1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Ptrace user space interface.
4 *
5 * Copyright IBM Corp. 1999, 2010
6 * Author(s): Denis Joseph Barrow
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/sched/task_stack.h>
13 #include <linux/mm.h>
14 #include <linux/smp.h>
15 #include <linux/errno.h>
16 #include <linux/ptrace.h>
17 #include <linux/user.h>
18 #include <linux/security.h>
19 #include <linux/audit.h>
20 #include <linux/signal.h>
21 #include <linux/elf.h>
22 #include <linux/regset.h>
23 #include <linux/tracehook.h>
24 #include <linux/seccomp.h>
25 #include <linux/compat.h>
26 #include <trace/syscall.h>
27 #include <asm/page.h>
28 #include <linux/uaccess.h>
29 #include <asm/unistd.h>
30 #include <asm/switch_to.h>
31 #include <asm/runtime_instr.h>
32 #include <asm/facility.h>
33
34 #include "entry.h"
35
36 #ifdef CONFIG_COMPAT
37 #include "compat_ptrace.h"
38 #endif
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/syscalls.h>
42
update_cr_regs(struct task_struct * task)43 void update_cr_regs(struct task_struct *task)
44 {
45 struct pt_regs *regs = task_pt_regs(task);
46 struct thread_struct *thread = &task->thread;
47 struct per_regs old, new;
48 union ctlreg0 cr0_old, cr0_new;
49 union ctlreg2 cr2_old, cr2_new;
50 int cr0_changed, cr2_changed;
51
52 __ctl_store(cr0_old.val, 0, 0);
53 __ctl_store(cr2_old.val, 2, 2);
54 cr0_new = cr0_old;
55 cr2_new = cr2_old;
56 /* Take care of the enable/disable of transactional execution. */
57 if (MACHINE_HAS_TE) {
58 /* Set or clear transaction execution TXC bit 8. */
59 cr0_new.tcx = 1;
60 if (task->thread.per_flags & PER_FLAG_NO_TE)
61 cr0_new.tcx = 0;
62 /* Set or clear transaction execution TDC bits 62 and 63. */
63 cr2_new.tdc = 0;
64 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
65 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
66 cr2_new.tdc = 1;
67 else
68 cr2_new.tdc = 2;
69 }
70 }
71 /* Take care of enable/disable of guarded storage. */
72 if (MACHINE_HAS_GS) {
73 cr2_new.gse = 0;
74 if (task->thread.gs_cb)
75 cr2_new.gse = 1;
76 }
77 /* Load control register 0/2 iff changed */
78 cr0_changed = cr0_new.val != cr0_old.val;
79 cr2_changed = cr2_new.val != cr2_old.val;
80 if (cr0_changed)
81 __ctl_load(cr0_new.val, 0, 0);
82 if (cr2_changed)
83 __ctl_load(cr2_new.val, 2, 2);
84 /* Copy user specified PER registers */
85 new.control = thread->per_user.control;
86 new.start = thread->per_user.start;
87 new.end = thread->per_user.end;
88
89 /* merge TIF_SINGLE_STEP into user specified PER registers. */
90 if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
91 test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
92 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
93 new.control |= PER_EVENT_BRANCH;
94 else
95 new.control |= PER_EVENT_IFETCH;
96 new.control |= PER_CONTROL_SUSPENSION;
97 new.control |= PER_EVENT_TRANSACTION_END;
98 if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
99 new.control |= PER_EVENT_IFETCH;
100 new.start = 0;
101 new.end = -1UL;
102 }
103
104 /* Take care of the PER enablement bit in the PSW. */
105 if (!(new.control & PER_EVENT_MASK)) {
106 regs->psw.mask &= ~PSW_MASK_PER;
107 return;
108 }
109 regs->psw.mask |= PSW_MASK_PER;
110 __ctl_store(old, 9, 11);
111 if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
112 __ctl_load(new, 9, 11);
113 }
114
user_enable_single_step(struct task_struct * task)115 void user_enable_single_step(struct task_struct *task)
116 {
117 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
118 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
119 }
120
user_disable_single_step(struct task_struct * task)121 void user_disable_single_step(struct task_struct *task)
122 {
123 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
124 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
125 }
126
user_enable_block_step(struct task_struct * task)127 void user_enable_block_step(struct task_struct *task)
128 {
129 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
130 set_tsk_thread_flag(task, TIF_BLOCK_STEP);
131 }
132
133 /*
134 * Called by kernel/ptrace.c when detaching..
135 *
136 * Clear all debugging related fields.
137 */
ptrace_disable(struct task_struct * task)138 void ptrace_disable(struct task_struct *task)
139 {
140 memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
141 memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
142 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
143 clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP);
144 task->thread.per_flags = 0;
145 }
146
147 #define __ADDR_MASK 7
148
__peek_user_per(struct task_struct * child,addr_t addr)149 static inline unsigned long __peek_user_per(struct task_struct *child,
150 addr_t addr)
151 {
152 struct per_struct_kernel *dummy = NULL;
153
154 if (addr == (addr_t) &dummy->cr9)
155 /* Control bits of the active per set. */
156 return test_thread_flag(TIF_SINGLE_STEP) ?
157 PER_EVENT_IFETCH : child->thread.per_user.control;
158 else if (addr == (addr_t) &dummy->cr10)
159 /* Start address of the active per set. */
160 return test_thread_flag(TIF_SINGLE_STEP) ?
161 0 : child->thread.per_user.start;
162 else if (addr == (addr_t) &dummy->cr11)
163 /* End address of the active per set. */
164 return test_thread_flag(TIF_SINGLE_STEP) ?
165 -1UL : child->thread.per_user.end;
166 else if (addr == (addr_t) &dummy->bits)
167 /* Single-step bit. */
168 return test_thread_flag(TIF_SINGLE_STEP) ?
169 (1UL << (BITS_PER_LONG - 1)) : 0;
170 else if (addr == (addr_t) &dummy->starting_addr)
171 /* Start address of the user specified per set. */
172 return child->thread.per_user.start;
173 else if (addr == (addr_t) &dummy->ending_addr)
174 /* End address of the user specified per set. */
175 return child->thread.per_user.end;
176 else if (addr == (addr_t) &dummy->perc_atmid)
177 /* PER code, ATMID and AI of the last PER trap */
178 return (unsigned long)
179 child->thread.per_event.cause << (BITS_PER_LONG - 16);
180 else if (addr == (addr_t) &dummy->address)
181 /* Address of the last PER trap */
182 return child->thread.per_event.address;
183 else if (addr == (addr_t) &dummy->access_id)
184 /* Access id of the last PER trap */
185 return (unsigned long)
186 child->thread.per_event.paid << (BITS_PER_LONG - 8);
187 return 0;
188 }
189
190 /*
191 * Read the word at offset addr from the user area of a process. The
192 * trouble here is that the information is littered over different
193 * locations. The process registers are found on the kernel stack,
194 * the floating point stuff and the trace settings are stored in
195 * the task structure. In addition the different structures in
196 * struct user contain pad bytes that should be read as zeroes.
197 * Lovely...
