1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Ptrace user space interface.
4 *
5 * Copyright IBM Corp. 1999, 2010
6 * Author(s): Denis Joseph Barrow
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 */
9
10 #include "asm/ptrace.h"
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/mm.h>
15 #include <linux/smp.h>
16 #include <linux/errno.h>
17 #include <linux/ptrace.h>
18 #include <linux/user.h>
19 #include <linux/security.h>
20 #include <linux/audit.h>
21 #include <linux/signal.h>
22 #include <linux/elf.h>
23 #include <linux/regset.h>
24 #include <linux/seccomp.h>
25 #include <linux/compat.h>
26 #include <trace/syscall.h>
27 #include <asm/page.h>
28 #include <linux/uaccess.h>
29 #include <asm/unistd.h>
30 #include <asm/switch_to.h>
31 #include <asm/runtime_instr.h>
32 #include <asm/facility.h>
33
34 #include "entry.h"
35
36 #ifdef CONFIG_COMPAT
37 #include "compat_ptrace.h"
38 #endif
39
update_cr_regs(struct task_struct * task)40 void update_cr_regs(struct task_struct *task)
41 {
42 struct pt_regs *regs = task_pt_regs(task);
43 struct thread_struct *thread = &task->thread;
44 struct per_regs old, new;
45 union ctlreg0 cr0_old, cr0_new;
46 union ctlreg2 cr2_old, cr2_new;
47 int cr0_changed, cr2_changed;
48
49 __ctl_store(cr0_old.val, 0, 0);
50 __ctl_store(cr2_old.val, 2, 2);
51 cr0_new = cr0_old;
52 cr2_new = cr2_old;
53 /* Take care of the enable/disable of transactional execution. */
54 if (MACHINE_HAS_TE) {
55 /* Set or clear transaction execution TXC bit 8. */
56 cr0_new.tcx = 1;
57 if (task->thread.per_flags & PER_FLAG_NO_TE)
58 cr0_new.tcx = 0;
59 /* Set or clear transaction execution TDC bits 62 and 63. */
60 cr2_new.tdc = 0;
61 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
62 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
63 cr2_new.tdc = 1;
64 else
65 cr2_new.tdc = 2;
66 }
67 }
68 /* Take care of enable/disable of guarded storage. */
69 if (MACHINE_HAS_GS) {
70 cr2_new.gse = 0;
71 if (task->thread.gs_cb)
72 cr2_new.gse = 1;
73 }
74 /* Load control register 0/2 iff changed */
75 cr0_changed = cr0_new.val != cr0_old.val;
76 cr2_changed = cr2_new.val != cr2_old.val;
77 if (cr0_changed)
78 __ctl_load(cr0_new.val, 0, 0);
79 if (cr2_changed)
80 __ctl_load(cr2_new.val, 2, 2);
81 /* Copy user specified PER registers */
82 new.control = thread->per_user.control;
83 new.start = thread->per_user.start;
84 new.end = thread->per_user.end;
85
86 /* merge TIF_SINGLE_STEP into user specified PER registers. */
87 if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
88 test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
89 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
90 new.control |= PER_EVENT_BRANCH;
91 else
92 new.control |= PER_EVENT_IFETCH;
93 new.control |= PER_CONTROL_SUSPENSION;
94 new.control |= PER_EVENT_TRANSACTION_END;
95 if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
96 new.control |= PER_EVENT_IFETCH;
97 new.start = 0;
98 new.end = -1UL;
99 }
100
101 /* Take care of the PER enablement bit in the PSW. */
102 if (!(new.control & PER_EVENT_MASK)) {
103 regs->psw.mask &= ~PSW_MASK_PER;
104 return;
105 }
106 regs->psw.mask |= PSW_MASK_PER;
107 __ctl_store(old, 9, 11);
108 if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
109 __ctl_load(new, 9, 11);
110 }
111
user_enable_single_step(struct task_struct * task)112 void user_enable_single_step(struct task_struct *task)
113 {
114 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
115 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
116 }
117
user_disable_single_step(struct task_struct * task)118 void user_disable_single_step(struct task_struct *task)
119 {
120 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
121 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
122 }
123
user_enable_block_step(struct task_struct * task)124 void user_enable_block_step(struct task_struct *task)
125 {
126 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
127 set_tsk_thread_flag(task, TIF_BLOCK_STEP);
128 }
129
130 /*
131 * Called by kernel/ptrace.c when detaching..
132 *
133 * Clear all debugging related fields.
134 */
ptrace_disable(struct task_struct * task)135 void ptrace_disable(struct task_struct *task)
136 {
137 memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
138 memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
139 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
140 clear_tsk_thread_flag(task, TIF_PER_TRAP);
141 task->thread.per_flags = 0;
142 }
143
144 #define __ADDR_MASK 7
145
__peek_user_per(struct task_struct * child,addr_t addr)146 static inline unsigned long __peek_user_per(struct task_struct *child,
147 addr_t addr)
148 {
149 if (addr == offsetof(struct per_struct_kernel, cr9))
150 /* Control bits of the active per set. */
151 return test_thread_flag(TIF_SINGLE_STEP) ?
152 PER_EVENT_IFETCH : child->thread.per_user.control;
153 else if (addr == offsetof(struct per_struct_kernel, cr10))
154 /* Start address of the active per set. */
155 return test_thread_flag(TIF_SINGLE_STEP) ?
156 0 : child->thread.per_user.start;
157 else if (addr == offsetof(struct per_struct_kernel, cr11))
158 /* End address of the active per set. */
159 return test_thread_flag(TIF_SINGLE_STEP) ?
160 -1UL : child->thread.per_user.end;
161 else if (addr == offsetof(struct per_struct_kernel, bits))
162 /* Single-step bit. */
163 return test_thread_flag(TIF_SINGLE_STEP) ?
164 (1UL << (BITS_PER_LONG - 1)) : 0;
165 else if (addr == offsetof(struct per_struct_kernel, starting_addr))
166 /* Start address of the user specified per set. */
167 return child->thread.per_user.start;
168 else if (addr == offsetof(struct per_struct_kernel, ending_addr))
169 /* End address of the user specified per set. */
170 return child->thread.per_user.end;
171 else if (addr == offsetof(struct per_struct_kernel, perc_atmid))
172 /* PER code, ATMID and AI of the last PER trap */
173 return (unsigned long)
174 child->thread.per_event.cause << (BITS_PER_LONG - 16);
175 else if (addr == offsetof(struct per_struct_kernel, address))
176 /* Address of the last PER trap */
177 return child->thread.per_event.address;
178 else if (addr == offsetof(struct per_struct_kernel, access_id))
179 /* Access id of the last PER trap */
180 return (unsigned long)
181 child->thread.per_event.paid << (BITS_PER_LONG - 8);
182 return 0;
183 }
184
185 /*
186 * Read the word at offset addr from the user area of a process. The
187 * trouble here is that the information is littered over different
188 * locations. The process registers are found on the kernel stack,
189 * the floating point stuff and the trace settings are stored in
190 * the task structure. In addition the different structures in
191 * struct user contain pad bytes that should be read as zeroes.
192 * Lovely...
