1 /*
2 * User-space Probes (UProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2008-2012
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
23 */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h> /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/sched/mm.h>
31 #include <linux/sched/coredump.h>
32 #include <linux/export.h>
33 #include <linux/rmap.h> /* anon_vma_prepare */
34 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
35 #include <linux/swap.h> /* try_to_free_swap */
36 #include <linux/ptrace.h> /* user_enable_single_step */
37 #include <linux/kdebug.h> /* notifier mechanism */
38 #include "../../mm/internal.h" /* munlock_vma_page */
39 #include <linux/percpu-rwsem.h>
40 #include <linux/task_work.h>
41 #include <linux/shmem_fs.h>
42
43 #include <linux/uprobes.h>
44
45 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
46 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
47
48 static struct rb_root uprobes_tree = RB_ROOT;
49 /*
50 * allows us to skip the uprobe_mmap if there are no uprobe events active
51 * at this time. Probably a fine grained per inode count is better?
52 */
53 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
54
55 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
56
57 #define UPROBES_HASH_SZ 13
58 /* serialize uprobe->pending_list */
59 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
60 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
61
62 static struct percpu_rw_semaphore dup_mmap_sem;
63
64 /* Have a copy of original instruction */
65 #define UPROBE_COPY_INSN 0
66
67 struct uprobe {
68 struct rb_node rb_node; /* node in the rb tree */
69 atomic_t ref;
70 struct rw_semaphore register_rwsem;
71 struct rw_semaphore consumer_rwsem;
72 struct list_head pending_list;
73 struct uprobe_consumer *consumers;
74 struct inode *inode; /* Also hold a ref to inode */
75 loff_t offset;
76 unsigned long flags;
77
78 /*
79 * The generic code assumes that it has two members of unknown type
80 * owned by the arch-specific code:
81 *
82 * insn - copy_insn() saves the original instruction here for
83 * arch_uprobe_analyze_insn().
84 *
85 * ixol - potentially modified instruction to execute out of
86 * line, copied to xol_area by xol_get_insn_slot().
87 */
88 struct arch_uprobe arch;
89 };
90
91 /*
92 * Execute out of line area: anonymous executable mapping installed
93 * by the probed task to execute the copy of the original instruction
94 * mangled by set_swbp().
95 *
96 * On a breakpoint hit, thread contests for a slot. It frees the
97 * slot after singlestep. Currently a fixed number of slots are
98 * allocated.
99 */
100 struct xol_area {
101 wait_queue_head_t wq; /* if all slots are busy */
102 atomic_t slot_count; /* number of in-use slots */
103 unsigned long *bitmap; /* 0 = free slot */
104
105 struct vm_special_mapping xol_mapping;
106 struct page *pages[2];
107 /*
108 * We keep the vma's vm_start rather than a pointer to the vma
109 * itself. The probed process or a naughty kernel module could make
110 * the vma go away, and we must handle that reasonably gracefully.
111 */
112 unsigned long vaddr; /* Page(s) of instruction slots */
113 };
114
115 /*
116 * valid_vma: Verify if the specified vma is an executable vma
117 * Relax restrictions while unregistering: vm_flags might have
118 * changed after breakpoint was inserted.
119 * - is_register: indicates if we are in register context.
120 * - Return 1 if the specified virtual address is in an
121 * executable vma.
122 */
valid_vma(struct vm_area_struct * vma,bool is_register)123 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
124 {
125 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
126
127 if (is_register)
128 flags |= VM_WRITE;
129
130 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
131 }
132
offset_to_vaddr(struct vm_area_struct * vma,loff_t offset)133 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
134 {
135 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
136 }
137
vaddr_to_offset(struct vm_area_struct * vma,unsigned long vaddr)138 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
139 {
140 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
141 }
142
143 /**
144 * __replace_page - replace page in vma by new page.
145 * based on replace_page in mm/ksm.c
146 *
147 * @vma: vma that holds the pte pointing to page
148 * @addr: address the old @page is mapped at
149 * @page: the cowed page we are replacing by kpage
150 * @kpage: the modified page we replace page by
151 *
152 * Returns 0 on success, -EFAULT on failure.
153 */
__replace_page(struct vm_area_struct * vma,unsigned long addr,struct page * old_page,struct page * new_page)154 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
155 struct page *old_page, struct page *new_page)
156 {
157 struct mm_struct *mm = vma->vm_mm;
158 struct page_vma_mapped_walk pvmw = {
159 .page = old_page,
160 .vma = vma,
161 .address = addr,
162 };
163 int err;
164 /* For mmu_notifiers */
165 const unsigned long mmun_start = addr;
166 const unsigned long mmun_end = addr + PAGE_SIZE;
167 struct mem_cgroup *memcg;
168
169 VM_BUG_ON_PAGE(PageTransHuge(old_page), old_page);
170
171 err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL, &memcg,
172 false);
173 if (err)
174 return err;
175
176 /* For try_to_free_swap() and munlock_vma_page() below */
177 lock_page(old_page);
178
179 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
180 err = -EAGAIN;
181 if (!page_vma_mapped_walk(&pvmw)) {
182 mem_cgroup_cancel_charge(new_page, memcg, false);
183 goto unlock;
184 }
185 VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
186
187 get_page(new_page);
188 page_add_new_anon_rmap(new_page, vma, addr, false);
189 mem_cgroup_commit_charge(new_page, memcg, false, false);
190 lru_cache_add_active_or_unevictable(new_page, vma);
191
192 if (!PageAnon(old_page)) {
193 dec_mm_counter(mm, mm_counter_file(old_page));
194 inc_mm_counter(mm, MM_ANONPAGES);
195 }
196
197 flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
198 ptep_clear_flush_notify(vma, addr, pvmw.pte);
199 set_pte_at_notify(mm, addr, pvmw.pte,
200 mk_pte(new_page, vma->vm_page_prot));
201
202 page_remove_rmap(old_page, false);
203 if (!page_mapped(old_page))
204 try_to_free_swap(old_page);
205 page_vma_mapped_walk_done(&pvmw);
206
207 if (vma->vm_flags & VM_LOCKED)
208 munlock_vma_page(old_page);
209 put_page(old_page);
210
211 err = 0;
212 unlock:
213 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
214 unlock_page(old_page);
215 return err;
216 }
217
218 /**
219 * is_swbp_insn - check if instruction is breakpoint instruction.
220 * @insn: instruction to be checked.
221 * Default implementation of is_swbp_insn
222 * Returns true if @insn is a breakpoint instruction.
223 */
is_swbp_insn(uprobe_opcode_t * insn)224 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
225 {
226 return *insn == UPROBE_SWBP_INSN;
227 }
228
229 /**
230 * is_trap_insn - check if instruction is breakpoint instruction.
231 * @insn: instruction to be checked.
232 * Default implementation of is_trap_insn
233 * Returns true if @insn is a breakpoint instruction.
234 *
235 * This function is needed for the case where an architecture has multiple
236 * trap instructions (like powerpc).
237 */
is_trap_insn(uprobe_opcode_t * insn)238 bool __weak is_trap_insn(uprobe_opcode_t *insn)
239 {
240 return is_swbp_insn(insn);
241 }
242
copy_from_page(struct page * page,unsigned long vaddr,void * dst,int len)243 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
244 {
245 void *kaddr = kmap_atomic(page);
246 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
247 kunmap_atomic(kaddr);
248 }
249
copy_to_page(struct page * page,unsigned long vaddr,const void * src,int len)250 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
251 {
252 void *kaddr = kmap_atomic(page);
253 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
254 kunmap_atomic(kaddr);
255 }
256
verify_opcode(struct page * page,unsigned long vaddr,uprobe_opcode_t * new_opcode)257 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
258 {
259 uprobe_opcode_t old_opcode;
260 bool is_swbp;
261
262 /*
263 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
264 * We do not check if it is any other 'trap variant' which could
265 * be conditional trap instruction such as the one powerpc supports.
