1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #ifndef __ARM64_KVM_HYP_SWITCH_H__
8 #define __ARM64_KVM_HYP_SWITCH_H__
9
10 #include <linux/arm-smccc.h>
11 #include <linux/kvm_host.h>
12 #include <linux/types.h>
13 #include <linux/jump_label.h>
14 #include <uapi/linux/psci.h>
15
16 #include <kvm/arm_psci.h>
17
18 #include <asm/barrier.h>
19 #include <asm/cpufeature.h>
20 #include <asm/extable.h>
21 #include <asm/kprobes.h>
22 #include <asm/kvm_asm.h>
23 #include <asm/kvm_emulate.h>
24 #include <asm/kvm_hyp.h>
25 #include <asm/kvm_mmu.h>
26 #include <asm/fpsimd.h>
27 #include <asm/debug-monitors.h>
28 #include <asm/processor.h>
29 #include <asm/thread_info.h>
30
31 extern const char __hyp_panic_string[];
32
33 extern struct exception_table_entry __start___kvm_ex_table;
34 extern struct exception_table_entry __stop___kvm_ex_table;
35
36 /* Check whether the FP regs were dirtied while in the host-side run loop: */
update_fp_enabled(struct kvm_vcpu * vcpu)37 static inline bool update_fp_enabled(struct kvm_vcpu *vcpu)
38 {
39 /*
40 * When the system doesn't support FP/SIMD, we cannot rely on
41 * the _TIF_FOREIGN_FPSTATE flag. However, we always inject an
42 * abort on the very first access to FP and thus we should never
43 * see KVM_ARM64_FP_ENABLED. For added safety, make sure we always
44 * trap the accesses.
45 */
46 if (!system_supports_fpsimd() ||
47 vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE)
48 vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED |
49 KVM_ARM64_FP_HOST);
50
51 return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED);
52 }
53
54 /* Save the 32-bit only FPSIMD system register state */
__fpsimd_save_fpexc32(struct kvm_vcpu * vcpu)55 static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
56 {
57 if (!vcpu_el1_is_32bit(vcpu))
58 return;
59
60 __vcpu_sys_reg(vcpu, FPEXC32_EL2) = read_sysreg(fpexc32_el2);
61 }
62
__activate_traps_fpsimd32(struct kvm_vcpu * vcpu)63 static inline void __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
64 {
65 /*
66 * We are about to set CPTR_EL2.TFP to trap all floating point
67 * register accesses to EL2, however, the ARM ARM clearly states that
68 * traps are only taken to EL2 if the operation would not otherwise
69 * trap to EL1. Therefore, always make sure that for 32-bit guests,
70 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
71 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
72 * it will cause an exception.
73 */
74 if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
75 write_sysreg(1 << 30, fpexc32_el2);
76 isb();
77 }
78 }
79
__activate_traps_common(struct kvm_vcpu * vcpu)80 static inline void __activate_traps_common(struct kvm_vcpu *vcpu)
81 {
82 /* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
83 write_sysreg(1 << 15, hstr_el2);
84
85 /*
86 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
87 * PMSELR_EL0 to make sure it never contains the cycle
88 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
89 * EL1 instead of being trapped to EL2.
90 */
91 write_sysreg(0, pmselr_el0);
92 write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
93 write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
94 }
95
__deactivate_traps_common(void)96 static inline void __deactivate_traps_common(void)
97 {
98 write_sysreg(0, hstr_el2);
99 write_sysreg(0, pmuserenr_el0);
100 }
101
___activate_traps(struct kvm_vcpu * vcpu)102 static inline void ___activate_traps(struct kvm_vcpu *vcpu)
103 {
104 u64 hcr = vcpu->arch.hcr_el2;
105
106 if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM))
107 hcr |= HCR_TVM;
108
109 write_sysreg(hcr, hcr_el2);
110
111 if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
112 write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
113 }
114
___deactivate_traps(struct kvm_vcpu * vcpu)115 static inline void ___deactivate_traps(struct kvm_vcpu *vcpu)
116 {
117 /*
118 * If we pended a virtual abort, preserve it until it gets
119 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
120 * the crucial bit is "On taking a vSError interrupt,
121 * HCR_EL2.VSE is cleared to 0."
122 */
123 if (vcpu->arch.hcr_el2 & HCR_VSE) {
124 vcpu->arch.hcr_el2 &= ~HCR_VSE;
125 vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE;
126 }
127 }
128
__translate_far_to_hpfar(u64 far,u64 * hpfar)129 static inline bool __translate_far_to_hpfar(u64 far, u64 *hpfar)
130 {
131 u64 par, tmp;
132
133 /*
134 * Resolve the IPA the hard way using the guest VA.