193 */
__peek_user(struct task_struct * child,addr_t addr)194 static unsigned long __peek_user(struct task_struct *child, addr_t addr)
195 {
196 addr_t offset, tmp;
197
198 if (addr < offsetof(struct user, regs.acrs)) {
199 /*
200 * psw and gprs are stored on the stack
201 */
202 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
203 if (addr == offsetof(struct user, regs.psw.mask)) {
204 /* Return a clean psw mask. */
205 tmp &= PSW_MASK_USER | PSW_MASK_RI;
206 tmp |= PSW_USER_BITS;
207 }
208
209 } else if (addr < offsetof(struct user, regs.orig_gpr2)) {
210 /*
211 * access registers are stored in the thread structure
212 */
213 offset = addr - offsetof(struct user, regs.acrs);
214 /*
215 * Very special case: old & broken 64 bit gdb reading
216 * from acrs[15]. Result is a 64 bit value. Read the
217 * 32 bit acrs[15] value and shift it by 32. Sick...
218 */
219 if (addr == offsetof(struct user, regs.acrs[15]))
220 tmp = ((unsigned long) child->thread.acrs[15]) << 32;
221 else
222 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
223
224 } else if (addr == offsetof(struct user, regs.orig_gpr2)) {
225 /*
226 * orig_gpr2 is stored on the kernel stack
227 */
228 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
229
230 } else if (addr < offsetof(struct user, regs.fp_regs)) {
231 /*
232 * prevent reads of padding hole between
233 * orig_gpr2 and fp_regs on s390.
234 */
235 tmp = 0;
236
237 } else if (addr == offsetof(struct user, regs.fp_regs.fpc)) {
238 /*
239 * floating point control reg. is in the thread structure
240 */
241 tmp = child->thread.fpu.fpc;
242 tmp <<= BITS_PER_LONG - 32;
243
244 } else if (addr < offsetof(struct user, regs.fp_regs) + sizeof(s390_fp_regs)) {
245 /*
246 * floating point regs. are either in child->thread.fpu
247 * or the child->thread.fpu.vxrs array
248 */
249 offset = addr - offsetof(struct user, regs.fp_regs.fprs);
250 if (MACHINE_HAS_VX)
251 tmp = *(addr_t *)
252 ((addr_t) child->thread.fpu.vxrs + 2*offset);
253 else
254 tmp = *(addr_t *)
255 ((addr_t) child->thread.fpu.fprs + offset);
256
257 } else if (addr < offsetof(struct user, regs.per_info) + sizeof(per_struct)) {
258 /*
259 * Handle access to the per_info structure.
260 */
261 addr -= offsetof(struct user, regs.per_info);
262 tmp = __peek_user_per(child, addr);
263
264 } else
265 tmp = 0;
266
267 return tmp;
268 }
269
270 static int
peek_user(struct task_struct * child,addr_t addr,addr_t data)271 peek_user(struct task_struct *child, addr_t addr, addr_t data)
272 {
273 addr_t tmp, mask;
274
275 /*
276 * Stupid gdb peeks/pokes the access registers in 64 bit with
277 * an alignment of 4. Programmers from hell...
278 */
279 mask = __ADDR_MASK;
280 if (addr >= offsetof(struct user, regs.acrs) &&
281 addr < offsetof(struct user, regs.orig_gpr2))
282 mask = 3;
283 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
284 return -EIO;
285
286 tmp = __peek_user(child, addr);
287 return put_user(tmp, (addr_t __user *) data);
288 }
289
__poke_user_per(struct task_struct * child,addr_t addr,addr_t data)290 static inline void __poke_user_per(struct task_struct *child,
291 addr_t addr, addr_t data)
292 {
293 /*
294 * There are only three fields in the per_info struct that the
295 * debugger user can write to.
296 * 1) cr9: the debugger wants to set a new PER event mask
297 * 2) starting_addr: the debugger wants to set a new starting
298 * address to use with the PER event mask.
299 * 3) ending_addr: the debugger wants to set a new ending
300 * address to use with the PER event mask.
301 * The user specified PER event mask and the start and end
302 * addresses are used only if single stepping is not in effect.
303 * Writes to any other field in per_info are ignored.
304 */
305 if (addr == offsetof(struct per_struct_kernel, cr9))
306 /* PER event mask of the user specified per set. */
307 child->thread.per_user.control =
308 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
309 else if (addr == offsetof(struct per_struct_kernel, starting_addr))
310 /* Starting address of the user specified per set. */
311 child->thread.per_user.start = data;
312 else if (addr == offsetof(struct per_struct_kernel, ending_addr))
313 /* Ending address of the user specified per set. */
314 child->thread.per_user.end = data;
315 }
316
317 /*
318 * Write a word to the user area of a process at location addr. This
319 * operation does have an additional problem compared to peek_user.
320 * Stores to the program status word and on the floating point
321 * control register needs to get checked for validity.
322 */
__poke_user(struct task_struct * child,addr_t addr,addr_t data)323 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
324 {
325 addr_t offset;
326
327
328 if (addr < offsetof(struct user, regs.acrs)) {
329 struct pt_regs *regs = task_pt_regs(child);
330 /*
331 * psw and gprs are stored on the stack
332 */
333 if (addr == offsetof(struct user, regs.psw.mask)) {
334 unsigned long mask = PSW_MASK_USER;
335
336 mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
337 if ((data ^ PSW_USER_BITS) & ~mask)
338 /* Invalid psw mask. */
339 return -EINVAL;
340 if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
341 /* Invalid address-space-control bits */
342 return -EINVAL;
343 if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
344 /* Invalid addressing mode bits */
345 return -EINVAL;
346 }
347
348 if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
349 addr == offsetof(struct user, regs.gprs[2])) {
350 struct pt_regs *regs = task_pt_regs(child);
351
352 regs->int_code = 0x20000 | (data & 0xffff);
353 }
354 *(addr_t *)((addr_t) ®s->psw + addr) = data;
355 } else if (addr < offsetof(struct user, regs.orig_gpr2)) {
356 /*
357 * access registers are stored in the thread structure
358 */
359 offset = addr - offsetof(struct user, regs.acrs);
360 /*
361 * Very special case: old & broken 64 bit gdb writing
362 * to acrs[15] with a 64 bit value. Ignore the lower
363 * half of the value and write the upper 32 bit to
364 * acrs[15]. Sick...
365 */
366 if (addr == offsetof(struct user, regs.acrs[15]))
367 child->thread.acrs[15] = (unsigned int) (data >> 32);
368 else
369 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
370
371 } else if (addr == offsetof(struct user, regs.orig_gpr2)) {
372 /*
373 * orig_gpr2 is stored on the kernel stack
374 */
375 task_pt_regs(child)->orig_gpr2 = data;
376
377 } else if (addr < offsetof(struct user, regs.fp_regs)) {
378 /*
379 * prevent writes of padding hole between
380 * orig_gpr2 and fp_regs on s390.
