1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition) \
35 do { \
36 if (unlikely(condition)) { \
37 WARN_ON(1); \
38 set_sbi_flag(sbi, SBI_NEED_FSCK); \
39 } \
40 } while (0)
41 #endif
42
43 enum {
44 FAULT_KMALLOC,
45 FAULT_KVMALLOC,
46 FAULT_PAGE_ALLOC,
47 FAULT_PAGE_GET,
48 FAULT_ALLOC_BIO,
49 FAULT_ALLOC_NID,
50 FAULT_ORPHAN,
51 FAULT_BLOCK,
52 FAULT_DIR_DEPTH,
53 FAULT_EVICT_INODE,
54 FAULT_TRUNCATE,
55 FAULT_READ_IO,
56 FAULT_CHECKPOINT,
57 FAULT_DISCARD,
58 FAULT_WRITE_IO,
59 FAULT_MAX,
60 };
61
62 #ifdef CONFIG_F2FS_FAULT_INJECTION
63 #define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1)
64
65 struct f2fs_fault_info {
66 atomic_t inject_ops;
67 unsigned int inject_rate;
68 unsigned int inject_type;
69 };
70
71 extern const char *f2fs_fault_name[FAULT_MAX];
72 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
73 #endif
74
75 /*
76 * For mount options
77 */
78 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
79 #define F2FS_MOUNT_DISCARD 0x00000004
80 #define F2FS_MOUNT_NOHEAP 0x00000008
81 #define F2FS_MOUNT_XATTR_USER 0x00000010
82 #define F2FS_MOUNT_POSIX_ACL 0x00000020
83 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
84 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
85 #define F2FS_MOUNT_INLINE_DATA 0x00000100
86 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
87 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
88 #define F2FS_MOUNT_NOBARRIER 0x00000800
89 #define F2FS_MOUNT_FASTBOOT 0x00001000
90 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
91 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
92 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
93 #define F2FS_MOUNT_USRQUOTA 0x00080000
94 #define F2FS_MOUNT_GRPQUOTA 0x00100000
95 #define F2FS_MOUNT_PRJQUOTA 0x00200000
96 #define F2FS_MOUNT_QUOTA 0x00400000
97 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000
98 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000
99 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000
100 #define F2FS_MOUNT_NORECOVERY 0x04000000
101 #define F2FS_MOUNT_ATGC 0x08000000
102
103 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
104 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
105 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
106 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
107
108 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
109 typecheck(unsigned long long, b) && \
110 ((long long)((a) - (b)) > 0))
111
112 typedef u32 block_t; /*
113 * should not change u32, since it is the on-disk block
114 * address format, __le32.
115 */
116 typedef u32 nid_t;
117
118 #define COMPRESS_EXT_NUM 16
119
120 struct f2fs_mount_info {
121 unsigned int opt;
122 int write_io_size_bits; /* Write IO size bits */
123 block_t root_reserved_blocks; /* root reserved blocks */
124 kuid_t s_resuid; /* reserved blocks for uid */
125 kgid_t s_resgid; /* reserved blocks for gid */
126 int active_logs; /* # of active logs */
127 int inline_xattr_size; /* inline xattr size */
128 #ifdef CONFIG_F2FS_FAULT_INJECTION
129 struct f2fs_fault_info fault_info; /* For fault injection */
130 #endif
131 #ifdef CONFIG_QUOTA
132 /* Names of quota files with journalled quota */
133 char *s_qf_names[MAXQUOTAS];
134 int s_jquota_fmt; /* Format of quota to use */
135 #endif
136 /* For which write hints are passed down to block layer */
137 int whint_mode;
138 int alloc_mode; /* segment allocation policy */
139 int fsync_mode; /* fsync policy */
140 int fs_mode; /* fs mode: LFS or ADAPTIVE */
141 int bggc_mode; /* bggc mode: off, on or sync */
142 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
143 block_t unusable_cap_perc; /* percentage for cap */
144 block_t unusable_cap; /* Amount of space allowed to be
145 * unusable when disabling checkpoint
146 */
147
148 /* For compression */
149 unsigned char compress_algorithm; /* algorithm type */
150 unsigned compress_log_size; /* cluster log size */
151 unsigned char compress_ext_cnt; /* extension count */
152 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
153 };
154
155 #define F2FS_FEATURE_ENCRYPT 0x0001
156 #define F2FS_FEATURE_BLKZONED 0x0002
157 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004
158 #define F2FS_FEATURE_EXTRA_ATTR 0x0008
159 #define F2FS_FEATURE_PRJQUOTA 0x0010
160 #define F2FS_FEATURE_INODE_CHKSUM 0x0020
161 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040
162 #define F2FS_FEATURE_QUOTA_INO 0x0080
163 #define F2FS_FEATURE_INODE_CRTIME 0x0100
164 #define F2FS_FEATURE_LOST_FOUND 0x0200
165 #define F2FS_FEATURE_VERITY 0x0400
166 #define F2FS_FEATURE_SB_CHKSUM 0x0800
167 #define F2FS_FEATURE_CASEFOLD 0x1000
168 #define F2FS_FEATURE_COMPRESSION 0x2000
169
170 #define __F2FS_HAS_FEATURE(raw_super, mask) \
171 ((raw_super->feature & cpu_to_le32(mask)) != 0)
172 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
173 #define F2FS_SET_FEATURE(sbi, mask) \
174 (sbi->raw_super->feature |= cpu_to_le32(mask))
175 #define F2FS_CLEAR_FEATURE(sbi, mask) \
176 (sbi->raw_super->feature &= ~cpu_to_le32(mask))
177
178 /*
179 * Default values for user and/or group using reserved blocks
180 */
181 #define F2FS_DEF_RESUID 0
182 #define F2FS_DEF_RESGID 0
183
184 /*
185 * For checkpoint manager
186 */
187 enum {
188 NAT_BITMAP,
189 SIT_BITMAP
190 };
191
192 #define CP_UMOUNT 0x00000001
193 #define CP_FASTBOOT 0x00000002
194 #define CP_SYNC 0x00000004
195 #define CP_RECOVERY 0x00000008
196 #define CP_DISCARD 0x00000010
197 #define CP_TRIMMED 0x00000020
198 #define CP_PAUSE 0x00000040
199 #define CP_RESIZE 0x00000080
200
201 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
202 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
203 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
204 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
205 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
206 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
207 #define DEF_CP_INTERVAL 60 /* 60 secs */
208 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
209 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */
210 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
211 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
212
213 struct cp_control {
214 int reason;
215 __u64 trim_start;
216 __u64 trim_end;
217 __u64 trim_minlen;
218 };
219
220 /*
221 * indicate meta/data type
222 */
223 enum {
224 META_CP,
225 META_NAT,
226 META_SIT,
227 META_SSA,
228 META_MAX,
229 META_POR,
230 DATA_GENERIC, /* check range only */
231 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */
232 DATA_GENERIC_ENHANCE_READ, /*
233 * strong check on range and segment
234 * bitmap but no warning due to race
235 * condition of read on truncated area
236 * by extent_cache
237 */
238 META_GENERIC,
239 };
240
241 /* for the list of ino */
242 enum {
243 ORPHAN_INO, /* for orphan ino list */
244 APPEND_INO, /* for append ino list */
245 UPDATE_INO, /* for update ino list */
246 TRANS_DIR_INO, /* for trasactions dir ino list */
247 FLUSH_INO, /* for multiple device flushing */
248 MAX_INO_ENTRY, /* max. list */
249 };
250
251 struct ino_entry {
252 struct list_head list; /* list head */
253 nid_t ino; /* inode number */
254 unsigned int dirty_device; /* dirty device bitmap */
255 };
256
257 /* for the list of inodes to be GCed */
258 struct inode_entry {
259 struct list_head list; /* list head */
260 struct inode *inode; /* vfs inode pointer */
261 };
262
263 struct fsync_node_entry {
264 struct list_head list; /* list head */
265 struct page *page; /* warm node page pointer */
266 unsigned int seq_id; /* sequence id */
267 };
268
269 /* for the bitmap indicate blocks to be discarded */
270 struct discard_entry {
271 struct list_head list; /* list head */
272 block_t start_blkaddr; /* start blockaddr of current segment */
273 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
274 };
275
276 /* default discard granularity of inner discard thread, unit: block count */
277 #define DEFAULT_DISCARD_GRANULARITY 16
278
279 /* max discard pend list number */
280 #define MAX_PLIST_NUM 512
281 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
282 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
283
284 enum {
285 D_PREP, /* initial */
286 D_PARTIAL, /* partially submitted */
287 D_SUBMIT, /* all submitted */
288 D_DONE, /* finished */
289 };
290
291 struct discard_info {
292 block_t lstart; /* logical start address */
293 block_t len; /* length */
294 block_t start; /* actual start address in dev */
295 };
296
297 struct discard_cmd {
298 struct rb_node rb_node; /* rb node located in rb-tree */
299 union {
300 struct {
301 block_t lstart; /* logical start address */
302 block_t len; /* length */
303 block_t start; /* actual start address in dev */
304 };
305 struct discard_info di; /* discard info */
306
307 };
308 struct list_head list; /* command list */
309 struct completion wait; /* compleation */
310 struct block_device *bdev; /* bdev */
311 unsigned short ref; /* reference count */
312 unsigned char state; /* state */
313 unsigned char queued; /* queued discard */
314 int error; /* bio error */
315 spinlock_t lock; /* for state/bio_ref updating */
316 unsigned short bio_ref; /* bio reference count */
317 };
318
319 enum {
320 DPOLICY_BG,
321 DPOLICY_FORCE,
322 DPOLICY_FSTRIM,
323 DPOLICY_UMOUNT,
324 MAX_DPOLICY,
325 };
326
327 struct discard_policy {
328 int type; /* type of discard */
329 unsigned int min_interval; /* used for candidates exist */
330 unsigned int mid_interval; /* used for device busy */
331 unsigned int max_interval; /* used for candidates not exist */
332 unsigned int max_requests; /* # of discards issued per round */
333 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
334 bool io_aware; /* issue discard in idle time */
335 bool sync; /* submit discard with REQ_SYNC flag */
336 bool ordered; /* issue discard by lba order */
337 bool timeout; /* discard timeout for put_super */
338 unsigned int granularity; /* discard granularity */
339 };
340
341 struct discard_cmd_control {
342 struct task_struct *f2fs_issue_discard; /* discard thread */
343 struct list_head entry_list; /* 4KB discard entry list */
344 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
345 struct list_head wait_list; /* store on-flushing entries */
346 struct list_head fstrim_list; /* in-flight discard from fstrim */
347 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
348 unsigned int discard_wake; /* to wake up discard thread */
349 struct mutex cmd_lock;
350 unsigned int nr_discards; /* # of discards in the list */
351 unsigned int max_discards; /* max. discards to be issued */
352 unsigned int discard_granularity; /* discard granularity */
353 unsigned int undiscard_blks; /* # of undiscard blocks */
354 unsigned int next_pos; /* next discard position */
355 atomic_t issued_discard; /* # of issued discard */
356 atomic_t queued_discard; /* # of queued discard */
357 atomic_t discard_cmd_cnt; /* # of cached cmd count */
358 struct rb_root_cached root; /* root of discard rb-tree */
359 bool rbtree_check; /* config for consistence check */
360 };
361
362 /* for the list of fsync inodes, used only during recovery */
363 struct fsync_inode_entry {
364 struct list_head list; /* list head */
365 struct inode *inode; /* vfs inode pointer */
366 block_t blkaddr; /* block address locating the last fsync */
367 block_t last_dentry; /* block address locating the last dentry */
368 };
369
370 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
371 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
372
373 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
374 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
375 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
376 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
377
378 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
379 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
380
update_nats_in_cursum(struct f2fs_journal * journal,int i)381 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
382 {
383 int before = nats_in_cursum(journal);
384
385 journal->n_nats = cpu_to_le16(before + i);
386 return before;
387 }
388
update_sits_in_cursum(struct f2fs_journal * journal,int i)389 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
390 {
391 int before = sits_in_cursum(journal);
392
393 journal->n_sits = cpu_to_le16(before + i);
394 return before;
395 }
396
__has_cursum_space(struct f2fs_journal * journal,int size,int type)397 static inline bool __has_cursum_space(struct f2fs_journal *journal,
398 int size, int type)
399 {
400 if (type == NAT_JOURNAL)
401 return size <= MAX_NAT_JENTRIES(journal);
402 return size <= MAX_SIT_JENTRIES(journal);
403 }
404
405 /*
406 * f2fs-specific ioctl commands
407 */
408 #define F2FS_IOCTL_MAGIC 0xf5
409 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
410 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
411 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
412 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
413 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
414 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32)
415 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
416 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \
417 struct f2fs_defragment)
418 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
419 struct f2fs_move_range)
420 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \
421 struct f2fs_flush_device)
422 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \
423 struct f2fs_gc_range)
424 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32)
425 #define F2FS_IOC_SET_PIN_FILE _IOW(F2FS_IOCTL_MAGIC, 13, __u32)
426 #define F2FS_IOC_GET_PIN_FILE _IOR(F2FS_IOCTL_MAGIC, 14, __u32)
427 #define F2FS_IOC_PRECACHE_EXTENTS _IO(F2FS_IOCTL_MAGIC, 15)
428 #define F2FS_IOC_RESIZE_FS _IOW(F2FS_IOCTL_MAGIC, 16, __u64)
429 #define F2FS_IOC_GET_COMPRESS_BLOCKS _IOR(F2FS_IOCTL_MAGIC, 17, __u64)
430 #define F2FS_IOC_RELEASE_COMPRESS_BLOCKS \
431 _IOR(F2FS_IOCTL_MAGIC, 18, __u64)
432 #define F2FS_IOC_RESERVE_COMPRESS_BLOCKS \
433 _IOR(F2FS_IOCTL_MAGIC, 19, __u64)
434 #define F2FS_IOC_SEC_TRIM_FILE _IOW(F2FS_IOCTL_MAGIC, 20, \
435 struct f2fs_sectrim_range)
436
437 /*
438 * should be same as XFS_IOC_GOINGDOWN.