198 */
__peek_user(struct task_struct * child,addr_t addr)199 static unsigned long __peek_user(struct task_struct *child, addr_t addr)
200 {
201 struct user *dummy = NULL;
202 addr_t offset, tmp;
203
204 if (addr < (addr_t) &dummy->regs.acrs) {
205 /*
206 * psw and gprs are stored on the stack
207 */
208 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
209 if (addr == (addr_t) &dummy->regs.psw.mask) {
210 /* Return a clean psw mask. */
211 tmp &= PSW_MASK_USER | PSW_MASK_RI;
212 tmp |= PSW_USER_BITS;
213 }
214
215 } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
216 /*
217 * access registers are stored in the thread structure
218 */
219 offset = addr - (addr_t) &dummy->regs.acrs;
220 /*
221 * Very special case: old & broken 64 bit gdb reading
222 * from acrs[15]. Result is a 64 bit value. Read the
223 * 32 bit acrs[15] value and shift it by 32. Sick...
224 */
225 if (addr == (addr_t) &dummy->regs.acrs[15])
226 tmp = ((unsigned long) child->thread.acrs[15]) << 32;
227 else
228 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
229
230 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
231 /*
232 * orig_gpr2 is stored on the kernel stack
233 */
234 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
235
236 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
237 /*
238 * prevent reads of padding hole between
239 * orig_gpr2 and fp_regs on s390.
240 */
241 tmp = 0;
242
243 } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
244 /*
245 * floating point control reg. is in the thread structure
246 */
247 tmp = child->thread.fpu.fpc;
248 tmp <<= BITS_PER_LONG - 32;
249
250 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
251 /*
252 * floating point regs. are either in child->thread.fpu
253 * or the child->thread.fpu.vxrs array
254 */
255 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
256 if (MACHINE_HAS_VX)
257 tmp = *(addr_t *)
258 ((addr_t) child->thread.fpu.vxrs + 2*offset);
259 else
260 tmp = *(addr_t *)
261 ((addr_t) child->thread.fpu.fprs + offset);
262
263 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
264 /*
265 * Handle access to the per_info structure.
266 */
267 addr -= (addr_t) &dummy->regs.per_info;
268 tmp = __peek_user_per(child, addr);
269
270 } else
271 tmp = 0;
272
273 return tmp;
274 }
275
276 static int
peek_user(struct task_struct * child,addr_t addr,addr_t data)277 peek_user(struct task_struct *child, addr_t addr, addr_t data)
278 {
279 addr_t tmp, mask;
280
281 /*
282 * Stupid gdb peeks/pokes the access registers in 64 bit with
283 * an alignment of 4. Programmers from hell...
284 */
285 mask = __ADDR_MASK;
286 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
287 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
288 mask = 3;
289 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
290 return -EIO;
291
292 tmp = __peek_user(child, addr);
293 return put_user(tmp, (addr_t __user *) data);
294 }
295
__poke_user_per(struct task_struct * child,addr_t addr,addr_t data)296 static inline void __poke_user_per(struct task_struct *child,
297 addr_t addr, addr_t data)
298 {
299 struct per_struct_kernel *dummy = NULL;
300
301 /*
302 * There are only three fields in the per_info struct that the
303 * debugger user can write to.
304 * 1) cr9: the debugger wants to set a new PER event mask
305 * 2) starting_addr: the debugger wants to set a new starting
306 * address to use with the PER event mask.
307 * 3) ending_addr: the debugger wants to set a new ending
308 * address to use with the PER event mask.
309 * The user specified PER event mask and the start and end
310 * addresses are used only if single stepping is not in effect.
311 * Writes to any other field in per_info are ignored.
312 */
313 if (addr == (addr_t) &dummy->cr9)
314 /* PER event mask of the user specified per set. */
315 child->thread.per_user.control =
316 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
317 else if (addr == (addr_t) &dummy->starting_addr)
318 /* Starting address of the user specified per set. */
319 child->thread.per_user.start = data;
320 else if (addr == (addr_t) &dummy->ending_addr)
321 /* Ending address of the user specified per set. */
322 child->thread.per_user.end = data;
323 }
324
fixup_int_code(struct task_struct * child,addr_t data)325 static void fixup_int_code(struct task_struct *child, addr_t data)
326 {
327 struct pt_regs *regs = task_pt_regs(child);
328 int ilc = regs->int_code >> 16;
329 u16 insn;
330
331 if (ilc > 6)
332 return;
333
334 if (ptrace_access_vm(child, regs->psw.addr - (regs->int_code >> 16),
335 &insn, sizeof(insn), FOLL_FORCE) != sizeof(insn))
336 return;
337
338 /* double check that tracee stopped on svc instruction */
339 if ((insn >> 8) != 0xa)
340 return;
341
342 regs->int_code = 0x20000 | (data & 0xffff);
343 }
344 /*
345 * Write a word to the user area of a process at location addr. This
346 * operation does have an additional problem compared to peek_user.
347 * Stores to the program status word and on the floating point
348 * control register needs to get checked for validity.
349 */
__poke_user(struct task_struct * child,addr_t addr,addr_t data)350 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
351 {
352 struct user *dummy = NULL;
353 addr_t offset;
354
355
356 if (addr < (addr_t) &dummy->regs.acrs) {
357 struct pt_regs *regs = task_pt_regs(child);
358 /*
359 * psw and gprs are stored on the stack
360 */
361 if (addr == (addr_t) &dummy->regs.psw.mask) {
362 unsigned long mask = PSW_MASK_USER;
363
364 mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
365 if ((data ^ PSW_USER_BITS) & ~mask)
366 /* Invalid psw mask. */
367 return -EINVAL;
368 if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
369 /* Invalid address-space-control bits */
370 return -EINVAL;
371 if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
372 /* Invalid addressing mode bits */
373 return -EINVAL;
374 }
375
376 if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
377 addr == offsetof(struct user, regs.gprs[2]))
378 fixup_int_code(child, data);
379 *(addr_t *)((addr_t) ®s->psw + addr) = data;
380
381 } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
382 /*
383 * access registers are stored in the thread structure
384 */
385 offset = addr - (addr_t) &dummy->regs.acrs;
386 /*
387 * Very special case: old & broken 64 bit gdb writing
388 * to acrs[15] with a 64 bit value. Ignore the lower
389 * half of the value and write the upper 32 bit to
390 * acrs[15]. Sick...
391 */
392 if (addr == (addr_t) &dummy->regs.acrs[15])
393 child->thread.acrs[15] = (unsigned int) (data >> 32);
394 else
395 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
396
397 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
398 /*
399 * orig_gpr2 is stored on the kernel stack
400 */
401 task_pt_regs(child)->orig_gpr2 = data;
402
403 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
404 /*
405 * prevent writes of padding hole between
406 * orig_gpr2 and fp_regs on s390.
407 */
408 return 0;
409
410 } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
411 /*
412 * floating point control reg. is in the thread structure
413 */
414 if ((unsigned int) data != 0 ||
415 test_fp_ctl(data >> (BITS_PER_LONG - 32)))
416 return -EINVAL;
417 child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
418
419 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
420 /*
421 * floating point regs. are either in child->thread.fpu
422 * or the child->thread.fpu.vxrs array
423 */
424 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
425 if (MACHINE_HAS_VX)
426 *(addr_t *)((addr_t)
427 child->thread.fpu.vxrs + 2*offset) = data;
428 else
429 *(addr_t *)((addr_t)
430 child->thread.fpu.fprs + offset) = data;
431
432 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
433 /*
434 * Handle access to the per_info structure.