381 */
382 return 0;
383
384 } else if (addr == offsetof(struct user, regs.fp_regs.fpc)) {
385 /*
386 * floating point control reg. is in the thread structure
387 */
388 if ((unsigned int) data != 0 ||
389 test_fp_ctl(data >> (BITS_PER_LONG - 32)))
390 return -EINVAL;
391 child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
392
393 } else if (addr < offsetof(struct user, regs.fp_regs) + sizeof(s390_fp_regs)) {
394 /*
395 * floating point regs. are either in child->thread.fpu
396 * or the child->thread.fpu.vxrs array
397 */
398 offset = addr - offsetof(struct user, regs.fp_regs.fprs);
399 if (MACHINE_HAS_VX)
400 *(addr_t *)((addr_t)
401 child->thread.fpu.vxrs + 2*offset) = data;
402 else
403 *(addr_t *)((addr_t)
404 child->thread.fpu.fprs + offset) = data;
405
406 } else if (addr < offsetof(struct user, regs.per_info) + sizeof(per_struct)) {
407 /*
408 * Handle access to the per_info structure.
409 */
410 addr -= offsetof(struct user, regs.per_info);
411 __poke_user_per(child, addr, data);
412
413 }
414
415 return 0;
416 }
417
poke_user(struct task_struct * child,addr_t addr,addr_t data)418 static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
419 {
420 addr_t mask;
421
422 /*
423 * Stupid gdb peeks/pokes the access registers in 64 bit with
424 * an alignment of 4. Programmers from hell indeed...
425 */
426 mask = __ADDR_MASK;
427 if (addr >= offsetof(struct user, regs.acrs) &&
428 addr < offsetof(struct user, regs.orig_gpr2))
429 mask = 3;
430 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
431 return -EIO;
432
433 return __poke_user(child, addr, data);
434 }
435
arch_ptrace(struct task_struct * child,long request,unsigned long addr,unsigned long data)436 long arch_ptrace(struct task_struct *child, long request,
437 unsigned long addr, unsigned long data)
438 {
439 ptrace_area parea;
440 int copied, ret;
441
442 switch (request) {
443 case PTRACE_PEEKUSR:
444 /* read the word at location addr in the USER area. */
445 return peek_user(child, addr, data);
446
447 case PTRACE_POKEUSR:
448 /* write the word at location addr in the USER area */
449 return poke_user(child, addr, data);
450
451 case PTRACE_PEEKUSR_AREA:
452 case PTRACE_POKEUSR_AREA:
453 if (copy_from_user(&parea, (void __force __user *) addr,
454 sizeof(parea)))
455 return -EFAULT;
456 addr = parea.kernel_addr;
457 data = parea.process_addr;
458 copied = 0;
459 while (copied < parea.len) {
460 if (request == PTRACE_PEEKUSR_AREA)
461 ret = peek_user(child, addr, data);
462 else {
463 addr_t utmp;
464 if (get_user(utmp,
465 (addr_t __force __user *) data))
466 return -EFAULT;
467 ret = poke_user(child, addr, utmp);
468 }
469 if (ret)
470 return ret;
471 addr += sizeof(unsigned long);
472 data += sizeof(unsigned long);
473 copied += sizeof(unsigned long);
474 }
475 return 0;
476 case PTRACE_GET_LAST_BREAK:
477 return put_user(child->thread.last_break, (unsigned long __user *)data);
478 case PTRACE_ENABLE_TE:
479 if (!MACHINE_HAS_TE)
480 return -EIO;
481 child->thread.per_flags &= ~PER_FLAG_NO_TE;
482 return 0;
483 case PTRACE_DISABLE_TE:
484 if (!MACHINE_HAS_TE)
485 return -EIO;
486 child->thread.per_flags |= PER_FLAG_NO_TE;
487 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
488 return 0;
489 case PTRACE_TE_ABORT_RAND:
490 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
491 return -EIO;
492 switch (data) {
493 case 0UL:
494 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
495 break;
496 case 1UL:
497 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
498 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
499 break;
500 case 2UL:
501 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
502 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
503 break;
504 default:
505 return -EINVAL;
506 }
507 return 0;
508 default:
509 return ptrace_request(child, request, addr, data);
510 }
511 }
512
513 #ifdef CONFIG_COMPAT
514 /*
515 * Now the fun part starts... a 31 bit program running in the
516 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
517 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
518 * to handle, the difference to the 64 bit versions of the requests
519 * is that the access is done in multiples of 4 byte instead of
520 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
521 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
522 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
523 * is a 31 bit program too, the content of struct user can be
524 * emulated. A 31 bit program peeking into the struct user of
525 * a 64 bit program is a no-no.
526 */
527
528 /*
529 * Same as peek_user_per but for a 31 bit program.
530 */
__peek_user_per_compat(struct task_struct * child,addr_t addr)531 static inline __u32 __peek_user_per_compat(struct task_struct *child,
532 addr_t addr)
533 {
534 if (addr == offsetof(struct compat_per_struct_kernel, cr9))
535 /* Control bits of the active per set. */
536 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
537 PER_EVENT_IFETCH : child->thread.per_user.control;
538 else if (addr == offsetof(struct compat_per_struct_kernel, cr10))
539 /* Start address of the active per set. */
540 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
541 0 : child->thread.per_user.start;
542 else if (addr == offsetof(struct compat_per_struct_kernel, cr11))
543 /* End address of the active per set. */
544 return test_thread_flag(TIF_SINGLE_STEP) ?
545 PSW32_ADDR_INSN : child->thread.per_user.end;
546 else if (addr == offsetof(struct compat_per_struct_kernel, bits))
547 /* Single-step bit. */
548 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
549 0x80000000 : 0;
550 else if (addr == offsetof(struct compat_per_struct_kernel, starting_addr))
551 /* Start address of the user specified per set. */
552 return (__u32) child->thread.per_user.start;
553 else if (addr == offsetof(struct compat_per_struct_kernel, ending_addr))
554 /* End address of the user specified per set. */
555 return (__u32) child->thread.per_user.end;
556 else if (addr == offsetof(struct compat_per_struct_kernel, perc_atmid))
557 /* PER code, ATMID and AI of the last PER trap */
558 return (__u32) child->thread.per_event.cause << 16;
559 else if (addr == offsetof(struct compat_per_struct_kernel, address))
560 /* Address of the last PER trap */
561 return (__u32) child->thread.per_event.address;
562 else if (addr == offsetof(struct compat_per_struct_kernel, access_id))
563 /* Access id of the last PER trap */
564 return (__u32) child->thread.per_event.paid << 24;
565 return 0;
566 }
567
568 /*
569 * Same as peek_user but for a 31 bit program.
