1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * USB4 specific functionality
4 *
5 * Copyright (C) 2019, Intel Corporation
6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7 * Rajmohan Mani <rajmohan.mani@intel.com>
8 */
9
10 #include <linux/delay.h>
11 #include <linux/ktime.h>
12 #include <linux/units.h>
13
14 #include "sb_regs.h"
15 #include "tb.h"
16
17 #define USB4_DATA_RETRIES 3
18 #define USB4_DATA_DWORDS 16
19
20 enum usb4_sb_target {
21 USB4_SB_TARGET_ROUTER,
22 USB4_SB_TARGET_PARTNER,
23 USB4_SB_TARGET_RETIMER,
24 };
25
26 #define USB4_NVM_READ_OFFSET_MASK GENMASK(23, 2)
27 #define USB4_NVM_READ_OFFSET_SHIFT 2
28 #define USB4_NVM_READ_LENGTH_MASK GENMASK(27, 24)
29 #define USB4_NVM_READ_LENGTH_SHIFT 24
30
31 #define USB4_NVM_SET_OFFSET_MASK USB4_NVM_READ_OFFSET_MASK
32 #define USB4_NVM_SET_OFFSET_SHIFT USB4_NVM_READ_OFFSET_SHIFT
33
34 #define USB4_DROM_ADDRESS_MASK GENMASK(14, 2)
35 #define USB4_DROM_ADDRESS_SHIFT 2
36 #define USB4_DROM_SIZE_MASK GENMASK(19, 15)
37 #define USB4_DROM_SIZE_SHIFT 15
38
39 #define USB4_NVM_SECTOR_SIZE_MASK GENMASK(23, 0)
40
41 #define USB4_BA_LENGTH_MASK GENMASK(7, 0)
42 #define USB4_BA_INDEX_MASK GENMASK(15, 0)
43
44 enum usb4_ba_index {
45 USB4_BA_MAX_USB3 = 0x1,
46 USB4_BA_MIN_DP_AUX = 0x2,
47 USB4_BA_MIN_DP_MAIN = 0x3,
48 USB4_BA_MAX_PCIE = 0x4,
49 USB4_BA_MAX_HI = 0x5,
50 };
51
52 #define USB4_BA_VALUE_MASK GENMASK(31, 16)
53 #define USB4_BA_VALUE_SHIFT 16
54
usb4_native_switch_op(struct tb_switch * sw,u16 opcode,u32 * metadata,u8 * status,const void * tx_data,size_t tx_dwords,void * rx_data,size_t rx_dwords)55 static int usb4_native_switch_op(struct tb_switch *sw, u16 opcode,
56 u32 *metadata, u8 *status,
57 const void *tx_data, size_t tx_dwords,
58 void *rx_data, size_t rx_dwords)
59 {
60 u32 val;
61 int ret;
62
63 if (metadata) {
64 ret = tb_sw_write(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
65 if (ret)
66 return ret;
67 }
68 if (tx_dwords) {
69 ret = tb_sw_write(sw, tx_data, TB_CFG_SWITCH, ROUTER_CS_9,
70 tx_dwords);
71 if (ret)
72 return ret;
73 }
74
75 val = opcode | ROUTER_CS_26_OV;
76 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
77 if (ret)
78 return ret;
79
80 ret = tb_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500);
81 if (ret)
82 return ret;
83
84 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
85 if (ret)
86 return ret;
87
88 if (val & ROUTER_CS_26_ONS)
89 return -EOPNOTSUPP;
90
91 if (status)
92 *status = (val & ROUTER_CS_26_STATUS_MASK) >>
93 ROUTER_CS_26_STATUS_SHIFT;
94
95 if (metadata) {
96 ret = tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
97 if (ret)
98 return ret;
99 }
100 if (rx_dwords) {
101 ret = tb_sw_read(sw, rx_data, TB_CFG_SWITCH, ROUTER_CS_9,
102 rx_dwords);
103 if (ret)
104 return ret;
105 }
106
107 return 0;
108 }
109
__usb4_switch_op(struct tb_switch * sw,u16 opcode,u32 * metadata,u8 * status,const void * tx_data,size_t tx_dwords,void * rx_data,size_t rx_dwords)110 static int __usb4_switch_op(struct tb_switch *sw, u16 opcode, u32 *metadata,
111 u8 *status, const void *tx_data, size_t tx_dwords,
112 void *rx_data, size_t rx_dwords)
113 {
114 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
115
116 if (tx_dwords > USB4_DATA_DWORDS || rx_dwords > USB4_DATA_DWORDS)
117 return -EINVAL;
118
119 /*
120 * If the connection manager implementation provides USB4 router
121 * operation proxy callback, call it here instead of running the
122 * operation natively.
123 */
124 if (cm_ops->usb4_switch_op) {
125 int ret;
126
127 ret = cm_ops->usb4_switch_op(sw, opcode, metadata, status,
128 tx_data, tx_dwords, rx_data,
129 rx_dwords);
130 if (ret != -EOPNOTSUPP)
131 return ret;
132
133 /*
134 * If the proxy was not supported then run the native
135 * router operation instead.
136 */
137 }
138
139 return usb4_native_switch_op(sw, opcode, metadata, status, tx_data,
140 tx_dwords, rx_data, rx_dwords);
141 }
142
usb4_switch_op(struct tb_switch * sw,u16 opcode,u32 * metadata,u8 * status)143 static inline int usb4_switch_op(struct tb_switch *sw, u16 opcode,
144 u32 *metadata, u8 *status)
145 {
146 return __usb4_switch_op(sw, opcode, metadata, status, NULL, 0, NULL, 0);
147 }
148
usb4_switch_op_data(struct tb_switch * sw,u16 opcode,u32 * metadata,u8 * status,const void * tx_data,size_t tx_dwords,void * rx_data,size_t rx_dwords)149 static inline int usb4_switch_op_data(struct tb_switch *sw, u16 opcode,
150 u32 *metadata, u8 *status,
151 const void *tx_data, size_t tx_dwords,
152 void *rx_data, size_t rx_dwords)
153 {
154 return __usb4_switch_op(sw, opcode, metadata, status, tx_data,
155 tx_dwords, rx_data, rx_dwords);
156 }
157
usb4_switch_check_wakes(struct tb_switch * sw)158 static void usb4_switch_check_wakes(struct tb_switch *sw)
159 {
160 bool wakeup_usb4 = false;
161 struct usb4_port *usb4;
162 struct tb_port *port;
163 bool wakeup = false;
164 u32 val;
165
166 if (!device_may_wakeup(&sw->dev))
167 return;
168
169 if (tb_route(sw)) {
170 if (tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1))
171 return;
172
173 tb_sw_dbg(sw, "PCIe wake: %s, USB3 wake: %s\n",
174 (val & ROUTER_CS_6_WOPS) ? "yes" : "no",
175 (val & ROUTER_CS_6_WOUS) ? "yes" : "no");
176
177 wakeup = val & (ROUTER_CS_6_WOPS | ROUTER_CS_6_WOUS);
178 }
179
180 /*
181 * Check for any downstream ports for USB4 wake,
182 * connection wake and disconnection wake.
183 */
184 tb_switch_for_each_port(sw, port) {
185 if (!port->cap_usb4)
186 continue;
187
188 if (tb_port_read(port, &val, TB_CFG_PORT,
189 port->cap_usb4 + PORT_CS_18, 1))
190 break;
191
192 tb_port_dbg(port, "USB4 wake: %s, connection wake: %s, disconnection wake: %s\n",
193 (val & PORT_CS_18_WOU4S) ? "yes" : "no",
194 (val & PORT_CS_18_WOCS) ? "yes" : "no",
195 (val & PORT_CS_18_WODS) ? "yes" : "no");
196
197 wakeup_usb4 = val & (PORT_CS_18_WOU4S | PORT_CS_18_WOCS |
198 PORT_CS_18_WODS);
199
200 usb4 = port->usb4;
201 if (device_may_wakeup(&usb4->dev) && wakeup_usb4)
202 pm_wakeup_event(&usb4->dev, 0);
203
204 wakeup |= wakeup_usb4;
205 }
206
207 if (wakeup)
208 pm_wakeup_event(&sw->dev, 0);
209 }
210
link_is_usb4(struct tb_port * port)211 static bool link_is_usb4(struct tb_port *port)
212 {
213 u32 val;
214
215 if (!port->cap_usb4)
216 return false;
217
218 if (tb_port_read(port, &val, TB_CFG_PORT,
219 port->cap_usb4 + PORT_CS_18, 1))
220 return false;
221
222 return !(val & PORT_CS_18_TCM);
223 }
224
225 /**
226 * usb4_switch_setup() - Additional setup for USB4 device
227 * @sw: USB4 router to setup
228 *
229 * USB4 routers need additional settings in order to enable all the
230 * tunneling. This function enables USB and PCIe tunneling if it can be
231 * enabled (e.g the parent switch also supports them). If USB tunneling
232 * is not available for some reason (like that there is Thunderbolt 3
233 * switch upstream) then the internal xHCI controller is enabled
234 * instead.
235 *
236 * This does not set the configuration valid bit of the router. To do
237 * that call usb4_switch_configuration_valid().
238 */
usb4_switch_setup(struct tb_switch * sw)239 int usb4_switch_setup(struct tb_switch *sw)
240 {
241 struct tb_switch *parent = tb_switch_parent(sw);
242 struct tb_port *down;
243 bool tbt3, xhci;
244 u32 val = 0;
245 int ret;
246
247 usb4_switch_check_wakes(sw);
248
249 if (!tb_route(sw))
250 return 0;
251
252 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1);
253 if (ret)
254 return ret;
255
256 down = tb_switch_downstream_port(sw);
257 sw->link_usb4 = link_is_usb4(down);
258 tb_sw_dbg(sw, "link: %s\n", sw->link_usb4 ? "USB4" : "TBT");
259
260 xhci = val & ROUTER_CS_6_HCI;
261 tbt3 = !(val & ROUTER_CS_6_TNS);
262
263 tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n",
264 tbt3 ? "yes" : "no", xhci ? "yes" : "no");
265
266 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
267 if (ret)
268 return ret;
269
270 if (tb_acpi_may_tunnel_usb3() && sw->link_usb4 &&
271 tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) {
272 val |= ROUTER_CS_5_UTO;
273 xhci = false;
274 }
275
276 /*
277 * Only enable PCIe tunneling if the parent router supports it
278 * and it is not disabled.
279 */
280 if (tb_acpi_may_tunnel_pcie() &&
281 tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) {
282 val |= ROUTER_CS_5_PTO;
283 /*
284 * xHCI can be enabled if PCIe tunneling is supported
285 * and the parent does not have any USB3 dowstream
286 * adapters (so we cannot do USB 3.x tunneling).
287 */
288 if (xhci)
289 val |= ROUTER_CS_5_HCO;
290 }
291
292 /* TBT3 supported by the CM */
293 val |= ROUTER_CS_5_C3S;
294
295 return tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
296 }
297
298 /**
299 * usb4_switch_configuration_valid() - Set tunneling configuration to be valid
300 * @sw: USB4 router
301 *
302 * Sets configuration valid bit for the router. Must be called before
303 * any tunnels can be set through the router and after
304 * usb4_switch_setup() has been called. Can be called to host and device
305 * routers (does nothing for the latter).
306 *
307 * Returns %0 in success and negative errno otherwise.
308 */
usb4_switch_configuration_valid(struct tb_switch * sw)309 int usb4_switch_configuration_valid(struct tb_switch *sw)
310 {
311 u32 val;
312 int ret;
313
314 if (!tb_route(sw))
315 return 0;
316
317 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
318 if (ret)
319 return ret;
320
321 val |= ROUTER_CS_5_CV;
322
323 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
324 if (ret)
325 return ret;
326
327 return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR,
328 ROUTER_CS_6_CR, 50);
329 }
330
331 /**
332 * usb4_switch_read_uid() - Read UID from USB4 router
333 * @sw: USB4 router
334 * @uid: UID is stored here
335 *
336 * Reads 64-bit UID from USB4 router config space.
337 */
usb4_switch_read_uid(struct tb_switch * sw,u64 * uid)338 int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid)
339 {
340 return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2);
341 }
342
usb4_switch_drom_read_block(void * data,unsigned int dwaddress,void * buf,size_t dwords)343 static int usb4_switch_drom_read_block(void *data,
344 unsigned int dwaddress, void *buf,
345 size_t dwords)
346 {
347 struct tb_switch *sw = data;
348 u8 status = 0;
349 u32 metadata;
350 int ret;
351
352 metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK;
353 metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) &
354 USB4_DROM_ADDRESS_MASK;
355
356 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_DROM_READ, &metadata,
357 &status, NULL, 0, buf, dwords);
358 if (ret)
359 return ret;
360
361 return status ? -EIO : 0;
362 }
363
364 /**
365 * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM
366 * @sw: USB4 router
367 * @address: Byte address inside DROM to start reading
368 * @buf: Buffer where the DROM content is stored
369 * @size: Number of bytes to read from DROM
370 *
371 * Uses USB4 router operations to read router DROM. For devices this
372 * should always work but for hosts it may return %-EOPNOTSUPP in which
373 * case the host router does not have DROM.