439 * Flags for going down operation used by FS_IOC_GOINGDOWN
440 */
441 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
442 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
443 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
444 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
445 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
446 #define F2FS_GOING_DOWN_NEED_FSCK 0x4 /* going down to trigger fsck */
447
448 /*
449 * Flags used by F2FS_IOC_SEC_TRIM_FILE
450 */
451 #define F2FS_TRIM_FILE_DISCARD 0x1 /* send discard command */
452 #define F2FS_TRIM_FILE_ZEROOUT 0x2 /* zero out */
453 #define F2FS_TRIM_FILE_MASK 0x3
454
455 struct f2fs_gc_range {
456 u32 sync;
457 u64 start;
458 u64 len;
459 };
460
461 struct f2fs_defragment {
462 u64 start;
463 u64 len;
464 };
465
466 struct f2fs_move_range {
467 u32 dst_fd; /* destination fd */
468 u64 pos_in; /* start position in src_fd */
469 u64 pos_out; /* start position in dst_fd */
470 u64 len; /* size to move */
471 };
472
473 struct f2fs_flush_device {
474 u32 dev_num; /* device number to flush */
475 u32 segments; /* # of segments to flush */
476 };
477
478 struct f2fs_sectrim_range {
479 u64 start;
480 u64 len;
481 u64 flags;
482 };
483
484 /* for inline stuff */
485 #define DEF_INLINE_RESERVED_SIZE 1
486 static inline int get_extra_isize(struct inode *inode);
487 static inline int get_inline_xattr_addrs(struct inode *inode);
488 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
489 (CUR_ADDRS_PER_INODE(inode) - \
490 get_inline_xattr_addrs(inode) - \
491 DEF_INLINE_RESERVED_SIZE))
492
493 /* for inline dir */
494 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
495 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
496 BITS_PER_BYTE + 1))
497 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
498 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
499 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
500 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
501 NR_INLINE_DENTRY(inode) + \
502 INLINE_DENTRY_BITMAP_SIZE(inode)))
503
504 /*
505 * For INODE and NODE manager
506 */
507 /* for directory operations */
508
509 struct f2fs_filename {
510 /*
511 * The filename the user specified. This is NULL for some
512 * filesystem-internal operations, e.g. converting an inline directory
513 * to a non-inline one, or roll-forward recovering an encrypted dentry.
514 */
515 const struct qstr *usr_fname;
516
517 /*
518 * The on-disk filename. For encrypted directories, this is encrypted.
519 * This may be NULL for lookups in an encrypted dir without the key.
520 */
521 struct fscrypt_str disk_name;
522
523 /* The dirhash of this filename */
524 f2fs_hash_t hash;
525
526 #ifdef CONFIG_FS_ENCRYPTION
527 /*
528 * For lookups in encrypted directories: either the buffer backing
529 * disk_name, or a buffer that holds the decoded no-key name.
530 */
531 struct fscrypt_str crypto_buf;
532 #endif
533 #ifdef CONFIG_UNICODE
534 /*
535 * For casefolded directories: the casefolded name, but it's left NULL
536 * if the original name is not valid Unicode or if the filesystem is
537 * doing an internal operation where usr_fname is also NULL. In these
538 * cases we fall back to treating the name as an opaque byte sequence.
539 */
540 struct fscrypt_str cf_name;
541 #endif
542 };
543
544 struct f2fs_dentry_ptr {
545 struct inode *inode;
546 void *bitmap;
547 struct f2fs_dir_entry *dentry;
548 __u8 (*filename)[F2FS_SLOT_LEN];
549 int max;
550 int nr_bitmap;
551 };
552
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)553 static inline void make_dentry_ptr_block(struct inode *inode,
554 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
555 {
556 d->inode = inode;
557 d->max = NR_DENTRY_IN_BLOCK;
558 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
559 d->bitmap = t->dentry_bitmap;
560 d->dentry = t->dentry;
561 d->filename = t->filename;
562 }
563
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)564 static inline void make_dentry_ptr_inline(struct inode *inode,
565 struct f2fs_dentry_ptr *d, void *t)
566 {
567 int entry_cnt = NR_INLINE_DENTRY(inode);
568 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
569 int reserved_size = INLINE_RESERVED_SIZE(inode);
570
571 d->inode = inode;
572 d->max = entry_cnt;
573 d->nr_bitmap = bitmap_size;
574 d->bitmap = t;
575 d->dentry = t + bitmap_size + reserved_size;
576 d->filename = t + bitmap_size + reserved_size +
577 SIZE_OF_DIR_ENTRY * entry_cnt;
578 }
579
580 /*
581 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
582 * as its node offset to distinguish from index node blocks.
583 * But some bits are used to mark the node block.
584 */
585 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
586 >> OFFSET_BIT_SHIFT)
587 enum {
588 ALLOC_NODE, /* allocate a new node page if needed */
589 LOOKUP_NODE, /* look up a node without readahead */
590 LOOKUP_NODE_RA, /*
591 * look up a node with readahead called
592 * by get_data_block.
593 */
594 };
595
596 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO count */
597
598 /* congestion wait timeout value, default: 20ms */
599 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20))
600
601 /* maximum retry quota flush count */
602 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
603
604 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
605
606 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
607
608 /* for in-memory extent cache entry */
609 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
610
611 /* number of extent info in extent cache we try to shrink */
612 #define EXTENT_CACHE_SHRINK_NUMBER 128
613
614 struct rb_entry {
615 struct rb_node rb_node; /* rb node located in rb-tree */
616 union {
617 struct {
618 unsigned int ofs; /* start offset of the entry */
619 unsigned int len; /* length of the entry */
620 };
621 unsigned long long key; /* 64-bits key */
622 } __packed;
623 };
624
625 struct extent_info {
626 unsigned int fofs; /* start offset in a file */
627 unsigned int len; /* length of the extent */
628 u32 blk; /* start block address of the extent */
629 };
630
631 struct extent_node {
632 struct rb_node rb_node; /* rb node located in rb-tree */
633 struct extent_info ei; /* extent info */
634 struct list_head list; /* node in global extent list of sbi */
635 struct extent_tree *et; /* extent tree pointer */
636 };
637
638 struct extent_tree {
639 nid_t ino; /* inode number */
640 struct rb_root_cached root; /* root of extent info rb-tree */
641 struct extent_node *cached_en; /* recently accessed extent node */
642 struct extent_info largest; /* largested extent info */
643 struct list_head list; /* to be used by sbi->zombie_list */
644 rwlock_t lock; /* protect extent info rb-tree */
645 atomic_t node_cnt; /* # of extent node in rb-tree*/
646 bool largest_updated; /* largest extent updated */
647 };
648
649 /*
650 * This structure is taken from ext4_map_blocks.
651 *
652 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
653 */
654 #define F2FS_MAP_NEW (1 << BH_New)
655 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
656 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
657 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
658 F2FS_MAP_UNWRITTEN)
659
660 struct f2fs_map_blocks {
661 block_t m_pblk;
662 block_t m_lblk;
663 unsigned int m_len;
664 unsigned int m_flags;
665 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
666 pgoff_t *m_next_extent; /* point to next possible extent */
667 int m_seg_type;
668 bool m_may_create; /* indicate it is from write path */
669 };
670
671 /* for flag in get_data_block */
672 enum {
673 F2FS_GET_BLOCK_DEFAULT,
674 F2FS_GET_BLOCK_FIEMAP,
675 F2FS_GET_BLOCK_BMAP,
676 F2FS_GET_BLOCK_DIO,
677 F2FS_GET_BLOCK_PRE_DIO,
678 F2FS_GET_BLOCK_PRE_AIO,
679 F2FS_GET_BLOCK_PRECACHE,
680 };
681
682 /*
683 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
684 */
685 #define FADVISE_COLD_BIT 0x01
686 #define FADVISE_LOST_PINO_BIT 0x02
687 #define FADVISE_ENCRYPT_BIT 0x04
688 #define FADVISE_ENC_NAME_BIT 0x08
689 #define FADVISE_KEEP_SIZE_BIT 0x10
690 #define FADVISE_HOT_BIT 0x20
691 #define FADVISE_VERITY_BIT 0x40
692
693 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
694
695 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
696 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
697 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
698 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
699 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
700 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
701 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
702 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
703 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
704 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
705 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
706 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
707 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
708 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
709 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
710 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
711 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT)
712 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT)
713
714 #define DEF_DIR_LEVEL 0
715
716 enum {
717 GC_FAILURE_PIN,
718 GC_FAILURE_ATOMIC,
719 MAX_GC_FAILURE
720 };
721
722 /* used for f2fs_inode_info->flags */
723 enum {
724 FI_NEW_INODE, /* indicate newly allocated inode */
725 FI_DIRTY_INODE, /* indicate inode is dirty or not */
726 FI_AUTO_RECOVER, /* indicate inode is recoverable */
727 FI_DIRTY_DIR, /* indicate directory has dirty pages */
728 FI_INC_LINK, /* need to increment i_nlink */
729 FI_ACL_MODE, /* indicate acl mode */
730 FI_NO_ALLOC, /* should not allocate any blocks */
731 FI_FREE_NID, /* free allocated nide */
732 FI_NO_EXTENT, /* not to use the extent cache */
733 FI_INLINE_XATTR, /* used for inline xattr */
734 FI_INLINE_DATA, /* used for inline data*/
735 FI_INLINE_DENTRY, /* used for inline dentry */
736 FI_APPEND_WRITE, /* inode has appended data */
737 FI_UPDATE_WRITE, /* inode has in-place-update data */
738 FI_NEED_IPU, /* used for ipu per file */
739 FI_ATOMIC_FILE, /* indicate atomic file */
740 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
741 FI_VOLATILE_FILE, /* indicate volatile file */
742 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
743 FI_DROP_CACHE, /* drop dirty page cache */
744 FI_DATA_EXIST, /* indicate data exists */
745 FI_INLINE_DOTS, /* indicate inline dot dentries */
746 FI_DO_DEFRAG, /* indicate defragment is running */
747 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
748 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
749 FI_HOT_DATA, /* indicate file is hot */
750 FI_EXTRA_ATTR, /* indicate file has extra attribute */
751 FI_PROJ_INHERIT, /* indicate file inherits projectid */
752 FI_PIN_FILE, /* indicate file should not be gced */
753 FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
754 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */
755 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */
756 FI_MMAP_FILE, /* indicate file was mmapped */
757 FI_MAX, /* max flag, never be used */
758 };
759
760 struct f2fs_inode_info {
761 struct inode vfs_inode; /* serve a vfs inode */
762 unsigned long i_flags; /* keep an inode flags for ioctl */
763 unsigned char i_advise; /* use to give file attribute hints */
764 unsigned char i_dir_level; /* use for dentry level for large dir */
765 unsigned int i_current_depth; /* only for directory depth */
766 /* for gc failure statistic */
767 unsigned int i_gc_failures[MAX_GC_FAILURE];
768 unsigned int i_pino; /* parent inode number */
769 umode_t i_acl_mode; /* keep file acl mode temporarily */
770
771 /* Use below internally in f2fs*/
772 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */
773 struct rw_semaphore i_sem; /* protect fi info */
774 atomic_t dirty_pages; /* # of dirty pages */
775 f2fs_hash_t chash; /* hash value of given file name */
776 unsigned int clevel; /* maximum level of given file name */
777 struct task_struct *task; /* lookup and create consistency */
778 struct task_struct *cp_task; /* separate cp/wb IO stats*/
779 nid_t i_xattr_nid; /* node id that contains xattrs */