570 */
__peek_user_compat(struct task_struct * child,addr_t addr)571 static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
572 {
573 addr_t offset;
574 __u32 tmp;
575
576 if (addr < offsetof(struct compat_user, regs.acrs)) {
577 struct pt_regs *regs = task_pt_regs(child);
578 /*
579 * psw and gprs are stored on the stack
580 */
581 if (addr == offsetof(struct compat_user, regs.psw.mask)) {
582 /* Fake a 31 bit psw mask. */
583 tmp = (__u32)(regs->psw.mask >> 32);
584 tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
585 tmp |= PSW32_USER_BITS;
586 } else if (addr == offsetof(struct compat_user, regs.psw.addr)) {
587 /* Fake a 31 bit psw address. */
588 tmp = (__u32) regs->psw.addr |
589 (__u32)(regs->psw.mask & PSW_MASK_BA);
590 } else {
591 /* gpr 0-15 */
592 tmp = *(__u32 *)((addr_t) ®s->psw + addr*2 + 4);
593 }
594 } else if (addr < offsetof(struct compat_user, regs.orig_gpr2)) {
595 /*
596 * access registers are stored in the thread structure
597 */
598 offset = addr - offsetof(struct compat_user, regs.acrs);
599 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
600
601 } else if (addr == offsetof(struct compat_user, regs.orig_gpr2)) {
602 /*
603 * orig_gpr2 is stored on the kernel stack
604 */
605 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
606
607 } else if (addr < offsetof(struct compat_user, regs.fp_regs)) {
608 /*
609 * prevent reads of padding hole between
610 * orig_gpr2 and fp_regs on s390.
611 */
612 tmp = 0;
613
614 } else if (addr == offsetof(struct compat_user, regs.fp_regs.fpc)) {
615 /*
616 * floating point control reg. is in the thread structure
617 */
618 tmp = child->thread.fpu.fpc;
619
620 } else if (addr < offsetof(struct compat_user, regs.fp_regs) + sizeof(s390_fp_regs)) {
621 /*
622 * floating point regs. are either in child->thread.fpu
623 * or the child->thread.fpu.vxrs array
624 */
625 offset = addr - offsetof(struct compat_user, regs.fp_regs.fprs);
626 if (MACHINE_HAS_VX)
627 tmp = *(__u32 *)
628 ((addr_t) child->thread.fpu.vxrs + 2*offset);
629 else
630 tmp = *(__u32 *)
631 ((addr_t) child->thread.fpu.fprs + offset);
632
633 } else if (addr < offsetof(struct compat_user, regs.per_info) + sizeof(struct compat_per_struct_kernel)) {
634 /*
635 * Handle access to the per_info structure.
636 */
637 addr -= offsetof(struct compat_user, regs.per_info);
638 tmp = __peek_user_per_compat(child, addr);
639
640 } else
641 tmp = 0;
642
643 return tmp;
644 }
645
peek_user_compat(struct task_struct * child,addr_t addr,addr_t data)646 static int peek_user_compat(struct task_struct *child,
647 addr_t addr, addr_t data)
648 {
649 __u32 tmp;
650
651 if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
652 return -EIO;
653
654 tmp = __peek_user_compat(child, addr);
655 return put_user(tmp, (__u32 __user *) data);
656 }
657
658 /*
659 * Same as poke_user_per but for a 31 bit program.
660 */
__poke_user_per_compat(struct task_struct * child,addr_t addr,__u32 data)661 static inline void __poke_user_per_compat(struct task_struct *child,
662 addr_t addr, __u32 data)
663 {
664 if (addr == offsetof(struct compat_per_struct_kernel, cr9))
665 /* PER event mask of the user specified per set. */
666 child->thread.per_user.control =
667 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
668 else if (addr == offsetof(struct compat_per_struct_kernel, starting_addr))
669 /* Starting address of the user specified per set. */
670 child->thread.per_user.start = data;
671 else if (addr == offsetof(struct compat_per_struct_kernel, ending_addr))
672 /* Ending address of the user specified per set. */
673 child->thread.per_user.end = data;
674 }
675
676 /*
677 * Same as poke_user but for a 31 bit program.
678 */
__poke_user_compat(struct task_struct * child,addr_t addr,addr_t data)679 static int __poke_user_compat(struct task_struct *child,
680 addr_t addr, addr_t data)
681 {
682 __u32 tmp = (__u32) data;
683 addr_t offset;
684
685 if (addr < offsetof(struct compat_user, regs.acrs)) {
686 struct pt_regs *regs = task_pt_regs(child);
687 /*
688 * psw, gprs, acrs and orig_gpr2 are stored on the stack
689 */
690 if (addr == offsetof(struct compat_user, regs.psw.mask)) {
691 __u32 mask = PSW32_MASK_USER;
692
693 mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
694 /* Build a 64 bit psw mask from 31 bit mask. */
695 if ((tmp ^ PSW32_USER_BITS) & ~mask)
696 /* Invalid psw mask. */
697 return -EINVAL;
698 if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
699 /* Invalid address-space-control bits */
700 return -EINVAL;
701 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
702 (regs->psw.mask & PSW_MASK_BA) |
703 (__u64)(tmp & mask) << 32;
704 } else if (addr == offsetof(struct compat_user, regs.psw.addr)) {
705 /* Build a 64 bit psw address from 31 bit address. */
706 regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
707 /* Transfer 31 bit amode bit to psw mask. */
708 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
709 (__u64)(tmp & PSW32_ADDR_AMODE);
710 } else {
711 if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
712 addr == offsetof(struct compat_user, regs.gprs[2])) {
713 struct pt_regs *regs = task_pt_regs(child);
714
715 regs->int_code = 0x20000 | (data & 0xffff);
716 }
717 /* gpr 0-15 */
718 *(__u32*)((addr_t) ®s->psw + addr*2 + 4) = tmp;
719 }
720 } else if (addr < offsetof(struct compat_user, regs.orig_gpr2)) {
721 /*
722 * access registers are stored in the thread structure
723 */
724 offset = addr - offsetof(struct compat_user, regs.acrs);
725 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
726
727 } else if (addr == offsetof(struct compat_user, regs.orig_gpr2)) {
728 /*
729 * orig_gpr2 is stored on the kernel stack
730 */
731 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
732
733 } else if (addr < offsetof(struct compat_user, regs.fp_regs)) {
734 /*
735 * prevent writess of padding hole between
736 * orig_gpr2 and fp_regs on s390.
737 */
738 return 0;
739
740 } else if (addr == offsetof(struct compat_user, regs.fp_regs.fpc)) {
741 /*
742 * floating point control reg. is in the thread structure
743 */
744 if (test_fp_ctl(tmp))
745 return -EINVAL;
746 child->thread.fpu.fpc = data;
747
748 } else if (addr < offsetof(struct compat_user, regs.fp_regs) + sizeof(s390_fp_regs)) {
749 /*
750 * floating point regs. are either in child->thread.fpu
751 * or the child->thread.fpu.vxrs array
752 */
753 offset = addr - offsetof(struct compat_user, regs.fp_regs.fprs);
754 if (MACHINE_HAS_VX)
755 *(__u32 *)((addr_t)
756 child->thread.fpu.vxrs + 2*offset) = tmp;
757 else
758 *(__u32 *)((addr_t)
759 child->thread.fpu.fprs + offset) = tmp;
760
761 } else if (addr < offsetof(struct compat_user, regs.per_info) + sizeof(struct compat_per_struct_kernel)) {
762 /*
763 * Handle access to the per_info structure.