435 */
436 addr -= (addr_t) &dummy->regs.per_info;
437 __poke_user_per(child, addr, data);
438
439 }
440
441 return 0;
442 }
443
poke_user(struct task_struct * child,addr_t addr,addr_t data)444 static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
445 {
446 addr_t mask;
447
448 /*
449 * Stupid gdb peeks/pokes the access registers in 64 bit with
450 * an alignment of 4. Programmers from hell indeed...
451 */
452 mask = __ADDR_MASK;
453 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
454 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
455 mask = 3;
456 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
457 return -EIO;
458
459 return __poke_user(child, addr, data);
460 }
461
arch_ptrace(struct task_struct * child,long request,unsigned long addr,unsigned long data)462 long arch_ptrace(struct task_struct *child, long request,
463 unsigned long addr, unsigned long data)
464 {
465 ptrace_area parea;
466 int copied, ret;
467
468 switch (request) {
469 case PTRACE_PEEKUSR:
470 /* read the word at location addr in the USER area. */
471 return peek_user(child, addr, data);
472
473 case PTRACE_POKEUSR:
474 /* write the word at location addr in the USER area */
475 return poke_user(child, addr, data);
476
477 case PTRACE_PEEKUSR_AREA:
478 case PTRACE_POKEUSR_AREA:
479 if (copy_from_user(&parea, (void __force __user *) addr,
480 sizeof(parea)))
481 return -EFAULT;
482 addr = parea.kernel_addr;
483 data = parea.process_addr;
484 copied = 0;
485 while (copied < parea.len) {
486 if (request == PTRACE_PEEKUSR_AREA)
487 ret = peek_user(child, addr, data);
488 else {
489 addr_t utmp;
490 if (get_user(utmp,
491 (addr_t __force __user *) data))
492 return -EFAULT;
493 ret = poke_user(child, addr, utmp);
494 }
495 if (ret)
496 return ret;
497 addr += sizeof(unsigned long);
498 data += sizeof(unsigned long);
499 copied += sizeof(unsigned long);
500 }
501 return 0;
502 case PTRACE_GET_LAST_BREAK:
503 put_user(child->thread.last_break,
504 (unsigned long __user *) data);
505 return 0;
506 case PTRACE_ENABLE_TE:
507 if (!MACHINE_HAS_TE)
508 return -EIO;
509 child->thread.per_flags &= ~PER_FLAG_NO_TE;
510 return 0;
511 case PTRACE_DISABLE_TE:
512 if (!MACHINE_HAS_TE)
513 return -EIO;
514 child->thread.per_flags |= PER_FLAG_NO_TE;
515 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
516 return 0;
517 case PTRACE_TE_ABORT_RAND:
518 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
519 return -EIO;
520 switch (data) {
521 case 0UL:
522 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
523 break;
524 case 1UL:
525 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
526 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
527 break;
528 case 2UL:
529 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
530 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
531 break;
532 default:
533 return -EINVAL;
534 }
535 return 0;
536 default:
537 return ptrace_request(child, request, addr, data);
538 }
539 }
540
541 #ifdef CONFIG_COMPAT
542 /*
543 * Now the fun part starts... a 31 bit program running in the
544 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
545 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
546 * to handle, the difference to the 64 bit versions of the requests
547 * is that the access is done in multiples of 4 byte instead of
548 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
549 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
550 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
551 * is a 31 bit program too, the content of struct user can be
552 * emulated. A 31 bit program peeking into the struct user of
553 * a 64 bit program is a no-no.
554 */
555
556 /*
557 * Same as peek_user_per but for a 31 bit program.
558 */
__peek_user_per_compat(struct task_struct * child,addr_t addr)559 static inline __u32 __peek_user_per_compat(struct task_struct *child,
560 addr_t addr)
561 {
562 struct compat_per_struct_kernel *dummy32 = NULL;
563
564 if (addr == (addr_t) &dummy32->cr9)
565 /* Control bits of the active per set. */
566 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
567 PER_EVENT_IFETCH : child->thread.per_user.control;
568 else if (addr == (addr_t) &dummy32->cr10)
569 /* Start address of the active per set. */
570 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
571 0 : child->thread.per_user.start;
572 else if (addr == (addr_t) &dummy32->cr11)
573 /* End address of the active per set. */
574 return test_thread_flag(TIF_SINGLE_STEP) ?
575 PSW32_ADDR_INSN : child->thread.per_user.end;
576 else if (addr == (addr_t) &dummy32->bits)
577 /* Single-step bit. */
578 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
579 0x80000000 : 0;
580 else if (addr == (addr_t) &dummy32->starting_addr)
581 /* Start address of the user specified per set. */
582 return (__u32) child->thread.per_user.start;
583 else if (addr == (addr_t) &dummy32->ending_addr)
584 /* End address of the user specified per set. */
585 return (__u32) child->thread.per_user.end;
586 else if (addr == (addr_t) &dummy32->perc_atmid)
587 /* PER code, ATMID and AI of the last PER trap */
588 return (__u32) child->thread.per_event.cause << 16;
589 else if (addr == (addr_t) &dummy32->address)
590 /* Address of the last PER trap */
591 return (__u32) child->thread.per_event.address;
592 else if (addr == (addr_t) &dummy32->access_id)
593 /* Access id of the last PER trap */
594 return (__u32) child->thread.per_event.paid << 24;
595 return 0;
596 }
597
598 /*
599 * Same as peek_user but for a 31 bit program.
600 */
__peek_user_compat(struct task_struct * child,addr_t addr)601 static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
602 {
603 struct compat_user *dummy32 = NULL;
604 addr_t offset;
605 __u32 tmp;
606
607 if (addr < (addr_t) &dummy32->regs.acrs) {
608 struct pt_regs *regs = task_pt_regs(child);
609 /*
610 * psw and gprs are stored on the stack
611 */
612 if (addr == (addr_t) &dummy32->regs.psw.mask) {
613 /* Fake a 31 bit psw mask. */
614 tmp = (__u32)(regs->psw.mask >> 32);
615 tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
616 tmp |= PSW32_USER_BITS;
617 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
618 /* Fake a 31 bit psw address. */
619 tmp = (__u32) regs->psw.addr |
620 (__u32)(regs->psw.mask & PSW_MASK_BA);
621 } else {
622 /* gpr 0-15 */
623 tmp = *(__u32 *)((addr_t) ®s->psw + addr*2 + 4);
624 }
625 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
626 /*
627 * access registers are stored in the thread structure
628 */
629 offset = addr - (addr_t) &dummy32->regs.acrs;
630 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
631
632 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
633 /*
634 * orig_gpr2 is stored on the kernel stack
635 */
636 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
637
638 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
639 /*
640 * prevent reads of padding hole between
641 * orig_gpr2 and fp_regs on s390.