780 loff_t last_disk_size; /* lastly written file size */
781 spinlock_t i_size_lock; /* protect last_disk_size */
782
783 #ifdef CONFIG_QUOTA
784 struct dquot *i_dquot[MAXQUOTAS];
785
786 /* quota space reservation, managed internally by quota code */
787 qsize_t i_reserved_quota;
788 #endif
789 struct list_head dirty_list; /* dirty list for dirs and files */
790 struct list_head gdirty_list; /* linked in global dirty list */
791 struct list_head inmem_ilist; /* list for inmem inodes */
792 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
793 struct task_struct *inmem_task; /* store inmemory task */
794 struct mutex inmem_lock; /* lock for inmemory pages */
795 pgoff_t ra_offset; /* ongoing readahead offset */
796 struct extent_tree *extent_tree; /* cached extent_tree entry */
797
798 /* avoid racing between foreground op and gc */
799 struct rw_semaphore i_gc_rwsem[2];
800 struct rw_semaphore i_mmap_sem;
801 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
802
803 int i_extra_isize; /* size of extra space located in i_addr */
804 kprojid_t i_projid; /* id for project quota */
805 int i_inline_xattr_size; /* inline xattr size */
806 struct timespec64 i_crtime; /* inode creation time */
807 struct timespec64 i_disk_time[4];/* inode disk times */
808
809 /* for file compress */
810 atomic_t i_compr_blocks; /* # of compressed blocks */
811 unsigned char i_compress_algorithm; /* algorithm type */
812 unsigned char i_log_cluster_size; /* log of cluster size */
813 unsigned int i_cluster_size; /* cluster size */
814 };
815
get_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)816 static inline void get_extent_info(struct extent_info *ext,
817 struct f2fs_extent *i_ext)
818 {
819 ext->fofs = le32_to_cpu(i_ext->fofs);
820 ext->blk = le32_to_cpu(i_ext->blk);
821 ext->len = le32_to_cpu(i_ext->len);
822 }
823
set_raw_extent(struct extent_info * ext,struct f2fs_extent * i_ext)824 static inline void set_raw_extent(struct extent_info *ext,
825 struct f2fs_extent *i_ext)
826 {
827 i_ext->fofs = cpu_to_le32(ext->fofs);
828 i_ext->blk = cpu_to_le32(ext->blk);
829 i_ext->len = cpu_to_le32(ext->len);
830 }
831
set_extent_info(struct extent_info * ei,unsigned int fofs,u32 blk,unsigned int len)832 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
833 u32 blk, unsigned int len)
834 {
835 ei->fofs = fofs;
836 ei->blk = blk;
837 ei->len = len;
838 }
839
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)840 static inline bool __is_discard_mergeable(struct discard_info *back,
841 struct discard_info *front, unsigned int max_len)
842 {
843 return (back->lstart + back->len == front->lstart) &&
844 (back->len + front->len <= max_len);
845 }
846
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)847 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
848 struct discard_info *back, unsigned int max_len)
849 {
850 return __is_discard_mergeable(back, cur, max_len);
851 }
852
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)853 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
854 struct discard_info *front, unsigned int max_len)
855 {
856 return __is_discard_mergeable(cur, front, max_len);
857 }
858
__is_extent_mergeable(struct extent_info * back,struct extent_info * front)859 static inline bool __is_extent_mergeable(struct extent_info *back,
860 struct extent_info *front)
861 {
862 return (back->fofs + back->len == front->fofs &&
863 back->blk + back->len == front->blk);
864 }
865
__is_back_mergeable(struct extent_info * cur,struct extent_info * back)866 static inline bool __is_back_mergeable(struct extent_info *cur,
867 struct extent_info *back)
868 {
869 return __is_extent_mergeable(back, cur);
870 }
871
__is_front_mergeable(struct extent_info * cur,struct extent_info * front)872 static inline bool __is_front_mergeable(struct extent_info *cur,
873 struct extent_info *front)
874 {
875 return __is_extent_mergeable(cur, front);
876 }
877
878 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
__try_update_largest_extent(struct extent_tree * et,struct extent_node * en)879 static inline void __try_update_largest_extent(struct extent_tree *et,
880 struct extent_node *en)
881 {
882 if (en->ei.len > et->largest.len) {
883 et->largest = en->ei;
884 et->largest_updated = true;
885 }
886 }
887
888 /*
889 * For free nid management
890 */
891 enum nid_state {
892 FREE_NID, /* newly added to free nid list */
893 PREALLOC_NID, /* it is preallocated */
894 MAX_NID_STATE,
895 };
896
897 struct f2fs_nm_info {
898 block_t nat_blkaddr; /* base disk address of NAT */
899 nid_t max_nid; /* maximum possible node ids */
900 nid_t available_nids; /* # of available node ids */
901 nid_t next_scan_nid; /* the next nid to be scanned */
902 unsigned int ram_thresh; /* control the memory footprint */
903 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
904 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
905
906 /* NAT cache management */
907 struct radix_tree_root nat_root;/* root of the nat entry cache */
908 struct radix_tree_root nat_set_root;/* root of the nat set cache */
909 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
910 struct list_head nat_entries; /* cached nat entry list (clean) */
911 spinlock_t nat_list_lock; /* protect clean nat entry list */
912 unsigned int nat_cnt; /* the # of cached nat entries */
913 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
914 unsigned int nat_blocks; /* # of nat blocks */
915
916 /* free node ids management */
917 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
918 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
919 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
920 spinlock_t nid_list_lock; /* protect nid lists ops */
921 struct mutex build_lock; /* lock for build free nids */
922 unsigned char **free_nid_bitmap;
923 unsigned char *nat_block_bitmap;
924 unsigned short *free_nid_count; /* free nid count of NAT block */
925
926 /* for checkpoint */
927 char *nat_bitmap; /* NAT bitmap pointer */
928
929 unsigned int nat_bits_blocks; /* # of nat bits blocks */
930 unsigned char *nat_bits; /* NAT bits blocks */
931 unsigned char *full_nat_bits; /* full NAT pages */
932 unsigned char *empty_nat_bits; /* empty NAT pages */
933 #ifdef CONFIG_F2FS_CHECK_FS
934 char *nat_bitmap_mir; /* NAT bitmap mirror */
935 #endif
936 int bitmap_size; /* bitmap size */
937 };
938
939 /*
940 * this structure is used as one of function parameters.
941 * all the information are dedicated to a given direct node block determined
942 * by the data offset in a file.
943 */
944 struct dnode_of_data {
945 struct inode *inode; /* vfs inode pointer */
946 struct page *inode_page; /* its inode page, NULL is possible */
947 struct page *node_page; /* cached direct node page */
948 nid_t nid; /* node id of the direct node block */
949 unsigned int ofs_in_node; /* data offset in the node page */
950 bool inode_page_locked; /* inode page is locked or not */
951 bool node_changed; /* is node block changed */
952 char cur_level; /* level of hole node page */
953 char max_level; /* level of current page located */
954 block_t data_blkaddr; /* block address of the node block */
955 };
956
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)957 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
958 struct page *ipage, struct page *npage, nid_t nid)
959 {
960 memset(dn, 0, sizeof(*dn));
961 dn->inode = inode;
962 dn->inode_page = ipage;
963 dn->node_page = npage;
964 dn->nid = nid;
965 }
966
967 /*
968 * For SIT manager
969 *
970 * By default, there are 6 active log areas across the whole main area.
971 * When considering hot and cold data separation to reduce cleaning overhead,
972 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
973 * respectively.
974 * In the current design, you should not change the numbers intentionally.
975 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
976 * logs individually according to the underlying devices. (default: 6)
977 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
978 * data and 8 for node logs.
979 */
980 #define NR_CURSEG_DATA_TYPE (3)
981 #define NR_CURSEG_NODE_TYPE (3)
982 #define NR_CURSEG_INMEM_TYPE (2)
983 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
984 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
985
986 enum {
987 CURSEG_HOT_DATA = 0, /* directory entry blocks */
988 CURSEG_WARM_DATA, /* data blocks */
989 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
990 CURSEG_HOT_NODE, /* direct node blocks of directory files */
991 CURSEG_WARM_NODE, /* direct node blocks of normal files */
992 CURSEG_COLD_NODE, /* indirect node blocks */
993 NR_PERSISTENT_LOG, /* number of persistent log */
994 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
995 /* pinned file that needs consecutive block address */
996 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */
997 NO_CHECK_TYPE, /* number of persistent & inmem log */
998 };
999
1000 struct flush_cmd {
1001 struct completion wait;
1002 struct llist_node llnode;
1003 nid_t ino;
1004 int ret;
1005 };
1006
1007 struct flush_cmd_control {
1008 struct task_struct *f2fs_issue_flush; /* flush thread */
1009 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
1010 atomic_t issued_flush; /* # of issued flushes */
1011 atomic_t queued_flush; /* # of queued flushes */
1012 struct llist_head issue_list; /* list for command issue */
1013 struct llist_node *dispatch_list; /* list for command dispatch */
1014 };
1015
1016 struct f2fs_sm_info {
1017 struct sit_info *sit_info; /* whole segment information */
1018 struct free_segmap_info *free_info; /* free segment information */
1019 struct dirty_seglist_info *dirty_info; /* dirty segment information */
1020 struct curseg_info *curseg_array; /* active segment information */
1021
1022 struct rw_semaphore curseg_lock; /* for preventing curseg change */
1023
1024 block_t seg0_blkaddr; /* block address of 0'th segment */
1025 block_t main_blkaddr; /* start block address of main area */
1026 block_t ssa_blkaddr; /* start block address of SSA area */
1027
1028 unsigned int segment_count; /* total # of segments */
1029 unsigned int main_segments; /* # of segments in main area */
1030 unsigned int reserved_segments; /* # of reserved segments */
1031 unsigned int ovp_segments; /* # of overprovision segments */
1032
1033 /* a threshold to reclaim prefree segments */
1034 unsigned int rec_prefree_segments;
1035
1036 /* for batched trimming */
1037 unsigned int trim_sections; /* # of sections to trim */
1038
1039 struct list_head sit_entry_set; /* sit entry set list */
1040
1041 unsigned int ipu_policy; /* in-place-update policy */
1042 unsigned int min_ipu_util; /* in-place-update threshold */
1043 unsigned int min_fsync_blocks; /* threshold for fsync */
1044 unsigned int min_seq_blocks; /* threshold for sequential blocks */
1045 unsigned int min_hot_blocks; /* threshold for hot block allocation */
1046 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
1047
1048 /* for flush command control */
1049 struct flush_cmd_control *fcc_info;
1050
1051 /* for discard command control */
1052 struct discard_cmd_control *dcc_info;
1053 };
1054
1055 /*
1056 * For superblock
1057 */
1058 /*
1059 * COUNT_TYPE for monitoring
1060 *
1061 * f2fs monitors the number of several block types such as on-writeback,
1062 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1063 */
1064 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1065 enum count_type {
1066 F2FS_DIRTY_DENTS,
1067 F2FS_DIRTY_DATA,
1068 F2FS_DIRTY_QDATA,
1069 F2FS_DIRTY_NODES,
1070 F2FS_DIRTY_META,
1071 F2FS_INMEM_PAGES,
1072 F2FS_DIRTY_IMETA,
1073 F2FS_WB_CP_DATA,
1074 F2FS_WB_DATA,
1075 F2FS_RD_DATA,
1076 F2FS_RD_NODE,
1077 F2FS_RD_META,
1078 F2FS_DIO_WRITE,
1079 F2FS_DIO_READ,
1080 NR_COUNT_TYPE,
1081 };
1082
1083 /*
1084 * The below are the page types of bios used in submit_bio().
1085 * The available types are:
1086 * DATA User data pages. It operates as async mode.
1087 * NODE Node pages. It operates as async mode.
1088 * META FS metadata pages such as SIT, NAT, CP.
1089 * NR_PAGE_TYPE The number of page types.
1090 * META_FLUSH Make sure the previous pages are written
1091 * with waiting the bio's completion
1092 * ... Only can be used with META.
