1636 	val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT;
1637 	val |= ubw;
1638 
1639 	return tb_port_write(port, &val, TB_CFG_PORT,
1640 			     port->cap_adap + ADP_USB3_CS_2, 1);
1641 }
1642 
1643 /**
1644  * usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3
1645  * @port: USB3 adapter port
1646  * @upstream_bw: New upstream bandwidth
1647  * @downstream_bw: New downstream bandwidth
1648  *
1649  * This can be used to set how much bandwidth is allocated for the USB3
1650  * tunneled isochronous traffic. @upstream_bw and @downstream_bw are the
1651  * new values programmed to the USB3 adapter allocation registers. If
1652  * the values are lower than what is currently consumed the allocation
1653  * is set to what is currently consumed instead (consumed bandwidth
1654  * cannot be taken away by CM). The actual new values are returned in
1655  * @upstream_bw and @downstream_bw.
1656  *
1657  * Returns %0 in case of success and negative errno if there was a
1658  * failure.
1659  */
usb4_usb3_port_allocate_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)1660 int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw,
1661 				      int *downstream_bw)
1662 {
1663 	int ret, consumed_up, consumed_down, allocate_up, allocate_down;
1664 
1665 	ret = usb4_usb3_port_set_cm_request(port);
1666 	if (ret)
1667 		return ret;
1668 
1669 	ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
1670 						     &consumed_down);
1671 	if (ret)
1672 		goto err_request;
1673 
1674 	/* Don't allow it go lower than what is consumed */
1675 	allocate_up = max(*upstream_bw, consumed_up);
1676 	allocate_down = max(*downstream_bw, consumed_down);
1677 
1678 	ret = usb4_usb3_port_write_allocated_bandwidth(port, allocate_up,
1679 						       allocate_down);
1680 	if (ret)
1681 		goto err_request;
1682 
1683 	*upstream_bw = allocate_up;
1684 	*downstream_bw = allocate_down;
1685 
1686 err_request:
1687 	usb4_usb3_port_clear_cm_request(port);
1688 	return ret;
1689 }
1690 
1691 /**
1692  * usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth
1693  * @port: USB3 adapter port
1694  * @upstream_bw: New allocated upstream bandwidth
1695  * @downstream_bw: New allocated downstream bandwidth
1696  *
1697  * Releases USB3 allocated bandwidth down to what is actually consumed.
1698  * The new bandwidth is returned in @upstream_bw and @downstream_bw.
1699  *
1700  * Returns 0% in success and negative errno in case of failure.
1701  */
usb4_usb3_port_release_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)1702 int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw,
1703 				     int *downstream_bw)
1704 {
1705 	int ret, consumed_up, consumed_down;
1706 
1707 	ret = usb4_usb3_port_set_cm_request(port);
1708 	if (ret)
1709 		return ret;
1710 
1711 	ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
1712 						     &consumed_down);
1713 	if (ret)
1714 		goto err_request;
1715 
1716 	/*
1717 	 * Always keep 1000 Mb/s to make sure xHCI has at least some
1718 	 * bandwidth available for isochronous traffic.
1719 	 */
1720 	if (consumed_up < 1000)
1721 		consumed_up = 1000;
1722 	if (consumed_down < 1000)
1723 		consumed_down = 1000;
1724 
1725 	ret = usb4_usb3_port_write_allocated_bandwidth(port, consumed_up,
1726 						       consumed_down);
1727 	if (ret)
1728 		goto err_request;
1729 
1730 	*upstream_bw = consumed_up;
1731 	*downstream_bw = consumed_down;
1732 
1733 err_request:
1734 	usb4_usb3_port_clear_cm_request(port);
1735 	return ret;
1736 }
1737