642 */
643 tmp = 0;
644
645 } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
646 /*
647 * floating point control reg. is in the thread structure
648 */
649 tmp = child->thread.fpu.fpc;
650
651 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
652 /*
653 * floating point regs. are either in child->thread.fpu
654 * or the child->thread.fpu.vxrs array
655 */
656 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
657 if (MACHINE_HAS_VX)
658 tmp = *(__u32 *)
659 ((addr_t) child->thread.fpu.vxrs + 2*offset);
660 else
661 tmp = *(__u32 *)
662 ((addr_t) child->thread.fpu.fprs + offset);
663
664 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
665 /*
666 * Handle access to the per_info structure.
667 */
668 addr -= (addr_t) &dummy32->regs.per_info;
669 tmp = __peek_user_per_compat(child, addr);
670
671 } else
672 tmp = 0;
673
674 return tmp;
675 }
676
peek_user_compat(struct task_struct * child,addr_t addr,addr_t data)677 static int peek_user_compat(struct task_struct *child,
678 addr_t addr, addr_t data)
679 {
680 __u32 tmp;
681
682 if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
683 return -EIO;
684
685 tmp = __peek_user_compat(child, addr);
686 return put_user(tmp, (__u32 __user *) data);
687 }
688
689 /*
690 * Same as poke_user_per but for a 31 bit program.
691 */
__poke_user_per_compat(struct task_struct * child,addr_t addr,__u32 data)692 static inline void __poke_user_per_compat(struct task_struct *child,
693 addr_t addr, __u32 data)
694 {
695 struct compat_per_struct_kernel *dummy32 = NULL;
696
697 if (addr == (addr_t) &dummy32->cr9)
698 /* PER event mask of the user specified per set. */
699 child->thread.per_user.control =
700 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
701 else if (addr == (addr_t) &dummy32->starting_addr)
702 /* Starting address of the user specified per set. */
703 child->thread.per_user.start = data;
704 else if (addr == (addr_t) &dummy32->ending_addr)
705 /* Ending address of the user specified per set. */
706 child->thread.per_user.end = data;
707 }
708
709 /*
710 * Same as poke_user but for a 31 bit program.
711 */
__poke_user_compat(struct task_struct * child,addr_t addr,addr_t data)712 static int __poke_user_compat(struct task_struct *child,
713 addr_t addr, addr_t data)
714 {
715 struct compat_user *dummy32 = NULL;
716 __u32 tmp = (__u32) data;
717 addr_t offset;
718
719 if (addr < (addr_t) &dummy32->regs.acrs) {
720 struct pt_regs *regs = task_pt_regs(child);
721 /*
722 * psw, gprs, acrs and orig_gpr2 are stored on the stack
723 */
724 if (addr == (addr_t) &dummy32->regs.psw.mask) {
725 __u32 mask = PSW32_MASK_USER;
726
727 mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
728 /* Build a 64 bit psw mask from 31 bit mask. */
729 if ((tmp ^ PSW32_USER_BITS) & ~mask)
730 /* Invalid psw mask. */
731 return -EINVAL;
732 if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
733 /* Invalid address-space-control bits */
734 return -EINVAL;
735 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
736 (regs->psw.mask & PSW_MASK_BA) |
737 (__u64)(tmp & mask) << 32;
738 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
739 /* Build a 64 bit psw address from 31 bit address. */
740 regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
741 /* Transfer 31 bit amode bit to psw mask. */
742 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
743 (__u64)(tmp & PSW32_ADDR_AMODE);
744 } else {
745
746 if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
747 addr == offsetof(struct compat_user, regs.gprs[2]))
748 fixup_int_code(child, data);
749 /* gpr 0-15 */
750 *(__u32*)((addr_t) ®s->psw + addr*2 + 4) = tmp;
751 }
752 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
753 /*
754 * access registers are stored in the thread structure
755 */
756 offset = addr - (addr_t) &dummy32->regs.acrs;
757 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
758
759 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
760 /*
761 * orig_gpr2 is stored on the kernel stack
762 */
763 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
764
765 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
766 /*
767 * prevent writess of padding hole between
768 * orig_gpr2 and fp_regs on s390.
769 */
770 return 0;
771
772 } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
773 /*
774 * floating point control reg. is in the thread structure
775 */
776 if (test_fp_ctl(tmp))
777 return -EINVAL;
778 child->thread.fpu.fpc = data;
779
780 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
781 /*
782 * floating point regs. are either in child->thread.fpu
783 * or the child->thread.fpu.vxrs array
784 */
785 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
786 if (MACHINE_HAS_VX)
787 *(__u32 *)((addr_t)
788 child->thread.fpu.vxrs + 2*offset) = tmp;
789 else
790 *(__u32 *)((addr_t)
791 child->thread.fpu.fprs + offset) = tmp;
792
793 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
794 /*
795 * Handle access to the per_info structure.
796 */
797 addr -= (addr_t) &dummy32->regs.per_info;
798 __poke_user_per_compat(child, addr, data);
799 }
800
801 return 0;
802 }
803
poke_user_compat(struct task_struct * child,addr_t addr,addr_t data)804 static int poke_user_compat(struct task_struct *child,
805 addr_t addr, addr_t data)
806 {
807 if (!is_compat_task() || (addr & 3) ||
808 addr > sizeof(struct compat_user) - 3)
809 return -EIO;
810
811 return __poke_user_compat(child, addr, data);
812 }
813
compat_arch_ptrace(struct task_struct * child,compat_long_t request,compat_ulong_t caddr,compat_ulong_t cdata)814 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
815 compat_ulong_t caddr, compat_ulong_t cdata)
816 {
817 unsigned long addr = caddr;
818 unsigned long data = cdata;
819 compat_ptrace_area parea;
820 int copied, ret;
821
822 switch (request) {
823 case PTRACE_PEEKUSR:
824 /* read the word at location addr in the USER area. */
825 return peek_user_compat(child, addr, data);
826
827 case PTRACE_POKEUSR:
828 /* write the word at location addr in the USER area */
829 return poke_user_compat(child, addr, data);
830
831 case PTRACE_PEEKUSR_AREA:
832 case PTRACE_POKEUSR_AREA:
833 if (copy_from_user(&parea, (void __force __user *) addr,
834 sizeof(parea)))
835 return -EFAULT;
836 addr = parea.kernel_addr;
837 data = parea.process_addr;
838 copied = 0;
839 while (copied < parea.len) {
840 if (request == PTRACE_PEEKUSR_AREA)
841 ret = peek_user_compat(child, addr, data);
842 else {
843 __u32 utmp;
844 if (get_user(utmp,
845 (__u32 __force __user *) data))
846 return -EFAULT;
847 ret = poke_user_compat(child, addr, utmp);
848 }
849 if (ret)
850 return ret;
851 addr += sizeof(unsigned int);
852 data += sizeof(unsigned int);
853 copied += sizeof(unsigned int);
854 }
855 return 0;
856 case PTRACE_GET_LAST_BREAK:
857 put_user(child->thread.last_break,
858 (unsigned int __user *) data);
859 return 0;
860 }
861 return compat_ptrace_request(child, request, addr, data);
862 }
863 #endif
864
do_syscall_trace_enter(struct pt_regs * regs)865 asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
866 {
867 unsigned long mask = -1UL;
868 long ret = -1;
869
870 if (is_compat_task())
871 mask = 0xffffffff;
872
873 /*
874 * The sysc_tracesys code in entry.S stored the system
875 * call number to gprs[2].