1093 */
1094 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
1095 enum page_type {
1096 DATA,
1097 NODE,
1098 META,
1099 NR_PAGE_TYPE,
1100 META_FLUSH,
1101 INMEM, /* the below types are used by tracepoints only. */
1102 INMEM_DROP,
1103 INMEM_INVALIDATE,
1104 INMEM_REVOKE,
1105 IPU,
1106 OPU,
1107 };
1108
1109 enum temp_type {
1110 HOT = 0, /* must be zero for meta bio */
1111 WARM,
1112 COLD,
1113 NR_TEMP_TYPE,
1114 };
1115
1116 enum need_lock_type {
1117 LOCK_REQ = 0,
1118 LOCK_DONE,
1119 LOCK_RETRY,
1120 };
1121
1122 enum cp_reason_type {
1123 CP_NO_NEEDED,
1124 CP_NON_REGULAR,
1125 CP_COMPRESSED,
1126 CP_HARDLINK,
1127 CP_SB_NEED_CP,
1128 CP_WRONG_PINO,
1129 CP_NO_SPC_ROLL,
1130 CP_NODE_NEED_CP,
1131 CP_FASTBOOT_MODE,
1132 CP_SPEC_LOG_NUM,
1133 CP_RECOVER_DIR,
1134 };
1135
1136 enum iostat_type {
1137 /* WRITE IO */
1138 APP_DIRECT_IO, /* app direct write IOs */
1139 APP_BUFFERED_IO, /* app buffered write IOs */
1140 APP_WRITE_IO, /* app write IOs */
1141 APP_MAPPED_IO, /* app mapped IOs */
1142 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1143 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1144 FS_META_IO, /* meta IOs from kworker/reclaimer */
1145 FS_GC_DATA_IO, /* data IOs from forground gc */
1146 FS_GC_NODE_IO, /* node IOs from forground gc */
1147 FS_CP_DATA_IO, /* data IOs from checkpoint */
1148 FS_CP_NODE_IO, /* node IOs from checkpoint */
1149 FS_CP_META_IO, /* meta IOs from checkpoint */
1150
1151 /* READ IO */
1152 APP_DIRECT_READ_IO, /* app direct read IOs */
1153 APP_BUFFERED_READ_IO, /* app buffered read IOs */
1154 APP_READ_IO, /* app read IOs */
1155 APP_MAPPED_READ_IO, /* app mapped read IOs */
1156 FS_DATA_READ_IO, /* data read IOs */
1157 FS_GDATA_READ_IO, /* data read IOs from background gc */
1158 FS_CDATA_READ_IO, /* compressed data read IOs */
1159 FS_NODE_READ_IO, /* node read IOs */
1160 FS_META_READ_IO, /* meta read IOs */
1161
1162 /* other */
1163 FS_DISCARD, /* discard */
1164 NR_IO_TYPE,
1165 };
1166
1167 struct f2fs_io_info {
1168 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1169 nid_t ino; /* inode number */
1170 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1171 enum temp_type temp; /* contains HOT/WARM/COLD */
1172 int op; /* contains REQ_OP_ */
1173 int op_flags; /* req_flag_bits */
1174 block_t new_blkaddr; /* new block address to be written */
1175 block_t old_blkaddr; /* old block address before Cow */
1176 struct page *page; /* page to be written */
1177 struct page *encrypted_page; /* encrypted page */
1178 struct page *compressed_page; /* compressed page */
1179 struct list_head list; /* serialize IOs */
1180 bool submitted; /* indicate IO submission */
1181 int need_lock; /* indicate we need to lock cp_rwsem */
1182 bool in_list; /* indicate fio is in io_list */
1183 bool is_por; /* indicate IO is from recovery or not */
1184 bool retry; /* need to reallocate block address */
1185 int compr_blocks; /* # of compressed block addresses */
1186 bool encrypted; /* indicate file is encrypted */
1187 enum iostat_type io_type; /* io type */
1188 struct writeback_control *io_wbc; /* writeback control */
1189 struct bio **bio; /* bio for ipu */
1190 sector_t *last_block; /* last block number in bio */
1191 unsigned char version; /* version of the node */
1192 };
1193
1194 struct bio_entry {
1195 struct bio *bio;
1196 struct list_head list;
1197 };
1198
1199 #define is_read_io(rw) ((rw) == READ)
1200 struct f2fs_bio_info {
1201 struct f2fs_sb_info *sbi; /* f2fs superblock */
1202 struct bio *bio; /* bios to merge */
1203 sector_t last_block_in_bio; /* last block number */
1204 struct f2fs_io_info fio; /* store buffered io info. */
1205 struct rw_semaphore io_rwsem; /* blocking op for bio */
1206 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1207 struct list_head io_list; /* track fios */
1208 struct list_head bio_list; /* bio entry list head */
1209 struct rw_semaphore bio_list_lock; /* lock to protect bio entry list */
1210 };
1211
1212 #define FDEV(i) (sbi->devs[i])
1213 #define RDEV(i) (raw_super->devs[i])
1214 struct f2fs_dev_info {
1215 struct block_device *bdev;
1216 char path[MAX_PATH_LEN];
1217 unsigned int total_segments;
1218 block_t start_blk;
1219 block_t end_blk;
1220 #ifdef CONFIG_BLK_DEV_ZONED
1221 unsigned int nr_blkz; /* Total number of zones */
1222 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
1223 block_t *zone_capacity_blocks; /* Array of zone capacity in blks */
1224 #endif
1225 };
1226
1227 enum inode_type {
1228 DIR_INODE, /* for dirty dir inode */
1229 FILE_INODE, /* for dirty regular/symlink inode */
1230 DIRTY_META, /* for all dirtied inode metadata */
1231 ATOMIC_FILE, /* for all atomic files */
1232 NR_INODE_TYPE,
1233 };
1234
1235 /* for inner inode cache management */
1236 struct inode_management {
1237 struct radix_tree_root ino_root; /* ino entry array */
1238 spinlock_t ino_lock; /* for ino entry lock */
1239 struct list_head ino_list; /* inode list head */
1240 unsigned long ino_num; /* number of entries */
1241 };
1242
1243 /* for GC_AT */
1244 struct atgc_management {
1245 bool atgc_enabled; /* ATGC is enabled or not */
1246 struct rb_root_cached root; /* root of victim rb-tree */
1247 struct list_head victim_list; /* linked with all victim entries */
1248 unsigned int victim_count; /* victim count in rb-tree */
1249 unsigned int candidate_ratio; /* candidate ratio */
1250 unsigned int max_candidate_count; /* max candidate count */
1251 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */
1252 unsigned long long age_threshold; /* age threshold */
1253 };
1254
1255 /* For s_flag in struct f2fs_sb_info */
1256 enum {
1257 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1258 SBI_IS_CLOSE, /* specify unmounting */
1259 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1260 SBI_POR_DOING, /* recovery is doing or not */
1261 SBI_NEED_SB_WRITE, /* need to recover superblock */
1262 SBI_NEED_CP, /* need to checkpoint */
1263 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1264 SBI_IS_RECOVERED, /* recovered orphan/data */
1265 SBI_CP_DISABLED, /* CP was disabled last mount */
1266 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1267 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1268 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1269 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1270 SBI_IS_RESIZEFS, /* resizefs is in process */
1271 };
1272
1273 enum {
1274 CP_TIME,
1275 REQ_TIME,
1276 DISCARD_TIME,
1277 GC_TIME,
1278 DISABLE_TIME,
1279 UMOUNT_DISCARD_TIMEOUT,
1280 MAX_TIME,
1281 };
1282
1283 enum {
1284 GC_NORMAL,
1285 GC_IDLE_CB,
1286 GC_IDLE_GREEDY,
1287 GC_IDLE_AT,
1288 GC_URGENT_HIGH,
1289 GC_URGENT_LOW,
1290 };
1291
1292 enum {
1293 BGGC_MODE_ON, /* background gc is on */
1294 BGGC_MODE_OFF, /* background gc is off */
1295 BGGC_MODE_SYNC, /*
1296 * background gc is on, migrating blocks
1297 * like foreground gc
1298 */
1299 };
1300
1301 enum {
1302 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */
1303 FS_MODE_LFS, /* use lfs allocation only */
1304 };
1305
1306 enum {
1307 WHINT_MODE_OFF, /* not pass down write hints */
1308 WHINT_MODE_USER, /* try to pass down hints given by users */
1309 WHINT_MODE_FS, /* pass down hints with F2FS policy */
1310 };
1311
1312 enum {
1313 ALLOC_MODE_DEFAULT, /* stay default */
1314 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1315 };
1316
1317 enum fsync_mode {
1318 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1319 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1320 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1321 };
1322
1323 /*
1324 * this value is set in page as a private data which indicate that
1325 * the page is atomically written, and it is in inmem_pages list.
1326 */
1327 #define ATOMIC_WRITTEN_PAGE ((unsigned long)-1)
1328 #define DUMMY_WRITTEN_PAGE ((unsigned long)-2)
1329
1330 #define IS_ATOMIC_WRITTEN_PAGE(page) \
1331 (page_private(page) == ATOMIC_WRITTEN_PAGE)
1332 #define IS_DUMMY_WRITTEN_PAGE(page) \
1333 (page_private(page) == DUMMY_WRITTEN_PAGE)
1334
1335 #ifdef CONFIG_F2FS_IO_TRACE
1336 #define IS_IO_TRACED_PAGE(page) \
1337 (page_private(page) > 0 && \
1338 page_private(page) < (unsigned long)PID_MAX_LIMIT)
1339 #else
1340 #define IS_IO_TRACED_PAGE(page) (0)
1341 #endif
1342
1343 /* For compression */
1344 enum compress_algorithm_type {
1345 COMPRESS_LZO,
1346 COMPRESS_LZ4,
1347 COMPRESS_ZSTD,
1348 COMPRESS_LZORLE,
1349 COMPRESS_MAX,
1350 };
1351
1352 #define COMPRESS_DATA_RESERVED_SIZE 5
1353 struct compress_data {
1354 __le32 clen; /* compressed data size */
1355 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */
1356 u8 cdata[]; /* compressed data */
1357 };
1358
1359 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data))
1360
1361 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000
1362
1363 /* compress context */
1364 struct compress_ctx {
1365 struct inode *inode; /* inode the context belong to */
1366 pgoff_t cluster_idx; /* cluster index number */
1367 unsigned int cluster_size; /* page count in cluster */
1368 unsigned int log_cluster_size; /* log of cluster size */
1369 struct page **rpages; /* pages store raw data in cluster */
1370 unsigned int nr_rpages; /* total page number in rpages */
1371 struct page **cpages; /* pages store compressed data in cluster */
1372 unsigned int nr_cpages; /* total page number in cpages */
1373 void *rbuf; /* virtual mapped address on rpages */
1374 struct compress_data *cbuf; /* virtual mapped address on cpages */
1375 size_t rlen; /* valid data length in rbuf */
1376 size_t clen; /* valid data length in cbuf */
1377 void *private; /* payload buffer for specified compression algorithm */
1378 void *private2; /* extra payload buffer */
1379 };
1380
1381 /* compress context for write IO path */
1382 struct compress_io_ctx {
1383 u32 magic; /* magic number to indicate page is compressed */
1384 struct inode *inode; /* inode the context belong to */
1385 struct page **rpages; /* pages store raw data in cluster */
1386 unsigned int nr_rpages; /* total page number in rpages */
1387 atomic_t pending_pages; /* in-flight compressed page count */
1388 };
1389
1390 /* decompress io context for read IO path */
1391 struct decompress_io_ctx {
1392 u32 magic; /* magic number to indicate page is compressed */
1393 struct inode *inode; /* inode the context belong to */
1394 pgoff_t cluster_idx; /* cluster index number */
1395 unsigned int cluster_size; /* page count in cluster */
1396 unsigned int log_cluster_size; /* log of cluster size */
1397 struct page **rpages; /* pages store raw data in cluster */
1398 unsigned int nr_rpages; /* total page number in rpages */
1399 struct page **cpages; /* pages store compressed data in cluster */
1400 unsigned int nr_cpages; /* total page number in cpages */
1401 struct page **tpages; /* temp pages to pad holes in cluster */
1402 void *rbuf; /* virtual mapped address on rpages */
1403 struct compress_data *cbuf; /* virtual mapped address on cpages */
1404 size_t rlen; /* valid data length in rbuf */
1405 size_t clen; /* valid data length in cbuf */
1406 atomic_t pending_pages; /* in-flight compressed page count */
1407 bool failed; /* indicate IO error during decompression */
1408 void *private; /* payload buffer for specified decompression algorithm */
1409 void *private2; /* extra payload buffer */
1410 };
1411
1412 #define NULL_CLUSTER ((unsigned int)(~0))
1413 #define MIN_COMPRESS_LOG_SIZE 2
1414 #define MAX_COMPRESS_LOG_SIZE 8
1415 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size))
1416
1417 struct f2fs_sb_info {
1418 struct super_block *sb; /* pointer to VFS super block */
1419 struct proc_dir_entry *s_proc; /* proc entry */
1420 struct f2fs_super_block *raw_super; /* raw super block pointer */
1421 struct rw_semaphore sb_lock; /* lock for raw super block */
1422 int valid_super_block; /* valid super block no */
1423 unsigned long s_flag; /* flags for sbi */
1424 struct mutex writepages; /* mutex for writepages() */
1425
1426 #ifdef CONFIG_BLK_DEV_ZONED
1427 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1428 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
1429 #endif
1430
1431 /* for node-related operations */
1432 struct f2fs_nm_info *nm_info; /* node manager */
1433 struct inode *node_inode; /* cache node blocks */
1434
1435 /* for segment-related operations */
1436 struct f2fs_sm_info *sm_info; /* segment manager */
1437
1438 /* for bio operations */
1439 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1440 /* keep migration IO order for LFS mode */
1441 struct rw_semaphore io_order_lock;
1442 mempool_t *write_io_dummy; /* Dummy pages */
1443
1444 /* for checkpoint */
1445 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1446 int cur_cp_pack; /* remain current cp pack */
1447 spinlock_t cp_lock; /* for flag in ckpt */
1448 struct inode *meta_inode; /* cache meta blocks */
1449 struct mutex cp_mutex; /* checkpoint procedure lock */
1450 struct rw_semaphore cp_rwsem; /* blocking FS operations */
1451 struct rw_semaphore node_write; /* locking node writes */
1452 struct rw_semaphore node_change; /* locking node change */
1453 wait_queue_head_t cp_wait;
1454 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1455 long interval_time[MAX_TIME]; /* to store thresholds */
1456
1457 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1458
1459 spinlock_t fsync_node_lock; /* for node entry lock */
1460 struct list_head fsync_node_list; /* node list head */
1461 unsigned int fsync_seg_id; /* sequence id */
1462 unsigned int fsync_node_num; /* number of node entries */
1463
1464 /* for orphan inode, use 0'th array */
1465 unsigned int max_orphans; /* max orphan inodes */
1466
1467 /* for inode management */
1468 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1469 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1470 struct mutex flush_lock; /* for flush exclusion */
1471
1472 /* for extent tree cache */
1473 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1474 struct mutex extent_tree_lock; /* locking extent radix tree */
1475 struct list_head extent_list; /* lru list for shrinker */
1476 spinlock_t extent_lock; /* locking extent lru list */
1477 atomic_t total_ext_tree; /* extent tree count */
1478 struct list_head zombie_list; /* extent zombie tree list */
1479 atomic_t total_zombie_tree; /* extent zombie tree count */
1480 atomic_t total_ext_node; /* extent info count */
1481
1482 /* basic filesystem units */
1483 unsigned int log_sectors_per_block; /* log2 sectors per block */
1484 unsigned int log_blocksize; /* log2 block size */
1485 unsigned int blocksize; /* block size */
1486 unsigned int root_ino_num; /* root inode number*/
1487 unsigned int node_ino_num; /* node inode number*/
1488 unsigned int meta_ino_num; /* meta inode number*/
1489 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1490 unsigned int blocks_per_seg; /* blocks per segment */
1491 unsigned int segs_per_sec; /* segments per section */
1492 unsigned int secs_per_zone; /* sections per zone */
1493 unsigned int total_sections; /* total section count */
1494 unsigned int total_node_count; /* total node block count */
1495 unsigned int total_valid_node_count; /* valid node block count */
1496 loff_t max_file_blocks; /* max block index of file */
1497 int dir_level; /* directory level */
1498 int readdir_ra; /* readahead inode in readdir */
1499
1500 block_t user_block_count; /* # of user blocks */
1501 block_t total_valid_block_count; /* # of valid blocks */
1502 block_t discard_blks; /* discard command candidats */
1503 block_t last_valid_block_count; /* for recovery */
1504 block_t reserved_blocks; /* configurable reserved blocks */
1505 block_t current_reserved_blocks; /* current reserved blocks */
1506
1507 /* Additional tracking for no checkpoint mode */
1508 block_t unusable_block_count; /* # of blocks saved by last cp */
1509
1510 unsigned int nquota_files; /* # of quota sysfile */
1511 struct rw_semaphore quota_sem; /* blocking cp for flags */
1512
1513 /* # of pages, see count_type */
1514 atomic_t nr_pages[NR_COUNT_TYPE];
1515 /* # of allocated blocks */
1516 struct percpu_counter alloc_valid_block_count;
1517
1518 /* writeback control */
1519 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1520
1521 /* valid inode count */
1522 struct percpu_counter total_valid_inode_count;
1523
1524 struct f2fs_mount_info mount_opt; /* mount options */
1525
1526 /* for cleaning operations */
1527 struct rw_semaphore gc_lock; /*
1528 * semaphore for GC, avoid
1529 * race between GC and GC or CP
1530 */
1531 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1532 struct atgc_management am; /* atgc management */
1533 unsigned int cur_victim_sec; /* current victim section num */
1534 unsigned int gc_mode; /* current GC state */
1535 unsigned int next_victim_seg[2]; /* next segment in victim section */
1536
1537 /* for skip statistic */
1538 unsigned int atomic_files; /* # of opened atomic file */
1539 unsigned long long skipped_atomic_files[2]; /* FG_GC and BG_GC */
1540 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1541
1542 /* threshold for gc trials on pinned files */
1543 u64 gc_pin_file_threshold;
1544 struct rw_semaphore pin_sem;
1545
1546 /* maximum # of trials to find a victim segment for SSR and GC */
1547 unsigned int max_victim_search;
1548 /* migration granularity of garbage collection, unit: segment */
1549 unsigned int migration_granularity;
1550
1551 /*
1552 * for stat information.