135 *
136 * Stage-1 translation already validated the memory access
137 * rights. As such, we can use the EL1 translation regime, and
138 * don't have to distinguish between EL0 and EL1 access.
139 *
140 * We do need to save/restore PAR_EL1 though, as we haven't
141 * saved the guest context yet, and we may return early...
142 */
143 par = read_sysreg_par();
144 if (!__kvm_at("s1e1r", far))
145 tmp = read_sysreg_par();
146 else
147 tmp = SYS_PAR_EL1_F; /* back to the guest */
148 write_sysreg(par, par_el1);
149
150 if (unlikely(tmp & SYS_PAR_EL1_F))
151 return false; /* Translation failed, back to guest */
152
153 /* Convert PAR to HPFAR format */
154 *hpfar = PAR_TO_HPFAR(tmp);
155 return true;
156 }
157
__populate_fault_info(struct kvm_vcpu * vcpu)158 static inline bool __populate_fault_info(struct kvm_vcpu *vcpu)
159 {
160 u8 ec;
161 u64 esr;
162 u64 hpfar, far;
163
164 esr = vcpu->arch.fault.esr_el2;
165 ec = ESR_ELx_EC(esr);
166
167 if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
168 return true;
169
170 far = read_sysreg_el2(SYS_FAR);
171
172 /*
173 * The HPFAR can be invalid if the stage 2 fault did not
174 * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
175 * bit is clear) and one of the two following cases are true:
176 * 1. The fault was due to a permission fault
177 * 2. The processor carries errata 834220
178 *
179 * Therefore, for all non S1PTW faults where we either have a
180 * permission fault or the errata workaround is enabled, we
181 * resolve the IPA using the AT instruction.
182 */
183 if (!(esr & ESR_ELx_S1PTW) &&
184 (cpus_have_final_cap(ARM64_WORKAROUND_834220) ||
185 (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
186 if (!__translate_far_to_hpfar(far, &hpfar))
187 return false;
188 } else {
189 hpfar = read_sysreg(hpfar_el2);
190 }
191
192 vcpu->arch.fault.far_el2 = far;
193 vcpu->arch.fault.hpfar_el2 = hpfar;
194 return true;
195 }
196
197 /* Check for an FPSIMD/SVE trap and handle as appropriate */
__hyp_handle_fpsimd(struct kvm_vcpu * vcpu)198 static inline bool __hyp_handle_fpsimd(struct kvm_vcpu *vcpu)
199 {
200 bool vhe, sve_guest, sve_host;
201 u8 esr_ec;
202
203 if (!system_supports_fpsimd())
204 return false;
205
206 /*
207 * Currently system_supports_sve() currently implies has_vhe(),
208 * so the check is redundant. However, has_vhe() can be determined
209 * statically and helps the compiler remove dead code.
210 */
211 if (has_vhe() && system_supports_sve()) {
212 sve_guest = vcpu_has_sve(vcpu);
213 sve_host = vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE;
214 vhe = true;
215 } else {
216 sve_guest = false;
217 sve_host = false;
218 vhe = has_vhe();
219 }
220
221 esr_ec = kvm_vcpu_trap_get_class(vcpu);
222 if (esr_ec != ESR_ELx_EC_FP_ASIMD &&
223 esr_ec != ESR_ELx_EC_SVE)
224 return false;
225
226 /* Don't handle SVE traps for non-SVE vcpus here: */
227 if (!sve_guest)
228 if (esr_ec != ESR_ELx_EC_FP_ASIMD)
229 return false;
230
231 /* Valid trap. Switch the context: */
232
233 if (vhe) {
234 u64 reg = read_sysreg(cpacr_el1) | CPACR_EL1_FPEN;
235
236 if (sve_guest)
237 reg |= CPACR_EL1_ZEN;
238
239 write_sysreg(reg, cpacr_el1);
240 } else {
241 write_sysreg(read_sysreg(cptr_el2) & ~(u64)CPTR_EL2_TFP,
242 cptr_el2);
243 }
244
245 isb();
246
247 if (vcpu->arch.flags & KVM_ARM64_FP_HOST) {
248 /*
249 * In the SVE case, VHE is assumed: it is enforced by
250 * Kconfig and kvm_arch_init().