876 */
877 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
878 tracehook_report_syscall_entry(regs)) {
879 /*
880 * Tracing decided this syscall should not happen. Skip
881 * the system call and the system call restart handling.
882 */
883 goto skip;
884 }
885
886 #ifdef CONFIG_SECCOMP
887 /* Do the secure computing check after ptrace. */
888 if (unlikely(test_thread_flag(TIF_SECCOMP))) {
889 struct seccomp_data sd;
890
891 if (is_compat_task()) {
892 sd.instruction_pointer = regs->psw.addr & 0x7fffffff;
893 sd.arch = AUDIT_ARCH_S390;
894 } else {
895 sd.instruction_pointer = regs->psw.addr;
896 sd.arch = AUDIT_ARCH_S390X;
897 }
898
899 sd.nr = regs->int_code & 0xffff;
900 sd.args[0] = regs->orig_gpr2 & mask;
901 sd.args[1] = regs->gprs[3] & mask;
902 sd.args[2] = regs->gprs[4] & mask;
903 sd.args[3] = regs->gprs[5] & mask;
904 sd.args[4] = regs->gprs[6] & mask;
905 sd.args[5] = regs->gprs[7] & mask;
906
907 if (__secure_computing(&sd) == -1)
908 goto skip;
909 }
910 #endif /* CONFIG_SECCOMP */
911
912 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
913 trace_sys_enter(regs, regs->int_code & 0xffff);
914
915
916 audit_syscall_entry(regs->int_code & 0xffff, regs->orig_gpr2 & mask,
917 regs->gprs[3] &mask, regs->gprs[4] &mask,
918 regs->gprs[5] &mask);
919
920 if ((signed long)regs->gprs[2] >= NR_syscalls) {
921 regs->gprs[2] = -ENOSYS;
922 ret = -ENOSYS;
923 }
924 return regs->gprs[2];
925 skip:
926 clear_pt_regs_flag(regs, PIF_SYSCALL);
927 return ret;
928 }
929
do_syscall_trace_exit(struct pt_regs * regs)930 asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
931 {
932 audit_syscall_exit(regs);
933
934 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
935 trace_sys_exit(regs, regs->gprs[2]);
936
937 if (test_thread_flag(TIF_SYSCALL_TRACE))
938 tracehook_report_syscall_exit(regs, 0);
939 }
940
941 /*
942 * user_regset definitions.
943 */
944
s390_regs_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)945 static int s390_regs_get(struct task_struct *target,
946 const struct user_regset *regset,
947 struct membuf to)
948 {
949 unsigned pos;
950 if (target == current)
951 save_access_regs(target->thread.acrs);
952
953 for (pos = 0; pos < sizeof(s390_regs); pos += sizeof(long))
954 membuf_store(&to, __peek_user(target, pos));
955 return 0;
956 }
957
s390_regs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)958 static int s390_regs_set(struct task_struct *target,
959 const struct user_regset *regset,
960 unsigned int pos, unsigned int count,
961 const void *kbuf, const void __user *ubuf)
962 {
963 int rc = 0;
964
965 if (target == current)
966 save_access_regs(target->thread.acrs);
967
968 if (kbuf) {
969 const unsigned long *k = kbuf;
970 while (count > 0 && !rc) {
971 rc = __poke_user(target, pos, *k++);
972 count -= sizeof(*k);
973 pos += sizeof(*k);
974 }
975 } else {
976 const unsigned long __user *u = ubuf;
977 while (count > 0 && !rc) {
978 unsigned long word;
979 rc = __get_user(word, u++);
980 if (rc)
981 break;
982 rc = __poke_user(target, pos, word);
983 count -= sizeof(*u);
984 pos += sizeof(*u);
985 }
986 }
987
988 if (rc == 0 && target == current)
989 restore_access_regs(target->thread.acrs);
990
991 return rc;
992 }
993
s390_fpregs_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)994 static int s390_fpregs_get(struct task_struct *target,
995 const struct user_regset *regset,
996 struct membuf to)
997 {
998 _s390_fp_regs fp_regs;
999
1000 if (target == current)
1001 save_fpu_regs();
1002
1003 fp_regs.fpc = target->thread.fpu.fpc;
1004 fpregs_store(&fp_regs, &target->thread.fpu);
1005
1006 return membuf_write(&to, &fp_regs, sizeof(fp_regs));
1007 }
1008
s390_fpregs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1009 static int s390_fpregs_set(struct task_struct *target,
1010 const struct user_regset *regset, unsigned int pos,
1011 unsigned int count, const void *kbuf,
1012 const void __user *ubuf)
1013 {
1014 int rc = 0;
1015 freg_t fprs[__NUM_FPRS];
1016
1017 if (target == current)
1018 save_fpu_regs();
1019
1020 if (MACHINE_HAS_VX)
1021 convert_vx_to_fp(fprs, target->thread.fpu.vxrs);
1022 else
1023 memcpy(&fprs, target->thread.fpu.fprs, sizeof(fprs));
1024
1025 /* If setting FPC, must validate it first. */
1026 if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
1027 u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
1028 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
1029 0, offsetof(s390_fp_regs, fprs));
1030 if (rc)
1031 return rc;
1032 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
1033 return -EINVAL;
1034 target->thread.fpu.fpc = ufpc[0];
1035 }
1036
1037 if (rc == 0 && count > 0)
1038 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1039 fprs, offsetof(s390_fp_regs, fprs), -1);
1040 if (rc)
1041 return rc;
1042
1043 if (MACHINE_HAS_VX)
1044 convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
1045 else
1046 memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
1047
1048 return rc;
1049 }
1050
s390_last_break_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1051 static int s390_last_break_get(struct task_struct *target,
1052 const struct user_regset *regset,
1053 struct membuf to)
1054 {
1055 return membuf_store(&to, target->thread.last_break);
1056 }
1057
s390_last_break_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1058 static int s390_last_break_set(struct task_struct *target,
1059 const struct user_regset *regset,
1060 unsigned int pos, unsigned int count,
1061 const void *kbuf, const void __user *ubuf)
1062 {
1063 return 0;
1064 }
1065
s390_tdb_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1066 static int s390_tdb_get(struct task_struct *target,
1067 const struct user_regset *regset,
1068 struct membuf to)
1069 {
1070 struct pt_regs *regs = task_pt_regs(target);
1071
1072 if (!(regs->int_code & 0x200))
1073 return -ENODATA;
1074 return membuf_write(&to, target->thread.trap_tdb, 256);
1075 }
1076
s390_tdb_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1077 static int s390_tdb_set(struct task_struct *target,
1078 const struct user_regset *regset,
1079 unsigned int pos, unsigned int count,
1080 const void *kbuf, const void __user *ubuf)
1081 {
1082 return 0;
1083 }
1084
s390_vxrs_low_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1085 static int s390_vxrs_low_get(struct task_struct *target,
1086 const struct user_regset *regset,
1087 struct membuf to)
1088 {
1089 __u64 vxrs[__NUM_VXRS_LOW];
1090 int i;
1091
1092 if (!MACHINE_HAS_VX)
1093 return -ENODEV;
1094 if (target == current)
1095 save_fpu_regs();
1096 for (i = 0; i < __NUM_VXRS_LOW; i++)
1097 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1098 return membuf_write(&to, vxrs, sizeof(vxrs));
1099 }
1100
s390_vxrs_low_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1101 static int s390_vxrs_low_set(struct task_struct *target,
1102 const struct user_regset *regset,
1103 unsigned int pos, unsigned int count,