374 */
usb4_switch_drom_read(struct tb_switch * sw,unsigned int address,void * buf,size_t size)375 int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
376 size_t size)
377 {
378 return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
379 usb4_switch_drom_read_block, sw);
380 }
381
382 /**
383 * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding
384 * @sw: USB4 router
385 *
386 * Checks whether conditions are met so that lane bonding can be
387 * established with the upstream router. Call only for device routers.
388 */
usb4_switch_lane_bonding_possible(struct tb_switch * sw)389 bool usb4_switch_lane_bonding_possible(struct tb_switch *sw)
390 {
391 struct tb_port *up;
392 int ret;
393 u32 val;
394
395 up = tb_upstream_port(sw);
396 ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1);
397 if (ret)
398 return false;
399
400 return !!(val & PORT_CS_18_BE);
401 }
402
403 /**
404 * usb4_switch_set_wake() - Enabled/disable wake
405 * @sw: USB4 router
406 * @flags: Wakeup flags (%0 to disable)
407 *
408 * Enables/disables router to wake up from sleep.
409 */
usb4_switch_set_wake(struct tb_switch * sw,unsigned int flags)410 int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags)
411 {
412 struct usb4_port *usb4;
413 struct tb_port *port;
414 u64 route = tb_route(sw);
415 u32 val;
416 int ret;
417
418 /*
419 * Enable wakes coming from all USB4 downstream ports (from
420 * child routers). For device routers do this also for the
421 * upstream USB4 port.
422 */
423 tb_switch_for_each_port(sw, port) {
424 if (!tb_port_is_null(port))
425 continue;
426 if (!route && tb_is_upstream_port(port))
427 continue;
428 if (!port->cap_usb4)
429 continue;
430
431 ret = tb_port_read(port, &val, TB_CFG_PORT,
432 port->cap_usb4 + PORT_CS_19, 1);
433 if (ret)
434 return ret;
435
436 val &= ~(PORT_CS_19_WOC | PORT_CS_19_WOD | PORT_CS_19_WOU4);
437
438 if (tb_is_upstream_port(port)) {
439 val |= PORT_CS_19_WOU4;
440 } else {
441 bool configured = val & PORT_CS_19_PC;
442 usb4 = port->usb4;
443
444 if (((flags & TB_WAKE_ON_CONNECT) |
445 device_may_wakeup(&usb4->dev)) && !configured)
446 val |= PORT_CS_19_WOC;
447 if (((flags & TB_WAKE_ON_DISCONNECT) |
448 device_may_wakeup(&usb4->dev)) && configured)
449 val |= PORT_CS_19_WOD;
450 if ((flags & TB_WAKE_ON_USB4) && configured)
451 val |= PORT_CS_19_WOU4;
452 }
453
454 ret = tb_port_write(port, &val, TB_CFG_PORT,
455 port->cap_usb4 + PORT_CS_19, 1);
456 if (ret)
457 return ret;
458 }
459
460 /*
461 * Enable wakes from PCIe, USB 3.x and DP on this router. Only
462 * needed for device routers.
463 */
464 if (route) {
465 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
466 if (ret)
467 return ret;
468
469 val &= ~(ROUTER_CS_5_WOP | ROUTER_CS_5_WOU | ROUTER_CS_5_WOD);
470 if (flags & TB_WAKE_ON_USB3)
471 val |= ROUTER_CS_5_WOU;
472 if (flags & TB_WAKE_ON_PCIE)
473 val |= ROUTER_CS_5_WOP;
474 if (flags & TB_WAKE_ON_DP)
475 val |= ROUTER_CS_5_WOD;
476
477 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
478 if (ret)
479 return ret;
480 }
481
482 return 0;
483 }
484
485 /**
486 * usb4_switch_set_sleep() - Prepare the router to enter sleep
487 * @sw: USB4 router
488 *
489 * Sets sleep bit for the router. Returns when the router sleep ready
490 * bit has been asserted.
491 */
usb4_switch_set_sleep(struct tb_switch * sw)492 int usb4_switch_set_sleep(struct tb_switch *sw)
493 {
494 int ret;
495 u32 val;
496
497 /* Set sleep bit and wait for sleep ready to be asserted */
498 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
499 if (ret)
500 return ret;
501
502 val |= ROUTER_CS_5_SLP;
503
504 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
505 if (ret)
506 return ret;
507
508 return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR,
509 ROUTER_CS_6_SLPR, 500);
510 }
511
512 /**
513 * usb4_switch_nvm_sector_size() - Return router NVM sector size
514 * @sw: USB4 router
515 *
516 * If the router supports NVM operations this function returns the NVM
517 * sector size in bytes. If NVM operations are not supported returns
518 * %-EOPNOTSUPP.
519 */
usb4_switch_nvm_sector_size(struct tb_switch * sw)520 int usb4_switch_nvm_sector_size(struct tb_switch *sw)
521 {
522 u32 metadata;
523 u8 status;
524 int ret;
525
526 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &metadata,
527 &status);
528 if (ret)
529 return ret;
530
531 if (status)
532 return status == 0x2 ? -EOPNOTSUPP : -EIO;
533
534 return metadata & USB4_NVM_SECTOR_SIZE_MASK;
535 }
536
usb4_switch_nvm_read_block(void * data,unsigned int dwaddress,void * buf,size_t dwords)537 static int usb4_switch_nvm_read_block(void *data,
538 unsigned int dwaddress, void *buf, size_t dwords)
539 {
540 struct tb_switch *sw = data;
541 u8 status = 0;
542 u32 metadata;
543 int ret;
544
545 metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) &
546 USB4_NVM_READ_LENGTH_MASK;
547 metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) &
548 USB4_NVM_READ_OFFSET_MASK;
549
550 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_READ, &metadata,
551 &status, NULL, 0, buf, dwords);
552 if (ret)
553 return ret;
554
555 return status ? -EIO : 0;
556 }
557
558 /**
559 * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM
560 * @sw: USB4 router
561 * @address: Starting address in bytes
562 * @buf: Read data is placed here
563 * @size: How many bytes to read
564 *
565 * Reads NVM contents of the router. If NVM is not supported returns
566 * %-EOPNOTSUPP.
567 */
usb4_switch_nvm_read(struct tb_switch * sw,unsigned int address,void * buf,size_t size)568 int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
569 size_t size)
570 {
571 return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
572 usb4_switch_nvm_read_block, sw);
573 }
574
575 /**
576 * usb4_switch_nvm_set_offset() - Set NVM write offset
577 * @sw: USB4 router
578 * @address: Start offset
579 *
580 * Explicitly sets NVM write offset. Normally when writing to NVM this
581 * is done automatically by usb4_switch_nvm_write().
582 *
583 * Returns %0 in success and negative errno if there was a failure.
584 */
usb4_switch_nvm_set_offset(struct tb_switch * sw,unsigned int address)585 int usb4_switch_nvm_set_offset(struct tb_switch *sw, unsigned int address)
586 {
587 u32 metadata, dwaddress;
588 u8 status = 0;
589 int ret;
590
591 dwaddress = address / 4;
592 metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
593 USB4_NVM_SET_OFFSET_MASK;
594
595 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &metadata,
596 &status);
597 if (ret)
598 return ret;
599
600 return status ? -EIO : 0;
601 }
602
usb4_switch_nvm_write_next_block(void * data,unsigned int dwaddress,const void * buf,size_t dwords)603 static int usb4_switch_nvm_write_next_block(void *data, unsigned int dwaddress,
604 const void *buf, size_t dwords)
605 {
606 struct tb_switch *sw = data;
607 u8 status;
608 int ret;
609
610 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_WRITE, NULL, &status,
611 buf, dwords, NULL, 0);
612 if (ret)
613 return ret;
614
615 return status ? -EIO : 0;
616 }
617
618 /**
619 * usb4_switch_nvm_write() - Write to the router NVM
620 * @sw: USB4 router
621 * @address: Start address where to write in bytes
622 * @buf: Pointer to the data to write
623 * @size: Size of @buf in bytes
624 *
625 * Writes @buf to the router NVM using USB4 router operations. If NVM
626 * write is not supported returns %-EOPNOTSUPP.
627 */
usb4_switch_nvm_write(struct tb_switch * sw,unsigned int address,const void * buf,size_t size)628 int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
629 const void *buf, size_t size)
630 {
631 int ret;
632
633 ret = usb4_switch_nvm_set_offset(sw, address);
634 if (ret)
635 return ret;
636
637 return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
638 usb4_switch_nvm_write_next_block, sw);
639 }
640
641 /**
642 * usb4_switch_nvm_authenticate() - Authenticate new NVM
643 * @sw: USB4 router
644 *
645 * After the new NVM has been written via usb4_switch_nvm_write(), this
646 * function triggers NVM authentication process. The router gets power
647 * cycled and if the authentication is successful the new NVM starts
648 * running. In case of failure returns negative errno.
649 *
650 * The caller should call usb4_switch_nvm_authenticate_status() to read
651 * the status of the authentication after power cycle. It should be the
652 * first router operation to avoid the status being lost.
653 */
usb4_switch_nvm_authenticate(struct tb_switch * sw)654 int usb4_switch_nvm_authenticate(struct tb_switch *sw)
655 {
656 int ret;
657
658 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, NULL, NULL);
659 switch (ret) {
660 /*
661 * The router is power cycled once NVM_AUTH is started so it is
662 * expected to get any of the following errors back.
663 */
664 case -EACCES:
665 case -ENOTCONN:
666 case -ETIMEDOUT:
667 return 0;
668
669 default:
670 return ret;
671 }
672 }
673
674 /**
675 * usb4_switch_nvm_authenticate_status() - Read status of last NVM authenticate
676 * @sw: USB4 router
677 * @status: Status code of the operation
678 *
679 * The function checks if there is status available from the last NVM
680 * authenticate router operation. If there is status then %0 is returned
681 * and the status code is placed in @status. Returns negative errno in case
682 * of failure.
683 *
684 * Must be called before any other router operation.
685 */
usb4_switch_nvm_authenticate_status(struct tb_switch * sw,u32 * status)686 int usb4_switch_nvm_authenticate_status(struct tb_switch *sw, u32 *status)
687 {
688 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
689 u16 opcode;
690 u32 val;
691 int ret;
692
693 if (cm_ops->usb4_switch_nvm_authenticate_status) {
694 ret = cm_ops->usb4_switch_nvm_authenticate_status(sw, status);
695 if (ret != -EOPNOTSUPP)
696 return ret;
697 }
698
699 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
700 if (ret)
701 return ret;
702
703 /* Check that the opcode is correct */
704 opcode = val & ROUTER_CS_26_OPCODE_MASK;
705 if (opcode == USB4_SWITCH_OP_NVM_AUTH) {
706 if (val & ROUTER_CS_26_OV)
707 return -EBUSY;
708 if (val & ROUTER_CS_26_ONS)
709 return -EOPNOTSUPP;
710
711 *status = (val & ROUTER_CS_26_STATUS_MASK) >>
712 ROUTER_CS_26_STATUS_SHIFT;
713 } else {
714 *status = 0;
715 }
716
717 return 0;
718 }
719
720 /**
721 * usb4_switch_credits_init() - Read buffer allocation parameters
722 * @sw: USB4 router
723 *
724 * Reads @sw buffer allocation parameters and initializes @sw buffer
725 * allocation fields accordingly. Specifically @sw->credits_allocation
726 * is set to %true if these parameters can be used in tunneling.
727 *
728 * Returns %0 on success and negative errno otherwise.