1553 * one is for the LFS mode, and the other is for the SSR mode.
1554 */
1555 #ifdef CONFIG_F2FS_STAT_FS
1556 struct f2fs_stat_info *stat_info; /* FS status information */
1557 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1558 unsigned int segment_count[2]; /* # of allocated segments */
1559 unsigned int block_count[2]; /* # of allocated blocks */
1560 atomic_t inplace_count; /* # of inplace update */
1561 atomic64_t total_hit_ext; /* # of lookup extent cache */
1562 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1563 atomic64_t read_hit_largest; /* # of hit largest extent node */
1564 atomic64_t read_hit_cached; /* # of hit cached extent node */
1565 atomic_t inline_xattr; /* # of inline_xattr inodes */
1566 atomic_t inline_inode; /* # of inline_data inodes */
1567 atomic_t inline_dir; /* # of inline_dentry inodes */
1568 atomic_t compr_inode; /* # of compressed inodes */
1569 atomic64_t compr_blocks; /* # of compressed blocks */
1570 atomic_t vw_cnt; /* # of volatile writes */
1571 atomic_t max_aw_cnt; /* max # of atomic writes */
1572 atomic_t max_vw_cnt; /* max # of volatile writes */
1573 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1574 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1575 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1576 #endif
1577 spinlock_t stat_lock; /* lock for stat operations */
1578
1579 /* For app/fs IO statistics */
1580 spinlock_t iostat_lock;
1581 unsigned long long rw_iostat[NR_IO_TYPE];
1582 unsigned long long prev_rw_iostat[NR_IO_TYPE];
1583 bool iostat_enable;
1584 unsigned long iostat_next_period;
1585 unsigned int iostat_period_ms;
1586
1587 /* to attach REQ_META|REQ_FUA flags */
1588 unsigned int data_io_flag;
1589 unsigned int node_io_flag;
1590
1591 /* For sysfs suppport */
1592 struct kobject s_kobj;
1593 struct completion s_kobj_unregister;
1594
1595 /* For shrinker support */
1596 struct list_head s_list;
1597 int s_ndevs; /* number of devices */
1598 struct f2fs_dev_info *devs; /* for device list */
1599 unsigned int dirty_device; /* for checkpoint data flush */
1600 spinlock_t dev_lock; /* protect dirty_device */
1601 struct mutex umount_mutex;
1602 unsigned int shrinker_run_no;
1603
1604 /* For write statistics */
1605 u64 sectors_written_start;
1606 u64 kbytes_written;
1607
1608 /* Reference to checksum algorithm driver via cryptoapi */
1609 struct crypto_shash *s_chksum_driver;
1610
1611 /* Precomputed FS UUID checksum for seeding other checksums */
1612 __u32 s_chksum_seed;
1613
1614 struct workqueue_struct *post_read_wq; /* post read workqueue */
1615
1616 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */
1617 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */
1618
1619 #ifdef CONFIG_F2FS_FS_COMPRESSION
1620 struct kmem_cache *page_array_slab; /* page array entry */
1621 unsigned int page_array_slab_size; /* default page array slab size */
1622 #endif
1623 };
1624
1625 struct f2fs_private_dio {
1626 struct inode *inode;
1627 void *orig_private;
1628 bio_end_io_t *orig_end_io;
1629 bool write;
1630 };
1631
1632 #ifdef CONFIG_F2FS_FAULT_INJECTION
1633 #define f2fs_show_injection_info(sbi, type) \
1634 printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n", \
1635 KERN_INFO, sbi->sb->s_id, \
1636 f2fs_fault_name[type], \
1637 __func__, __builtin_return_address(0))
time_to_inject(struct f2fs_sb_info * sbi,int type)1638 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1639 {
1640 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1641
1642 if (!ffi->inject_rate)
1643 return false;
1644
1645 if (!IS_FAULT_SET(ffi, type))
1646 return false;
1647
1648 atomic_inc(&ffi->inject_ops);
1649 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1650 atomic_set(&ffi->inject_ops, 0);
1651 return true;
1652 }
1653 return false;
1654 }
1655 #else
1656 #define f2fs_show_injection_info(sbi, type) do { } while (0)
time_to_inject(struct f2fs_sb_info * sbi,int type)1657 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1658 {
1659 return false;
1660 }
1661 #endif
1662
1663 /*
1664 * Test if the mounted volume is a multi-device volume.
1665 * - For a single regular disk volume, sbi->s_ndevs is 0.
1666 * - For a single zoned disk volume, sbi->s_ndevs is 1.
1667 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1668 */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1669 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1670 {
1671 return sbi->s_ndevs > 1;
1672 }
1673
1674 /* For write statistics. Suppose sector size is 512 bytes,
1675 * and the return value is in kbytes. s is of struct f2fs_sb_info.
1676 */
1677 #define BD_PART_WRITTEN(s) \
1678 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) - \
1679 (s)->sectors_written_start) >> 1)
1680
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1681 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1682 {
1683 unsigned long now = jiffies;
1684
1685 sbi->last_time[type] = now;
1686
1687 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1688 if (type == REQ_TIME) {
1689 sbi->last_time[DISCARD_TIME] = now;
1690 sbi->last_time[GC_TIME] = now;
1691 }
1692 }
1693
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1694 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1695 {
1696 unsigned long interval = sbi->interval_time[type] * HZ;
1697
1698 return time_after(jiffies, sbi->last_time[type] + interval);
1699 }
1700
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1701 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1702 int type)
1703 {
1704 unsigned long interval = sbi->interval_time[type] * HZ;
1705 unsigned int wait_ms = 0;
1706 long delta;
1707
1708 delta = (sbi->last_time[type] + interval) - jiffies;
1709 if (delta > 0)
1710 wait_ms = jiffies_to_msecs(delta);
1711
1712 return wait_ms;
1713 }
1714
1715 /*
1716 * Inline functions
1717 */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1718 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1719 const void *address, unsigned int length)
1720 {
1721 struct {
1722 struct shash_desc shash;
1723 char ctx[4];
1724 } desc;
1725 int err;
1726
1727 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1728
1729 desc.shash.tfm = sbi->s_chksum_driver;
1730 *(u32 *)desc.ctx = crc;
1731
1732 err = crypto_shash_update(&desc.shash, address, length);
1733 BUG_ON(err);
1734
1735 return *(u32 *)desc.ctx;
1736 }
1737
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1738 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1739 unsigned int length)
1740 {
1741 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1742 }
1743
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1744 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1745 void *buf, size_t buf_size)
1746 {
1747 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1748 }
1749
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1750 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1751 const void *address, unsigned int length)
1752 {
1753 return __f2fs_crc32(sbi, crc, address, length);
1754 }
1755
F2FS_I(struct inode * inode)1756 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1757 {
1758 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1759 }
1760
F2FS_SB(struct super_block * sb)1761 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1762 {
1763 return sb->s_fs_info;
1764 }
1765
F2FS_I_SB(struct inode * inode)1766 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1767 {
1768 return F2FS_SB(inode->i_sb);
1769 }
1770
F2FS_M_SB(struct address_space * mapping)1771 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1772 {
1773 return F2FS_I_SB(mapping->host);
1774 }
1775
F2FS_P_SB(struct page * page)1776 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1777 {
1778 return F2FS_M_SB(page_file_mapping(page));
1779 }
1780
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1781 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1782 {
1783 return (struct f2fs_super_block *)(sbi->raw_super);
1784 }
1785
F2FS_CKPT(struct f2fs_sb_info * sbi)1786 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1787 {
1788 return (struct f2fs_checkpoint *)(sbi->ckpt);
1789 }
1790
F2FS_NODE(struct page * page)1791 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1792 {
1793 return (struct f2fs_node *)page_address(page);
1794 }
1795
F2FS_INODE(struct page * page)1796 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1797 {
1798 return &((struct f2fs_node *)page_address(page))->i;
1799 }
1800
NM_I(struct f2fs_sb_info * sbi)1801 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1802 {
1803 return (struct f2fs_nm_info *)(sbi->nm_info);
1804 }
1805
SM_I(struct f2fs_sb_info * sbi)1806 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1807 {
1808 return (struct f2fs_sm_info *)(sbi->sm_info);
1809 }
1810
SIT_I(struct f2fs_sb_info * sbi)1811 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1812 {
1813 return (struct sit_info *)(SM_I(sbi)->sit_info);
1814 }
1815
FREE_I(struct f2fs_sb_info * sbi)1816 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1817 {
1818 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1819 }
1820
DIRTY_I(struct f2fs_sb_info * sbi)1821 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1822 {
1823 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1824 }
1825
META_MAPPING(struct f2fs_sb_info * sbi)1826 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1827 {
1828 return sbi->meta_inode->i_mapping;
1829 }
1830
NODE_MAPPING(struct f2fs_sb_info * sbi)1831 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1832 {
1833 return sbi->node_inode->i_mapping;
1834 }
1835
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)1836 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1837 {
1838 return test_bit(type, &sbi->s_flag);
1839 }
1840
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1841 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1842 {
1843 set_bit(type, &sbi->s_flag);
1844 }
1845
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1846 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1847 {
1848 clear_bit(type, &sbi->s_flag);
1849 }
1850
cur_cp_version(struct f2fs_checkpoint * cp)1851 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1852 {
1853 return le64_to_cpu(cp->checkpoint_ver);
1854 }
1855
f2fs_qf_ino(struct super_block * sb,int type)1856 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1857 {
1858 if (type < F2FS_MAX_QUOTAS)
1859 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1860 return 0;
1861 }
1862
cur_cp_crc(struct f2fs_checkpoint * cp)1863 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1864 {
1865 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1866 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1867 }
1868
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1869 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1870 {
1871 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1872
1873 return ckpt_flags & f;
1874 }
1875
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1876 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1877 {
1878 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1879 }
1880
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1881 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1882 {
1883 unsigned int ckpt_flags;
1884
1885 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1886 ckpt_flags |= f;
1887 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1888 }
1889
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1890 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1891 {
1892 unsigned long flags;
1893
1894 spin_lock_irqsave(&sbi->cp_lock, flags);
1895 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1896 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1897 }
1898
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1899 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1900 {
1901 unsigned int ckpt_flags;
1902
1903 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1904 ckpt_flags &= (~f);
1905 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1906 }
1907
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1908 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1909 {
1910 unsigned long flags;
1911
1912 spin_lock_irqsave(&sbi->cp_lock, flags);
1913 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1914 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1915 }
1916
disable_nat_bits(struct f2fs_sb_info * sbi,bool lock)1917 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1918 {
1919 unsigned long flags;
1920 unsigned char *nat_bits;
1921
1922 /*
1923 * In order to re-enable nat_bits we need to call fsck.f2fs by
1924 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1925 * so let's rely on regular fsck or unclean shutdown.