251 */
252 if (sve_host) {
253 struct thread_struct *thread = container_of(
254 vcpu->arch.host_fpsimd_state,
255 struct thread_struct, uw.fpsimd_state);
256
257 sve_save_state(sve_pffr(thread),
258 &vcpu->arch.host_fpsimd_state->fpsr);
259 } else {
260 __fpsimd_save_state(vcpu->arch.host_fpsimd_state);
261 }
262
263 vcpu->arch.flags &= ~KVM_ARM64_FP_HOST;
264 }
265
266 if (sve_guest) {
267 sve_load_state(vcpu_sve_pffr(vcpu),
268 &vcpu->arch.ctxt.fp_regs.fpsr,
269 sve_vq_from_vl(vcpu->arch.sve_max_vl) - 1);
270 write_sysreg_s(__vcpu_sys_reg(vcpu, ZCR_EL1), SYS_ZCR_EL12);
271 } else {
272 __fpsimd_restore_state(&vcpu->arch.ctxt.fp_regs);
273 }
274
275 /* Skip restoring fpexc32 for AArch64 guests */
276 if (!(read_sysreg(hcr_el2) & HCR_RW))
277 write_sysreg(__vcpu_sys_reg(vcpu, FPEXC32_EL2), fpexc32_el2);
278
279 vcpu->arch.flags |= KVM_ARM64_FP_ENABLED;
280
281 return true;
282 }
283
handle_tx2_tvm(struct kvm_vcpu * vcpu)284 static inline bool handle_tx2_tvm(struct kvm_vcpu *vcpu)
285 {
286 u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
287 int rt = kvm_vcpu_sys_get_rt(vcpu);
288 u64 val = vcpu_get_reg(vcpu, rt);
289
290 /*
291 * The normal sysreg handling code expects to see the traps,
292 * let's not do anything here.
293 */
294 if (vcpu->arch.hcr_el2 & HCR_TVM)
295 return false;
296
297 switch (sysreg) {
298 case SYS_SCTLR_EL1:
299 write_sysreg_el1(val, SYS_SCTLR);
300 break;
301 case SYS_TTBR0_EL1:
302 write_sysreg_el1(val, SYS_TTBR0);
303 break;
304 case SYS_TTBR1_EL1:
305 write_sysreg_el1(val, SYS_TTBR1);
306 break;
307 case SYS_TCR_EL1:
308 write_sysreg_el1(val, SYS_TCR);
309 break;
310 case SYS_ESR_EL1:
311 write_sysreg_el1(val, SYS_ESR);
312 break;
313 case SYS_FAR_EL1:
314 write_sysreg_el1(val, SYS_FAR);
315 break;
316 case SYS_AFSR0_EL1:
317 write_sysreg_el1(val, SYS_AFSR0);
318 break;
319 case SYS_AFSR1_EL1:
320 write_sysreg_el1(val, SYS_AFSR1);
321 break;
322 case SYS_MAIR_EL1:
323 write_sysreg_el1(val, SYS_MAIR);
324 break;
325 case SYS_AMAIR_EL1:
326 write_sysreg_el1(val, SYS_AMAIR);
327 break;
328 case SYS_CONTEXTIDR_EL1:
329 write_sysreg_el1(val, SYS_CONTEXTIDR);
330 break;
331 default:
332 return false;
333 }
334
335 __kvm_skip_instr(vcpu);
336 return true;
337 }
338
esr_is_ptrauth_trap(u32 esr)339 static inline bool esr_is_ptrauth_trap(u32 esr)
340 {
341 u32 ec = ESR_ELx_EC(esr);
342
343 if (ec == ESR_ELx_EC_PAC)
344 return true;
345
346 if (ec != ESR_ELx_EC_SYS64)
347 return false;
348
349 switch (esr_sys64_to_sysreg(esr)) {
350 case SYS_APIAKEYLO_EL1:
351 case SYS_APIAKEYHI_EL1:
352 case SYS_APIBKEYLO_EL1:
353 case SYS_APIBKEYHI_EL1:
354 case SYS_APDAKEYLO_EL1:
355 case SYS_APDAKEYHI_EL1:
356 case SYS_APDBKEYLO_EL1:
357 case SYS_APDBKEYHI_EL1:
358 case SYS_APGAKEYLO_EL1:
359 case SYS_APGAKEYHI_EL1:
360 return true;
361 }
362
363 return false;
364 }
365
366 #define __ptrauth_save_key(ctxt, key) \
367 do { \
368 u64 __val; \
369 __val = read_sysreg_s(SYS_ ## key ## KEYLO_EL1); \
370 ctxt_sys_reg(ctxt, key ## KEYLO_EL1) = __val; \
371 __val = read_sysreg_s(SYS_ ## key ## KEYHI_EL1); \
372 ctxt_sys_reg(ctxt, key ## KEYHI_EL1) = __val; \
373 } while(0)
374
375 DECLARE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
376
__hyp_handle_ptrauth(struct kvm_vcpu * vcpu)377 static inline bool __hyp_handle_ptrauth(struct kvm_vcpu *vcpu)
378 {
379 struct kvm_cpu_context *ctxt;
380 u64 val;
381
382 if (!vcpu_has_ptrauth(vcpu) ||
383 !esr_is_ptrauth_trap(kvm_vcpu_get_esr(vcpu)))
384 return false;
385
386 ctxt = this_cpu_ptr(&kvm_hyp_ctxt);
387 __ptrauth_save_key(ctxt, APIA);
388 __ptrauth_save_key(ctxt, APIB);
389 __ptrauth_save_key(ctxt, APDA);
390 __ptrauth_save_key(ctxt, APDB);
391 __ptrauth_save_key(ctxt, APGA);
392
393 vcpu_ptrauth_enable(vcpu);
394
395 val = read_sysreg(hcr_el2);
396 val |= (HCR_API | HCR_APK);
397 write_sysreg(val, hcr_el2);
398
399 return true;
400 }
401
402 /*
403 * Return true when we were able to fixup the guest exit and should return to
404 * the guest, false when we should restore the host state and return to the
405 * main run loop.