1104 const void *kbuf, const void __user *ubuf)
1105 {
1106 __u64 vxrs[__NUM_VXRS_LOW];
1107 int i, rc;
1108
1109 if (!MACHINE_HAS_VX)
1110 return -ENODEV;
1111 if (target == current)
1112 save_fpu_regs();
1113
1114 for (i = 0; i < __NUM_VXRS_LOW; i++)
1115 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1116
1117 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1118 if (rc == 0)
1119 for (i = 0; i < __NUM_VXRS_LOW; i++)
1120 *((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1121
1122 return rc;
1123 }
1124
s390_vxrs_high_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1125 static int s390_vxrs_high_get(struct task_struct *target,
1126 const struct user_regset *regset,
1127 struct membuf to)
1128 {
1129 if (!MACHINE_HAS_VX)
1130 return -ENODEV;
1131 if (target == current)
1132 save_fpu_regs();
1133 return membuf_write(&to, target->thread.fpu.vxrs + __NUM_VXRS_LOW,
1134 __NUM_VXRS_HIGH * sizeof(__vector128));
1135 }
1136
s390_vxrs_high_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1137 static int s390_vxrs_high_set(struct task_struct *target,
1138 const struct user_regset *regset,
1139 unsigned int pos, unsigned int count,
1140 const void *kbuf, const void __user *ubuf)
1141 {
1142 int rc;
1143
1144 if (!MACHINE_HAS_VX)
1145 return -ENODEV;
1146 if (target == current)
1147 save_fpu_regs();
1148
1149 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1150 target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1151 return rc;
1152 }
1153
s390_system_call_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1154 static int s390_system_call_get(struct task_struct *target,
1155 const struct user_regset *regset,
1156 struct membuf to)
1157 {
1158 return membuf_store(&to, target->thread.system_call);
1159 }
1160
s390_system_call_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1161 static int s390_system_call_set(struct task_struct *target,
1162 const struct user_regset *regset,
1163 unsigned int pos, unsigned int count,
1164 const void *kbuf, const void __user *ubuf)
1165 {
1166 unsigned int *data = &target->thread.system_call;
1167 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1168 data, 0, sizeof(unsigned int));
1169 }
1170
s390_gs_cb_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1171 static int s390_gs_cb_get(struct task_struct *target,
1172 const struct user_regset *regset,
1173 struct membuf to)
1174 {
1175 struct gs_cb *data = target->thread.gs_cb;
1176
1177 if (!MACHINE_HAS_GS)
1178 return -ENODEV;
1179 if (!data)
1180 return -ENODATA;
1181 if (target == current)
1182 save_gs_cb(data);
1183 return membuf_write(&to, data, sizeof(struct gs_cb));
1184 }
1185
s390_gs_cb_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1186 static int s390_gs_cb_set(struct task_struct *target,
1187 const struct user_regset *regset,
1188 unsigned int pos, unsigned int count,
1189 const void *kbuf, const void __user *ubuf)
1190 {
1191 struct gs_cb gs_cb = { }, *data = NULL;
1192 int rc;
1193
1194 if (!MACHINE_HAS_GS)
1195 return -ENODEV;
1196 if (!target->thread.gs_cb) {
1197 data = kzalloc(sizeof(*data), GFP_KERNEL);
1198 if (!data)
1199 return -ENOMEM;
1200 }
1201 if (!target->thread.gs_cb)
1202 gs_cb.gsd = 25;
1203 else if (target == current)
1204 save_gs_cb(&gs_cb);
1205 else
1206 gs_cb = *target->thread.gs_cb;
1207 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1208 &gs_cb, 0, sizeof(gs_cb));
1209 if (rc) {
1210 kfree(data);
1211 return -EFAULT;
1212 }
1213 preempt_disable();
1214 if (!target->thread.gs_cb)
1215 target->thread.gs_cb = data;
1216 *target->thread.gs_cb = gs_cb;
1217 if (target == current) {
1218 __ctl_set_bit(2, 4);
1219 restore_gs_cb(target->thread.gs_cb);
1220 }
1221 preempt_enable();
1222 return rc;
1223 }
1224
s390_gs_bc_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1225 static int s390_gs_bc_get(struct task_struct *target,
1226 const struct user_regset *regset,
1227 struct membuf to)
1228 {
1229 struct gs_cb *data = target->thread.gs_bc_cb;
1230
1231 if (!MACHINE_HAS_GS)
1232 return -ENODEV;
1233 if (!data)
1234 return -ENODATA;
1235 return membuf_write(&to, data, sizeof(struct gs_cb));
1236 }
1237
s390_gs_bc_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1238 static int s390_gs_bc_set(struct task_struct *target,
1239 const struct user_regset *regset,
1240 unsigned int pos, unsigned int count,
1241 const void *kbuf, const void __user *ubuf)
1242 {
1243 struct gs_cb *data = target->thread.gs_bc_cb;
1244
1245 if (!MACHINE_HAS_GS)
1246 return -ENODEV;
1247 if (!data) {
1248 data = kzalloc(sizeof(*data), GFP_KERNEL);
1249 if (!data)
1250 return -ENOMEM;
1251 target->thread.gs_bc_cb = data;
1252 }
1253 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1254 data, 0, sizeof(struct gs_cb));
1255 }
1256
is_ri_cb_valid(struct runtime_instr_cb * cb)1257 static bool is_ri_cb_valid(struct runtime_instr_cb *cb)
1258 {
1259 return (cb->rca & 0x1f) == 0 &&
1260 (cb->roa & 0xfff) == 0 &&
1261 (cb->rla & 0xfff) == 0xfff &&
1262 cb->s == 1 &&
1263 cb->k == 1 &&
1264 cb->h == 0 &&
1265 cb->reserved1 == 0 &&
1266 cb->ps == 1 &&
1267 cb->qs == 0 &&
1268 cb->pc == 1 &&
1269 cb->qc == 0 &&
1270 cb->reserved2 == 0 &&
1271 cb->reserved3 == 0 &&
1272 cb->reserved4 == 0 &&
1273 cb->reserved5 == 0 &&
1274 cb->reserved6 == 0 &&
1275 cb->reserved7 == 0 &&
1276 cb->reserved8 == 0 &&
1277 cb->rla >= cb->roa &&
1278 cb->rca >= cb->roa &&
1279 cb->rca <= cb->rla+1 &&
1280 cb->m < 3;
1281 }
1282
s390_runtime_instr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1283 static int s390_runtime_instr_get(struct task_struct *target,
1284 const struct user_regset *regset,
1285 struct membuf to)
1286 {
1287 struct runtime_instr_cb *data = target->thread.ri_cb;
1288
1289 if (!test_facility(64))
1290 return -ENODEV;
1291 if (!data)
1292 return -ENODATA;
1293
1294 return membuf_write(&to, data, sizeof(struct runtime_instr_cb));
1295 }
1296
s390_runtime_instr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1297 static int s390_runtime_instr_set(struct task_struct *target,
1298 const struct user_regset *regset,
1299 unsigned int pos, unsigned int count,
1300 const void *kbuf, const void __user *ubuf)
1301 {
1302 struct runtime_instr_cb ri_cb = { }, *data = NULL;
1303 int rc;
1304
1305 if (!test_facility(64))
1306 return -ENODEV;
1307
1308 if (!target->thread.ri_cb) {
1309 data = kzalloc(sizeof(*data), GFP_KERNEL);
1310 if (!data)
1311 return -ENOMEM;
1312 }
1313
1314 if (target->thread.ri_cb) {
1315 if (target == current)
1316 store_runtime_instr_cb(&ri_cb);
1317 else
1318 ri_cb = *target->thread.ri_cb;
1319 }
1320
1321 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1322 &ri_cb, 0, sizeof(struct runtime_instr_cb));
1323 if (rc) {
1324 kfree(data);
1325 return -EFAULT;
1326 }
1327
1328 if (!is_ri_cb_valid(&ri_cb)) {
1329 kfree(data);
1330 return -EINVAL;
1331 }
1332 /*
1333 * Override access key in any case, since user space should
1334 * not be able to set it, nor should it care about it.