1926 */
1927
1928 if (lock)
1929 spin_lock_irqsave(&sbi->cp_lock, flags);
1930 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1931 nat_bits = NM_I(sbi)->nat_bits;
1932 NM_I(sbi)->nat_bits = NULL;
1933 if (lock)
1934 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1935
1936 kvfree(nat_bits);
1937 }
1938
enabled_nat_bits(struct f2fs_sb_info * sbi,struct cp_control * cpc)1939 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1940 struct cp_control *cpc)
1941 {
1942 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1943
1944 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1945 }
1946
f2fs_lock_op(struct f2fs_sb_info * sbi)1947 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1948 {
1949 down_read(&sbi->cp_rwsem);
1950 }
1951
f2fs_trylock_op(struct f2fs_sb_info * sbi)1952 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1953 {
1954 return down_read_trylock(&sbi->cp_rwsem);
1955 }
1956
f2fs_unlock_op(struct f2fs_sb_info * sbi)1957 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1958 {
1959 up_read(&sbi->cp_rwsem);
1960 }
1961
f2fs_lock_all(struct f2fs_sb_info * sbi)1962 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1963 {
1964 down_write(&sbi->cp_rwsem);
1965 }
1966
f2fs_unlock_all(struct f2fs_sb_info * sbi)1967 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1968 {
1969 up_write(&sbi->cp_rwsem);
1970 }
1971
__get_cp_reason(struct f2fs_sb_info * sbi)1972 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1973 {
1974 int reason = CP_SYNC;
1975
1976 if (test_opt(sbi, FASTBOOT))
1977 reason = CP_FASTBOOT;
1978 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1979 reason = CP_UMOUNT;
1980 return reason;
1981 }
1982
__remain_node_summaries(int reason)1983 static inline bool __remain_node_summaries(int reason)
1984 {
1985 return (reason & (CP_UMOUNT | CP_FASTBOOT));
1986 }
1987
__exist_node_summaries(struct f2fs_sb_info * sbi)1988 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1989 {
1990 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1991 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1992 }
1993
1994 /*
1995 * Check whether the inode has blocks or not
1996 */
F2FS_HAS_BLOCKS(struct inode * inode)1997 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1998 {
1999 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2000
2001 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2002 }
2003
f2fs_has_xattr_block(unsigned int ofs)2004 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2005 {
2006 return ofs == XATTR_NODE_OFFSET;
2007 }
2008
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2009 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2010 struct inode *inode, bool cap)
2011 {
2012 if (!inode)
2013 return true;
2014 if (!test_opt(sbi, RESERVE_ROOT))
2015 return false;
2016 if (IS_NOQUOTA(inode))
2017 return true;
2018 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2019 return true;
2020 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2021 in_group_p(F2FS_OPTION(sbi).s_resgid))
2022 return true;
2023 if (cap && capable(CAP_SYS_RESOURCE))
2024 return true;
2025 return false;
2026 }
2027
2028 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count)2029 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2030 struct inode *inode, blkcnt_t *count)
2031 {
2032 blkcnt_t diff = 0, release = 0;
2033 block_t avail_user_block_count;
2034 int ret;
2035
2036 ret = dquot_reserve_block(inode, *count);
2037 if (ret)
2038 return ret;
2039
2040 if (time_to_inject(sbi, FAULT_BLOCK)) {
2041 f2fs_show_injection_info(sbi, FAULT_BLOCK);
2042 release = *count;
2043 goto release_quota;
2044 }
2045
2046 /*
2047 * let's increase this in prior to actual block count change in order
2048 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2049 */
2050 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2051
2052 spin_lock(&sbi->stat_lock);
2053 sbi->total_valid_block_count += (block_t)(*count);
2054 avail_user_block_count = sbi->user_block_count -
2055 sbi->current_reserved_blocks;
2056
2057 if (!__allow_reserved_blocks(sbi, inode, true))
2058 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2059 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2060 if (avail_user_block_count > sbi->unusable_block_count)
2061 avail_user_block_count -= sbi->unusable_block_count;
2062 else
2063 avail_user_block_count = 0;
2064 }
2065 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2066 diff = sbi->total_valid_block_count - avail_user_block_count;
2067 if (diff > *count)
2068 diff = *count;
2069 *count -= diff;
2070 release = diff;
2071 sbi->total_valid_block_count -= diff;
2072 if (!*count) {
2073 spin_unlock(&sbi->stat_lock);
2074 goto enospc;
2075 }
2076 }
2077 spin_unlock(&sbi->stat_lock);
2078
2079 if (unlikely(release)) {
2080 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2081 dquot_release_reservation_block(inode, release);
2082 }
2083 f2fs_i_blocks_write(inode, *count, true, true);
2084 return 0;
2085
2086 enospc:
2087 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2088 release_quota:
2089 dquot_release_reservation_block(inode, release);
2090 return -ENOSPC;
2091 }
2092
2093 __printf(2, 3)
2094 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2095
2096 #define f2fs_err(sbi, fmt, ...) \
2097 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2098 #define f2fs_warn(sbi, fmt, ...) \
2099 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2100 #define f2fs_notice(sbi, fmt, ...) \
2101 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2102 #define f2fs_info(sbi, fmt, ...) \
2103 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2104 #define f2fs_debug(sbi, fmt, ...) \
2105 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2106
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2107 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2108 struct inode *inode,
2109 block_t count)
2110 {
2111 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2112
2113 spin_lock(&sbi->stat_lock);
2114 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2115 sbi->total_valid_block_count -= (block_t)count;
2116 if (sbi->reserved_blocks &&
2117 sbi->current_reserved_blocks < sbi->reserved_blocks)
2118 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2119 sbi->current_reserved_blocks + count);
2120 spin_unlock(&sbi->stat_lock);
2121 if (unlikely(inode->i_blocks < sectors)) {
2122 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2123 inode->i_ino,
2124 (unsigned long long)inode->i_blocks,
2125 (unsigned long long)sectors);
2126 set_sbi_flag(sbi, SBI_NEED_FSCK);
2127 return;
2128 }
2129 f2fs_i_blocks_write(inode, count, false, true);
2130 }
2131
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2132 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2133 {
2134 atomic_inc(&sbi->nr_pages[count_type]);
2135
2136 if (count_type == F2FS_DIRTY_DENTS ||
2137 count_type == F2FS_DIRTY_NODES ||
2138 count_type == F2FS_DIRTY_META ||
2139 count_type == F2FS_DIRTY_QDATA ||
2140 count_type == F2FS_DIRTY_IMETA)
2141 set_sbi_flag(sbi, SBI_IS_DIRTY);
2142 }
2143
inode_inc_dirty_pages(struct inode * inode)2144 static inline void inode_inc_dirty_pages(struct inode *inode)
2145 {
2146 atomic_inc(&F2FS_I(inode)->dirty_pages);
2147 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2148 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2149 if (IS_NOQUOTA(inode))
2150 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2151 }
2152
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2153 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2154 {
2155 atomic_dec(&sbi->nr_pages[count_type]);
2156 }
2157
inode_dec_dirty_pages(struct inode * inode)2158 static inline void inode_dec_dirty_pages(struct inode *inode)
2159 {
2160 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2161 !S_ISLNK(inode->i_mode))
2162 return;
2163
2164 atomic_dec(&F2FS_I(inode)->dirty_pages);
2165 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2166 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2167 if (IS_NOQUOTA(inode))
2168 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2169 }
2170
get_pages(struct f2fs_sb_info * sbi,int count_type)2171 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2172 {
2173 return atomic_read(&sbi->nr_pages[count_type]);
2174 }
2175
get_dirty_pages(struct inode * inode)2176 static inline int get_dirty_pages(struct inode *inode)
2177 {
2178 return atomic_read(&F2FS_I(inode)->dirty_pages);
2179 }
2180
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2181 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2182 {
2183 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2184 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2185 sbi->log_blocks_per_seg;
2186
2187 return segs / sbi->segs_per_sec;
2188 }
2189
valid_user_blocks(struct f2fs_sb_info * sbi)2190 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2191 {
2192 return sbi->total_valid_block_count;
2193 }
2194
discard_blocks(struct f2fs_sb_info * sbi)2195 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2196 {
2197 return sbi->discard_blks;
2198 }
2199
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2200 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2201 {
2202 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2203
2204 /* return NAT or SIT bitmap */
2205 if (flag == NAT_BITMAP)
2206 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2207 else if (flag == SIT_BITMAP)
2208 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2209
2210 return 0;
2211 }
2212
__cp_payload(struct f2fs_sb_info * sbi)2213 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2214 {
2215 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2216 }
2217
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2218 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2219 {
2220 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2221 int offset;
2222
2223 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2224 offset = (flag == SIT_BITMAP) ?
2225 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2226 /*
2227 * if large_nat_bitmap feature is enabled, leave checksum
2228 * protection for all nat/sit bitmaps.
2229 */
2230 return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
2231 }
2232
2233 if (__cp_payload(sbi) > 0) {
2234 if (flag == NAT_BITMAP)
2235 return &ckpt->sit_nat_version_bitmap;
2236 else
2237 return (unsigned char *)ckpt + F2FS_BLKSIZE;
2238 } else {
2239 offset = (flag == NAT_BITMAP) ?
2240 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2241 return &ckpt->sit_nat_version_bitmap + offset;
2242 }
2243 }
2244
__start_cp_addr(struct f2fs_sb_info * sbi)2245 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2246 {
2247 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2248
2249 if (sbi->cur_cp_pack == 2)
2250 start_addr += sbi->blocks_per_seg;
2251 return start_addr;
2252 }
2253
__start_cp_next_addr(struct f2fs_sb_info * sbi)2254 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2255 {
2256 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2257
2258 if (sbi->cur_cp_pack == 1)
2259 start_addr += sbi->blocks_per_seg;
2260 return start_addr;
2261 }
2262
__set_cp_next_pack(struct f2fs_sb_info * sbi)2263 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2264 {
2265 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2266 }
2267
__start_sum_addr(struct f2fs_sb_info * sbi)2268 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2269 {
2270 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2271 }
2272
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2273 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2274 struct inode *inode, bool is_inode)
2275 {
2276 block_t valid_block_count;
2277 unsigned int valid_node_count, user_block_count;
2278 int err;
2279
2280 if (is_inode) {
2281 if (inode) {
2282 err = dquot_alloc_inode(inode);
2283 if (err)
2284 return err;
2285 }
2286 } else {
2287 err = dquot_reserve_block(inode, 1);
2288 if (err)
2289 return err;
2290 }
2291
2292 if (time_to_inject(sbi, FAULT_BLOCK)) {
2293 f2fs_show_injection_info(sbi, FAULT_BLOCK);
2294 goto enospc;
2295 }
2296
2297 spin_lock(&sbi->stat_lock);
2298
2299 valid_block_count = sbi->total_valid_block_count +
2300 sbi->current_reserved_blocks + 1;
2301
2302 if (!__allow_reserved_blocks(sbi, inode, false))
2303 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2304 user_block_count = sbi->user_block_count;
2305 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2306 user_block_count -= sbi->unusable_block_count;
2307
2308 if (unlikely(valid_block_count > user_block_count)) {
2309 spin_unlock(&sbi->stat_lock);
2310 goto enospc;
2311 }
2312
2313 valid_node_count = sbi->total_valid_node_count + 1;
2314 if (unlikely(valid_node_count > sbi->total_node_count)) {
2315 spin_unlock(&sbi->stat_lock);
2316 goto enospc;
2317 }
2318
2319 sbi->total_valid_node_count++;
2320 sbi->total_valid_block_count++;
2321 spin_unlock(&sbi->stat_lock);
2322
2323 if (inode) {
2324 if (is_inode)
2325 f2fs_mark_inode_dirty_sync(inode, true);
2326 else
2327 f2fs_i_blocks_write(inode, 1, true, true);
2328 }
2329
2330 percpu_counter_inc(&sbi->alloc_valid_block_count);
2331 return 0;
2332
2333 enospc:
2334 if (is_inode) {
2335 if (inode)
2336 dquot_free_inode(inode);
2337 } else {
2338 dquot_release_reservation_block(inode, 1);
2339 }
2340 return -ENOSPC;
2341 }
2342
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2343 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2344 struct inode *inode, bool is_inode)
2345 {
2346 spin_lock(&sbi->stat_lock);
2347
2348 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2349 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2350
2351 sbi->total_valid_node_count--;
2352 sbi->total_valid_block_count--;
2353 if (sbi->reserved_blocks &&
2354 sbi->current_reserved_blocks < sbi->reserved_blocks)
2355 sbi->current_reserved_blocks++;
2356
2357 spin_unlock(&sbi->stat_lock);
2358
2359 if (is_inode) {
2360 dquot_free_inode(inode);
2361 } else {
2362 if (unlikely(inode->i_blocks == 0)) {
2363 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2364 inode->i_ino,
2365 (unsigned long long)inode->i_blocks);
2366 set_sbi_flag(sbi, SBI_NEED_FSCK);
2367 return;
2368 }
2369 f2fs_i_blocks_write(inode, 1, false, true);
2370 }
2371 }
2372
valid_node_count(struct f2fs_sb_info * sbi)2373 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2374 {
2375 return sbi->total_valid_node_count;
2376 }
2377
inc_valid_inode_count(struct f2fs_sb_info * sbi)2378 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2379 {
2380 percpu_counter_inc(&sbi->total_valid_inode_count);
2381 }
2382
dec_valid_inode_count(struct f2fs_sb_info * sbi)2383 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2384 {