729 */
usb4_switch_credits_init(struct tb_switch * sw)730 int usb4_switch_credits_init(struct tb_switch *sw)
731 {
732 int max_usb3, min_dp_aux, min_dp_main, max_pcie, max_dma;
733 int ret, length, i, nports;
734 const struct tb_port *port;
735 u32 data[USB4_DATA_DWORDS];
736 u32 metadata = 0;
737 u8 status = 0;
738
739 memset(data, 0, sizeof(data));
740 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_BUFFER_ALLOC, &metadata,
741 &status, NULL, 0, data, ARRAY_SIZE(data));
742 if (ret)
743 return ret;
744 if (status)
745 return -EIO;
746
747 length = metadata & USB4_BA_LENGTH_MASK;
748 if (WARN_ON(length > ARRAY_SIZE(data)))
749 return -EMSGSIZE;
750
751 max_usb3 = -1;
752 min_dp_aux = -1;
753 min_dp_main = -1;
754 max_pcie = -1;
755 max_dma = -1;
756
757 tb_sw_dbg(sw, "credit allocation parameters:\n");
758
759 for (i = 0; i < length; i++) {
760 u16 index, value;
761
762 index = data[i] & USB4_BA_INDEX_MASK;
763 value = (data[i] & USB4_BA_VALUE_MASK) >> USB4_BA_VALUE_SHIFT;
764
765 switch (index) {
766 case USB4_BA_MAX_USB3:
767 tb_sw_dbg(sw, " USB3: %u\n", value);
768 max_usb3 = value;
769 break;
770 case USB4_BA_MIN_DP_AUX:
771 tb_sw_dbg(sw, " DP AUX: %u\n", value);
772 min_dp_aux = value;
773 break;
774 case USB4_BA_MIN_DP_MAIN:
775 tb_sw_dbg(sw, " DP main: %u\n", value);
776 min_dp_main = value;
777 break;
778 case USB4_BA_MAX_PCIE:
779 tb_sw_dbg(sw, " PCIe: %u\n", value);
780 max_pcie = value;
781 break;
782 case USB4_BA_MAX_HI:
783 tb_sw_dbg(sw, " DMA: %u\n", value);
784 max_dma = value;
785 break;
786 default:
787 tb_sw_dbg(sw, " unknown credit allocation index %#x, skipping\n",
788 index);
789 break;
790 }
791 }
792
793 /*
794 * Validate the buffer allocation preferences. If we find
795 * issues, log a warning and fall back using the hard-coded
796 * values.
797 */
798
799 /* Host router must report baMaxHI */
800 if (!tb_route(sw) && max_dma < 0) {
801 tb_sw_warn(sw, "host router is missing baMaxHI\n");
802 goto err_invalid;
803 }
804
805 nports = 0;
806 tb_switch_for_each_port(sw, port) {
807 if (tb_port_is_null(port))
808 nports++;
809 }
810
811 /* Must have DP buffer allocation (multiple USB4 ports) */
812 if (nports > 2 && (min_dp_aux < 0 || min_dp_main < 0)) {
813 tb_sw_warn(sw, "multiple USB4 ports require baMinDPaux/baMinDPmain\n");
814 goto err_invalid;
815 }
816
817 tb_switch_for_each_port(sw, port) {
818 if (tb_port_is_dpout(port) && min_dp_main < 0) {
819 tb_sw_warn(sw, "missing baMinDPmain");
820 goto err_invalid;
821 }
822 if ((tb_port_is_dpin(port) || tb_port_is_dpout(port)) &&
823 min_dp_aux < 0) {
824 tb_sw_warn(sw, "missing baMinDPaux");
825 goto err_invalid;
826 }
827 if ((tb_port_is_usb3_down(port) || tb_port_is_usb3_up(port)) &&
828 max_usb3 < 0) {
829 tb_sw_warn(sw, "missing baMaxUSB3");
830 goto err_invalid;
831 }
832 if ((tb_port_is_pcie_down(port) || tb_port_is_pcie_up(port)) &&
833 max_pcie < 0) {
834 tb_sw_warn(sw, "missing baMaxPCIe");
835 goto err_invalid;
836 }
837 }
838
839 /*
840 * Buffer allocation passed the validation so we can use it in
841 * path creation.
842 */
843 sw->credit_allocation = true;
844 if (max_usb3 > 0)
845 sw->max_usb3_credits = max_usb3;
846 if (min_dp_aux > 0)
847 sw->min_dp_aux_credits = min_dp_aux;
848 if (min_dp_main > 0)
849 sw->min_dp_main_credits = min_dp_main;
850 if (max_pcie > 0)
851 sw->max_pcie_credits = max_pcie;
852 if (max_dma > 0)
853 sw->max_dma_credits = max_dma;
854
855 return 0;
856
857 err_invalid:
858 return -EINVAL;
859 }
860
861 /**
862 * usb4_switch_query_dp_resource() - Query availability of DP IN resource
863 * @sw: USB4 router
864 * @in: DP IN adapter
865 *
866 * For DP tunneling this function can be used to query availability of
867 * DP IN resource. Returns true if the resource is available for DP
868 * tunneling, false otherwise.
869 */
usb4_switch_query_dp_resource(struct tb_switch * sw,struct tb_port * in)870 bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
871 {
872 u32 metadata = in->port;
873 u8 status;
874 int ret;
875
876 ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &metadata,
877 &status);
878 /*
879 * If DP resource allocation is not supported assume it is
880 * always available.
881 */
882 if (ret == -EOPNOTSUPP)
883 return true;
884 if (ret)
885 return false;
886
887 return !status;
888 }
889
890 /**
891 * usb4_switch_alloc_dp_resource() - Allocate DP IN resource
892 * @sw: USB4 router
893 * @in: DP IN adapter
894 *
895 * Allocates DP IN resource for DP tunneling using USB4 router
896 * operations. If the resource was allocated returns %0. Otherwise
897 * returns negative errno, in particular %-EBUSY if the resource is
898 * already allocated.
899 */
usb4_switch_alloc_dp_resource(struct tb_switch * sw,struct tb_port * in)900 int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
901 {
902 u32 metadata = in->port;
903 u8 status;
904 int ret;
905
906 ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &metadata,
907 &status);
908 if (ret == -EOPNOTSUPP)
909 return 0;
910 if (ret)
911 return ret;
912
913 return status ? -EBUSY : 0;
914 }
915
916 /**
917 * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource
918 * @sw: USB4 router
919 * @in: DP IN adapter
920 *
921 * Releases the previously allocated DP IN resource.
922 */
usb4_switch_dealloc_dp_resource(struct tb_switch * sw,struct tb_port * in)923 int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
924 {
925 u32 metadata = in->port;
926 u8 status;
927 int ret;
928
929 ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &metadata,
930 &status);
931 if (ret == -EOPNOTSUPP)
932 return 0;
933 if (ret)
934 return ret;
935
936 return status ? -EIO : 0;
937 }
938
usb4_port_idx(const struct tb_switch * sw,const struct tb_port * port)939 static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port)
940 {
941 struct tb_port *p;
942 int usb4_idx = 0;
943
944 /* Assume port is primary */
945 tb_switch_for_each_port(sw, p) {
946 if (!tb_port_is_null(p))
947 continue;
948 if (tb_is_upstream_port(p))
949 continue;
950 if (!p->link_nr) {
951 if (p == port)
952 break;
953 usb4_idx++;
954 }
955 }
956
957 return usb4_idx;
958 }
959
960 /**
961 * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter
962 * @sw: USB4 router
963 * @port: USB4 port
964 *
965 * USB4 routers have direct mapping between USB4 ports and PCIe
966 * downstream adapters where the PCIe topology is extended. This
967 * function returns the corresponding downstream PCIe adapter or %NULL
968 * if no such mapping was possible.
969 */
usb4_switch_map_pcie_down(struct tb_switch * sw,const struct tb_port * port)970 struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
971 const struct tb_port *port)
972 {
973 int usb4_idx = usb4_port_idx(sw, port);
974 struct tb_port *p;
975 int pcie_idx = 0;
976
977 /* Find PCIe down port matching usb4_port */
978 tb_switch_for_each_port(sw, p) {
979 if (!tb_port_is_pcie_down(p))
980 continue;
981
982 if (pcie_idx == usb4_idx)
983 return p;
984
985 pcie_idx++;
986 }
987
988 return NULL;
989 }
990
991 /**
992 * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter
993 * @sw: USB4 router
994 * @port: USB4 port
995 *
996 * USB4 routers have direct mapping between USB4 ports and USB 3.x
997 * downstream adapters where the USB 3.x topology is extended. This
998 * function returns the corresponding downstream USB 3.x adapter or
999 * %NULL if no such mapping was possible.
1000 */
usb4_switch_map_usb3_down(struct tb_switch * sw,const struct tb_port * port)1001 struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
1002 const struct tb_port *port)
1003 {
1004 int usb4_idx = usb4_port_idx(sw, port);
1005 struct tb_port *p;
1006 int usb_idx = 0;
1007
1008 /* Find USB3 down port matching usb4_port */
1009 tb_switch_for_each_port(sw, p) {
1010 if (!tb_port_is_usb3_down(p))
1011 continue;
1012
1013 if (usb_idx == usb4_idx)
1014 return p;
1015
1016 usb_idx++;
1017 }
1018
1019 return NULL;
1020 }
1021
1022 /**
1023 * usb4_switch_add_ports() - Add USB4 ports for this router
1024 * @sw: USB4 router
1025 *
1026 * For USB4 router finds all USB4 ports and registers devices for each.
1027 * Can be called to any router.
1028 *
1029 * Return %0 in case of success and negative errno in case of failure.
1030 */
usb4_switch_add_ports(struct tb_switch * sw)1031 int usb4_switch_add_ports(struct tb_switch *sw)
1032 {
1033 struct tb_port *port;
1034
1035 if (tb_switch_is_icm(sw) || !tb_switch_is_usb4(sw))
1036 return 0;
1037
1038 tb_switch_for_each_port(sw, port) {
1039 struct usb4_port *usb4;
1040
1041 if (!tb_port_is_null(port))
1042 continue;
1043 if (!port->cap_usb4)
1044 continue;
1045
1046 usb4 = usb4_port_device_add(port);
1047 if (IS_ERR(usb4)) {
1048 usb4_switch_remove_ports(sw);
1049 return PTR_ERR(usb4);
1050 }
1051
1052 port->usb4 = usb4;
1053 }
1054
1055 return 0;
1056 }
1057
1058 /**
1059 * usb4_switch_remove_ports() - Removes USB4 ports from this router
1060 * @sw: USB4 router
1061 *
1062 * Unregisters previously registered USB4 ports.
1063 */
usb4_switch_remove_ports(struct tb_switch * sw)1064 void usb4_switch_remove_ports(struct tb_switch *sw)
1065 {
1066 struct tb_port *port;
1067
1068 tb_switch_for_each_port(sw, port) {
1069 if (port->usb4) {
1070 usb4_port_device_remove(port->usb4);
1071 port->usb4 = NULL;
1072 }
1073 }
1074 }
1075
1076 /**
1077 * usb4_port_unlock() - Unlock USB4 downstream port
1078 * @port: USB4 port to unlock
1079 *
1080 * Unlocks USB4 downstream port so that the connection manager can
1081 * access the router below this port.
1082 */
usb4_port_unlock(struct tb_port * port)1083 int usb4_port_unlock(struct tb_port *port)
1084 {
1085 int ret;
1086 u32 val;
1087
1088 ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
1089 if (ret)
1090 return ret;
1091
1092 val &= ~ADP_CS_4_LCK;
1093 return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
1094 }
1095
1096 /**
1097 * usb4_port_hotplug_enable() - Enables hotplug for a port
1098 * @port: USB4 port to operate on
1099 *
1100 * Enables hot plug events on a given port. This is only intended
1101 * to be used on lane, DP-IN, and DP-OUT adapters.
1102 */
usb4_port_hotplug_enable(struct tb_port * port)1103 int usb4_port_hotplug_enable(struct tb_port *port)
1104 {
1105 int ret;
1106 u32 val;
1107
1108 ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_5, 1);
1109 if (ret)
1110 return ret;
1111
1112 val &= ~ADP_CS_5_DHP;
1113 return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_5, 1);
1114 }
1115
usb4_port_set_configured(struct tb_port * port,bool configured)1116 static int usb4_port_set_configured(struct tb_port *port, bool configured)
1117 {
1118 int ret;
1119 u32 val;
1120
1121 if (!port->cap_usb4)
1122 return -EINVAL;
1123
1124 ret = tb_port_read(port, &val, TB_CFG_PORT,
1125 port->cap_usb4 + PORT_CS_19, 1);
1126 if (ret)
1127 return ret;
1128
1129 if (configured)
1130 val |= PORT_CS_19_PC;
1131 else
1132 val &= ~PORT_CS_19_PC;
1133
1134 return tb_port_write(port, &val, TB_CFG_PORT,
1135 port->cap_usb4 + PORT_CS_19, 1);
1136 }
1137
1138 /**
1139 * usb4_port_configure() - Set USB4 port configured
1140 * @port: USB4 router
1141 *
1142 * Sets the USB4 link to be configured for power management purposes.
1143 */
usb4_port_configure(struct tb_port * port)1144 int usb4_port_configure(struct tb_port *port)
1145 {
1146 return usb4_port_set_configured(port, true);
1147 }
1148
1149 /**
1150 * usb4_port_unconfigure() - Set USB4 port unconfigured
1151 * @port: USB4 router
1152 *
1153 * Sets the USB4 link to be unconfigured for power management purposes.