764 */
765 addr -= offsetof(struct compat_user, regs.per_info);
766 __poke_user_per_compat(child, addr, data);
767 }
768
769 return 0;
770 }
771
poke_user_compat(struct task_struct * child,addr_t addr,addr_t data)772 static int poke_user_compat(struct task_struct *child,
773 addr_t addr, addr_t data)
774 {
775 if (!is_compat_task() || (addr & 3) ||
776 addr > sizeof(struct compat_user) - 3)
777 return -EIO;
778
779 return __poke_user_compat(child, addr, data);
780 }
781
compat_arch_ptrace(struct task_struct * child,compat_long_t request,compat_ulong_t caddr,compat_ulong_t cdata)782 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
783 compat_ulong_t caddr, compat_ulong_t cdata)
784 {
785 unsigned long addr = caddr;
786 unsigned long data = cdata;
787 compat_ptrace_area parea;
788 int copied, ret;
789
790 switch (request) {
791 case PTRACE_PEEKUSR:
792 /* read the word at location addr in the USER area. */
793 return peek_user_compat(child, addr, data);
794
795 case PTRACE_POKEUSR:
796 /* write the word at location addr in the USER area */
797 return poke_user_compat(child, addr, data);
798
799 case PTRACE_PEEKUSR_AREA:
800 case PTRACE_POKEUSR_AREA:
801 if (copy_from_user(&parea, (void __force __user *) addr,
802 sizeof(parea)))
803 return -EFAULT;
804 addr = parea.kernel_addr;
805 data = parea.process_addr;
806 copied = 0;
807 while (copied < parea.len) {
808 if (request == PTRACE_PEEKUSR_AREA)
809 ret = peek_user_compat(child, addr, data);
810 else {
811 __u32 utmp;
812 if (get_user(utmp,
813 (__u32 __force __user *) data))
814 return -EFAULT;
815 ret = poke_user_compat(child, addr, utmp);
816 }
817 if (ret)
818 return ret;
819 addr += sizeof(unsigned int);
820 data += sizeof(unsigned int);
821 copied += sizeof(unsigned int);
822 }
823 return 0;
824 case PTRACE_GET_LAST_BREAK:
825 return put_user(child->thread.last_break, (unsigned int __user *)data);
826 }
827 return compat_ptrace_request(child, request, addr, data);
828 }
829 #endif
830
831 /*
832 * user_regset definitions.
833 */
834
s390_regs_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)835 static int s390_regs_get(struct task_struct *target,
836 const struct user_regset *regset,
837 struct membuf to)
838 {
839 unsigned pos;
840 if (target == current)
841 save_access_regs(target->thread.acrs);
842
843 for (pos = 0; pos < sizeof(s390_regs); pos += sizeof(long))
844 membuf_store(&to, __peek_user(target, pos));
845 return 0;
846 }
847
s390_regs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)848 static int s390_regs_set(struct task_struct *target,
849 const struct user_regset *regset,
850 unsigned int pos, unsigned int count,
851 const void *kbuf, const void __user *ubuf)
852 {
853 int rc = 0;
854
855 if (target == current)
856 save_access_regs(target->thread.acrs);
857
858 if (kbuf) {
859 const unsigned long *k = kbuf;
860 while (count > 0 && !rc) {
861 rc = __poke_user(target, pos, *k++);
862 count -= sizeof(*k);
863 pos += sizeof(*k);
864 }
865 } else {
866 const unsigned long __user *u = ubuf;
867 while (count > 0 && !rc) {
868 unsigned long word;
869 rc = __get_user(word, u++);
870 if (rc)
871 break;
872 rc = __poke_user(target, pos, word);
873 count -= sizeof(*u);
874 pos += sizeof(*u);
875 }
876 }
877
878 if (rc == 0 && target == current)
879 restore_access_regs(target->thread.acrs);
880
881 return rc;
882 }
883
s390_fpregs_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)884 static int s390_fpregs_get(struct task_struct *target,
885 const struct user_regset *regset,
886 struct membuf to)
887 {
888 _s390_fp_regs fp_regs;
889
890 if (target == current)
891 save_fpu_regs();
892
893 fp_regs.fpc = target->thread.fpu.fpc;
894 fpregs_store(&fp_regs, &target->thread.fpu);
895
896 return membuf_write(&to, &fp_regs, sizeof(fp_regs));
897 }
898
s390_fpregs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)899 static int s390_fpregs_set(struct task_struct *target,
900 const struct user_regset *regset, unsigned int pos,
901 unsigned int count, const void *kbuf,
902 const void __user *ubuf)
903 {
904 int rc = 0;
905 freg_t fprs[__NUM_FPRS];
906
907 if (target == current)
908 save_fpu_regs();
909
910 if (MACHINE_HAS_VX)
911 convert_vx_to_fp(fprs, target->thread.fpu.vxrs);
912 else
913 memcpy(&fprs, target->thread.fpu.fprs, sizeof(fprs));
914
915 /* If setting FPC, must validate it first. */
916 if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
917 u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
918 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
919 0, offsetof(s390_fp_regs, fprs));
920 if (rc)
921 return rc;
922 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
923 return -EINVAL;
924 target->thread.fpu.fpc = ufpc[0];
925 }
926
927 if (rc == 0 && count > 0)
928 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
929 fprs, offsetof(s390_fp_regs, fprs), -1);
930 if (rc)
931 return rc;
932
933 if (MACHINE_HAS_VX)
934 convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
935 else
936 memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
937
938 return rc;
939 }
940
s390_last_break_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)941 static int s390_last_break_get(struct task_struct *target,
942 const struct user_regset *regset,
943 struct membuf to)
944 {
945 return membuf_store(&to, target->thread.last_break);
946 }
947
s390_last_break_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)948 static int s390_last_break_set(struct task_struct *target,
949 const struct user_regset *regset,
950 unsigned int pos, unsigned int count,
951 const void *kbuf, const void __user *ubuf)
952 {
953 return 0;
954 }
955
s390_tdb_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)956 static int s390_tdb_get(struct task_struct *target,
957 const struct user_regset *regset,
958 struct membuf to)
959 {
960 struct pt_regs *regs = task_pt_regs(target);
961 size_t size;
962
963 if (!(regs->int_code & 0x200))
964 return -ENODATA;
965 size = sizeof(target->thread.trap_tdb.data);
966 return membuf_write(&to, target->thread.trap_tdb.data, size);
967 }
968
s390_tdb_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)969 static int s390_tdb_set(struct task_struct *target,
970 const struct user_regset *regset,
971 unsigned int pos, unsigned int count,
972 const void *kbuf, const void __user *ubuf)
973 {
974 return 0;
975 }
976
s390_vxrs_low_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)977 static int s390_vxrs_low_get(struct task_struct *target,
978 const struct user_regset *regset,
979 struct membuf to)
980 {
981 __u64 vxrs[__NUM_VXRS_LOW];
982 int i;
983
984 if (!MACHINE_HAS_VX)
985 return -ENODEV;
986 if (target == current)
987 save_fpu_regs();
988 for (i = 0; i < __NUM_VXRS_LOW; i++)
989 vxrs[i] = target->thread.fpu.vxrs[i].low;
990 return membuf_write(&to, vxrs, sizeof(vxrs));
991 }
992
s390_vxrs_low_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)993 static int s390_vxrs_low_set(struct task_struct *target,
994 const struct user_regset *regset,