266 *
267 * The logic is that we do not care if the underlying instruction
268 * is a trap variant; uprobes always wins over any other (gdb)
269 * breakpoint.
270 */
271 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
272 is_swbp = is_swbp_insn(&old_opcode);
273
274 if (is_swbp_insn(new_opcode)) {
275 if (is_swbp) /* register: already installed? */
276 return 0;
277 } else {
278 if (!is_swbp) /* unregister: was it changed by us? */
279 return 0;
280 }
281
282 return 1;
283 }
284
285 /*
286 * NOTE:
287 * Expect the breakpoint instruction to be the smallest size instruction for
288 * the architecture. If an arch has variable length instruction and the
289 * breakpoint instruction is not of the smallest length instruction
290 * supported by that architecture then we need to modify is_trap_at_addr and
291 * uprobe_write_opcode accordingly. This would never be a problem for archs
292 * that have fixed length instructions.
293 *
294 * uprobe_write_opcode - write the opcode at a given virtual address.
295 * @mm: the probed process address space.
296 * @vaddr: the virtual address to store the opcode.
297 * @opcode: opcode to be written at @vaddr.
298 *
299 * Called with mm->mmap_sem held for write.
300 * Return 0 (success) or a negative errno.
301 */
uprobe_write_opcode(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr,uprobe_opcode_t opcode)302 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
303 unsigned long vaddr, uprobe_opcode_t opcode)
304 {
305 struct page *old_page, *new_page;
306 struct vm_area_struct *vma;
307 int ret;
308
309 retry:
310 /* Read the page with vaddr into memory */
311 ret = get_user_pages_remote(NULL, mm, vaddr, 1,
312 FOLL_FORCE | FOLL_SPLIT, &old_page, &vma, NULL);
313 if (ret <= 0)
314 return ret;
315
316 ret = verify_opcode(old_page, vaddr, &opcode);
317 if (ret <= 0)
318 goto put_old;
319
320 ret = anon_vma_prepare(vma);
321 if (ret)
322 goto put_old;
323
324 ret = -ENOMEM;
325 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
326 if (!new_page)
327 goto put_old;
328
329 __SetPageUptodate(new_page);
330 copy_highpage(new_page, old_page);
331 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
332
333 ret = __replace_page(vma, vaddr, old_page, new_page);
334 put_page(new_page);
335 put_old:
336 put_page(old_page);
337
338 if (unlikely(ret == -EAGAIN))
339 goto retry;
340 return ret;
341 }
342
343 /**
344 * set_swbp - store breakpoint at a given address.
345 * @auprobe: arch specific probepoint information.
346 * @mm: the probed process address space.
347 * @vaddr: the virtual address to insert the opcode.
348 *
349 * For mm @mm, store the breakpoint instruction at @vaddr.
350 * Return 0 (success) or a negative errno.
351 */
set_swbp(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr)352 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
353 {
354 return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
355 }
356
357 /**
358 * set_orig_insn - Restore the original instruction.
359 * @mm: the probed process address space.
360 * @auprobe: arch specific probepoint information.
361 * @vaddr: the virtual address to insert the opcode.
362 *
363 * For mm @mm, restore the original opcode (opcode) at @vaddr.
364 * Return 0 (success) or a negative errno.
365 */
366 int __weak
set_orig_insn(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr)367 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
368 {
369 return uprobe_write_opcode(auprobe, mm, vaddr,
370 *(uprobe_opcode_t *)&auprobe->insn);
371 }
372
get_uprobe(struct uprobe * uprobe)373 static struct uprobe *get_uprobe(struct uprobe *uprobe)
374 {
375 atomic_inc(&uprobe->ref);
376 return uprobe;
377 }
378
put_uprobe(struct uprobe * uprobe)379 static void put_uprobe(struct uprobe *uprobe)
380 {
381 if (atomic_dec_and_test(&uprobe->ref))
382 kfree(uprobe);
383 }
384
match_uprobe(struct uprobe * l,struct uprobe * r)385 static int match_uprobe(struct uprobe *l, struct uprobe *r)
386 {
387 if (l->inode < r->inode)
388 return -1;
389
390 if (l->inode > r->inode)
391 return 1;
392
393 if (l->offset < r->offset)
394 return -1;
395
396 if (l->offset > r->offset)
397 return 1;
398
399 return 0;
400 }
401
__find_uprobe(struct inode * inode,loff_t offset)402 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
403 {
404 struct uprobe u = { .inode = inode, .offset = offset };
405 struct rb_node *n = uprobes_tree.rb_node;
406 struct uprobe *uprobe;
407 int match;
408
409 while (n) {
410 uprobe = rb_entry(n, struct uprobe, rb_node);
411 match = match_uprobe(&u, uprobe);
412 if (!match)
413 return get_uprobe(uprobe);
414
415 if (match < 0)
416 n = n->rb_left;
417 else
418 n = n->rb_right;
419 }
420 return NULL;
421 }
422
423 /*
424 * Find a uprobe corresponding to a given inode:offset
425 * Acquires uprobes_treelock
426 */
find_uprobe(struct inode * inode,loff_t offset)427 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
428 {
429 struct uprobe *uprobe;
430
431 spin_lock(&uprobes_treelock);
432 uprobe = __find_uprobe(inode, offset);
433 spin_unlock(&uprobes_treelock);
434
435 return uprobe;
436 }
437
__insert_uprobe(struct uprobe * uprobe)438 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
439 {
440 struct rb_node **p = &uprobes_tree.rb_node;
441 struct rb_node *parent = NULL;
442 struct uprobe *u;
443 int match;
444
445 while (*p) {
446 parent = *p;
447 u = rb_entry(parent, struct uprobe, rb_node);
448 match = match_uprobe(uprobe, u);
449 if (!match)
450 return get_uprobe(u);
451
452 if (match < 0)
453 p = &parent->rb_left;
454 else
455 p = &parent->rb_right;
456
457 }
458
459 u = NULL;
460 rb_link_node(&uprobe->rb_node, parent, p);
461 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
462 /* get access + creation ref */
463 atomic_set(&uprobe->ref, 2);
464
465 return u;
466 }
467
468 /*
469 * Acquire uprobes_treelock.
470 * Matching uprobe already exists in rbtree;
471 * increment (access refcount) and return the matching uprobe.
472 *
473 * No matching uprobe; insert the uprobe in rb_tree;
474 * get a double refcount (access + creation) and return NULL.
475 */
insert_uprobe(struct uprobe * uprobe)476 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
477 {
478 struct uprobe *u;
479
480 spin_lock(&uprobes_treelock);
481 u = __insert_uprobe(uprobe);
482 spin_unlock(&uprobes_treelock);
483
484 return u;
485 }
486
alloc_uprobe(struct inode * inode,loff_t offset)487 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
488 {
489 struct uprobe *uprobe, *cur_uprobe;
490
491 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
492 if (!uprobe)
493 return NULL;
494
495 uprobe->inode = inode;
496 uprobe->offset = offset;
497 init_rwsem(&uprobe->register_rwsem);
498 init_rwsem(&uprobe->consumer_rwsem);
499
500 /* add to uprobes_tree, sorted on inode:offset */
501 cur_uprobe = insert_uprobe(uprobe);
502 /* a uprobe exists for this inode:offset combination */
503 if (cur_uprobe) {
504 kfree(uprobe);
505 uprobe = cur_uprobe;
506 }
507
508 return uprobe;
509 }
510
consumer_add(struct uprobe * uprobe,struct uprobe_consumer * uc)511 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
512 {
513 down_write(&uprobe->consumer_rwsem);
514 uc->next = uprobe->consumers;
515 uprobe->consumers = uc;
516 up_write(&uprobe->consumer_rwsem);
517 }
518
519 /*
520 * For uprobe @uprobe, delete the consumer @uc.