1154 */
usb4_port_unconfigure(struct tb_port * port)1155 void usb4_port_unconfigure(struct tb_port *port)
1156 {
1157 usb4_port_set_configured(port, false);
1158 }
1159
usb4_set_xdomain_configured(struct tb_port * port,bool configured)1160 static int usb4_set_xdomain_configured(struct tb_port *port, bool configured)
1161 {
1162 int ret;
1163 u32 val;
1164
1165 if (!port->cap_usb4)
1166 return -EINVAL;
1167
1168 ret = tb_port_read(port, &val, TB_CFG_PORT,
1169 port->cap_usb4 + PORT_CS_19, 1);
1170 if (ret)
1171 return ret;
1172
1173 if (configured)
1174 val |= PORT_CS_19_PID;
1175 else
1176 val &= ~PORT_CS_19_PID;
1177
1178 return tb_port_write(port, &val, TB_CFG_PORT,
1179 port->cap_usb4 + PORT_CS_19, 1);
1180 }
1181
1182 /**
1183 * usb4_port_configure_xdomain() - Configure port for XDomain
1184 * @port: USB4 port connected to another host
1185 * @xd: XDomain that is connected to the port
1186 *
1187 * Marks the USB4 port as being connected to another host and updates
1188 * the link type. Returns %0 in success and negative errno in failure.
1189 */
usb4_port_configure_xdomain(struct tb_port * port,struct tb_xdomain * xd)1190 int usb4_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd)
1191 {
1192 xd->link_usb4 = link_is_usb4(port);
1193 return usb4_set_xdomain_configured(port, true);
1194 }
1195
1196 /**
1197 * usb4_port_unconfigure_xdomain() - Unconfigure port for XDomain
1198 * @port: USB4 port that was connected to another host
1199 *
1200 * Clears USB4 port from being marked as XDomain.
1201 */
usb4_port_unconfigure_xdomain(struct tb_port * port)1202 void usb4_port_unconfigure_xdomain(struct tb_port *port)
1203 {
1204 usb4_set_xdomain_configured(port, false);
1205 }
1206
usb4_port_wait_for_bit(struct tb_port * port,u32 offset,u32 bit,u32 value,int timeout_msec)1207 static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit,
1208 u32 value, int timeout_msec)
1209 {
1210 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1211
1212 do {
1213 u32 val;
1214 int ret;
1215
1216 ret = tb_port_read(port, &val, TB_CFG_PORT, offset, 1);
1217 if (ret)
1218 return ret;
1219
1220 if ((val & bit) == value)
1221 return 0;
1222
1223 usleep_range(50, 100);
1224 } while (ktime_before(ktime_get(), timeout));
1225
1226 return -ETIMEDOUT;
1227 }
1228
usb4_port_read_data(struct tb_port * port,void * data,size_t dwords)1229 static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords)
1230 {
1231 if (dwords > USB4_DATA_DWORDS)
1232 return -EINVAL;
1233
1234 return tb_port_read(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1235 dwords);
1236 }
1237
usb4_port_write_data(struct tb_port * port,const void * data,size_t dwords)1238 static int usb4_port_write_data(struct tb_port *port, const void *data,
1239 size_t dwords)
1240 {
1241 if (dwords > USB4_DATA_DWORDS)
1242 return -EINVAL;
1243
1244 return tb_port_write(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1245 dwords);
1246 }
1247
usb4_port_sb_read(struct tb_port * port,enum usb4_sb_target target,u8 index,u8 reg,void * buf,u8 size)1248 static int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target,
1249 u8 index, u8 reg, void *buf, u8 size)
1250 {
1251 size_t dwords = DIV_ROUND_UP(size, 4);
1252 int ret;
1253 u32 val;
1254
1255 if (!port->cap_usb4)
1256 return -EINVAL;
1257
1258 val = reg;
1259 val |= size << PORT_CS_1_LENGTH_SHIFT;
1260 val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1261 if (target == USB4_SB_TARGET_RETIMER)
1262 val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1263 val |= PORT_CS_1_PND;
1264
1265 ret = tb_port_write(port, &val, TB_CFG_PORT,
1266 port->cap_usb4 + PORT_CS_1, 1);
1267 if (ret)
1268 return ret;
1269
1270 ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1271 PORT_CS_1_PND, 0, 500);
1272 if (ret)
1273 return ret;
1274
1275 ret = tb_port_read(port, &val, TB_CFG_PORT,
1276 port->cap_usb4 + PORT_CS_1, 1);
1277 if (ret)
1278 return ret;
1279
1280 if (val & PORT_CS_1_NR)
1281 return -ENODEV;
1282 if (val & PORT_CS_1_RC)
1283 return -EIO;
1284
1285 return buf ? usb4_port_read_data(port, buf, dwords) : 0;
1286 }
1287
usb4_port_sb_write(struct tb_port * port,enum usb4_sb_target target,u8 index,u8 reg,const void * buf,u8 size)1288 static int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target,
1289 u8 index, u8 reg, const void *buf, u8 size)
1290 {
1291 size_t dwords = DIV_ROUND_UP(size, 4);
1292 int ret;
1293 u32 val;
1294
1295 if (!port->cap_usb4)
1296 return -EINVAL;
1297
1298 if (buf) {
1299 ret = usb4_port_write_data(port, buf, dwords);
1300 if (ret)
1301 return ret;
1302 }
1303
1304 val = reg;
1305 val |= size << PORT_CS_1_LENGTH_SHIFT;
1306 val |= PORT_CS_1_WNR_WRITE;
1307 val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1308 if (target == USB4_SB_TARGET_RETIMER)
1309 val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1310 val |= PORT_CS_1_PND;
1311
1312 ret = tb_port_write(port, &val, TB_CFG_PORT,
1313 port->cap_usb4 + PORT_CS_1, 1);
1314 if (ret)
1315 return ret;
1316
1317 ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1318 PORT_CS_1_PND, 0, 500);
1319 if (ret)
1320 return ret;
1321
1322 ret = tb_port_read(port, &val, TB_CFG_PORT,
1323 port->cap_usb4 + PORT_CS_1, 1);
1324 if (ret)
1325 return ret;
1326
1327 if (val & PORT_CS_1_NR)
1328 return -ENODEV;
1329 if (val & PORT_CS_1_RC)
1330 return -EIO;
1331
1332 return 0;
1333 }
1334
usb4_port_sb_opcode_err_to_errno(u32 val)1335 static int usb4_port_sb_opcode_err_to_errno(u32 val)
1336 {
1337 switch (val) {
1338 case 0:
1339 return 0;
1340 case USB4_SB_OPCODE_ERR:
1341 return -EAGAIN;
1342 case USB4_SB_OPCODE_ONS:
1343 return -EOPNOTSUPP;
1344 default:
1345 return -EIO;
1346 }
1347 }
1348
usb4_port_sb_op(struct tb_port * port,enum usb4_sb_target target,u8 index,enum usb4_sb_opcode opcode,int timeout_msec)1349 static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target,
1350 u8 index, enum usb4_sb_opcode opcode, int timeout_msec)
1351 {
1352 ktime_t timeout;
1353 u32 val;
1354 int ret;
1355
1356 val = opcode;
1357 ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, &val,
1358 sizeof(val));
1359 if (ret)
1360 return ret;
1361
1362 timeout = ktime_add_ms(ktime_get(), timeout_msec);
1363
1364 do {
1365 /* Check results */
1366 ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE,
1367 &val, sizeof(val));
1368 if (ret)
1369 return ret;
1370
1371 if (val != opcode)
1372 return usb4_port_sb_opcode_err_to_errno(val);
1373 } while (ktime_before(ktime_get(), timeout));
1374
1375 return -ETIMEDOUT;
1376 }
1377
usb4_port_set_router_offline(struct tb_port * port,bool offline)1378 static int usb4_port_set_router_offline(struct tb_port *port, bool offline)
1379 {
1380 u32 val = !offline;
1381 int ret;
1382
1383 ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1384 USB4_SB_METADATA, &val, sizeof(val));
1385 if (ret)
1386 return ret;
1387
1388 val = USB4_SB_OPCODE_ROUTER_OFFLINE;
1389 return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1390 USB4_SB_OPCODE, &val, sizeof(val));
1391 }
1392
1393 /**
1394 * usb4_port_router_offline() - Put the USB4 port to offline mode
1395 * @port: USB4 port
1396 *
1397 * This function puts the USB4 port into offline mode. In this mode the
1398 * port does not react on hotplug events anymore. This needs to be
1399 * called before retimer access is done when the USB4 links is not up.
1400 *
1401 * Returns %0 in case of success and negative errno if there was an
1402 * error.
1403 */
usb4_port_router_offline(struct tb_port * port)1404 int usb4_port_router_offline(struct tb_port *port)
1405 {
1406 return usb4_port_set_router_offline(port, true);
1407 }
1408
1409 /**
1410 * usb4_port_router_online() - Put the USB4 port back to online
1411 * @port: USB4 port
1412 *
1413 * Makes the USB4 port functional again.
1414 */
usb4_port_router_online(struct tb_port * port)1415 int usb4_port_router_online(struct tb_port *port)
1416 {
1417 return usb4_port_set_router_offline(port, false);
1418 }
1419
1420 /**
1421 * usb4_port_enumerate_retimers() - Send RT broadcast transaction
1422 * @port: USB4 port
1423 *
1424 * This forces the USB4 port to send broadcast RT transaction which
1425 * makes the retimers on the link to assign index to themselves. Returns
1426 * %0 in case of success and negative errno if there was an error.
1427 */
usb4_port_enumerate_retimers(struct tb_port * port)1428 int usb4_port_enumerate_retimers(struct tb_port *port)
1429 {
1430 u32 val;
1431
1432 val = USB4_SB_OPCODE_ENUMERATE_RETIMERS;
1433 return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1434 USB4_SB_OPCODE, &val, sizeof(val));
1435 }
1436
1437 /**
1438 * usb4_port_clx_supported() - Check if CLx is supported by the link
1439 * @port: Port to check for CLx support for
1440 *
1441 * PORT_CS_18_CPS bit reflects if the link supports CLx including
1442 * active cables (if connected on the link).
1443 */
usb4_port_clx_supported(struct tb_port * port)1444 bool usb4_port_clx_supported(struct tb_port *port)
1445 {
1446 int ret;
1447 u32 val;
1448
1449 ret = tb_port_read(port, &val, TB_CFG_PORT,
1450 port->cap_usb4 + PORT_CS_18, 1);
1451 if (ret)
1452 return false;
1453
1454 return !!(val & PORT_CS_18_CPS);
1455 }
1456
1457 /**
1458 * usb4_port_margining_caps() - Read USB4 port marginig capabilities
1459 * @port: USB4 port
1460 * @caps: Array with at least two elements to hold the results
1461 *
1462 * Reads the USB4 port lane margining capabilities into @caps.
1463 */
usb4_port_margining_caps(struct tb_port * port,u32 * caps)1464 int usb4_port_margining_caps(struct tb_port *port, u32 *caps)
1465 {
1466 int ret;
1467
1468 ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1469 USB4_SB_OPCODE_READ_LANE_MARGINING_CAP, 500);
1470 if (ret)
1471 return ret;
1472
1473 return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
1474 USB4_SB_DATA, caps, sizeof(*caps) * 2);
1475 }
1476
1477 /**
1478 * usb4_port_hw_margin() - Run hardware lane margining on port
1479 * @port: USB4 port
1480 * @lanes: Which lanes to run (must match the port capabilities). Can be
1481 * %0, %1 or %7.
1482 * @ber_level: BER level contour value
1483 * @timing: Perform timing margining instead of voltage
1484 * @right_high: Use Right/high margin instead of left/low
1485 * @results: Array with at least two elements to hold the results
1486 *
1487 * Runs hardware lane margining on USB4 port and returns the result in
1488 * @results.
1489 */
usb4_port_hw_margin(struct tb_port * port,unsigned int lanes,unsigned int ber_level,bool timing,bool right_high,u32 * results)1490 int usb4_port_hw_margin(struct tb_port *port, unsigned int lanes,
1491 unsigned int ber_level, bool timing, bool right_high,
1492 u32 *results)
1493 {
1494 u32 val;
1495 int ret;
1496
1497 val = lanes;
1498 if (timing)
1499 val |= USB4_MARGIN_HW_TIME;
1500 if (right_high)
1501 val |= USB4_MARGIN_HW_RH;
1502 if (ber_level)
1503 val |= (ber_level << USB4_MARGIN_HW_BER_SHIFT) &
1504 USB4_MARGIN_HW_BER_MASK;
1505
1506 ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1507 USB4_SB_METADATA, &val, sizeof(val));
1508 if (ret)
1509 return ret;
1510
1511 ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1512 USB4_SB_OPCODE_RUN_HW_LANE_MARGINING, 2500);
1513 if (ret)
1514 return ret;
1515
1516 return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
1517 USB4_SB_DATA, results, sizeof(*results) * 2);
1518 }
1519
1520 /**
1521 * usb4_port_sw_margin() - Run software lane margining on port
1522 * @port: USB4 port
1523 * @lanes: Which lanes to run (must match the port capabilities). Can be
1524 * %0, %1 or %7.