995 unsigned int pos, unsigned int count,
996 const void *kbuf, const void __user *ubuf)
997 {
998 __u64 vxrs[__NUM_VXRS_LOW];
999 int i, rc;
1000
1001 if (!MACHINE_HAS_VX)
1002 return -ENODEV;
1003 if (target == current)
1004 save_fpu_regs();
1005
1006 for (i = 0; i < __NUM_VXRS_LOW; i++)
1007 vxrs[i] = target->thread.fpu.vxrs[i].low;
1008
1009 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1010 if (rc == 0)
1011 for (i = 0; i < __NUM_VXRS_LOW; i++)
1012 target->thread.fpu.vxrs[i].low = vxrs[i];
1013
1014 return rc;
1015 }
1016
s390_vxrs_high_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1017 static int s390_vxrs_high_get(struct task_struct *target,
1018 const struct user_regset *regset,
1019 struct membuf to)
1020 {
1021 if (!MACHINE_HAS_VX)
1022 return -ENODEV;
1023 if (target == current)
1024 save_fpu_regs();
1025 return membuf_write(&to, target->thread.fpu.vxrs + __NUM_VXRS_LOW,
1026 __NUM_VXRS_HIGH * sizeof(__vector128));
1027 }
1028
s390_vxrs_high_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1029 static int s390_vxrs_high_set(struct task_struct *target,
1030 const struct user_regset *regset,
1031 unsigned int pos, unsigned int count,
1032 const void *kbuf, const void __user *ubuf)
1033 {
1034 int rc;
1035
1036 if (!MACHINE_HAS_VX)
1037 return -ENODEV;
1038 if (target == current)
1039 save_fpu_regs();
1040
1041 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1042 target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1043 return rc;
1044 }
1045
s390_system_call_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1046 static int s390_system_call_get(struct task_struct *target,
1047 const struct user_regset *regset,
1048 struct membuf to)
1049 {
1050 return membuf_store(&to, target->thread.system_call);
1051 }
1052
s390_system_call_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1053 static int s390_system_call_set(struct task_struct *target,
1054 const struct user_regset *regset,
1055 unsigned int pos, unsigned int count,
1056 const void *kbuf, const void __user *ubuf)
1057 {
1058 unsigned int *data = &target->thread.system_call;
1059 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1060 data, 0, sizeof(unsigned int));
1061 }
1062
s390_gs_cb_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1063 static int s390_gs_cb_get(struct task_struct *target,
1064 const struct user_regset *regset,
1065 struct membuf to)
1066 {
1067 struct gs_cb *data = target->thread.gs_cb;
1068
1069 if (!MACHINE_HAS_GS)
1070 return -ENODEV;
1071 if (!data)
1072 return -ENODATA;
1073 if (target == current)
1074 save_gs_cb(data);
1075 return membuf_write(&to, data, sizeof(struct gs_cb));
1076 }
1077
s390_gs_cb_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1078 static int s390_gs_cb_set(struct task_struct *target,
1079 const struct user_regset *regset,
1080 unsigned int pos, unsigned int count,
1081 const void *kbuf, const void __user *ubuf)
1082 {
1083 struct gs_cb gs_cb = { }, *data = NULL;
1084 int rc;
1085
1086 if (!MACHINE_HAS_GS)
1087 return -ENODEV;
1088 if (!target->thread.gs_cb) {
1089 data = kzalloc(sizeof(*data), GFP_KERNEL);
1090 if (!data)
1091 return -ENOMEM;
1092 }
1093 if (!target->thread.gs_cb)
1094 gs_cb.gsd = 25;
1095 else if (target == current)
1096 save_gs_cb(&gs_cb);
1097 else
1098 gs_cb = *target->thread.gs_cb;
1099 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1100 &gs_cb, 0, sizeof(gs_cb));
1101 if (rc) {
1102 kfree(data);
1103 return -EFAULT;
1104 }
1105 preempt_disable();
1106 if (!target->thread.gs_cb)
1107 target->thread.gs_cb = data;
1108 *target->thread.gs_cb = gs_cb;
1109 if (target == current) {
1110 __ctl_set_bit(2, 4);
1111 restore_gs_cb(target->thread.gs_cb);
1112 }
1113 preempt_enable();
1114 return rc;
1115 }
1116
s390_gs_bc_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1117 static int s390_gs_bc_get(struct task_struct *target,
1118 const struct user_regset *regset,
1119 struct membuf to)
1120 {
1121 struct gs_cb *data = target->thread.gs_bc_cb;
1122
1123 if (!MACHINE_HAS_GS)
1124 return -ENODEV;
1125 if (!data)
1126 return -ENODATA;
1127 return membuf_write(&to, data, sizeof(struct gs_cb));
1128 }
1129
s390_gs_bc_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1130 static int s390_gs_bc_set(struct task_struct *target,
1131 const struct user_regset *regset,
1132 unsigned int pos, unsigned int count,
1133 const void *kbuf, const void __user *ubuf)
1134 {
1135 struct gs_cb *data = target->thread.gs_bc_cb;
1136
1137 if (!MACHINE_HAS_GS)
1138 return -ENODEV;
1139 if (!data) {
1140 data = kzalloc(sizeof(*data), GFP_KERNEL);
1141 if (!data)
1142 return -ENOMEM;
1143 target->thread.gs_bc_cb = data;
1144 }
1145 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1146 data, 0, sizeof(struct gs_cb));
1147 }
1148
is_ri_cb_valid(struct runtime_instr_cb * cb)1149 static bool is_ri_cb_valid(struct runtime_instr_cb *cb)
1150 {
1151 return (cb->rca & 0x1f) == 0 &&
1152 (cb->roa & 0xfff) == 0 &&
1153 (cb->rla & 0xfff) == 0xfff &&
1154 cb->s == 1 &&
1155 cb->k == 1 &&
1156 cb->h == 0 &&
1157 cb->reserved1 == 0 &&
1158 cb->ps == 1 &&
1159 cb->qs == 0 &&
1160 cb->pc == 1 &&
1161 cb->qc == 0 &&
1162 cb->reserved2 == 0 &&
1163 cb->reserved3 == 0 &&
1164 cb->reserved4 == 0 &&
1165 cb->reserved5 == 0 &&
1166 cb->reserved6 == 0 &&
1167 cb->reserved7 == 0 &&
1168 cb->reserved8 == 0 &&
1169 cb->rla >= cb->roa &&
1170 cb->rca >= cb->roa &&
1171 cb->rca <= cb->rla+1 &&
1172 cb->m < 3;
1173 }
1174
s390_runtime_instr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1175 static int s390_runtime_instr_get(struct task_struct *target,
1176 const struct user_regset *regset,
1177 struct membuf to)
1178 {
1179 struct runtime_instr_cb *data = target->thread.ri_cb;
1180
1181 if (!test_facility(64))
1182 return -ENODEV;
1183 if (!data)
1184 return -ENODATA;
1185
1186 return membuf_write(&to, data, sizeof(struct runtime_instr_cb));
1187 }
1188
s390_runtime_instr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1189 static int s390_runtime_instr_set(struct task_struct *target,
1190 const struct user_regset *regset,
1191 unsigned int pos, unsigned int count,
1192 const void *kbuf, const void __user *ubuf)
1193 {
1194 struct runtime_instr_cb ri_cb = { }, *data = NULL;
1195 int rc;
1196
1197 if (!test_facility(64))
1198 return -ENODEV;
1199
1200 if (!target->thread.ri_cb) {
1201 data = kzalloc(sizeof(*data), GFP_KERNEL);
1202 if (!data)
1203 return -ENOMEM;
1204 }
1205
1206 if (target->thread.ri_cb) {
1207 if (target == current)
1208 store_runtime_instr_cb(&ri_cb);
1209 else
1210 ri_cb = *target->thread.ri_cb;
1211 }
1212
1213 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1214 &ri_cb, 0, sizeof(struct runtime_instr_cb));
1215 if (rc) {
1216 kfree(data);
1217 return -EFAULT;
1218 }
1219
1220 if (!is_ri_cb_valid(&ri_cb)) {
1221 kfree(data);
1222 return -EINVAL;
1223 }
1224 /*
1225 * Override access key in any case, since user space should
1226 * not be able to set it, nor should it care about it.