1335 */
1336 ri_cb.key = PAGE_DEFAULT_KEY >> 4;
1337 preempt_disable();
1338 if (!target->thread.ri_cb)
1339 target->thread.ri_cb = data;
1340 *target->thread.ri_cb = ri_cb;
1341 if (target == current)
1342 load_runtime_instr_cb(target->thread.ri_cb);
1343 preempt_enable();
1344
1345 return 0;
1346 }
1347
1348 static const struct user_regset s390_regsets[] = {
1349 {
1350 .core_note_type = NT_PRSTATUS,
1351 .n = sizeof(s390_regs) / sizeof(long),
1352 .size = sizeof(long),
1353 .align = sizeof(long),
1354 .regset_get = s390_regs_get,
1355 .set = s390_regs_set,
1356 },
1357 {
1358 .core_note_type = NT_PRFPREG,
1359 .n = sizeof(s390_fp_regs) / sizeof(long),
1360 .size = sizeof(long),
1361 .align = sizeof(long),
1362 .regset_get = s390_fpregs_get,
1363 .set = s390_fpregs_set,
1364 },
1365 {
1366 .core_note_type = NT_S390_SYSTEM_CALL,
1367 .n = 1,
1368 .size = sizeof(unsigned int),
1369 .align = sizeof(unsigned int),
1370 .regset_get = s390_system_call_get,
1371 .set = s390_system_call_set,
1372 },
1373 {
1374 .core_note_type = NT_S390_LAST_BREAK,
1375 .n = 1,
1376 .size = sizeof(long),
1377 .align = sizeof(long),
1378 .regset_get = s390_last_break_get,
1379 .set = s390_last_break_set,
1380 },
1381 {
1382 .core_note_type = NT_S390_TDB,
1383 .n = 1,
1384 .size = 256,
1385 .align = 1,
1386 .regset_get = s390_tdb_get,
1387 .set = s390_tdb_set,
1388 },
1389 {
1390 .core_note_type = NT_S390_VXRS_LOW,
1391 .n = __NUM_VXRS_LOW,
1392 .size = sizeof(__u64),
1393 .align = sizeof(__u64),
1394 .regset_get = s390_vxrs_low_get,
1395 .set = s390_vxrs_low_set,
1396 },
1397 {
1398 .core_note_type = NT_S390_VXRS_HIGH,
1399 .n = __NUM_VXRS_HIGH,
1400 .size = sizeof(__vector128),
1401 .align = sizeof(__vector128),
1402 .regset_get = s390_vxrs_high_get,
1403 .set = s390_vxrs_high_set,
1404 },
1405 {
1406 .core_note_type = NT_S390_GS_CB,
1407 .n = sizeof(struct gs_cb) / sizeof(__u64),
1408 .size = sizeof(__u64),
1409 .align = sizeof(__u64),
1410 .regset_get = s390_gs_cb_get,
1411 .set = s390_gs_cb_set,
1412 },
1413 {
1414 .core_note_type = NT_S390_GS_BC,
1415 .n = sizeof(struct gs_cb) / sizeof(__u64),
1416 .size = sizeof(__u64),
1417 .align = sizeof(__u64),
1418 .regset_get = s390_gs_bc_get,
1419 .set = s390_gs_bc_set,
1420 },
1421 {
1422 .core_note_type = NT_S390_RI_CB,
1423 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1424 .size = sizeof(__u64),
1425 .align = sizeof(__u64),
1426 .regset_get = s390_runtime_instr_get,
1427 .set = s390_runtime_instr_set,
1428 },
1429 };
1430
1431 static const struct user_regset_view user_s390_view = {
1432 .name = "s390x",
1433 .e_machine = EM_S390,
1434 .regsets = s390_regsets,
1435 .n = ARRAY_SIZE(s390_regsets)
1436 };
1437
1438 #ifdef CONFIG_COMPAT
s390_compat_regs_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1439 static int s390_compat_regs_get(struct task_struct *target,
1440 const struct user_regset *regset,
1441 struct membuf to)
1442 {
1443 unsigned n;
1444
1445 if (target == current)
1446 save_access_regs(target->thread.acrs);
1447
1448 for (n = 0; n < sizeof(s390_compat_regs); n += sizeof(compat_ulong_t))
1449 membuf_store(&to, __peek_user_compat(target, n));
1450 return 0;
1451 }
1452
s390_compat_regs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1453 static int s390_compat_regs_set(struct task_struct *target,
1454 const struct user_regset *regset,
1455 unsigned int pos, unsigned int count,
1456 const void *kbuf, const void __user *ubuf)
1457 {
1458 int rc = 0;
1459
1460 if (target == current)
1461 save_access_regs(target->thread.acrs);
1462
1463 if (kbuf) {
1464 const compat_ulong_t *k = kbuf;
1465 while (count > 0 && !rc) {
1466 rc = __poke_user_compat(target, pos, *k++);
1467 count -= sizeof(*k);
1468 pos += sizeof(*k);
1469 }
1470 } else {
1471 const compat_ulong_t __user *u = ubuf;
1472 while (count > 0 && !rc) {
1473 compat_ulong_t word;
1474 rc = __get_user(word, u++);
1475 if (rc)
1476 break;
1477 rc = __poke_user_compat(target, pos, word);
1478 count -= sizeof(*u);
1479 pos += sizeof(*u);
1480 }
1481 }
1482
1483 if (rc == 0 && target == current)
1484 restore_access_regs(target->thread.acrs);
1485
1486 return rc;
1487 }
1488
s390_compat_regs_high_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1489 static int s390_compat_regs_high_get(struct task_struct *target,
1490 const struct user_regset *regset,
1491 struct membuf to)
1492 {
1493 compat_ulong_t *gprs_high;
1494 int i;
1495
1496 gprs_high = (compat_ulong_t *)task_pt_regs(target)->gprs;
1497 for (i = 0; i < NUM_GPRS; i++, gprs_high += 2)
1498 membuf_store(&to, *gprs_high);
1499 return 0;
1500 }
1501
s390_compat_regs_high_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1502 static int s390_compat_regs_high_set(struct task_struct *target,
1503 const struct user_regset *regset,
1504 unsigned int pos, unsigned int count,
1505 const void *kbuf, const void __user *ubuf)
1506 {
1507 compat_ulong_t *gprs_high;
1508 int rc = 0;
1509
1510 gprs_high = (compat_ulong_t *)
1511 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1512 if (kbuf) {
1513 const compat_ulong_t *k = kbuf;
1514 while (count > 0) {
1515 *gprs_high = *k++;
1516 *gprs_high += 2;
1517 count -= sizeof(*k);
1518 }
1519 } else {
1520 const compat_ulong_t __user *u = ubuf;
1521 while (count > 0 && !rc) {
1522 unsigned long word;
1523 rc = __get_user(word, u++);
1524 if (rc)
1525 break;
1526 *gprs_high = word;
1527 *gprs_high += 2;
1528 count -= sizeof(*u);
1529 }
1530 }
1531
1532 return rc;
1533 }
1534