521 * Return true if the @uc is deleted successfully
522 * or return false.
523 */
consumer_del(struct uprobe * uprobe,struct uprobe_consumer * uc)524 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
525 {
526 struct uprobe_consumer **con;
527 bool ret = false;
528
529 down_write(&uprobe->consumer_rwsem);
530 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
531 if (*con == uc) {
532 *con = uc->next;
533 ret = true;
534 break;
535 }
536 }
537 up_write(&uprobe->consumer_rwsem);
538
539 return ret;
540 }
541
__copy_insn(struct address_space * mapping,struct file * filp,void * insn,int nbytes,loff_t offset)542 static int __copy_insn(struct address_space *mapping, struct file *filp,
543 void *insn, int nbytes, loff_t offset)
544 {
545 struct page *page;
546 /*
547 * Ensure that the page that has the original instruction is populated
548 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
549 * see uprobe_register().
550 */
551 if (mapping->a_ops->readpage)
552 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
553 else
554 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
555 if (IS_ERR(page))
556 return PTR_ERR(page);
557
558 copy_from_page(page, offset, insn, nbytes);
559 put_page(page);
560
561 return 0;
562 }
563
copy_insn(struct uprobe * uprobe,struct file * filp)564 static int copy_insn(struct uprobe *uprobe, struct file *filp)
565 {
566 struct address_space *mapping = uprobe->inode->i_mapping;
567 loff_t offs = uprobe->offset;
568 void *insn = &uprobe->arch.insn;
569 int size = sizeof(uprobe->arch.insn);
570 int len, err = -EIO;
571
572 /* Copy only available bytes, -EIO if nothing was read */
573 do {
574 if (offs >= i_size_read(uprobe->inode))
575 break;
576
577 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
578 err = __copy_insn(mapping, filp, insn, len, offs);
579 if (err)
580 break;
581
582 insn += len;
583 offs += len;
584 size -= len;
585 } while (size);
586
587 return err;
588 }
589
prepare_uprobe(struct uprobe * uprobe,struct file * file,struct mm_struct * mm,unsigned long vaddr)590 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
591 struct mm_struct *mm, unsigned long vaddr)
592 {
593 int ret = 0;
594
595 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
596 return ret;
597
598 /* TODO: move this into _register, until then we abuse this sem. */
599 down_write(&uprobe->consumer_rwsem);
600 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
601 goto out;
602
603 ret = copy_insn(uprobe, file);
604 if (ret)
605 goto out;
606
607 ret = -ENOTSUPP;
608 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
609 goto out;
610
611 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
612 if (ret)
613 goto out;
614
615 /* uprobe_write_opcode() assumes we don't cross page boundary */
616 BUG_ON((uprobe->offset & ~PAGE_MASK) +
617 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
618
619 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
620 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
621
622 out:
623 up_write(&uprobe->consumer_rwsem);
624
625 return ret;
626 }
627
consumer_filter(struct uprobe_consumer * uc,enum uprobe_filter_ctx ctx,struct mm_struct * mm)628 static inline bool consumer_filter(struct uprobe_consumer *uc,
629 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
630 {
631 return !uc->filter || uc->filter(uc, ctx, mm);
632 }
633
filter_chain(struct uprobe * uprobe,enum uprobe_filter_ctx ctx,struct mm_struct * mm)634 static bool filter_chain(struct uprobe *uprobe,
635 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
636 {
637 struct uprobe_consumer *uc;
638 bool ret = false;
639
640 down_read(&uprobe->consumer_rwsem);
641 for (uc = uprobe->consumers; uc; uc = uc->next) {
642 ret = consumer_filter(uc, ctx, mm);
643 if (ret)
644 break;
645 }
646 up_read(&uprobe->consumer_rwsem);
647
648 return ret;
649 }
650
651 static int
install_breakpoint(struct uprobe * uprobe,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long vaddr)652 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
653 struct vm_area_struct *vma, unsigned long vaddr)
654 {
655 bool first_uprobe;
656 int ret;
657
658 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
659 if (ret)
660 return ret;
661
662 /*
663 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
664 * the task can hit this breakpoint right after __replace_page().
665 */
666 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
667 if (first_uprobe)
668 set_bit(MMF_HAS_UPROBES, &mm->flags);
669
670 ret = set_swbp(&uprobe->arch, mm, vaddr);
671 if (!ret)
672 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
673 else if (first_uprobe)
674 clear_bit(MMF_HAS_UPROBES, &mm->flags);
675
676 return ret;
677 }
678
679 static int
remove_breakpoint(struct uprobe * uprobe,struct mm_struct * mm,unsigned long vaddr)680 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
681 {
682 set_bit(MMF_RECALC_UPROBES, &mm->flags);
683 return set_orig_insn(&uprobe->arch, mm, vaddr);
684 }
685
uprobe_is_active(struct uprobe * uprobe)686 static inline bool uprobe_is_active(struct uprobe *uprobe)
687 {
688 return !RB_EMPTY_NODE(&uprobe->rb_node);
689 }
690 /*
691 * There could be threads that have already hit the breakpoint. They
692 * will recheck the current insn and restart if find_uprobe() fails.
693 * See find_active_uprobe().
694 */
delete_uprobe(struct uprobe * uprobe)695 static void delete_uprobe(struct uprobe *uprobe)
696 {
697 if (WARN_ON(!uprobe_is_active(uprobe)))
698 return;
699
700 spin_lock(&uprobes_treelock);
701 rb_erase(&uprobe->rb_node, &uprobes_tree);
702 spin_unlock(&uprobes_treelock);
703 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
704 put_uprobe(uprobe);
705 }
706
707 struct map_info {
708 struct map_info *next;
709 struct mm_struct *mm;
710 unsigned long vaddr;
711 };
712
free_map_info(struct map_info * info)713 static inline struct map_info *free_map_info(struct map_info *info)
714 {
715 struct map_info *next = info->next;
716 kfree(info);
717 return next;
718 }
719
720 static struct map_info *
build_map_info(struct address_space * mapping,loff_t offset,bool is_register)721 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
722 {
723 unsigned long pgoff = offset >> PAGE_SHIFT;
724 struct vm_area_struct *vma;
725 struct map_info *curr = NULL;
726 struct map_info *prev = NULL;
727 struct map_info *info;
728 int more = 0;
729
730 again:
731 i_mmap_lock_read(mapping);
732 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
733 if (!valid_vma(vma, is_register))
734 continue;
735
736 if (!prev && !more) {
737 /*
738 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
739 * reclaim. This is optimistic, no harm done if it fails.