1525 * @timing: Perform timing margining instead of voltage
1526 * @right_high: Use Right/high margin instead of left/low
1527 * @counter: What to do with the error counter
1528 *
1529 * Runs software lane margining on USB4 port. Read back the error
1530 * counters by calling usb4_port_sw_margin_errors(). Returns %0 in
1531 * success and negative errno otherwise.
1532 */
usb4_port_sw_margin(struct tb_port * port,unsigned int lanes,bool timing,bool right_high,u32 counter)1533 int usb4_port_sw_margin(struct tb_port *port, unsigned int lanes, bool timing,
1534 bool right_high, u32 counter)
1535 {
1536 u32 val;
1537 int ret;
1538
1539 val = lanes;
1540 if (timing)
1541 val |= USB4_MARGIN_SW_TIME;
1542 if (right_high)
1543 val |= USB4_MARGIN_SW_RH;
1544 val |= (counter << USB4_MARGIN_SW_COUNTER_SHIFT) &
1545 USB4_MARGIN_SW_COUNTER_MASK;
1546
1547 ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1548 USB4_SB_METADATA, &val, sizeof(val));
1549 if (ret)
1550 return ret;
1551
1552 return usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1553 USB4_SB_OPCODE_RUN_SW_LANE_MARGINING, 2500);
1554 }
1555
1556 /**
1557 * usb4_port_sw_margin_errors() - Read the software margining error counters
1558 * @port: USB4 port
1559 * @errors: Error metadata is copied here.
1560 *
1561 * This reads back the software margining error counters from the port.
1562 * Returns %0 in success and negative errno otherwise.
1563 */
usb4_port_sw_margin_errors(struct tb_port * port,u32 * errors)1564 int usb4_port_sw_margin_errors(struct tb_port *port, u32 *errors)
1565 {
1566 int ret;
1567
1568 ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1569 USB4_SB_OPCODE_READ_SW_MARGIN_ERR, 150);
1570 if (ret)
1571 return ret;
1572
1573 return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
1574 USB4_SB_METADATA, errors, sizeof(*errors));
1575 }
1576
usb4_port_retimer_op(struct tb_port * port,u8 index,enum usb4_sb_opcode opcode,int timeout_msec)1577 static inline int usb4_port_retimer_op(struct tb_port *port, u8 index,
1578 enum usb4_sb_opcode opcode,
1579 int timeout_msec)
1580 {
1581 return usb4_port_sb_op(port, USB4_SB_TARGET_RETIMER, index, opcode,
1582 timeout_msec);
1583 }
1584
1585 /**
1586 * usb4_port_retimer_set_inbound_sbtx() - Enable sideband channel transactions
1587 * @port: USB4 port
1588 * @index: Retimer index
1589 *
1590 * Enables sideband channel transations on SBTX. Can be used when USB4
1591 * link does not go up, for example if there is no device connected.
1592 */
usb4_port_retimer_set_inbound_sbtx(struct tb_port * port,u8 index)1593 int usb4_port_retimer_set_inbound_sbtx(struct tb_port *port, u8 index)
1594 {
1595 int ret;
1596
1597 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
1598 500);
1599
1600 if (ret != -ENODEV)
1601 return ret;
1602
1603 /*
1604 * Per the USB4 retimer spec, the retimer is not required to
1605 * send an RT (Retimer Transaction) response for the first
1606 * SET_INBOUND_SBTX command
1607 */
1608 return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
1609 500);
1610 }
1611
1612 /**
1613 * usb4_port_retimer_unset_inbound_sbtx() - Disable sideband channel transactions
1614 * @port: USB4 port
1615 * @index: Retimer index
1616 *
1617 * Disables sideband channel transations on SBTX. The reverse of
1618 * usb4_port_retimer_set_inbound_sbtx().
1619 */
usb4_port_retimer_unset_inbound_sbtx(struct tb_port * port,u8 index)1620 int usb4_port_retimer_unset_inbound_sbtx(struct tb_port *port, u8 index)
1621 {
1622 return usb4_port_retimer_op(port, index,
1623 USB4_SB_OPCODE_UNSET_INBOUND_SBTX, 500);
1624 }
1625
1626 /**
1627 * usb4_port_retimer_read() - Read from retimer sideband registers
1628 * @port: USB4 port
1629 * @index: Retimer index
1630 * @reg: Sideband register to read
1631 * @buf: Data from @reg is stored here
1632 * @size: Number of bytes to read
1633 *
1634 * Function reads retimer sideband registers starting from @reg. The
1635 * retimer is connected to @port at @index. Returns %0 in case of
1636 * success, and read data is copied to @buf. If there is no retimer
1637 * present at given @index returns %-ENODEV. In any other failure
1638 * returns negative errno.
1639 */
usb4_port_retimer_read(struct tb_port * port,u8 index,u8 reg,void * buf,u8 size)1640 int usb4_port_retimer_read(struct tb_port *port, u8 index, u8 reg, void *buf,
1641 u8 size)
1642 {
1643 return usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1644 size);
1645 }
1646
1647 /**
1648 * usb4_port_retimer_write() - Write to retimer sideband registers
1649 * @port: USB4 port
1650 * @index: Retimer index
1651 * @reg: Sideband register to write
1652 * @buf: Data that is written starting from @reg
1653 * @size: Number of bytes to write
1654 *
1655 * Writes retimer sideband registers starting from @reg. The retimer is
1656 * connected to @port at @index. Returns %0 in case of success. If there
1657 * is no retimer present at given @index returns %-ENODEV. In any other
1658 * failure returns negative errno.
1659 */
usb4_port_retimer_write(struct tb_port * port,u8 index,u8 reg,const void * buf,u8 size)1660 int usb4_port_retimer_write(struct tb_port *port, u8 index, u8 reg,
1661 const void *buf, u8 size)
1662 {
1663 return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1664 size);
1665 }
1666
1667 /**
1668 * usb4_port_retimer_is_last() - Is the retimer last on-board retimer
1669 * @port: USB4 port
1670 * @index: Retimer index
1671 *
1672 * If the retimer at @index is last one (connected directly to the
1673 * Type-C port) this function returns %1. If it is not returns %0. If
1674 * the retimer is not present returns %-ENODEV. Otherwise returns
1675 * negative errno.
1676 */
usb4_port_retimer_is_last(struct tb_port * port,u8 index)1677 int usb4_port_retimer_is_last(struct tb_port *port, u8 index)
1678 {
1679 u32 metadata;
1680 int ret;
1681
1682 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_LAST_RETIMER,
1683 500);
1684 if (ret)
1685 return ret;
1686
1687 ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1688 sizeof(metadata));
1689 return ret ? ret : metadata & 1;
1690 }
1691
1692 /**
1693 * usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size
1694 * @port: USB4 port
1695 * @index: Retimer index
1696 *
1697 * Reads NVM sector size (in bytes) of a retimer at @index. This
1698 * operation can be used to determine whether the retimer supports NVM
1699 * upgrade for example. Returns sector size in bytes or negative errno
1700 * in case of error. Specifically returns %-ENODEV if there is no
1701 * retimer at @index.
1702 */
usb4_port_retimer_nvm_sector_size(struct tb_port * port,u8 index)1703 int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index)
1704 {
1705 u32 metadata;
1706 int ret;
1707
1708 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE,
1709 500);
1710 if (ret)
1711 return ret;
1712
1713 ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1714 sizeof(metadata));
1715 return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK;
1716 }
1717
1718 /**
1719 * usb4_port_retimer_nvm_set_offset() - Set NVM write offset
1720 * @port: USB4 port
1721 * @index: Retimer index
1722 * @address: Start offset
1723 *
1724 * Exlicitly sets NVM write offset. Normally when writing to NVM this is
1725 * done automatically by usb4_port_retimer_nvm_write().
1726 *
1727 * Returns %0 in success and negative errno if there was a failure.
1728 */
usb4_port_retimer_nvm_set_offset(struct tb_port * port,u8 index,unsigned int address)1729 int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index,
1730 unsigned int address)
1731 {
1732 u32 metadata, dwaddress;
1733 int ret;
1734
1735 dwaddress = address / 4;
1736 metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
1737 USB4_NVM_SET_OFFSET_MASK;
1738
1739 ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1740 sizeof(metadata));
1741 if (ret)
1742 return ret;
1743
1744 return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_SET_OFFSET,
1745 500);
1746 }
1747
1748 struct retimer_info {
1749 struct tb_port *port;
1750 u8 index;
1751 };
1752
usb4_port_retimer_nvm_write_next_block(void * data,unsigned int dwaddress,const void * buf,size_t dwords)1753 static int usb4_port_retimer_nvm_write_next_block(void *data,
1754 unsigned int dwaddress, const void *buf, size_t dwords)
1755
1756 {
1757 const struct retimer_info *info = data;
1758 struct tb_port *port = info->port;
1759 u8 index = info->index;
1760 int ret;
1761
1762 ret = usb4_port_retimer_write(port, index, USB4_SB_DATA,
1763 buf, dwords * 4);
1764 if (ret)
1765 return ret;
1766
1767 return usb4_port_retimer_op(port, index,
1768 USB4_SB_OPCODE_NVM_BLOCK_WRITE, 1000);
1769 }
1770
1771 /**
1772 * usb4_port_retimer_nvm_write() - Write to retimer NVM
1773 * @port: USB4 port
1774 * @index: Retimer index
1775 * @address: Byte address where to start the write
1776 * @buf: Data to write
1777 * @size: Size in bytes how much to write
1778 *
1779 * Writes @size bytes from @buf to the retimer NVM. Used for NVM
1780 * upgrade. Returns %0 if the data was written successfully and negative
1781 * errno in case of failure. Specifically returns %-ENODEV if there is
1782 * no retimer at @index.
1783 */
usb4_port_retimer_nvm_write(struct tb_port * port,u8 index,unsigned int address,const void * buf,size_t size)1784 int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address,
1785 const void *buf, size_t size)
1786 {
1787 struct retimer_info info = { .port = port, .index = index };
1788 int ret;
1789
1790 ret = usb4_port_retimer_nvm_set_offset(port, index, address);
1791 if (ret)
1792 return ret;
1793
1794 return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
1795 usb4_port_retimer_nvm_write_next_block, &info);
1796 }
1797
1798 /**
1799 * usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade
1800 * @port: USB4 port
1801 * @index: Retimer index
1802 *
1803 * After the new NVM image has been written via usb4_port_retimer_nvm_write()
1804 * this function can be used to trigger the NVM upgrade process. If
1805 * successful the retimer restarts with the new NVM and may not have the
1806 * index set so one needs to call usb4_port_enumerate_retimers() to
1807 * force index to be assigned.
1808 */
usb4_port_retimer_nvm_authenticate(struct tb_port * port,u8 index)1809 int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index)
1810 {
1811 u32 val;
1812
1813 /*
1814 * We need to use the raw operation here because once the
1815 * authentication completes the retimer index is not set anymore
1816 * so we do not get back the status now.
1817 */
1818 val = USB4_SB_OPCODE_NVM_AUTH_WRITE;
1819 return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
1820 USB4_SB_OPCODE, &val, sizeof(val));
1821 }
1822
1823 /**
1824 * usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade
1825 * @port: USB4 port
1826 * @index: Retimer index
1827 * @status: Raw status code read from metadata
1828 *
1829 * This can be called after usb4_port_retimer_nvm_authenticate() and
1830 * usb4_port_enumerate_retimers() to fetch status of the NVM upgrade.
1831 *
1832 * Returns %0 if the authentication status was successfully read. The
1833 * completion metadata (the result) is then stored into @status. If
1834 * reading the status fails, returns negative errno.