1227 */
1228 ri_cb.key = PAGE_DEFAULT_KEY >> 4;
1229 preempt_disable();
1230 if (!target->thread.ri_cb)
1231 target->thread.ri_cb = data;
1232 *target->thread.ri_cb = ri_cb;
1233 if (target == current)
1234 load_runtime_instr_cb(target->thread.ri_cb);
1235 preempt_enable();
1236
1237 return 0;
1238 }
1239
1240 static const struct user_regset s390_regsets[] = {
1241 {
1242 .core_note_type = NT_PRSTATUS,
1243 .n = sizeof(s390_regs) / sizeof(long),
1244 .size = sizeof(long),
1245 .align = sizeof(long),
1246 .regset_get = s390_regs_get,
1247 .set = s390_regs_set,
1248 },
1249 {
1250 .core_note_type = NT_PRFPREG,
1251 .n = sizeof(s390_fp_regs) / sizeof(long),
1252 .size = sizeof(long),
1253 .align = sizeof(long),
1254 .regset_get = s390_fpregs_get,
1255 .set = s390_fpregs_set,
1256 },
1257 {
1258 .core_note_type = NT_S390_SYSTEM_CALL,
1259 .n = 1,
1260 .size = sizeof(unsigned int),
1261 .align = sizeof(unsigned int),
1262 .regset_get = s390_system_call_get,
1263 .set = s390_system_call_set,
1264 },
1265 {
1266 .core_note_type = NT_S390_LAST_BREAK,
1267 .n = 1,
1268 .size = sizeof(long),
1269 .align = sizeof(long),
1270 .regset_get = s390_last_break_get,
1271 .set = s390_last_break_set,
1272 },
1273 {
1274 .core_note_type = NT_S390_TDB,
1275 .n = 1,
1276 .size = 256,
1277 .align = 1,
1278 .regset_get = s390_tdb_get,
1279 .set = s390_tdb_set,
1280 },
1281 {
1282 .core_note_type = NT_S390_VXRS_LOW,
1283 .n = __NUM_VXRS_LOW,
1284 .size = sizeof(__u64),
1285 .align = sizeof(__u64),
1286 .regset_get = s390_vxrs_low_get,
1287 .set = s390_vxrs_low_set,
1288 },
1289 {
1290 .core_note_type = NT_S390_VXRS_HIGH,
1291 .n = __NUM_VXRS_HIGH,
1292 .size = sizeof(__vector128),
1293 .align = sizeof(__vector128),
1294 .regset_get = s390_vxrs_high_get,
1295 .set = s390_vxrs_high_set,
1296 },
1297 {
1298 .core_note_type = NT_S390_GS_CB,
1299 .n = sizeof(struct gs_cb) / sizeof(__u64),
1300 .size = sizeof(__u64),
1301 .align = sizeof(__u64),
1302 .regset_get = s390_gs_cb_get,
1303 .set = s390_gs_cb_set,
1304 },
1305 {
1306 .core_note_type = NT_S390_GS_BC,
1307 .n = sizeof(struct gs_cb) / sizeof(__u64),
1308 .size = sizeof(__u64),
1309 .align = sizeof(__u64),
1310 .regset_get = s390_gs_bc_get,
1311 .set = s390_gs_bc_set,
1312 },
1313 {
1314 .core_note_type = NT_S390_RI_CB,
1315 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1316 .size = sizeof(__u64),
1317 .align = sizeof(__u64),
1318 .regset_get = s390_runtime_instr_get,
1319 .set = s390_runtime_instr_set,
1320 },
1321 };
1322
1323 static const struct user_regset_view user_s390_view = {
1324 .name = "s390x",
1325 .e_machine = EM_S390,
1326 .regsets = s390_regsets,
1327 .n = ARRAY_SIZE(s390_regsets)
1328 };
1329
1330 #ifdef CONFIG_COMPAT
s390_compat_regs_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1331 static int s390_compat_regs_get(struct task_struct *target,
1332 const struct user_regset *regset,
1333 struct membuf to)
1334 {
1335 unsigned n;
1336
1337 if (target == current)
1338 save_access_regs(target->thread.acrs);
1339
1340 for (n = 0; n < sizeof(s390_compat_regs); n += sizeof(compat_ulong_t))
1341 membuf_store(&to, __peek_user_compat(target, n));
1342 return 0;
1343 }
1344
s390_compat_regs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1345 static int s390_compat_regs_set(struct task_struct *target,
1346 const struct user_regset *regset,
1347 unsigned int pos, unsigned int count,
1348 const void *kbuf, const void __user *ubuf)
1349 {
1350 int rc = 0;
1351
1352 if (target == current)
1353 save_access_regs(target->thread.acrs);
1354
1355 if (kbuf) {
1356 const compat_ulong_t *k = kbuf;
1357 while (count > 0 && !rc) {
1358 rc = __poke_user_compat(target, pos, *k++);
1359 count -= sizeof(*k);
1360 pos += sizeof(*k);
1361 }
1362 } else {
1363 const compat_ulong_t __user *u = ubuf;
1364 while (count > 0 && !rc) {
1365 compat_ulong_t word;
1366 rc = __get_user(word, u++);
1367 if (rc)
1368 break;
1369 rc = __poke_user_compat(target, pos, word);
1370 count -= sizeof(*u);
1371 pos += sizeof(*u);
1372 }
1373 }
1374
1375 if (rc == 0 && target == current)
1376 restore_access_regs(target->thread.acrs);
1377
1378 return rc;
1379 }
1380
s390_compat_regs_high_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1381 static int s390_compat_regs_high_get(struct task_struct *target,
1382 const struct user_regset *regset,
1383 struct membuf to)
1384 {
1385 compat_ulong_t *gprs_high;
1386 int i;
1387
1388 gprs_high = (compat_ulong_t *)task_pt_regs(target)->gprs;
1389 for (i = 0; i < NUM_GPRS; i++, gprs_high += 2)
1390 membuf_store(&to, *gprs_high);
1391 return 0;
1392 }
1393
s390_compat_regs_high_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1394 static int s390_compat_regs_high_set(struct task_struct *target,
1395 const struct user_regset *regset,
1396 unsigned int pos, unsigned int count,
1397 const void *kbuf, const void __user *ubuf)
1398 {
1399 compat_ulong_t *gprs_high;
1400 int rc = 0;
1401
1402 gprs_high = (compat_ulong_t *)
1403 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1404 if (kbuf) {
1405 const compat_ulong_t *k = kbuf;
1406 while (count > 0) {
1407 *gprs_high = *k++;
1408 *gprs_high += 2;
1409 count -= sizeof(*k);
1410 }
1411 } else {
1412 const compat_ulong_t __user *u = ubuf;
1413 while (count > 0 && !rc) {
1414 unsigned long word;
1415 rc = __get_user(word, u++);
1416 if (rc)
1417 break;
1418 *gprs_high = word;
1419 *gprs_high += 2;
1420 count -= sizeof(*u);
1421 }
1422 }
1423
1424 return rc;
1425 }
1426