406 */
fixup_guest_exit(struct kvm_vcpu * vcpu,u64 * exit_code)407 static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
408 {
409 if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
410 vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR);
411
412 /*
413 * We're using the raw exception code in order to only process
414 * the trap if no SError is pending. We will come back to the
415 * same PC once the SError has been injected, and replay the
416 * trapping instruction.
417 */
418 if (*exit_code != ARM_EXCEPTION_TRAP)
419 goto exit;
420
421 if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) &&
422 kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 &&
423 handle_tx2_tvm(vcpu))
424 goto guest;
425
426 /*
427 * We trap the first access to the FP/SIMD to save the host context
428 * and restore the guest context lazily.
429 * If FP/SIMD is not implemented, handle the trap and inject an
430 * undefined instruction exception to the guest.
431 * Similarly for trapped SVE accesses.
432 */
433 if (__hyp_handle_fpsimd(vcpu))
434 goto guest;
435
436 if (__hyp_handle_ptrauth(vcpu))
437 goto guest;
438
439 if (!__populate_fault_info(vcpu))
440 goto guest;
441
442 if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
443 bool valid;
444
445 valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
446 kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
447 kvm_vcpu_dabt_isvalid(vcpu) &&
448 !kvm_vcpu_abt_issea(vcpu) &&
449 !kvm_vcpu_abt_iss1tw(vcpu);
450
451 if (valid) {
452 int ret = __vgic_v2_perform_cpuif_access(vcpu);
453
454 if (ret == 1)
455 goto guest;
456
457 /* Promote an illegal access to an SError.*/
458 if (ret == -1)
459 *exit_code = ARM_EXCEPTION_EL1_SERROR;
460
461 goto exit;
462 }
463 }
464
465 if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
466 (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
467 kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
468 int ret = __vgic_v3_perform_cpuif_access(vcpu);
469
470 if (ret == 1)
471 goto guest;
472 }
473
474 exit:
475 /* Return to the host kernel and handle the exit */
476 return false;
477
478 guest:
479 /* Re-enter the guest */
480 asm(ALTERNATIVE("nop", "dmb sy", ARM64_WORKAROUND_1508412));
481 return true;
482 }
483
__kvm_unexpected_el2_exception(void)484 static inline void __kvm_unexpected_el2_exception(void)
485 {
486 extern char __guest_exit_panic[];
487 unsigned long addr, fixup;
488 struct exception_table_entry *entry, *end;
489 unsigned long elr_el2 = read_sysreg(elr_el2);
490
491 entry = hyp_symbol_addr(__start___kvm_ex_table);
492 end = hyp_symbol_addr(__stop___kvm_ex_table);
493
494 while (entry < end) {
495 addr = (unsigned long)&entry->insn + entry->insn;
496 fixup = (unsigned long)&entry->fixup + entry->fixup;
497
498 if (addr != elr_el2) {
499 entry++;
500 continue;
501 }
502
503 write_sysreg(fixup, elr_el2);
504 return;
505 }
506
507 /* Trigger a panic after restoring the hyp context. */
508 write_sysreg(__guest_exit_panic, elr_el2);
509 }
510
511 #endif /* __ARM64_KVM_HYP_SWITCH_H__ */
512