1835 */
usb4_port_retimer_nvm_authenticate_status(struct tb_port * port,u8 index,u32 * status)1836 int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index,
1837 u32 *status)
1838 {
1839 u32 metadata, val;
1840 int ret;
1841
1842 ret = usb4_port_retimer_read(port, index, USB4_SB_OPCODE, &val,
1843 sizeof(val));
1844 if (ret)
1845 return ret;
1846
1847 ret = usb4_port_sb_opcode_err_to_errno(val);
1848 switch (ret) {
1849 case 0:
1850 *status = 0;
1851 return 0;
1852
1853 case -EAGAIN:
1854 ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA,
1855 &metadata, sizeof(metadata));
1856 if (ret)
1857 return ret;
1858
1859 *status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK;
1860 return 0;
1861
1862 default:
1863 return ret;
1864 }
1865 }
1866
usb4_port_retimer_nvm_read_block(void * data,unsigned int dwaddress,void * buf,size_t dwords)1867 static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress,
1868 void *buf, size_t dwords)
1869 {
1870 const struct retimer_info *info = data;
1871 struct tb_port *port = info->port;
1872 u8 index = info->index;
1873 u32 metadata;
1874 int ret;
1875
1876 metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT;
1877 if (dwords < USB4_DATA_DWORDS)
1878 metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT;
1879
1880 ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1881 sizeof(metadata));
1882 if (ret)
1883 return ret;
1884
1885 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_READ, 500);
1886 if (ret)
1887 return ret;
1888
1889 return usb4_port_retimer_read(port, index, USB4_SB_DATA, buf,
1890 dwords * 4);
1891 }
1892
1893 /**
1894 * usb4_port_retimer_nvm_read() - Read contents of retimer NVM
1895 * @port: USB4 port
1896 * @index: Retimer index
1897 * @address: NVM address (in bytes) to start reading
1898 * @buf: Data read from NVM is stored here
1899 * @size: Number of bytes to read
1900 *
1901 * Reads retimer NVM and copies the contents to @buf. Returns %0 if the
1902 * read was successful and negative errno in case of failure.
1903 * Specifically returns %-ENODEV if there is no retimer at @index.
1904 */
usb4_port_retimer_nvm_read(struct tb_port * port,u8 index,unsigned int address,void * buf,size_t size)1905 int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index,
1906 unsigned int address, void *buf, size_t size)
1907 {
1908 struct retimer_info info = { .port = port, .index = index };
1909
1910 return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
1911 usb4_port_retimer_nvm_read_block, &info);
1912 }
1913
1914 static inline unsigned int
usb4_usb3_port_max_bandwidth(const struct tb_port * port,unsigned int bw)1915 usb4_usb3_port_max_bandwidth(const struct tb_port *port, unsigned int bw)
1916 {
1917 /* Take the possible bandwidth limitation into account */
1918 if (port->max_bw)
1919 return min(bw, port->max_bw);
1920 return bw;
1921 }
1922
1923 /**
1924 * usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate
1925 * @port: USB3 adapter port
1926 *
1927 * Return maximum supported link rate of a USB3 adapter in Mb/s.
1928 * Negative errno in case of error.
1929 */
usb4_usb3_port_max_link_rate(struct tb_port * port)1930 int usb4_usb3_port_max_link_rate(struct tb_port *port)
1931 {
1932 int ret, lr;
1933 u32 val;
1934
1935 if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
1936 return -EINVAL;
1937
1938 ret = tb_port_read(port, &val, TB_CFG_PORT,
1939 port->cap_adap + ADP_USB3_CS_4, 1);
1940 if (ret)
1941 return ret;
1942
1943 lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT;
1944 ret = lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000;
1945
1946 return usb4_usb3_port_max_bandwidth(port, ret);
1947 }
1948
1949 /**
1950 * usb4_usb3_port_actual_link_rate() - Established USB3 link rate
1951 * @port: USB3 adapter port
1952 *
1953 * Return actual established link rate of a USB3 adapter in Mb/s. If the
1954 * link is not up returns %0 and negative errno in case of failure.
1955 */
usb4_usb3_port_actual_link_rate(struct tb_port * port)1956 int usb4_usb3_port_actual_link_rate(struct tb_port *port)
1957 {
1958 int ret, lr;
1959 u32 val;
1960
1961 if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
1962 return -EINVAL;
1963
1964 ret = tb_port_read(port, &val, TB_CFG_PORT,
1965 port->cap_adap + ADP_USB3_CS_4, 1);
1966 if (ret)
1967 return ret;
1968
1969 if (!(val & ADP_USB3_CS_4_ULV))
1970 return 0;
1971
1972 lr = val & ADP_USB3_CS_4_ALR_MASK;
1973 ret = lr == ADP_USB3_CS_4_ALR_20G ? 20000 : 10000;
1974
1975 return usb4_usb3_port_max_bandwidth(port, ret);
1976 }
1977
usb4_usb3_port_cm_request(struct tb_port * port,bool request)1978 static int usb4_usb3_port_cm_request(struct tb_port *port, bool request)
1979 {
1980 int ret;
1981 u32 val;
1982
1983 if (!tb_port_is_usb3_down(port))
1984 return -EINVAL;
1985 if (tb_route(port->sw))
1986 return -EINVAL;
1987
1988 ret = tb_port_read(port, &val, TB_CFG_PORT,
1989 port->cap_adap + ADP_USB3_CS_2, 1);
1990 if (ret)
1991 return ret;
1992
1993 if (request)
1994 val |= ADP_USB3_CS_2_CMR;
1995 else
1996 val &= ~ADP_USB3_CS_2_CMR;
1997
1998 ret = tb_port_write(port, &val, TB_CFG_PORT,
1999 port->cap_adap + ADP_USB3_CS_2, 1);
2000 if (ret)
2001 return ret;
2002
2003 /*
2004 * We can use val here directly as the CMR bit is in the same place
2005 * as HCA. Just mask out others.
2006 */
2007 val &= ADP_USB3_CS_2_CMR;
2008 return usb4_port_wait_for_bit(port, port->cap_adap + ADP_USB3_CS_1,
2009 ADP_USB3_CS_1_HCA, val, 1500);
2010 }
2011
usb4_usb3_port_set_cm_request(struct tb_port * port)2012 static inline int usb4_usb3_port_set_cm_request(struct tb_port *port)
2013 {
2014 return usb4_usb3_port_cm_request(port, true);
2015 }
2016
usb4_usb3_port_clear_cm_request(struct tb_port * port)2017 static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port)
2018 {
2019 return usb4_usb3_port_cm_request(port, false);
2020 }
2021
usb3_bw_to_mbps(u32 bw,u8 scale)2022 static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale)
2023 {
2024 unsigned long uframes;
2025
2026 uframes = bw * 512UL << scale;
2027 return DIV_ROUND_CLOSEST(uframes * 8000, MEGA);
2028 }
2029
mbps_to_usb3_bw(unsigned int mbps,u8 scale)2030 static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale)
2031 {
2032 unsigned long uframes;
2033
2034 /* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */
2035 uframes = ((unsigned long)mbps * MEGA) / 8000;
2036 return DIV_ROUND_UP(uframes, 512UL << scale);
2037 }
2038
usb4_usb3_port_read_allocated_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)2039 static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port,
2040 int *upstream_bw,
2041 int *downstream_bw)
2042 {
2043 u32 val, bw, scale;
2044 int ret;
2045
2046 ret = tb_port_read(port, &val, TB_CFG_PORT,
2047 port->cap_adap + ADP_USB3_CS_2, 1);
2048 if (ret)
2049 return ret;
2050
2051 ret = tb_port_read(port, &scale, TB_CFG_PORT,
2052 port->cap_adap + ADP_USB3_CS_3, 1);
2053 if (ret)
2054 return ret;
2055
2056 scale &= ADP_USB3_CS_3_SCALE_MASK;
2057
2058 bw = val & ADP_USB3_CS_2_AUBW_MASK;
2059 *upstream_bw = usb3_bw_to_mbps(bw, scale);
2060
2061 bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT;
2062 *downstream_bw = usb3_bw_to_mbps(bw, scale);
2063
2064 return 0;
2065 }
2066
2067 /**
2068 * usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3
2069 * @port: USB3 adapter port
2070 * @upstream_bw: Allocated upstream bandwidth is stored here
2071 * @downstream_bw: Allocated downstream bandwidth is stored here
2072 *
2073 * Stores currently allocated USB3 bandwidth into @upstream_bw and
2074 * @downstream_bw in Mb/s. Returns %0 in case of success and negative
2075 * errno in failure.
2076 */
usb4_usb3_port_allocated_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)2077 int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw,
2078 int *downstream_bw)
2079 {
2080 int ret;
2081
2082 ret = usb4_usb3_port_set_cm_request(port);
2083 if (ret)
2084 return ret;
2085
2086 ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw,
2087 downstream_bw);
2088 usb4_usb3_port_clear_cm_request(port);
2089
2090 return ret;
2091 }
2092
usb4_usb3_port_read_consumed_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)2093 static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port,
2094 int *upstream_bw,
2095 int *downstream_bw)
2096 {
2097 u32 val, bw, scale;
2098 int ret;
2099
2100 ret = tb_port_read(port, &val, TB_CFG_PORT,
2101 port->cap_adap + ADP_USB3_CS_1, 1);
2102 if (ret)
2103 return ret;
2104
2105 ret = tb_port_read(port, &scale, TB_CFG_PORT,
2106 port->cap_adap + ADP_USB3_CS_3, 1);
2107 if (ret)
2108 return ret;
2109
2110 scale &= ADP_USB3_CS_3_SCALE_MASK;
2111
2112 bw = val & ADP_USB3_CS_1_CUBW_MASK;
2113 *upstream_bw = usb3_bw_to_mbps(bw, scale);
2114
2115 bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT;
2116 *downstream_bw = usb3_bw_to_mbps(bw, scale);
2117
2118 return 0;
2119 }
2120
usb4_usb3_port_write_allocated_bandwidth(struct tb_port * port,int upstream_bw,int downstream_bw)2121 static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port,
2122 int upstream_bw,
2123 int downstream_bw)
2124 {
2125 u32 val, ubw, dbw, scale;
2126 int ret, max_bw;
2127
2128 /* Figure out suitable scale */
2129 scale = 0;
2130 max_bw = max(upstream_bw, downstream_bw);
2131 while (scale < 64) {
2132 if (mbps_to_usb3_bw(max_bw, scale) < 4096)
2133 break;
2134 scale++;
2135 }
2136
2137 if (WARN_ON(scale >= 64))
2138 return -EINVAL;
2139
2140 ret = tb_port_write(port, &scale, TB_CFG_PORT,
2141 port->cap_adap + ADP_USB3_CS_3, 1);
2142 if (ret)
2143 return ret;
2144
2145 ubw = mbps_to_usb3_bw(upstream_bw, scale);
2146 dbw = mbps_to_usb3_bw(downstream_bw, scale);
2147
2148 tb_port_dbg(port, "scaled bandwidth %u/%u, scale %u\n", ubw, dbw, scale);
2149
2150 ret = tb_port_read(port, &val, TB_CFG_PORT,
2151 port->cap_adap + ADP_USB3_CS_2, 1);
2152 if (ret)
2153 return ret;
2154
2155 val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK);
2156 val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT;
2157 val |= ubw;
2158
2159 return tb_port_write(port, &val, TB_CFG_PORT,
2160 port->cap_adap + ADP_USB3_CS_2, 1);
2161 }
2162
2163 /**
2164 * usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3
2165 * @port: USB3 adapter port
2166 * @upstream_bw: New upstream bandwidth
2167 * @downstream_bw: New downstream bandwidth
2168 *
2169 * This can be used to set how much bandwidth is allocated for the USB3
2170 * tunneled isochronous traffic. @upstream_bw and @downstream_bw are the
2171 * new values programmed to the USB3 adapter allocation registers. If
2172 * the values are lower than what is currently consumed the allocation
2173 * is set to what is currently consumed instead (consumed bandwidth
2174 * cannot be taken away by CM). The actual new values are returned in
2175 * @upstream_bw and @downstream_bw.
2176 *
2177 * Returns %0 in case of success and negative errno if there was a
2178 * failure.
2179 */
usb4_usb3_port_allocate_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)2180 int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw,
2181 int *downstream_bw)
2182 {
2183 int ret, consumed_up, consumed_down, allocate_up, allocate_down;
2184
2185 ret = usb4_usb3_port_set_cm_request(port);
2186 if (ret)
2187 return ret;
2188
2189 ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
2190 &consumed_down);
2191 if (ret)
2192 goto err_request;
2193
2194 /* Don't allow it go lower than what is consumed */
2195 allocate_up = max(*upstream_bw, consumed_up);
2196 allocate_down = max(*downstream_bw, consumed_down);
2197
2198 ret = usb4_usb3_port_write_allocated_bandwidth(port, allocate_up,
2199 allocate_down);
2200 if (ret)
2201 goto err_request;
2202
2203 *upstream_bw = allocate_up;
2204 *downstream_bw = allocate_down;
2205
2206 err_request:
2207 usb4_usb3_port_clear_cm_request(port);
2208 return ret;
2209 }
2210
2211 /**
2212 * usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth
2213 * @port: USB3 adapter port
2214 * @upstream_bw: New allocated upstream bandwidth
2215 * @downstream_bw: New allocated downstream bandwidth
2216 *
2217 * Releases USB3 allocated bandwidth down to what is actually consumed.