s390_compat_last_break_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1427 static int s390_compat_last_break_get(struct task_struct *target,
1428 const struct user_regset *regset,
1429 struct membuf to)
1430 {
1431 compat_ulong_t last_break = target->thread.last_break;
1432
1433 return membuf_store(&to, (unsigned long)last_break);
1434 }
1435
s390_compat_last_break_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1436 static int s390_compat_last_break_set(struct task_struct *target,
1437 const struct user_regset *regset,
1438 unsigned int pos, unsigned int count,
1439 const void *kbuf, const void __user *ubuf)
1440 {
1441 return 0;
1442 }
1443
1444 static const struct user_regset s390_compat_regsets[] = {
1445 {
1446 .core_note_type = NT_PRSTATUS,
1447 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1448 .size = sizeof(compat_long_t),
1449 .align = sizeof(compat_long_t),
1450 .regset_get = s390_compat_regs_get,
1451 .set = s390_compat_regs_set,
1452 },
1453 {
1454 .core_note_type = NT_PRFPREG,
1455 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1456 .size = sizeof(compat_long_t),
1457 .align = sizeof(compat_long_t),
1458 .regset_get = s390_fpregs_get,
1459 .set = s390_fpregs_set,
1460 },
1461 {
1462 .core_note_type = NT_S390_SYSTEM_CALL,
1463 .n = 1,
1464 .size = sizeof(compat_uint_t),
1465 .align = sizeof(compat_uint_t),
1466 .regset_get = s390_system_call_get,
1467 .set = s390_system_call_set,
1468 },
1469 {
1470 .core_note_type = NT_S390_LAST_BREAK,
1471 .n = 1,
1472 .size = sizeof(long),
1473 .align = sizeof(long),
1474 .regset_get = s390_compat_last_break_get,
1475 .set = s390_compat_last_break_set,
1476 },
1477 {
1478 .core_note_type = NT_S390_TDB,
1479 .n = 1,
1480 .size = 256,
1481 .align = 1,
1482 .regset_get = s390_tdb_get,
1483 .set = s390_tdb_set,
1484 },
1485 {
1486 .core_note_type = NT_S390_VXRS_LOW,
1487 .n = __NUM_VXRS_LOW,
1488 .size = sizeof(__u64),
1489 .align = sizeof(__u64),
1490 .regset_get = s390_vxrs_low_get,
1491 .set = s390_vxrs_low_set,
1492 },
1493 {
1494 .core_note_type = NT_S390_VXRS_HIGH,
1495 .n = __NUM_VXRS_HIGH,
1496 .size = sizeof(__vector128),
1497 .align = sizeof(__vector128),
1498 .regset_get = s390_vxrs_high_get,
1499 .set = s390_vxrs_high_set,
1500 },
1501 {
1502 .core_note_type = NT_S390_HIGH_GPRS,
1503 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1504 .size = sizeof(compat_long_t),
1505 .align = sizeof(compat_long_t),
1506 .regset_get = s390_compat_regs_high_get,
1507 .set = s390_compat_regs_high_set,
1508 },
1509 {
1510 .core_note_type = NT_S390_GS_CB,
1511 .n = sizeof(struct gs_cb) / sizeof(__u64),
1512 .size = sizeof(__u64),
1513 .align = sizeof(__u64),
1514 .regset_get = s390_gs_cb_get,
1515 .set = s390_gs_cb_set,
1516 },
1517 {
1518 .core_note_type = NT_S390_GS_BC,
1519 .n = sizeof(struct gs_cb) / sizeof(__u64),
1520 .size = sizeof(__u64),
1521 .align = sizeof(__u64),
1522 .regset_get = s390_gs_bc_get,
1523 .set = s390_gs_bc_set,
1524 },
1525 {
1526 .core_note_type = NT_S390_RI_CB,
1527 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1528 .size = sizeof(__u64),
1529 .align = sizeof(__u64),
1530 .regset_get = s390_runtime_instr_get,
1531 .set = s390_runtime_instr_set,
1532 },
1533 };
1534
1535 static const struct user_regset_view user_s390_compat_view = {
1536 .name = "s390",
1537 .e_machine = EM_S390,
1538 .regsets = s390_compat_regsets,
1539 .n = ARRAY_SIZE(s390_compat_regsets)
1540 };
1541 #endif
1542
task_user_regset_view(struct task_struct * task)1543 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1544 {
1545 #ifdef CONFIG_COMPAT
1546 if (test_tsk_thread_flag(task, TIF_31BIT))
1547 return &user_s390_compat_view;
1548 #endif
1549 return &user_s390_view;
1550 }
1551
1552 static const char *gpr_names[NUM_GPRS] = {
1553 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1554 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1555 };
1556
regs_get_register(struct pt_regs * regs,unsigned int offset)1557 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1558 {
1559 if (offset >= NUM_GPRS)
1560 return 0;
1561 return regs->gprs[offset];
1562 }
1563
regs_query_register_offset(const char * name)1564 int regs_query_register_offset(const char *name)
1565 {
1566 unsigned long offset;
1567
1568 if (!name || *name != 'r')
1569 return -EINVAL;
1570 if (kstrtoul(name + 1, 10, &offset))
1571 return -EINVAL;
1572 if (offset >= NUM_GPRS)
1573 return -EINVAL;
1574 return offset;
1575 }
1576
regs_query_register_name(unsigned int offset)1577 const char *regs_query_register_name(unsigned int offset)
1578 {
1579 if (offset >= NUM_GPRS)
1580 return NULL;
1581 return gpr_names[offset];
1582 }
1583
regs_within_kernel_stack(struct pt_regs * regs,unsigned long addr)1584 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1585 {
1586 unsigned long ksp = kernel_stack_pointer(regs);
1587
1588 return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1589 }
1590
1591 /**
1592 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1593 * @regs:pt_regs which contains kernel stack pointer.
1594 * @n:stack entry number.
1595 *
1596 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1597 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1598 * this returns 0.
1599 */
regs_get_kernel_stack_nth(struct pt_regs * regs,unsigned int n)1600 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1601 {
1602 unsigned long addr;
1603
1604 addr = kernel_stack_pointer(regs) + n * sizeof(long);
1605 if (!regs_within_kernel_stack(regs, addr))
1606 return 0;
1607 return *(unsigned long *)addr;
1608 }
1609