740 */
741 prev = kmalloc(sizeof(struct map_info),
742 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
743 if (prev)
744 prev->next = NULL;
745 }
746 if (!prev) {
747 more++;
748 continue;
749 }
750
751 if (!mmget_not_zero(vma->vm_mm))
752 continue;
753
754 info = prev;
755 prev = prev->next;
756 info->next = curr;
757 curr = info;
758
759 info->mm = vma->vm_mm;
760 info->vaddr = offset_to_vaddr(vma, offset);
761 }
762 i_mmap_unlock_read(mapping);
763
764 if (!more)
765 goto out;
766
767 prev = curr;
768 while (curr) {
769 mmput(curr->mm);
770 curr = curr->next;
771 }
772
773 do {
774 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
775 if (!info) {
776 curr = ERR_PTR(-ENOMEM);
777 goto out;
778 }
779 info->next = prev;
780 prev = info;
781 } while (--more);
782
783 goto again;
784 out:
785 while (prev)
786 prev = free_map_info(prev);
787 return curr;
788 }
789
790 static int
register_for_each_vma(struct uprobe * uprobe,struct uprobe_consumer * new)791 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
792 {
793 bool is_register = !!new;
794 struct map_info *info;
795 int err = 0;
796
797 percpu_down_write(&dup_mmap_sem);
798 info = build_map_info(uprobe->inode->i_mapping,
799 uprobe->offset, is_register);
800 if (IS_ERR(info)) {
801 err = PTR_ERR(info);
802 goto out;
803 }
804
805 while (info) {
806 struct mm_struct *mm = info->mm;
807 struct vm_area_struct *vma;
808
809 if (err && is_register)
810 goto free;
811
812 down_write(&mm->mmap_sem);
813 vma = find_vma(mm, info->vaddr);
814 if (!vma || !valid_vma(vma, is_register) ||
815 file_inode(vma->vm_file) != uprobe->inode)
816 goto unlock;
817
818 if (vma->vm_start > info->vaddr ||
819 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
820 goto unlock;
821
822 if (is_register) {
823 /* consult only the "caller", new consumer. */
824 if (consumer_filter(new,
825 UPROBE_FILTER_REGISTER, mm))
826 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
827 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
828 if (!filter_chain(uprobe,
829 UPROBE_FILTER_UNREGISTER, mm))
830 err |= remove_breakpoint(uprobe, mm, info->vaddr);
831 }
832
833 unlock:
834 up_write(&mm->mmap_sem);
835 free:
836 mmput(mm);
837 info = free_map_info(info);
838 }
839 out:
840 percpu_up_write(&dup_mmap_sem);
841 return err;
842 }
843
844 static void
__uprobe_unregister(struct uprobe * uprobe,struct uprobe_consumer * uc)845 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
846 {
847 int err;
848
849 if (WARN_ON(!consumer_del(uprobe, uc)))
850 return;
851
852 err = register_for_each_vma(uprobe, NULL);
853 /* TODO : cant unregister? schedule a worker thread */
854 if (!uprobe->consumers && !err)
855 delete_uprobe(uprobe);
856 }
857
858 /*
859 * uprobe_unregister - unregister an already registered probe.
860 * @inode: the file in which the probe has to be removed.
861 * @offset: offset from the start of the file.
862 * @uc: identify which probe if multiple probes are colocated.
863 */
uprobe_unregister(struct inode * inode,loff_t offset,struct uprobe_consumer * uc)864 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
865 {
866 struct uprobe *uprobe;
867
868 uprobe = find_uprobe(inode, offset);
869 if (WARN_ON(!uprobe))
870 return;
871
872 down_write(&uprobe->register_rwsem);
873 __uprobe_unregister(uprobe, uc);
874 up_write(&uprobe->register_rwsem);
875 put_uprobe(uprobe);
876 }
877 EXPORT_SYMBOL_GPL(uprobe_unregister);
878
879 /*
880 * __uprobe_register - register a probe
881 * @inode: the file in which the probe has to be placed.
882 * @offset: offset from the start of the file.
883 * @uc: information on howto handle the probe..
884 *
885 * Apart from the access refcount, __uprobe_register() takes a creation
886 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
887 * inserted into the rbtree (i.e first consumer for a @inode:@offset
888 * tuple). Creation refcount stops uprobe_unregister from freeing the
889 * @uprobe even before the register operation is complete. Creation
890 * refcount is released when the last @uc for the @uprobe
891 * unregisters. Caller of __uprobe_register() is required to keep @inode
892 * (and the containing mount) referenced.
893 *
894 * Return errno if it cannot successully install probes
895 * else return 0 (success)
896 */
__uprobe_register(struct inode * inode,loff_t offset,struct uprobe_consumer * uc)897 static int __uprobe_register(struct inode *inode, loff_t offset,
898 struct uprobe_consumer *uc)
899 {
900 struct uprobe *uprobe;
901 int ret;
902
903 /* Uprobe must have at least one set consumer */
904 if (!uc->handler && !uc->ret_handler)
905 return -EINVAL;
906
907 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
908 if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
909 return -EIO;
910 /* Racy, just to catch the obvious mistakes */
911 if (offset > i_size_read(inode))
912 return -EINVAL;
913
914 retry:
915 uprobe = alloc_uprobe(inode, offset);
916 if (!uprobe)
917 return -ENOMEM;
918 /*
919 * We can race with uprobe_unregister()->delete_uprobe().
920 * Check uprobe_is_active() and retry if it is false.
921 */
922 down_write(&uprobe->register_rwsem);
923 ret = -EAGAIN;
924 if (likely(uprobe_is_active(uprobe))) {
925 consumer_add(uprobe, uc);
926 ret = register_for_each_vma(uprobe, uc);
927 if (ret)
928 __uprobe_unregister(uprobe, uc);
929 }
930 up_write(&uprobe->register_rwsem);
931 put_uprobe(uprobe);
932
933 if (unlikely(ret == -EAGAIN))
934 goto retry;
935 return ret;
936 }
937
uprobe_register(struct inode * inode,loff_t offset,struct uprobe_consumer * uc)938 int uprobe_register(struct inode *inode, loff_t offset,
939 struct uprobe_consumer *uc)
940 {
941 return __uprobe_register(inode, offset, uc);
942 }
943 EXPORT_SYMBOL_GPL(uprobe_register);
944
945 /*
946 * uprobe_apply - unregister an already registered probe.
947 * @inode: the file in which the probe has to be removed.
948 * @offset: offset from the start of the file.
949 * @uc: consumer which wants to add more or remove some breakpoints
950 * @add: add or remove the breakpoints
951 */
uprobe_apply(struct inode * inode,loff_t offset,struct uprobe_consumer * uc,bool add)952 int uprobe_apply(struct inode *inode, loff_t offset,
953 struct uprobe_consumer *uc, bool add)
954 {
955 struct uprobe *uprobe;
956 struct uprobe_consumer *con;
957 int ret = -ENOENT;
958
959 uprobe = find_uprobe(inode, offset);
960 if (WARN_ON(!uprobe))
961 return ret;
962
963 down_write(&uprobe->register_rwsem);
964 for (con = uprobe->consumers; con && con != uc ; con = con->next)
965 ;
966 if (con)
967 ret = register_for_each_vma(uprobe, add ? uc : NULL);
968 up_write(&uprobe->register_rwsem);
969 put_uprobe(uprobe);
970
971 return ret;
972 }
973
unapply_uprobe(struct uprobe * uprobe,struct mm_struct * mm)974 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
975 {
976 struct vm_area_struct *vma;
977 int err = 0;
978
979 down_read(&mm->mmap_sem);
980 for (vma = mm->mmap; vma; vma = vma->vm_next) {
981 unsigned long vaddr;
982 loff_t offset;
983
984 if (!valid_vma(vma, false) ||
985 file_inode(vma->vm_file) != uprobe->inode)
986 continue;
987
988 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
989 if (uprobe->offset < offset ||
990 uprobe->offset >= offset + vma->vm_end - vma->vm_start)
991 continue;
992
993 vaddr = offset_to_vaddr(vma, uprobe->offset);
994 err |= remove_breakpoint(uprobe, mm, vaddr);
995 }
996 up_read(&mm->mmap_sem);
997
998 return err;
999 }
1000
1001 static struct rb_node *
find_node_in_range(struct inode * inode,loff_t min,loff_t max)1002 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1003 {
1004 struct rb_node *n = uprobes_tree.rb_node;
1005
1006 while (n) {
1007 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1008
1009 if (inode < u->inode) {
1010 n = n->rb_left;
1011 } else if (inode > u->inode) {
1012 n = n->rb_right;
1013 } else {
1014 if (max < u->offset)
1015 n = n->rb_left;
1016 else if (min > u->offset)
1017 n = n->rb_right;
1018 else
1019 break;
1020 }
1021 }
1022
1023 return n;
1024 }
1025
1026 /*
1027 * For a given range in vma, build a list of probes that need to be inserted.