2385 percpu_counter_dec(&sbi->total_valid_inode_count);
2386 }
2387
valid_inode_count(struct f2fs_sb_info * sbi)2388 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2389 {
2390 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2391 }
2392
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2393 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2394 pgoff_t index, bool for_write)
2395 {
2396 struct page *page;
2397
2398 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2399 if (!for_write)
2400 page = find_get_page_flags(mapping, index,
2401 FGP_LOCK | FGP_ACCESSED);
2402 else
2403 page = find_lock_page(mapping, index);
2404 if (page)
2405 return page;
2406
2407 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2408 f2fs_show_injection_info(F2FS_M_SB(mapping),
2409 FAULT_PAGE_ALLOC);
2410 return NULL;
2411 }
2412 }
2413
2414 if (!for_write)
2415 return grab_cache_page(mapping, index);
2416 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2417 }
2418
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)2419 static inline struct page *f2fs_pagecache_get_page(
2420 struct address_space *mapping, pgoff_t index,
2421 int fgp_flags, gfp_t gfp_mask)
2422 {
2423 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2424 f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2425 return NULL;
2426 }
2427
2428 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2429 }
2430
f2fs_copy_page(struct page * src,struct page * dst)2431 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2432 {
2433 char *src_kaddr = kmap(src);
2434 char *dst_kaddr = kmap(dst);
2435
2436 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2437 kunmap(dst);
2438 kunmap(src);
2439 }
2440
f2fs_put_page(struct page * page,int unlock)2441 static inline void f2fs_put_page(struct page *page, int unlock)
2442 {
2443 if (!page)
2444 return;
2445
2446 if (unlock) {
2447 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2448 unlock_page(page);
2449 }
2450 put_page(page);
2451 }
2452
f2fs_put_dnode(struct dnode_of_data * dn)2453 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2454 {
2455 if (dn->node_page)
2456 f2fs_put_page(dn->node_page, 1);
2457 if (dn->inode_page && dn->node_page != dn->inode_page)
2458 f2fs_put_page(dn->inode_page, 0);
2459 dn->node_page = NULL;
2460 dn->inode_page = NULL;
2461 }
2462
f2fs_kmem_cache_create(const char * name,size_t size)2463 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2464 size_t size)
2465 {
2466 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2467 }
2468
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags)2469 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2470 gfp_t flags)
2471 {
2472 void *entry;
2473
2474 entry = kmem_cache_alloc(cachep, flags);
2475 if (!entry)
2476 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2477 return entry;
2478 }
2479
is_idle(struct f2fs_sb_info * sbi,int type)2480 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2481 {
2482 if (sbi->gc_mode == GC_URGENT_HIGH)
2483 return true;
2484
2485 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2486 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2487 get_pages(sbi, F2FS_WB_CP_DATA) ||
2488 get_pages(sbi, F2FS_DIO_READ) ||
2489 get_pages(sbi, F2FS_DIO_WRITE))
2490 return false;
2491
2492 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2493 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2494 return false;
2495
2496 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2497 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2498 return false;
2499
2500 if (sbi->gc_mode == GC_URGENT_LOW &&
2501 (type == DISCARD_TIME || type == GC_TIME))
2502 return true;
2503
2504 return f2fs_time_over(sbi, type);
2505 }
2506
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2507 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2508 unsigned long index, void *item)
2509 {
2510 while (radix_tree_insert(root, index, item))
2511 cond_resched();
2512 }
2513
2514 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2515
IS_INODE(struct page * page)2516 static inline bool IS_INODE(struct page *page)
2517 {
2518 struct f2fs_node *p = F2FS_NODE(page);
2519
2520 return RAW_IS_INODE(p);
2521 }
2522
offset_in_addr(struct f2fs_inode * i)2523 static inline int offset_in_addr(struct f2fs_inode *i)
2524 {
2525 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2526 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2527 }
2528
blkaddr_in_node(struct f2fs_node * node)2529 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2530 {
2531 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2532 }
2533
2534 static inline int f2fs_has_extra_attr(struct inode *inode);
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)2535 static inline block_t data_blkaddr(struct inode *inode,
2536 struct page *node_page, unsigned int offset)
2537 {
2538 struct f2fs_node *raw_node;
2539 __le32 *addr_array;
2540 int base = 0;
2541 bool is_inode = IS_INODE(node_page);
2542
2543 raw_node = F2FS_NODE(node_page);
2544
2545 if (is_inode) {
2546 if (!inode)
2547 /* from GC path only */
2548 base = offset_in_addr(&raw_node->i);
2549 else if (f2fs_has_extra_attr(inode))
2550 base = get_extra_isize(inode);
2551 }
2552
2553 addr_array = blkaddr_in_node(raw_node);
2554 return le32_to_cpu(addr_array[base + offset]);
2555 }
2556
f2fs_data_blkaddr(struct dnode_of_data * dn)2557 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2558 {
2559 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2560 }
2561
f2fs_test_bit(unsigned int nr,char * addr)2562 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2563 {
2564 int mask;
2565
2566 addr += (nr >> 3);
2567 mask = 1 << (7 - (nr & 0x07));
2568 return mask & *addr;
2569 }
2570
f2fs_set_bit(unsigned int nr,char * addr)2571 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2572 {
2573 int mask;
2574
2575 addr += (nr >> 3);
2576 mask = 1 << (7 - (nr & 0x07));
2577 *addr |= mask;
2578 }
2579
f2fs_clear_bit(unsigned int nr,char * addr)2580 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2581 {
2582 int mask;
2583
2584 addr += (nr >> 3);
2585 mask = 1 << (7 - (nr & 0x07));
2586 *addr &= ~mask;
2587 }
2588
f2fs_test_and_set_bit(unsigned int nr,char * addr)2589 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2590 {
2591 int mask;
2592 int ret;
2593
2594 addr += (nr >> 3);
2595 mask = 1 << (7 - (nr & 0x07));
2596 ret = mask & *addr;
2597 *addr |= mask;
2598 return ret;
2599 }
2600
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2601 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2602 {
2603 int mask;
2604 int ret;
2605
2606 addr += (nr >> 3);
2607 mask = 1 << (7 - (nr & 0x07));
2608 ret = mask & *addr;
2609 *addr &= ~mask;
2610 return ret;
2611 }
2612
f2fs_change_bit(unsigned int nr,char * addr)2613 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2614 {
2615 int mask;
2616
2617 addr += (nr >> 3);
2618 mask = 1 << (7 - (nr & 0x07));
2619 *addr ^= mask;
2620 }
2621
2622 /*
2623 * On-disk inode flags (f2fs_inode::i_flags)
2624 */
2625 #define F2FS_COMPR_FL 0x00000004 /* Compress file */
2626 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
2627 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
2628 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
2629 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
2630 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
2631 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */
2632 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
2633 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
2634 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
2635 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */
2636
2637 /* Flags that should be inherited by new inodes from their parent. */
2638 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2639 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2640 F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2641
2642 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2643 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2644 F2FS_CASEFOLD_FL))
2645
2646 /* Flags that are appropriate for non-directories/regular files. */
2647 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2648
f2fs_mask_flags(umode_t mode,__u32 flags)2649 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2650 {
2651 if (S_ISDIR(mode))
2652 return flags;
2653 else if (S_ISREG(mode))
2654 return flags & F2FS_REG_FLMASK;
2655 else
2656 return flags & F2FS_OTHER_FLMASK;
2657 }
2658
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)2659 static inline void __mark_inode_dirty_flag(struct inode *inode,
2660 int flag, bool set)
2661 {
2662 switch (flag) {
2663 case FI_INLINE_XATTR:
2664 case FI_INLINE_DATA:
2665 case FI_INLINE_DENTRY:
2666 case FI_NEW_INODE:
2667 if (set)
2668 return;
2669 fallthrough;
2670 case FI_DATA_EXIST:
2671 case FI_INLINE_DOTS:
2672 case FI_PIN_FILE:
2673 f2fs_mark_inode_dirty_sync(inode, true);
2674 }
2675 }
2676
set_inode_flag(struct inode * inode,int flag)2677 static inline void set_inode_flag(struct inode *inode, int flag)
2678 {
2679 set_bit(flag, F2FS_I(inode)->flags);
2680 __mark_inode_dirty_flag(inode, flag, true);
2681 }
2682
is_inode_flag_set(struct inode * inode,int flag)2683 static inline int is_inode_flag_set(struct inode *inode, int flag)
2684 {
2685 return test_bit(flag, F2FS_I(inode)->flags);
2686 }
2687
clear_inode_flag(struct inode * inode,int flag)2688 static inline void clear_inode_flag(struct inode *inode, int flag)
2689 {
2690 clear_bit(flag, F2FS_I(inode)->flags);
2691 __mark_inode_dirty_flag(inode, flag, false);
2692 }
2693
f2fs_verity_in_progress(struct inode * inode)2694 static inline bool f2fs_verity_in_progress(struct inode *inode)
2695 {
2696 return IS_ENABLED(CONFIG_FS_VERITY) &&
2697 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2698 }
2699
set_acl_inode(struct inode * inode,umode_t mode)2700 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2701 {
2702 F2FS_I(inode)->i_acl_mode = mode;
2703 set_inode_flag(inode, FI_ACL_MODE);
2704 f2fs_mark_inode_dirty_sync(inode, false);
2705 }
2706
f2fs_i_links_write(struct inode * inode,bool inc)2707 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2708 {
2709 if (inc)
2710 inc_nlink(inode);
2711 else
2712 drop_nlink(inode);
2713 f2fs_mark_inode_dirty_sync(inode, true);
2714 }
2715
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)2716 static inline void f2fs_i_blocks_write(struct inode *inode,
2717 block_t diff, bool add, bool claim)
2718 {
2719 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2720 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2721
2722 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
2723 if (add) {
2724 if (claim)
2725 dquot_claim_block(inode, diff);
2726 else
2727 dquot_alloc_block_nofail(inode, diff);
2728 } else {
2729 dquot_free_block(inode, diff);
2730 }
2731
2732 f2fs_mark_inode_dirty_sync(inode, true);
2733 if (clean || recover)
2734 set_inode_flag(inode, FI_AUTO_RECOVER);
2735 }
2736
f2fs_i_size_write(struct inode * inode,loff_t i_size)2737 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2738 {
2739 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2740 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2741
2742 if (i_size_read(inode) == i_size)
2743 return;
2744
2745 i_size_write(inode, i_size);
2746 f2fs_mark_inode_dirty_sync(inode, true);
2747 if (clean || recover)
2748 set_inode_flag(inode, FI_AUTO_RECOVER);
2749 }
2750
f2fs_i_depth_write(struct inode * inode,unsigned int depth)2751 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2752 {
2753 F2FS_I(inode)->i_current_depth = depth;
2754 f2fs_mark_inode_dirty_sync(inode, true);
2755 }
2756
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)2757 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2758 unsigned int count)
2759 {
2760 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2761 f2fs_mark_inode_dirty_sync(inode, true);
2762 }
2763
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)2764 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2765 {
2766 F2FS_I(inode)->i_xattr_nid = xnid;
2767 f2fs_mark_inode_dirty_sync(inode, true);
2768 }
2769
f2fs_i_pino_write(struct inode * inode,nid_t pino)2770 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2771 {
2772 F2FS_I(inode)->i_pino = pino;
2773 f2fs_mark_inode_dirty_sync(inode, true);
2774 }
2775
get_inline_info(struct inode * inode,struct f2fs_inode * ri)2776 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2777 {
2778 struct f2fs_inode_info *fi = F2FS_I(inode);
2779
2780 if (ri->i_inline & F2FS_INLINE_XATTR)
2781 set_bit(FI_INLINE_XATTR, fi->flags);
2782 if (ri->i_inline & F2FS_INLINE_DATA)
2783 set_bit(FI_INLINE_DATA, fi->flags);
2784 if (ri->i_inline & F2FS_INLINE_DENTRY)
2785 set_bit(FI_INLINE_DENTRY, fi->flags);
2786 if (ri->i_inline & F2FS_DATA_EXIST)
2787 set_bit(FI_DATA_EXIST, fi->flags);
2788 if (ri->i_inline & F2FS_INLINE_DOTS)
2789 set_bit(FI_INLINE_DOTS, fi->flags);
2790 if (ri->i_inline & F2FS_EXTRA_ATTR)
2791 set_bit(FI_EXTRA_ATTR, fi->flags);
2792 if (ri->i_inline & F2FS_PIN_FILE)
2793 set_bit(FI_PIN_FILE, fi->flags);
2794 }
2795
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)2796 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2797 {
2798 ri->i_inline = 0;
2799
2800 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2801 ri->i_inline |= F2FS_INLINE_XATTR;
2802 if (is_inode_flag_set(inode, FI_INLINE_DATA))
2803 ri->i_inline |= F2FS_INLINE_DATA;
2804 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2805 ri->i_inline |= F2FS_INLINE_DENTRY;
2806 if (is_inode_flag_set(inode, FI_DATA_EXIST))
2807 ri->i_inline |= F2FS_DATA_EXIST;
2808 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2809 ri->i_inline |= F2FS_INLINE_DOTS;
2810 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2811 ri->i_inline |= F2FS_EXTRA_ATTR;
2812 if (is_inode_flag_set(inode, FI_PIN_FILE))
2813 ri->i_inline |= F2FS_PIN_FILE;
2814 }
2815
f2fs_has_extra_attr(struct inode * inode)2816 static inline int f2fs_has_extra_attr(struct inode *inode)
2817 {
2818 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2819 }
2820
f2fs_has_inline_xattr(struct inode * inode)2821 static inline int f2fs_has_inline_xattr(struct inode *inode)
2822 {
2823 return is_inode_flag_set(inode, FI_INLINE_XATTR);
2824 }
2825
f2fs_compressed_file(struct inode * inode)2826 static inline int f2fs_compressed_file(struct inode *inode)
2827 {
2828 return S_ISREG(inode->i_mode) &&
2829 is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2830 }
2831
addrs_per_inode(struct inode * inode)2832 static inline unsigned int addrs_per_inode(struct inode *inode)
2833 {
2834 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2835 get_inline_xattr_addrs(inode);