s390_compat_last_break_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1535 static int s390_compat_last_break_get(struct task_struct *target,
1536 const struct user_regset *regset,
1537 struct membuf to)
1538 {
1539 compat_ulong_t last_break = target->thread.last_break;
1540
1541 return membuf_store(&to, (unsigned long)last_break);
1542 }
1543
s390_compat_last_break_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1544 static int s390_compat_last_break_set(struct task_struct *target,
1545 const struct user_regset *regset,
1546 unsigned int pos, unsigned int count,
1547 const void *kbuf, const void __user *ubuf)
1548 {
1549 return 0;
1550 }
1551
1552 static const struct user_regset s390_compat_regsets[] = {
1553 {
1554 .core_note_type = NT_PRSTATUS,
1555 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1556 .size = sizeof(compat_long_t),
1557 .align = sizeof(compat_long_t),
1558 .regset_get = s390_compat_regs_get,
1559 .set = s390_compat_regs_set,
1560 },
1561 {
1562 .core_note_type = NT_PRFPREG,
1563 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1564 .size = sizeof(compat_long_t),
1565 .align = sizeof(compat_long_t),
1566 .regset_get = s390_fpregs_get,
1567 .set = s390_fpregs_set,
1568 },
1569 {
1570 .core_note_type = NT_S390_SYSTEM_CALL,
1571 .n = 1,
1572 .size = sizeof(compat_uint_t),
1573 .align = sizeof(compat_uint_t),
1574 .regset_get = s390_system_call_get,
1575 .set = s390_system_call_set,
1576 },
1577 {
1578 .core_note_type = NT_S390_LAST_BREAK,
1579 .n = 1,
1580 .size = sizeof(long),
1581 .align = sizeof(long),
1582 .regset_get = s390_compat_last_break_get,
1583 .set = s390_compat_last_break_set,
1584 },
1585 {
1586 .core_note_type = NT_S390_TDB,
1587 .n = 1,
1588 .size = 256,
1589 .align = 1,
1590 .regset_get = s390_tdb_get,
1591 .set = s390_tdb_set,
1592 },
1593 {
1594 .core_note_type = NT_S390_VXRS_LOW,
1595 .n = __NUM_VXRS_LOW,
1596 .size = sizeof(__u64),
1597 .align = sizeof(__u64),
1598 .regset_get = s390_vxrs_low_get,
1599 .set = s390_vxrs_low_set,
1600 },
1601 {
1602 .core_note_type = NT_S390_VXRS_HIGH,
1603 .n = __NUM_VXRS_HIGH,
1604 .size = sizeof(__vector128),
1605 .align = sizeof(__vector128),
1606 .regset_get = s390_vxrs_high_get,
1607 .set = s390_vxrs_high_set,
1608 },
1609 {
1610 .core_note_type = NT_S390_HIGH_GPRS,
1611 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1612 .size = sizeof(compat_long_t),
1613 .align = sizeof(compat_long_t),
1614 .regset_get = s390_compat_regs_high_get,
1615 .set = s390_compat_regs_high_set,
1616 },
1617 {
1618 .core_note_type = NT_S390_GS_CB,
1619 .n = sizeof(struct gs_cb) / sizeof(__u64),
1620 .size = sizeof(__u64),
1621 .align = sizeof(__u64),
1622 .regset_get = s390_gs_cb_get,
1623 .set = s390_gs_cb_set,
1624 },
1625 {
1626 .core_note_type = NT_S390_GS_BC,
1627 .n = sizeof(struct gs_cb) / sizeof(__u64),
1628 .size = sizeof(__u64),
1629 .align = sizeof(__u64),
1630 .regset_get = s390_gs_bc_get,
1631 .set = s390_gs_bc_set,
1632 },
1633 {
1634 .core_note_type = NT_S390_RI_CB,
1635 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1636 .size = sizeof(__u64),
1637 .align = sizeof(__u64),
1638 .regset_get = s390_runtime_instr_get,
1639 .set = s390_runtime_instr_set,
1640 },
1641 };
1642
1643 static const struct user_regset_view user_s390_compat_view = {
1644 .name = "s390",
1645 .e_machine = EM_S390,
1646 .regsets = s390_compat_regsets,
1647 .n = ARRAY_SIZE(s390_compat_regsets)
1648 };
1649 #endif
1650
task_user_regset_view(struct task_struct * task)1651 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1652 {
1653 #ifdef CONFIG_COMPAT
1654 if (test_tsk_thread_flag(task, TIF_31BIT))
1655 return &user_s390_compat_view;
1656 #endif
1657 return &user_s390_view;
1658 }
1659
1660 static const char *gpr_names[NUM_GPRS] = {
1661 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1662 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1663 };
1664
regs_get_register(struct pt_regs * regs,unsigned int offset)1665 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1666 {
1667 if (offset >= NUM_GPRS)
1668 return 0;
1669 return regs->gprs[offset];
1670 }
1671
regs_query_register_offset(const char * name)1672 int regs_query_register_offset(const char *name)
1673 {
1674 unsigned long offset;
1675
1676 if (!name || *name != 'r')
1677 return -EINVAL;
1678 if (kstrtoul(name + 1, 10, &offset))
1679 return -EINVAL;
1680 if (offset >= NUM_GPRS)
1681 return -EINVAL;
1682 return offset;
1683 }
1684
regs_query_register_name(unsigned int offset)1685 const char *regs_query_register_name(unsigned int offset)
1686 {
1687 if (offset >= NUM_GPRS)
1688 return NULL;
1689 return gpr_names[offset];
1690 }
1691
regs_within_kernel_stack(struct pt_regs * regs,unsigned long addr)1692 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1693 {
1694 unsigned long ksp = kernel_stack_pointer(regs);
1695
1696 return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1697 }
1698
1699 /**
1700 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1701 * @regs:pt_regs which contains kernel stack pointer.
1702 * @n:stack entry number.
1703 *
1704 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1705 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1706 * this returns 0.
1707 */
regs_get_kernel_stack_nth(struct pt_regs * regs,unsigned int n)1708 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1709 {
1710 unsigned long addr;
1711
1712 addr = kernel_stack_pointer(regs) + n * sizeof(long);
1713 if (!regs_within_kernel_stack(regs, addr))
1714 return 0;
1715 return *(unsigned long *)addr;
1716 }
1717