1028 */
build_probe_list(struct inode * inode,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * head)1029 static void build_probe_list(struct inode *inode,
1030 struct vm_area_struct *vma,
1031 unsigned long start, unsigned long end,
1032 struct list_head *head)
1033 {
1034 loff_t min, max;
1035 struct rb_node *n, *t;
1036 struct uprobe *u;
1037
1038 INIT_LIST_HEAD(head);
1039 min = vaddr_to_offset(vma, start);
1040 max = min + (end - start) - 1;
1041
1042 spin_lock(&uprobes_treelock);
1043 n = find_node_in_range(inode, min, max);
1044 if (n) {
1045 for (t = n; t; t = rb_prev(t)) {
1046 u = rb_entry(t, struct uprobe, rb_node);
1047 if (u->inode != inode || u->offset < min)
1048 break;
1049 list_add(&u->pending_list, head);
1050 get_uprobe(u);
1051 }
1052 for (t = n; (t = rb_next(t)); ) {
1053 u = rb_entry(t, struct uprobe, rb_node);
1054 if (u->inode != inode || u->offset > max)
1055 break;
1056 list_add(&u->pending_list, head);
1057 get_uprobe(u);
1058 }
1059 }
1060 spin_unlock(&uprobes_treelock);
1061 }
1062
1063 /*
1064 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1065 *
1066 * Currently we ignore all errors and always return 0, the callers
1067 * can't handle the failure anyway.
1068 */
uprobe_mmap(struct vm_area_struct * vma)1069 int uprobe_mmap(struct vm_area_struct *vma)
1070 {
1071 struct list_head tmp_list;
1072 struct uprobe *uprobe, *u;
1073 struct inode *inode;
1074
1075 if (no_uprobe_events() || !valid_vma(vma, true))
1076 return 0;
1077
1078 inode = file_inode(vma->vm_file);
1079 if (!inode)
1080 return 0;
1081
1082 mutex_lock(uprobes_mmap_hash(inode));
1083 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1084 /*
1085 * We can race with uprobe_unregister(), this uprobe can be already
1086 * removed. But in this case filter_chain() must return false, all
1087 * consumers have gone away.
1088 */
1089 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1090 if (!fatal_signal_pending(current) &&
1091 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1092 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1093 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1094 }
1095 put_uprobe(uprobe);
1096 }
1097 mutex_unlock(uprobes_mmap_hash(inode));
1098
1099 return 0;
1100 }
1101
1102 static bool
vma_has_uprobes(struct vm_area_struct * vma,unsigned long start,unsigned long end)1103 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1104 {
1105 loff_t min, max;
1106 struct inode *inode;
1107 struct rb_node *n;
1108
1109 inode = file_inode(vma->vm_file);
1110
1111 min = vaddr_to_offset(vma, start);
1112 max = min + (end - start) - 1;
1113
1114 spin_lock(&uprobes_treelock);
1115 n = find_node_in_range(inode, min, max);
1116 spin_unlock(&uprobes_treelock);
1117
1118 return !!n;
1119 }
1120
1121 /*
1122 * Called in context of a munmap of a vma.
1123 */
uprobe_munmap(struct vm_area_struct * vma,unsigned long start,unsigned long end)1124 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1125 {
1126 if (no_uprobe_events() || !valid_vma(vma, false))
1127 return;
1128
1129 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1130 return;
1131
1132 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1133 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1134 return;
1135
1136 if (vma_has_uprobes(vma, start, end))
1137 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1138 }
1139
1140 /* Slot allocation for XOL */
xol_add_vma(struct mm_struct * mm,struct xol_area * area)1141 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1142 {
1143 struct vm_area_struct *vma;
1144 int ret;
1145
1146 if (down_write_killable(&mm->mmap_sem))
1147 return -EINTR;
1148
1149 if (mm->uprobes_state.xol_area) {
1150 ret = -EALREADY;
1151 goto fail;
1152 }
1153
1154 if (!area->vaddr) {
1155 /* Try to map as high as possible, this is only a hint. */
1156 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1157 PAGE_SIZE, 0, 0);
1158 if (area->vaddr & ~PAGE_MASK) {
1159 ret = area->vaddr;
1160 goto fail;
1161 }
1162 }
1163
1164 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1165 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1166 &area->xol_mapping);
1167 if (IS_ERR(vma)) {
1168 ret = PTR_ERR(vma);
1169 goto fail;
1170 }
1171
1172 ret = 0;
1173 /* pairs with get_xol_area() */
1174 smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1175 fail:
1176 up_write(&mm->mmap_sem);
1177
1178 return ret;
1179 }
1180
__create_xol_area(unsigned long vaddr)1181 static struct xol_area *__create_xol_area(unsigned long vaddr)
1182 {
1183 struct mm_struct *mm = current->mm;
1184 uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1185 struct xol_area *area;
1186
1187 area = kmalloc(sizeof(*area), GFP_KERNEL);
1188 if (unlikely(!area))
1189 goto out;
1190
1191 area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1192 GFP_KERNEL);
1193 if (!area->bitmap)
1194 goto free_area;
1195
1196 area->xol_mapping.name = "[uprobes]";
1197 area->xol_mapping.fault = NULL;
1198 area->xol_mapping.pages = area->pages;
1199 area->pages[0] = alloc_page(GFP_HIGHUSER);
1200 if (!area->pages[0])
1201 goto free_bitmap;
1202 area->pages[1] = NULL;
1203
1204 area->vaddr = vaddr;
1205 init_waitqueue_head(&area->wq);
1206 /* Reserve the 1st slot for get_trampoline_vaddr() */
1207 set_bit(0, area->bitmap);
1208 atomic_set(&area->slot_count, 1);
1209 arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1210
1211 if (!xol_add_vma(mm, area))
1212 return area;
1213
1214 __free_page(area->pages[0]);
1215 free_bitmap:
1216 kfree(area->bitmap);
1217 free_area:
1218 kfree(area);
1219 out:
1220 return NULL;
1221 }
1222
1223 /*
1224 * get_xol_area - Allocate process's xol_area if necessary.
1225 * This area will be used for storing instructions for execution out of line.
1226 *
1227 * Returns the allocated area or NULL.
1228 */
get_xol_area(void)1229 static struct xol_area *get_xol_area(void)
1230 {
1231 struct mm_struct *mm = current->mm;
1232 struct xol_area *area;
1233
1234 if (!mm->uprobes_state.xol_area)
1235 __create_xol_area(0);
1236
1237 /* Pairs with xol_add_vma() smp_store_release() */
1238 area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1239 return area;
1240 }
1241
1242 /*
1243 * uprobe_clear_state - Free the area allocated for slots.
1244 */
uprobe_clear_state(struct mm_struct * mm)1245 void uprobe_clear_state(struct mm_struct *mm)
1246 {
1247 struct xol_area *area = mm->uprobes_state.xol_area;
1248
1249 if (!area)
1250 return;
1251
1252 put_page(area->pages[0]);
1253 kfree(area->bitmap);
1254 kfree(area);
1255 }
1256
uprobe_start_dup_mmap(void)1257 void uprobe_start_dup_mmap(void)
1258 {
1259 percpu_down_read(&dup_mmap_sem);
1260 }
1261
uprobe_end_dup_mmap(void)1262 void uprobe_end_dup_mmap(void)
1263 {
1264 percpu_up_read(&dup_mmap_sem);
1265 }
1266
uprobe_dup_mmap(struct mm_struct * oldmm,struct mm_struct * newmm)1267 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1268 {
1269 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1270 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1271 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1272 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1273 }
1274 }
1275
1276 /*
1277 * - search for a free slot.
1278 */
xol_take_insn_slot(struct xol_area * area)1279 static unsigned long xol_take_insn_slot(struct xol_area *area)
1280 {
1281 unsigned long slot_addr;
1282 int slot_nr;
1283
1284 do {
1285 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1286 if (slot_nr < UINSNS_PER_PAGE) {
1287 if (!test_and_set_bit(slot_nr, area->bitmap))
1288 break;
1289
1290 slot_nr = UINSNS_PER_PAGE;
1291 continue;
1292 }
1293 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1294 } while (slot_nr >= UINSNS_PER_PAGE);
1295
1296 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1297 atomic_inc(&area->slot_count);
1298
1299 return slot_addr;
1300 }
1301
1302 /*
1303 * xol_get_insn_slot - allocate a slot for xol.