2218 * The new bandwidth is returned in @upstream_bw and @downstream_bw.
2219 *
2220 * Returns 0% in success and negative errno in case of failure.
2221 */
usb4_usb3_port_release_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)2222 int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw,
2223 int *downstream_bw)
2224 {
2225 int ret, consumed_up, consumed_down;
2226
2227 ret = usb4_usb3_port_set_cm_request(port);
2228 if (ret)
2229 return ret;
2230
2231 ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
2232 &consumed_down);
2233 if (ret)
2234 goto err_request;
2235
2236 /*
2237 * Always keep 1000 Mb/s to make sure xHCI has at least some
2238 * bandwidth available for isochronous traffic.
2239 */
2240 if (consumed_up < 1000)
2241 consumed_up = 1000;
2242 if (consumed_down < 1000)
2243 consumed_down = 1000;
2244
2245 ret = usb4_usb3_port_write_allocated_bandwidth(port, consumed_up,
2246 consumed_down);
2247 if (ret)
2248 goto err_request;
2249
2250 *upstream_bw = consumed_up;
2251 *downstream_bw = consumed_down;
2252
2253 err_request:
2254 usb4_usb3_port_clear_cm_request(port);
2255 return ret;
2256 }
2257
is_usb4_dpin(const struct tb_port * port)2258 static bool is_usb4_dpin(const struct tb_port *port)
2259 {
2260 if (!tb_port_is_dpin(port))
2261 return false;
2262 if (!tb_switch_is_usb4(port->sw))
2263 return false;
2264 return true;
2265 }
2266
2267 /**
2268 * usb4_dp_port_set_cm_id() - Assign CM ID to the DP IN adapter
2269 * @port: DP IN adapter
2270 * @cm_id: CM ID to assign
2271 *
2272 * Sets CM ID for the @port. Returns %0 on success and negative errno
2273 * otherwise. Speficially returns %-EOPNOTSUPP if the @port does not
2274 * support this.
2275 */
usb4_dp_port_set_cm_id(struct tb_port * port,int cm_id)2276 int usb4_dp_port_set_cm_id(struct tb_port *port, int cm_id)
2277 {
2278 u32 val;
2279 int ret;
2280
2281 if (!is_usb4_dpin(port))
2282 return -EOPNOTSUPP;
2283
2284 ret = tb_port_read(port, &val, TB_CFG_PORT,
2285 port->cap_adap + ADP_DP_CS_2, 1);
2286 if (ret)
2287 return ret;
2288
2289 val &= ~ADP_DP_CS_2_CM_ID_MASK;
2290 val |= cm_id << ADP_DP_CS_2_CM_ID_SHIFT;
2291
2292 return tb_port_write(port, &val, TB_CFG_PORT,
2293 port->cap_adap + ADP_DP_CS_2, 1);
2294 }
2295
2296 /**
2297 * usb4_dp_port_bandwidth_mode_supported() - Is the bandwidth allocation mode
2298 * supported
2299 * @port: DP IN adapter to check
2300 *
2301 * Can be called to any DP IN adapter. Returns true if the adapter
2302 * supports USB4 bandwidth allocation mode, false otherwise.
2303 */
usb4_dp_port_bandwidth_mode_supported(struct tb_port * port)2304 bool usb4_dp_port_bandwidth_mode_supported(struct tb_port *port)
2305 {
2306 int ret;
2307 u32 val;
2308
2309 if (!is_usb4_dpin(port))
2310 return false;
2311
2312 ret = tb_port_read(port, &val, TB_CFG_PORT,
2313 port->cap_adap + DP_LOCAL_CAP, 1);
2314 if (ret)
2315 return false;
2316
2317 return !!(val & DP_COMMON_CAP_BW_MODE);
2318 }
2319
2320 /**
2321 * usb4_dp_port_bandwidth_mode_enabled() - Is the bandwidth allocation mode
2322 * enabled
2323 * @port: DP IN adapter to check
2324 *
2325 * Can be called to any DP IN adapter. Returns true if the bandwidth
2326 * allocation mode has been enabled, false otherwise.
2327 */
usb4_dp_port_bandwidth_mode_enabled(struct tb_port * port)2328 bool usb4_dp_port_bandwidth_mode_enabled(struct tb_port *port)
2329 {
2330 int ret;
2331 u32 val;
2332
2333 if (!is_usb4_dpin(port))
2334 return false;
2335
2336 ret = tb_port_read(port, &val, TB_CFG_PORT,
2337 port->cap_adap + ADP_DP_CS_8, 1);
2338 if (ret)
2339 return false;
2340
2341 return !!(val & ADP_DP_CS_8_DPME);
2342 }
2343
2344 /**
2345 * usb4_dp_port_set_cm_bandwidth_mode_supported() - Set/clear CM support for
2346 * bandwidth allocation mode
2347 * @port: DP IN adapter
2348 * @supported: Does the CM support bandwidth allocation mode
2349 *
2350 * Can be called to any DP IN adapter. Sets or clears the CM support bit
2351 * of the DP IN adapter. Returns %0 in success and negative errno
2352 * otherwise. Specifically returns %-OPNOTSUPP if the passed in adapter
2353 * does not support this.
2354 */
usb4_dp_port_set_cm_bandwidth_mode_supported(struct tb_port * port,bool supported)2355 int usb4_dp_port_set_cm_bandwidth_mode_supported(struct tb_port *port,
2356 bool supported)
2357 {
2358 u32 val;
2359 int ret;
2360
2361 if (!is_usb4_dpin(port))
2362 return -EOPNOTSUPP;
2363
2364 ret = tb_port_read(port, &val, TB_CFG_PORT,
2365 port->cap_adap + ADP_DP_CS_2, 1);
2366 if (ret)
2367 return ret;
2368
2369 if (supported)
2370 val |= ADP_DP_CS_2_CMMS;
2371 else
2372 val &= ~ADP_DP_CS_2_CMMS;
2373
2374 return tb_port_write(port, &val, TB_CFG_PORT,
2375 port->cap_adap + ADP_DP_CS_2, 1);
2376 }
2377
2378 /**
2379 * usb4_dp_port_group_id() - Return Group ID assigned for the adapter
2380 * @port: DP IN adapter
2381 *
2382 * Reads bandwidth allocation Group ID from the DP IN adapter and
2383 * returns it. If the adapter does not support setting Group_ID
2384 * %-EOPNOTSUPP is returned.
2385 */
usb4_dp_port_group_id(struct tb_port * port)2386 int usb4_dp_port_group_id(struct tb_port *port)
2387 {
2388 u32 val;
2389 int ret;
2390
2391 if (!is_usb4_dpin(port))
2392 return -EOPNOTSUPP;
2393
2394 ret = tb_port_read(port, &val, TB_CFG_PORT,
2395 port->cap_adap + ADP_DP_CS_2, 1);
2396 if (ret)
2397 return ret;
2398
2399 return (val & ADP_DP_CS_2_GROUP_ID_MASK) >> ADP_DP_CS_2_GROUP_ID_SHIFT;
2400 }
2401
2402 /**
2403 * usb4_dp_port_set_group_id() - Set adapter Group ID
2404 * @port: DP IN adapter
2405 * @group_id: Group ID for the adapter
2406 *
2407 * Sets bandwidth allocation mode Group ID for the DP IN adapter.
2408 * Returns %0 in case of success and negative errno otherwise.
2409 * Specifically returns %-EOPNOTSUPP if the adapter does not support
2410 * this.
2411 */
usb4_dp_port_set_group_id(struct tb_port * port,int group_id)2412 int usb4_dp_port_set_group_id(struct tb_port *port, int group_id)
2413 {
2414 u32 val;
2415 int ret;
2416
2417 if (!is_usb4_dpin(port))
2418 return -EOPNOTSUPP;
2419
2420 ret = tb_port_read(port, &val, TB_CFG_PORT,
2421 port->cap_adap + ADP_DP_CS_2, 1);
2422 if (ret)
2423 return ret;
2424
2425 val &= ~ADP_DP_CS_2_GROUP_ID_MASK;
2426 val |= group_id << ADP_DP_CS_2_GROUP_ID_SHIFT;
2427
2428 return tb_port_write(port, &val, TB_CFG_PORT,
2429 port->cap_adap + ADP_DP_CS_2, 1);
2430 }
2431
2432 /**
2433 * usb4_dp_port_nrd() - Read non-reduced rate and lanes
2434 * @port: DP IN adapter
2435 * @rate: Non-reduced rate in Mb/s is placed here
2436 * @lanes: Non-reduced lanes are placed here
2437 *
2438 * Reads the non-reduced rate and lanes from the DP IN adapter. Returns
2439 * %0 in success and negative errno otherwise. Specifically returns
2440 * %-EOPNOTSUPP if the adapter does not support this.
2441 */
usb4_dp_port_nrd(struct tb_port * port,int * rate,int * lanes)2442 int usb4_dp_port_nrd(struct tb_port *port, int *rate, int *lanes)
2443 {
2444 u32 val, tmp;
2445 int ret;
2446
2447 if (!is_usb4_dpin(port))
2448 return -EOPNOTSUPP;
2449
2450 ret = tb_port_read(port, &val, TB_CFG_PORT,
2451 port->cap_adap + ADP_DP_CS_2, 1);
2452 if (ret)
2453 return ret;
2454
2455 tmp = (val & ADP_DP_CS_2_NRD_MLR_MASK) >> ADP_DP_CS_2_NRD_MLR_SHIFT;
2456 switch (tmp) {
2457 case DP_COMMON_CAP_RATE_RBR:
2458 *rate = 1620;
2459 break;
2460 case DP_COMMON_CAP_RATE_HBR:
2461 *rate = 2700;
2462 break;
2463 case DP_COMMON_CAP_RATE_HBR2:
2464 *rate = 5400;
2465 break;
2466 case DP_COMMON_CAP_RATE_HBR3:
2467 *rate = 8100;
2468 break;
2469 }
2470
2471 tmp = val & ADP_DP_CS_2_NRD_MLC_MASK;
2472 switch (tmp) {
2473 case DP_COMMON_CAP_1_LANE:
2474 *lanes = 1;
2475 break;
2476 case DP_COMMON_CAP_2_LANES:
2477 *lanes = 2;
2478 break;
2479 case DP_COMMON_CAP_4_LANES:
2480 *lanes = 4;
2481 break;
2482 }
2483
2484 return 0;
2485 }
2486
2487 /**
2488 * usb4_dp_port_set_nrd() - Set non-reduced rate and lanes
2489 * @port: DP IN adapter
2490 * @rate: Non-reduced rate in Mb/s
2491 * @lanes: Non-reduced lanes
2492 *
2493 * Before the capabilities reduction this function can be used to set
2494 * the non-reduced values for the DP IN adapter. Returns %0 in success
2495 * and negative errno otherwise. If the adapter does not support this
2496 * %-EOPNOTSUPP is returned.
2497 */
usb4_dp_port_set_nrd(struct tb_port * port,int rate,int lanes)2498 int usb4_dp_port_set_nrd(struct tb_port *port, int rate, int lanes)
2499 {
2500 u32 val;
2501 int ret;
2502
2503 if (!is_usb4_dpin(port))
2504 return -EOPNOTSUPP;
2505
2506 ret = tb_port_read(port, &val, TB_CFG_PORT,
2507 port->cap_adap + ADP_DP_CS_2, 1);
2508 if (ret)
2509 return ret;
2510
2511 val &= ~ADP_DP_CS_2_NRD_MLR_MASK;
2512
2513 switch (rate) {
2514 case 1620:
2515 break;
2516 case 2700:
2517 val |= (DP_COMMON_CAP_RATE_HBR << ADP_DP_CS_2_NRD_MLR_SHIFT)
2518 & ADP_DP_CS_2_NRD_MLR_MASK;
2519 break;
2520 case 5400:
2521 val |= (DP_COMMON_CAP_RATE_HBR2 << ADP_DP_CS_2_NRD_MLR_SHIFT)
2522 & ADP_DP_CS_2_NRD_MLR_MASK;
2523 break;
2524 case 8100:
2525 val |= (DP_COMMON_CAP_RATE_HBR3 << ADP_DP_CS_2_NRD_MLR_SHIFT)
2526 & ADP_DP_CS_2_NRD_MLR_MASK;
2527 break;
2528 default:
2529 return -EINVAL;
2530 }
2531
2532 val &= ~ADP_DP_CS_2_NRD_MLC_MASK;
2533
2534 switch (lanes) {
2535 case 1:
2536 break;
2537 case 2:
2538 val |= DP_COMMON_CAP_2_LANES;
2539 break;
2540 case 4:
2541 val |= DP_COMMON_CAP_4_LANES;
2542 break;
2543 default:
2544 return -EINVAL;
2545 }
2546
2547 return tb_port_write(port, &val, TB_CFG_PORT,
2548 port->cap_adap + ADP_DP_CS_2, 1);
2549 }
2550
2551 /**
2552 * usb4_dp_port_granularity() - Return granularity for the bandwidth values
2553 * @port: DP IN adapter
2554 *
2555 * Reads the programmed granularity from @port. If the DP IN adapter does
2556 * not support bandwidth allocation mode returns %-EOPNOTSUPP and negative
2557 * errno in other error cases.