1304 * Returns the allocated slot address or 0.
1305 */
xol_get_insn_slot(struct uprobe * uprobe)1306 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1307 {
1308 struct xol_area *area;
1309 unsigned long xol_vaddr;
1310
1311 area = get_xol_area();
1312 if (!area)
1313 return 0;
1314
1315 xol_vaddr = xol_take_insn_slot(area);
1316 if (unlikely(!xol_vaddr))
1317 return 0;
1318
1319 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1320 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1321
1322 return xol_vaddr;
1323 }
1324
1325 /*
1326 * xol_free_insn_slot - If slot was earlier allocated by
1327 * @xol_get_insn_slot(), make the slot available for
1328 * subsequent requests.
1329 */
xol_free_insn_slot(struct task_struct * tsk)1330 static void xol_free_insn_slot(struct task_struct *tsk)
1331 {
1332 struct xol_area *area;
1333 unsigned long vma_end;
1334 unsigned long slot_addr;
1335
1336 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1337 return;
1338
1339 slot_addr = tsk->utask->xol_vaddr;
1340 if (unlikely(!slot_addr))
1341 return;
1342
1343 area = tsk->mm->uprobes_state.xol_area;
1344 vma_end = area->vaddr + PAGE_SIZE;
1345 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1346 unsigned long offset;
1347 int slot_nr;
1348
1349 offset = slot_addr - area->vaddr;
1350 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1351 if (slot_nr >= UINSNS_PER_PAGE)
1352 return;
1353
1354 clear_bit(slot_nr, area->bitmap);
1355 atomic_dec(&area->slot_count);
1356 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1357 if (waitqueue_active(&area->wq))
1358 wake_up(&area->wq);
1359
1360 tsk->utask->xol_vaddr = 0;
1361 }
1362 }
1363
arch_uprobe_copy_ixol(struct page * page,unsigned long vaddr,void * src,unsigned long len)1364 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1365 void *src, unsigned long len)
1366 {
1367 /* Initialize the slot */
1368 copy_to_page(page, vaddr, src, len);
1369
1370 /*
1371 * We probably need flush_icache_user_range() but it needs vma.
1372 * This should work on most of architectures by default. If
1373 * architecture needs to do something different it can define
1374 * its own version of the function.
1375 */
1376 flush_dcache_page(page);
1377 }
1378
1379 /**
1380 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1381 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1382 * instruction.
1383 * Return the address of the breakpoint instruction.
1384 */
uprobe_get_swbp_addr(struct pt_regs * regs)1385 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1386 {
1387 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1388 }
1389
uprobe_get_trap_addr(struct pt_regs * regs)1390 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1391 {
1392 struct uprobe_task *utask = current->utask;
1393
1394 if (unlikely(utask && utask->active_uprobe))
1395 return utask->vaddr;
1396
1397 return instruction_pointer(regs);
1398 }
1399
free_ret_instance(struct return_instance * ri)1400 static struct return_instance *free_ret_instance(struct return_instance *ri)
1401 {
1402 struct return_instance *next = ri->next;
1403 put_uprobe(ri->uprobe);
1404 kfree(ri);
1405 return next;
1406 }
1407
1408 /*
1409 * Called with no locks held.
1410 * Called in context of an exiting or an exec-ing thread.
1411 */
uprobe_free_utask(struct task_struct * t)1412 void uprobe_free_utask(struct task_struct *t)
1413 {
1414 struct uprobe_task *utask = t->utask;
1415 struct return_instance *ri;
1416
1417 if (!utask)
1418 return;
1419
1420 if (utask->active_uprobe)
1421 put_uprobe(utask->active_uprobe);
1422
1423 ri = utask->return_instances;
1424 while (ri)
1425 ri = free_ret_instance(ri);
1426
1427 xol_free_insn_slot(t);
1428 kfree(utask);
1429 t->utask = NULL;
1430 }
1431
1432 /*
1433 * Allocate a uprobe_task object for the task if if necessary.
1434 * Called when the thread hits a breakpoint.
1435 *
1436 * Returns:
1437 * - pointer to new uprobe_task on success
1438 * - NULL otherwise
1439 */
get_utask(void)1440 static struct uprobe_task *get_utask(void)
1441 {
1442 if (!current->utask)
1443 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1444 return current->utask;
1445 }
1446
dup_utask(struct task_struct * t,struct uprobe_task * o_utask)1447 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1448 {
1449 struct uprobe_task *n_utask;
1450 struct return_instance **p, *o, *n;
1451
1452 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1453 if (!n_utask)
1454 return -ENOMEM;
1455 t->utask = n_utask;
1456
1457 p = &n_utask->return_instances;
1458 for (o = o_utask->return_instances; o; o = o->next) {
1459 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1460 if (!n)
1461 return -ENOMEM;
1462
1463 *n = *o;
1464 get_uprobe(n->uprobe);
1465 n->next = NULL;
1466
1467 *p = n;
1468 p = &n->next;
1469 n_utask->depth++;
1470 }
1471
1472 return 0;
1473 }
1474
uprobe_warn(struct task_struct * t,const char * msg)1475 static void uprobe_warn(struct task_struct *t, const char *msg)
1476 {
1477 pr_warn("uprobe: %s:%d failed to %s\n",
1478 current->comm, current->pid, msg);
1479 }
1480
dup_xol_work(struct callback_head * work)1481 static void dup_xol_work(struct callback_head *work)
1482 {
1483 if (current->flags & PF_EXITING)
1484 return;
1485
1486 if (!__create_xol_area(current->utask->dup_xol_addr) &&
1487 !fatal_signal_pending(current))
1488 uprobe_warn(current, "dup xol area");
1489 }
1490
1491 /*
1492 * Called in context of a new clone/fork from copy_process.
1493 */
uprobe_copy_process(struct task_struct * t,unsigned long flags)1494 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1495 {
1496 struct uprobe_task *utask = current->utask;
1497 struct mm_struct *mm = current->mm;
1498 struct xol_area *area;
1499
1500 t->utask = NULL;
1501
1502 if (!utask || !utask->return_instances)
1503 return;
1504
1505 if (mm == t->mm && !(flags & CLONE_VFORK))
1506 return;
1507
1508 if (dup_utask(t, utask))
1509 return uprobe_warn(t, "dup ret instances");
1510
1511 /* The task can fork() after dup_xol_work() fails */
1512 area = mm->uprobes_state.xol_area;
1513 if (!area)
1514 return uprobe_warn(t, "dup xol area");
1515
1516 if (mm == t->mm)
1517 return;
1518
1519 t->utask->dup_xol_addr = area->vaddr;
1520 init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1521 task_work_add(t, &t->utask->dup_xol_work, true);
1522 }
1523
1524 /*
1525 * Current area->vaddr notion assume the trampoline address is always
1526 * equal area->vaddr.
1527 *
1528 * Returns -1 in case the xol_area is not allocated.
1529 */
get_trampoline_vaddr(void)1530 static unsigned long get_trampoline_vaddr(void)
1531 {
1532 struct xol_area *area;
1533 unsigned long trampoline_vaddr = -1;
1534
1535 /* Pairs with xol_add_vma() smp_store_release() */
1536 area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1537 if (area)
1538 trampoline_vaddr = area->vaddr;
1539
1540 return trampoline_vaddr;
1541 }
1542
cleanup_return_instances(struct uprobe_task * utask,bool chained,struct pt_regs * regs)1543 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1544 struct pt_regs *regs)
1545 {
1546 struct return_instance *ri = utask->return_instances;
1547 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1548
1549 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1550 ri = free_ret_instance(ri);
1551 utask->depth--;
1552 }
1553 utask->return_instances = ri;
1554 }
1555
prepare_uretprobe(struct uprobe * uprobe,struct pt_regs * regs)1556 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1557 {
1558 struct return_instance *ri;
1559 struct uprobe_task *utask;
1560 unsigned long orig_ret_vaddr, trampoline_vaddr;
1561 bool chained;
1562
1563 if (!get_xol_area())
1564 return;
1565
1566 utask = get_utask();
1567 if (!utask)
1568 return;
1569
1570 if (utask->depth >= MAX_URETPROBE_DEPTH) {
1571 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1572 " nestedness limit pid/tgid=%d/%d\n",
1573 current->pid, current->tgid);
1574 return;
1575 }
1576
1577 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1578 if (!ri)
1579 return;
1580
1581 trampoline_vaddr = get_trampoline_vaddr();
1582 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1583 if (orig_ret_vaddr == -1)
1584 goto fail;
1585
1586 /* drop the entries invalidated by longjmp() */
1587 chained = (orig_ret_vaddr == trampoline_vaddr);
1588 cleanup_return_instances(utask, chained, regs);
1589
1590 /*
1591 * We don't want to keep trampoline address in stack, rather keep the
1592 * original return address of first caller thru all the consequent
1593 * instances. This also makes breakpoint unwrapping easier.
1594 */
1595 if (chained) {
1596 if (!utask->return_instances) {
1597 /*
1598 * This situation is not possible. Likely we have an
1599 * attack from user-space.
1600 */
1601 uprobe_warn(current, "handle tail call");
1602 goto fail;
1603 }
1604 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1605 }
1606
1607 ri->uprobe = get_uprobe(uprobe);
1608 ri->func = instruction_pointer(regs);
1609 ri->stack = user_stack_pointer(regs);
1610 ri->orig_ret_vaddr = orig_ret_vaddr;
1611 ri->chained = chained;
1612
1613 utask->depth++;
1614 ri->next = utask->return_instances;
1615 utask->return_instances = ri;
1616
1617 return;
1618 fail:
1619 kfree(ri);
1620 }
1621
1622 /* Prepare to single-step probed instruction out of line. */
1623 static int
pre_ssout(struct uprobe * uprobe,struct pt_regs * regs,unsigned long bp_vaddr)1624 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1625 {
1626 struct uprobe_task *utask;
1627 unsigned long xol_vaddr;
1628 int err;
1629
1630 utask = get_utask();
1631 if (!utask)
1632 return -ENOMEM;
1633
1634 xol_vaddr = xol_get_insn_slot(uprobe);
1635 if (!xol_vaddr)
1636 return -ENOMEM;
1637
1638 utask->xol_vaddr = xol_vaddr;
1639 utask->vaddr = bp_vaddr;
1640
1641 err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1642 if (unlikely(err)) {
1643 xol_free_insn_slot(current);
1644 return err;
1645 }
1646
1647 utask->active_uprobe = uprobe;
1648 utask->state = UTASK_SSTEP;
1649 return 0;
1650 }
1651
1652 /*
1653 * If we are singlestepping, then ensure this thread is not connected to
1654 * non-fatal signals until completion of singlestep. When xol insn itself
1655 * triggers the signal, restart the original insn even if the task is
1656 * already SIGKILL'ed (since coredump should report the correct ip). This
1657 * is even more important if the task has a handler for SIGSEGV/etc, The
1658 * _same_ instruction should be repeated again after return from the signal
1659 * handler, and SSTEP can never finish in this case.
1660 */
uprobe_deny_signal(void)1661 bool uprobe_deny_signal(void)
1662 {
1663 struct task_struct *t = current;
1664 struct uprobe_task *utask = t->utask;
1665
1666 if (likely(!utask || !utask->active_uprobe))
1667 return false;
1668
1669 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1670
1671 if (signal_pending(t)) {
1672 spin_lock_irq(&t->sighand->siglock);
1673 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1674 spin_unlock_irq(&t->sighand->siglock);
1675
1676 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1677 utask->state = UTASK_SSTEP_TRAPPED;
1678 set_tsk_thread_flag(t, TIF_UPROBE);
1679 }
1680 }
1681
1682 return true;
1683 }
1684
mmf_recalc_uprobes(struct mm_struct * mm)1685 static void mmf_recalc_uprobes(struct mm_struct *mm)
1686 {
1687 struct vm_area_struct *vma;
1688
1689 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1690 if (!valid_vma(vma, false))
1691 continue;
1692 /*
1693 * This is not strictly accurate, we can race with
1694 * uprobe_unregister() and see the already removed
1695 * uprobe if delete_uprobe() was not yet called.
1696 * Or this uprobe can be filtered out.
1697 */
1698 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1699 return;
1700 }
1701
1702 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1703 }
1704
is_trap_at_addr(struct mm_struct * mm,unsigned long vaddr)1705 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1706 {
1707 struct page *page;
1708 uprobe_opcode_t opcode;
1709 int result;
1710
1711 pagefault_disable();
1712 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
1713 pagefault_enable();
1714
1715 if (likely(result == 0))
1716 goto out;
1717
1718 /*
1719 * The NULL 'tsk' here ensures that any faults that occur here
1720 * will not be accounted to the task. 'mm' *is* current->mm,
1721 * but we treat this as a 'remote' access since it is
1722 * essentially a kernel access to the memory.
1723 */
1724 result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page,
1725 NULL, NULL);
1726 if (result < 0)
1727 return result;
1728
1729 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1730 put_page(page);
1731 out:
1732 /* This needs to return true for any variant of the trap insn */
1733 return is_trap_insn(&opcode);
1734 }
1735
find_active_uprobe(unsigned long bp_vaddr,int * is_swbp)1736 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1737 {
1738 struct mm_struct *mm = current->mm;
1739 struct uprobe *uprobe = NULL;
1740 struct vm_area_struct *vma;
1741
1742 down_read(&mm->mmap_sem);
1743 vma = find_vma(mm, bp_vaddr);
1744 if (vma && vma->vm_start <= bp_vaddr) {
1745 if (valid_vma(vma, false)) {
1746 struct inode *inode = file_inode(vma->vm_file);
1747 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1748
1749 uprobe = find_uprobe(inode, offset);
1750 }
1751
1752 if (!uprobe)
1753 *is_swbp = is_trap_at_addr(mm, bp_vaddr);
1754 } else {
1755 *is_swbp = -EFAULT;
1756 }
1757
1758 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1759 mmf_recalc_uprobes(mm);
1760 up_read(&mm->mmap_sem);
1761
1762 return uprobe;
1763 }
1764
handler_chain(struct uprobe * uprobe,struct pt_regs * regs)1765 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1766 {
1767 struct uprobe_consumer *uc;
1768 int remove = UPROBE_HANDLER_REMOVE;
1769 bool need_prep = false; /* prepare return uprobe, when needed */
1770
1771 down_read(&uprobe->register_rwsem);
1772 for (uc = uprobe->consumers; uc; uc = uc->next) {
1773 int rc = 0;
1774
1775 if (uc->handler) {
1776 rc = uc->handler(uc, regs);
1777 WARN(rc & ~UPROBE_HANDLER_MASK,
1778 "bad rc=0x%x from %pf()\n", rc, uc->handler);
1779 }
1780
1781 if (uc->ret_handler)
1782 need_prep = true;
1783
1784 remove &= rc;
1785 }
1786
1787 if (need_prep && !remove)
1788 prepare_uretprobe(uprobe, regs); /* put bp at return */
1789
1790 if (remove && uprobe->consumers) {
1791 WARN_ON(!uprobe_is_active(uprobe));
1792 unapply_uprobe(uprobe, current->mm);
1793 }
1794 up_read(&uprobe->register_rwsem);
1795 }
1796
1797 static void
handle_uretprobe_chain(struct return_instance * ri,struct pt_regs * regs)1798 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1799 {
1800 struct uprobe *uprobe = ri->uprobe;
1801 struct uprobe_consumer *uc;
1802
1803 down_read(&uprobe->register_rwsem);
1804 for (uc = uprobe->consumers; uc; uc = uc->next) {
1805 if (uc->ret_handler)
1806 uc->ret_handler(uc, ri->func, regs);
1807 }
1808 up_read(&uprobe->register_rwsem);
1809 }
1810
find_next_ret_chain(struct return_instance * ri)1811 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
1812 {
1813 bool chained;
1814
1815 do {
1816 chained = ri->chained;
1817 ri = ri->next; /* can't be NULL if chained */
1818 } while (chained);
1819
1820 return ri;
1821 }
1822
handle_trampoline(struct pt_regs * regs)1823 static void handle_trampoline(struct pt_regs *regs)
1824 {
1825 struct uprobe_task *utask;
1826 struct return_instance *ri, *next;
1827 bool valid;
1828
1829 utask = current->utask;
1830 if (!utask)
1831 goto sigill;
1832
1833 ri = utask->return_instances;
1834 if (!ri)
1835 goto sigill;
1836
1837 do {
1838 /*
1839 * We should throw out the frames invalidated by longjmp().