2558 */
usb4_dp_port_granularity(struct tb_port * port)2559 int usb4_dp_port_granularity(struct tb_port *port)
2560 {
2561 u32 val;
2562 int ret;
2563
2564 if (!is_usb4_dpin(port))
2565 return -EOPNOTSUPP;
2566
2567 ret = tb_port_read(port, &val, TB_CFG_PORT,
2568 port->cap_adap + ADP_DP_CS_2, 1);
2569 if (ret)
2570 return ret;
2571
2572 val &= ADP_DP_CS_2_GR_MASK;
2573 val >>= ADP_DP_CS_2_GR_SHIFT;
2574
2575 switch (val) {
2576 case ADP_DP_CS_2_GR_0_25G:
2577 return 250;
2578 case ADP_DP_CS_2_GR_0_5G:
2579 return 500;
2580 case ADP_DP_CS_2_GR_1G:
2581 return 1000;
2582 }
2583
2584 return -EINVAL;
2585 }
2586
2587 /**
2588 * usb4_dp_port_set_granularity() - Set granularity for the bandwidth values
2589 * @port: DP IN adapter
2590 * @granularity: Granularity in Mb/s. Supported values: 1000, 500 and 250.
2591 *
2592 * Sets the granularity used with the estimated, allocated and requested
2593 * bandwidth. Returns %0 in success and negative errno otherwise. If the
2594 * adapter does not support this %-EOPNOTSUPP is returned.
2595 */
usb4_dp_port_set_granularity(struct tb_port * port,int granularity)2596 int usb4_dp_port_set_granularity(struct tb_port *port, int granularity)
2597 {
2598 u32 val;
2599 int ret;
2600
2601 if (!is_usb4_dpin(port))
2602 return -EOPNOTSUPP;
2603
2604 ret = tb_port_read(port, &val, TB_CFG_PORT,
2605 port->cap_adap + ADP_DP_CS_2, 1);
2606 if (ret)
2607 return ret;
2608
2609 val &= ~ADP_DP_CS_2_GR_MASK;
2610
2611 switch (granularity) {
2612 case 250:
2613 val |= ADP_DP_CS_2_GR_0_25G << ADP_DP_CS_2_GR_SHIFT;
2614 break;
2615 case 500:
2616 val |= ADP_DP_CS_2_GR_0_5G << ADP_DP_CS_2_GR_SHIFT;
2617 break;
2618 case 1000:
2619 val |= ADP_DP_CS_2_GR_1G << ADP_DP_CS_2_GR_SHIFT;
2620 break;
2621 default:
2622 return -EINVAL;
2623 }
2624
2625 return tb_port_write(port, &val, TB_CFG_PORT,
2626 port->cap_adap + ADP_DP_CS_2, 1);
2627 }
2628
2629 /**
2630 * usb4_dp_port_set_estimated_bandwidth() - Set estimated bandwidth
2631 * @port: DP IN adapter
2632 * @bw: Estimated bandwidth in Mb/s.
2633 *
2634 * Sets the estimated bandwidth to @bw. Set the granularity by calling
2635 * usb4_dp_port_set_granularity() before calling this. The @bw is round
2636 * down to the closest granularity multiplier. Returns %0 in success
2637 * and negative errno otherwise. Specifically returns %-EOPNOTSUPP if
2638 * the adapter does not support this.
2639 */
usb4_dp_port_set_estimated_bandwidth(struct tb_port * port,int bw)2640 int usb4_dp_port_set_estimated_bandwidth(struct tb_port *port, int bw)
2641 {
2642 u32 val, granularity;
2643 int ret;
2644
2645 if (!is_usb4_dpin(port))
2646 return -EOPNOTSUPP;
2647
2648 ret = usb4_dp_port_granularity(port);
2649 if (ret < 0)
2650 return ret;
2651 granularity = ret;
2652
2653 ret = tb_port_read(port, &val, TB_CFG_PORT,
2654 port->cap_adap + ADP_DP_CS_2, 1);
2655 if (ret)
2656 return ret;
2657
2658 val &= ~ADP_DP_CS_2_ESTIMATED_BW_MASK;
2659 val |= (bw / granularity) << ADP_DP_CS_2_ESTIMATED_BW_SHIFT;
2660
2661 return tb_port_write(port, &val, TB_CFG_PORT,
2662 port->cap_adap + ADP_DP_CS_2, 1);
2663 }
2664
2665 /**
2666 * usb4_dp_port_allocated_bandwidth() - Return allocated bandwidth
2667 * @port: DP IN adapter
2668 *
2669 * Reads and returns allocated bandwidth for @port in Mb/s (taking into
2670 * account the programmed granularity). Returns negative errno in case
2671 * of error.
2672 */
usb4_dp_port_allocated_bandwidth(struct tb_port * port)2673 int usb4_dp_port_allocated_bandwidth(struct tb_port *port)
2674 {
2675 u32 val, granularity;
2676 int ret;
2677
2678 if (!is_usb4_dpin(port))
2679 return -EOPNOTSUPP;
2680
2681 ret = usb4_dp_port_granularity(port);
2682 if (ret < 0)
2683 return ret;
2684 granularity = ret;
2685
2686 ret = tb_port_read(port, &val, TB_CFG_PORT,
2687 port->cap_adap + DP_STATUS, 1);
2688 if (ret)
2689 return ret;
2690
2691 val &= DP_STATUS_ALLOCATED_BW_MASK;
2692 val >>= DP_STATUS_ALLOCATED_BW_SHIFT;
2693
2694 return val * granularity;
2695 }
2696
__usb4_dp_port_set_cm_ack(struct tb_port * port,bool ack)2697 static int __usb4_dp_port_set_cm_ack(struct tb_port *port, bool ack)
2698 {
2699 u32 val;
2700 int ret;
2701
2702 ret = tb_port_read(port, &val, TB_CFG_PORT,
2703 port->cap_adap + ADP_DP_CS_2, 1);
2704 if (ret)
2705 return ret;
2706
2707 if (ack)
2708 val |= ADP_DP_CS_2_CA;
2709 else
2710 val &= ~ADP_DP_CS_2_CA;
2711
2712 return tb_port_write(port, &val, TB_CFG_PORT,
2713 port->cap_adap + ADP_DP_CS_2, 1);
2714 }
2715
usb4_dp_port_set_cm_ack(struct tb_port * port)2716 static inline int usb4_dp_port_set_cm_ack(struct tb_port *port)
2717 {
2718 return __usb4_dp_port_set_cm_ack(port, true);
2719 }
2720
usb4_dp_port_wait_and_clear_cm_ack(struct tb_port * port,int timeout_msec)2721 static int usb4_dp_port_wait_and_clear_cm_ack(struct tb_port *port,
2722 int timeout_msec)
2723 {
2724 ktime_t end;
2725 u32 val;
2726 int ret;
2727
2728 ret = __usb4_dp_port_set_cm_ack(port, false);
2729 if (ret)
2730 return ret;
2731
2732 end = ktime_add_ms(ktime_get(), timeout_msec);
2733 do {
2734 ret = tb_port_read(port, &val, TB_CFG_PORT,
2735 port->cap_adap + ADP_DP_CS_8, 1);
2736 if (ret)
2737 return ret;
2738
2739 if (!(val & ADP_DP_CS_8_DR))
2740 break;
2741
2742 usleep_range(50, 100);
2743 } while (ktime_before(ktime_get(), end));
2744
2745 if (val & ADP_DP_CS_8_DR)
2746 return -ETIMEDOUT;
2747
2748 ret = tb_port_read(port, &val, TB_CFG_PORT,
2749 port->cap_adap + ADP_DP_CS_2, 1);
2750 if (ret)
2751 return ret;
2752
2753 val &= ~ADP_DP_CS_2_CA;
2754 return tb_port_write(port, &val, TB_CFG_PORT,
2755 port->cap_adap + ADP_DP_CS_2, 1);
2756 }
2757
2758 /**
2759 * usb4_dp_port_allocate_bandwidth() - Set allocated bandwidth
2760 * @port: DP IN adapter
2761 * @bw: New allocated bandwidth in Mb/s
2762 *
2763 * Communicates the new allocated bandwidth with the DPCD (graphics
2764 * driver). Takes into account the programmed granularity. Returns %0 in
2765 * success and negative errno in case of error.
2766 */
usb4_dp_port_allocate_bandwidth(struct tb_port * port,int bw)2767 int usb4_dp_port_allocate_bandwidth(struct tb_port *port, int bw)
2768 {
2769 u32 val, granularity;
2770 int ret;
2771
2772 if (!is_usb4_dpin(port))
2773 return -EOPNOTSUPP;
2774
2775 ret = usb4_dp_port_granularity(port);
2776 if (ret < 0)
2777 return ret;
2778 granularity = ret;
2779
2780 ret = tb_port_read(port, &val, TB_CFG_PORT,
2781 port->cap_adap + DP_STATUS, 1);
2782 if (ret)
2783 return ret;
2784
2785 val &= ~DP_STATUS_ALLOCATED_BW_MASK;
2786 val |= (bw / granularity) << DP_STATUS_ALLOCATED_BW_SHIFT;
2787
2788 ret = tb_port_write(port, &val, TB_CFG_PORT,
2789 port->cap_adap + DP_STATUS, 1);
2790 if (ret)
2791 return ret;
2792
2793 ret = usb4_dp_port_set_cm_ack(port);
2794 if (ret)
2795 return ret;
2796
2797 return usb4_dp_port_wait_and_clear_cm_ack(port, 500);
2798 }
2799
2800 /**
2801 * usb4_dp_port_requested_bandwidth() - Read requested bandwidth
2802 * @port: DP IN adapter
2803 *
2804 * Reads the DPCD (graphics driver) requested bandwidth and returns it
2805 * in Mb/s. Takes the programmed granularity into account. In case of
2806 * error returns negative errno. Specifically returns %-EOPNOTSUPP if
2807 * the adapter does not support bandwidth allocation mode, and %ENODATA
2808 * if there is no active bandwidth request from the graphics driver.
2809 */
usb4_dp_port_requested_bandwidth(struct tb_port * port)2810 int usb4_dp_port_requested_bandwidth(struct tb_port *port)
2811 {
2812 u32 val, granularity;
2813 int ret;
2814
2815 if (!is_usb4_dpin(port))
2816 return -EOPNOTSUPP;
2817
2818 ret = usb4_dp_port_granularity(port);
2819 if (ret < 0)
2820 return ret;
2821 granularity = ret;
2822
2823 ret = tb_port_read(port, &val, TB_CFG_PORT,
2824 port->cap_adap + ADP_DP_CS_8, 1);
2825 if (ret)
2826 return ret;
2827
2828 if (!(val & ADP_DP_CS_8_DR))
2829 return -ENODATA;
2830
2831 return (val & ADP_DP_CS_8_REQUESTED_BW_MASK) * granularity;
2832 }
2833
2834 /**
2835 * usb4_pci_port_set_ext_encapsulation() - Enable/disable extended encapsulation
2836 * @port: PCIe adapter
2837 * @enable: Enable/disable extended encapsulation
2838 *
2839 * Enables or disables extended encapsulation used in PCIe tunneling. Caller
2840 * needs to make sure both adapters support this before enabling. Returns %0 on
2841 * success and negative errno otherwise.
2842 */
usb4_pci_port_set_ext_encapsulation(struct tb_port * port,bool enable)2843 int usb4_pci_port_set_ext_encapsulation(struct tb_port *port, bool enable)
2844 {
2845 u32 val;
2846 int ret;
2847
2848 if (!tb_port_is_pcie_up(port) && !tb_port_is_pcie_down(port))
2849 return -EINVAL;
2850
2851 ret = tb_port_read(port, &val, TB_CFG_PORT,
2852 port->cap_adap + ADP_PCIE_CS_1, 1);
2853 if (ret)
2854 return ret;
2855
2856 if (enable)
2857 val |= ADP_PCIE_CS_1_EE;
2858 else
2859 val &= ~ADP_PCIE_CS_1_EE;
2860
2861 return tb_port_write(port, &val, TB_CFG_PORT,
2862 port->cap_adap + ADP_PCIE_CS_1, 1);
2863 }
2864