1840 * If this chain is valid, then the next one should be alive
1841 * or NULL; the latter case means that nobody but ri->func
1842 * could hit this trampoline on return. TODO: sigaltstack().
1843 */
1844 next = find_next_ret_chain(ri);
1845 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
1846
1847 instruction_pointer_set(regs, ri->orig_ret_vaddr);
1848 do {
1849 if (valid)
1850 handle_uretprobe_chain(ri, regs);
1851 ri = free_ret_instance(ri);
1852 utask->depth--;
1853 } while (ri != next);
1854 } while (!valid);
1855
1856 utask->return_instances = ri;
1857 return;
1858
1859 sigill:
1860 uprobe_warn(current, "handle uretprobe, sending SIGILL.");
1861 force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1862
1863 }
1864
arch_uprobe_ignore(struct arch_uprobe * aup,struct pt_regs * regs)1865 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1866 {
1867 return false;
1868 }
1869
arch_uretprobe_is_alive(struct return_instance * ret,enum rp_check ctx,struct pt_regs * regs)1870 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1871 struct pt_regs *regs)
1872 {
1873 return true;
1874 }
1875
1876 /*
1877 * Run handler and ask thread to singlestep.
1878 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1879 */
handle_swbp(struct pt_regs * regs)1880 static void handle_swbp(struct pt_regs *regs)
1881 {
1882 struct uprobe *uprobe;
1883 unsigned long bp_vaddr;
1884 int uninitialized_var(is_swbp);
1885
1886 bp_vaddr = uprobe_get_swbp_addr(regs);
1887 if (bp_vaddr == get_trampoline_vaddr())
1888 return handle_trampoline(regs);
1889
1890 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1891 if (!uprobe) {
1892 if (is_swbp > 0) {
1893 /* No matching uprobe; signal SIGTRAP. */
1894 send_sig(SIGTRAP, current, 0);
1895 } else {
1896 /*
1897 * Either we raced with uprobe_unregister() or we can't
1898 * access this memory. The latter is only possible if
1899 * another thread plays with our ->mm. In both cases
1900 * we can simply restart. If this vma was unmapped we
1901 * can pretend this insn was not executed yet and get
1902 * the (correct) SIGSEGV after restart.
1903 */
1904 instruction_pointer_set(regs, bp_vaddr);
1905 }
1906 return;
1907 }
1908
1909 /* change it in advance for ->handler() and restart */
1910 instruction_pointer_set(regs, bp_vaddr);
1911
1912 /*
1913 * TODO: move copy_insn/etc into _register and remove this hack.
1914 * After we hit the bp, _unregister + _register can install the
1915 * new and not-yet-analyzed uprobe at the same address, restart.
1916 */
1917 smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1918 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1919 goto out;
1920
1921 /* Tracing handlers use ->utask to communicate with fetch methods */
1922 if (!get_utask())
1923 goto out;
1924
1925 if (arch_uprobe_ignore(&uprobe->arch, regs))
1926 goto out;
1927
1928 handler_chain(uprobe, regs);
1929
1930 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1931 goto out;
1932
1933 if (!pre_ssout(uprobe, regs, bp_vaddr))
1934 return;
1935
1936 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1937 out:
1938 put_uprobe(uprobe);
1939 }
1940
1941 /*
1942 * Perform required fix-ups and disable singlestep.
1943 * Allow pending signals to take effect.
1944 */
handle_singlestep(struct uprobe_task * utask,struct pt_regs * regs)1945 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1946 {
1947 struct uprobe *uprobe;
1948 int err = 0;
1949
1950 uprobe = utask->active_uprobe;
1951 if (utask->state == UTASK_SSTEP_ACK)
1952 err = arch_uprobe_post_xol(&uprobe->arch, regs);
1953 else if (utask->state == UTASK_SSTEP_TRAPPED)
1954 arch_uprobe_abort_xol(&uprobe->arch, regs);
1955 else
1956 WARN_ON_ONCE(1);
1957
1958 put_uprobe(uprobe);
1959 utask->active_uprobe = NULL;
1960 utask->state = UTASK_RUNNING;
1961 xol_free_insn_slot(current);
1962
1963 spin_lock_irq(¤t->sighand->siglock);
1964 recalc_sigpending(); /* see uprobe_deny_signal() */
1965 spin_unlock_irq(¤t->sighand->siglock);
1966
1967 if (unlikely(err)) {
1968 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1969 force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1970 }
1971 }
1972
1973 /*
1974 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1975 * allows the thread to return from interrupt. After that handle_swbp()
1976 * sets utask->active_uprobe.
1977 *
1978 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1979 * and allows the thread to return from interrupt.
1980 *
1981 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1982 * uprobe_notify_resume().
1983 */
uprobe_notify_resume(struct pt_regs * regs)1984 void uprobe_notify_resume(struct pt_regs *regs)
1985 {
1986 struct uprobe_task *utask;
1987
1988 clear_thread_flag(TIF_UPROBE);
1989
1990 utask = current->utask;
1991 if (utask && utask->active_uprobe)
1992 handle_singlestep(utask, regs);
1993 else
1994 handle_swbp(regs);
1995 }
1996
1997 /*
1998 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1999 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2000 */
uprobe_pre_sstep_notifier(struct pt_regs * regs)2001 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2002 {
2003 if (!current->mm)
2004 return 0;
2005
2006 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) &&
2007 (!current->utask || !current->utask->return_instances))
2008 return 0;
2009
2010 set_thread_flag(TIF_UPROBE);
2011 return 1;
2012 }
2013
2014 /*
2015 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2016 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2017 */
uprobe_post_sstep_notifier(struct pt_regs * regs)2018 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2019 {
2020 struct uprobe_task *utask = current->utask;
2021
2022 if (!current->mm || !utask || !utask->active_uprobe)
2023 /* task is currently not uprobed */
2024 return 0;
2025
2026 utask->state = UTASK_SSTEP_ACK;
2027 set_thread_flag(TIF_UPROBE);
2028 return 1;
2029 }
2030
2031 static struct notifier_block uprobe_exception_nb = {
2032 .notifier_call = arch_uprobe_exception_notify,
2033 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
2034 };
2035
init_uprobes(void)2036 static int __init init_uprobes(void)
2037 {
2038 int i;
2039
2040 for (i = 0; i < UPROBES_HASH_SZ; i++)
2041 mutex_init(&uprobes_mmap_mutex[i]);
2042
2043 if (percpu_init_rwsem(&dup_mmap_sem))
2044 return -ENOMEM;
2045
2046 return register_die_notifier(&uprobe_exception_nb);
2047 }
2048 __initcall(init_uprobes);
2049