2836
2837 if (!f2fs_compressed_file(inode))
2838 return addrs;
2839 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
2840 }
2841
addrs_per_block(struct inode * inode)2842 static inline unsigned int addrs_per_block(struct inode *inode)
2843 {
2844 if (!f2fs_compressed_file(inode))
2845 return DEF_ADDRS_PER_BLOCK;
2846 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
2847 }
2848
inline_xattr_addr(struct inode * inode,struct page * page)2849 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2850 {
2851 struct f2fs_inode *ri = F2FS_INODE(page);
2852
2853 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2854 get_inline_xattr_addrs(inode)]);
2855 }
2856
inline_xattr_size(struct inode * inode)2857 static inline int inline_xattr_size(struct inode *inode)
2858 {
2859 if (f2fs_has_inline_xattr(inode))
2860 return get_inline_xattr_addrs(inode) * sizeof(__le32);
2861 return 0;
2862 }
2863
f2fs_has_inline_data(struct inode * inode)2864 static inline int f2fs_has_inline_data(struct inode *inode)
2865 {
2866 return is_inode_flag_set(inode, FI_INLINE_DATA);
2867 }
2868
f2fs_exist_data(struct inode * inode)2869 static inline int f2fs_exist_data(struct inode *inode)
2870 {
2871 return is_inode_flag_set(inode, FI_DATA_EXIST);
2872 }
2873
f2fs_has_inline_dots(struct inode * inode)2874 static inline int f2fs_has_inline_dots(struct inode *inode)
2875 {
2876 return is_inode_flag_set(inode, FI_INLINE_DOTS);
2877 }
2878
f2fs_is_mmap_file(struct inode * inode)2879 static inline int f2fs_is_mmap_file(struct inode *inode)
2880 {
2881 return is_inode_flag_set(inode, FI_MMAP_FILE);
2882 }
2883
f2fs_is_pinned_file(struct inode * inode)2884 static inline bool f2fs_is_pinned_file(struct inode *inode)
2885 {
2886 return is_inode_flag_set(inode, FI_PIN_FILE);
2887 }
2888
f2fs_is_atomic_file(struct inode * inode)2889 static inline bool f2fs_is_atomic_file(struct inode *inode)
2890 {
2891 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2892 }
2893
f2fs_is_commit_atomic_write(struct inode * inode)2894 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2895 {
2896 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2897 }
2898
f2fs_is_volatile_file(struct inode * inode)2899 static inline bool f2fs_is_volatile_file(struct inode *inode)
2900 {
2901 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2902 }
2903
f2fs_is_first_block_written(struct inode * inode)2904 static inline bool f2fs_is_first_block_written(struct inode *inode)
2905 {
2906 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2907 }
2908
f2fs_is_drop_cache(struct inode * inode)2909 static inline bool f2fs_is_drop_cache(struct inode *inode)
2910 {
2911 return is_inode_flag_set(inode, FI_DROP_CACHE);
2912 }
2913
inline_data_addr(struct inode * inode,struct page * page)2914 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2915 {
2916 struct f2fs_inode *ri = F2FS_INODE(page);
2917 int extra_size = get_extra_isize(inode);
2918
2919 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2920 }
2921
f2fs_has_inline_dentry(struct inode * inode)2922 static inline int f2fs_has_inline_dentry(struct inode *inode)
2923 {
2924 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2925 }
2926
is_file(struct inode * inode,int type)2927 static inline int is_file(struct inode *inode, int type)
2928 {
2929 return F2FS_I(inode)->i_advise & type;
2930 }
2931
set_file(struct inode * inode,int type)2932 static inline void set_file(struct inode *inode, int type)
2933 {
2934 F2FS_I(inode)->i_advise |= type;
2935 f2fs_mark_inode_dirty_sync(inode, true);
2936 }
2937
clear_file(struct inode * inode,int type)2938 static inline void clear_file(struct inode *inode, int type)
2939 {
2940 F2FS_I(inode)->i_advise &= ~type;
2941 f2fs_mark_inode_dirty_sync(inode, true);
2942 }
2943
f2fs_is_time_consistent(struct inode * inode)2944 static inline bool f2fs_is_time_consistent(struct inode *inode)
2945 {
2946 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2947 return false;
2948 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2949 return false;
2950 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2951 return false;
2952 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2953 &F2FS_I(inode)->i_crtime))
2954 return false;
2955 return true;
2956 }
2957
f2fs_skip_inode_update(struct inode * inode,int dsync)2958 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2959 {
2960 bool ret;
2961
2962 if (dsync) {
2963 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2964
2965 spin_lock(&sbi->inode_lock[DIRTY_META]);
2966 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2967 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2968 return ret;
2969 }
2970 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2971 file_keep_isize(inode) ||
2972 i_size_read(inode) & ~PAGE_MASK)
2973 return false;
2974
2975 if (!f2fs_is_time_consistent(inode))
2976 return false;
2977
2978 spin_lock(&F2FS_I(inode)->i_size_lock);
2979 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2980 spin_unlock(&F2FS_I(inode)->i_size_lock);
2981
2982 return ret;
2983 }
2984
f2fs_readonly(struct super_block * sb)2985 static inline bool f2fs_readonly(struct super_block *sb)
2986 {
2987 return sb_rdonly(sb);
2988 }
2989
f2fs_cp_error(struct f2fs_sb_info * sbi)2990 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2991 {
2992 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2993 }
2994
is_dot_dotdot(const u8 * name,size_t len)2995 static inline bool is_dot_dotdot(const u8 *name, size_t len)
2996 {
2997 if (len == 1 && name[0] == '.')
2998 return true;
2999
3000 if (len == 2 && name[0] == '.' && name[1] == '.')
3001 return true;
3002
3003 return false;
3004 }
3005
f2fs_may_extent_tree(struct inode * inode)3006 static inline bool f2fs_may_extent_tree(struct inode *inode)
3007 {
3008 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3009
3010 if (!test_opt(sbi, EXTENT_CACHE) ||
3011 is_inode_flag_set(inode, FI_NO_EXTENT) ||
3012 is_inode_flag_set(inode, FI_COMPRESSED_FILE))
3013 return false;
3014
3015 /*
3016 * for recovered files during mount do not create extents
3017 * if shrinker is not registered.
3018 */
3019 if (list_empty(&sbi->s_list))
3020 return false;
3021
3022 return S_ISREG(inode->i_mode);
3023 }
3024
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3025 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3026 size_t size, gfp_t flags)
3027 {
3028 if (time_to_inject(sbi, FAULT_KMALLOC)) {
3029 f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3030 return NULL;
3031 }
3032
3033 return kmalloc(size, flags);
3034 }
3035
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3036 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3037 size_t size, gfp_t flags)
3038 {
3039 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3040 }
3041
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3042 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3043 size_t size, gfp_t flags)
3044 {
3045 if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3046 f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3047 return NULL;
3048 }
3049
3050 return kvmalloc(size, flags);
3051 }
3052
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3053 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3054 size_t size, gfp_t flags)
3055 {
3056 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3057 }
3058
get_extra_isize(struct inode * inode)3059 static inline int get_extra_isize(struct inode *inode)
3060 {
3061 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3062 }
3063
get_inline_xattr_addrs(struct inode * inode)3064 static inline int get_inline_xattr_addrs(struct inode *inode)
3065 {
3066 return F2FS_I(inode)->i_inline_xattr_size;
3067 }
3068
3069 #define f2fs_get_inode_mode(i) \
3070 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3071 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3072
3073 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
3074 (offsetof(struct f2fs_inode, i_extra_end) - \
3075 offsetof(struct f2fs_inode, i_extra_isize)) \
3076
3077 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
3078 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
3079 ((offsetof(typeof(*(f2fs_inode)), field) + \
3080 sizeof((f2fs_inode)->field)) \
3081 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
3082
3083 #define DEFAULT_IOSTAT_PERIOD_MS 3000
3084 #define MIN_IOSTAT_PERIOD_MS 100
3085 /* maximum period of iostat tracing is 1 day */
3086 #define MAX_IOSTAT_PERIOD_MS 8640000
3087
f2fs_reset_iostat(struct f2fs_sb_info * sbi)3088 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
3089 {
3090 int i;
3091
3092 spin_lock(&sbi->iostat_lock);
3093 for (i = 0; i < NR_IO_TYPE; i++) {
3094 sbi->rw_iostat[i] = 0;
3095 sbi->prev_rw_iostat[i] = 0;
3096 }
3097 spin_unlock(&sbi->iostat_lock);
3098 }
3099
3100 extern void f2fs_record_iostat(struct f2fs_sb_info *sbi);
3101
f2fs_update_iostat(struct f2fs_sb_info * sbi,enum iostat_type type,unsigned long long io_bytes)3102 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
3103 enum iostat_type type, unsigned long long io_bytes)
3104 {
3105 if (!sbi->iostat_enable)
3106 return;
3107 spin_lock(&sbi->iostat_lock);
3108 sbi->rw_iostat[type] += io_bytes;
3109
3110 if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
3111 sbi->rw_iostat[APP_BUFFERED_IO] =
3112 sbi->rw_iostat[APP_WRITE_IO] -
3113 sbi->rw_iostat[APP_DIRECT_IO];
3114
3115 if (type == APP_READ_IO || type == APP_DIRECT_READ_IO)
3116 sbi->rw_iostat[APP_BUFFERED_READ_IO] =
3117 sbi->rw_iostat[APP_READ_IO] -
3118 sbi->rw_iostat[APP_DIRECT_READ_IO];
3119 spin_unlock(&sbi->iostat_lock);
3120
3121 f2fs_record_iostat(sbi);
3122 }
3123
3124 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1)
3125
3126 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3127
3128 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3129 block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3130 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3131 block_t blkaddr, int type)
3132 {
3133 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3134 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3135 blkaddr, type);
3136 f2fs_bug_on(sbi, 1);
3137 }
3138 }
3139
__is_valid_data_blkaddr(block_t blkaddr)3140 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3141 {
3142 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3143 blkaddr == COMPRESS_ADDR)
3144 return false;
3145 return true;
3146 }
3147
f2fs_set_page_private(struct page * page,unsigned long data)3148 static inline void f2fs_set_page_private(struct page *page,
3149 unsigned long data)
3150 {
3151 if (PagePrivate(page))
3152 return;
3153
3154 attach_page_private(page, (void *)data);
3155 }
3156
f2fs_clear_page_private(struct page * page)3157 static inline void f2fs_clear_page_private(struct page *page)
3158 {
3159 detach_page_private(page);
3160 }
3161
3162 /*
3163 * file.c
3164 */
3165 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3166 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3167 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3168 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3169 int f2fs_truncate(struct inode *inode);
3170 int f2fs_getattr(const struct path *path, struct kstat *stat,
3171 u32 request_mask, unsigned int flags);
3172 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
3173 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3174 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3175 int f2fs_precache_extents(struct inode *inode);
3176 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3177 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3178 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3179 int f2fs_pin_file_control(struct inode *inode, bool inc);
3180
3181 /*
3182 * inode.c
3183 */
3184 void f2fs_set_inode_flags(struct inode *inode);
3185 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3186 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3187 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3188 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3189 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3190 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3191 void f2fs_update_inode_page(struct inode *inode);
3192 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3193 void f2fs_evict_inode(struct inode *inode);
3194 void f2fs_handle_failed_inode(struct inode *inode);
3195
3196 /*
3197 * namei.c
3198 */
3199 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3200 bool hot, bool set);
3201 struct dentry *f2fs_get_parent(struct dentry *child);
3202
3203 /*
3204 * dir.c
3205 */
3206 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3207 int f2fs_init_casefolded_name(const struct inode *dir,
3208 struct f2fs_filename *fname);
3209 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3210 int lookup, struct f2fs_filename *fname);
3211 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3212 struct f2fs_filename *fname);
3213 void f2fs_free_filename(struct f2fs_filename *fname);
3214 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3215 const struct f2fs_filename *fname, int *max_slots);
3216 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3217 unsigned int start_pos, struct fscrypt_str *fstr);
3218 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3219 struct f2fs_dentry_ptr *d);
3220 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3221 const struct f2fs_filename *fname, struct page *dpage);
3222 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3223 unsigned int current_depth);
3224 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3225 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3226 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3227 const struct f2fs_filename *fname,
3228 struct page **res_page);
3229 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3230 const struct qstr *child, struct page **res_page);
3231 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3232 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3233 struct page **page);
3234 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3235 struct page *page, struct inode *inode);
3236 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3237 const struct f2fs_filename *fname);
3238 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3239 const struct fscrypt_str *name, f2fs_hash_t name_hash,
3240 unsigned int bit_pos);
3241 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3242 struct inode *inode, nid_t ino, umode_t mode);
3243 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3244 struct inode *inode, nid_t ino, umode_t mode);
3245 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3246 struct inode *inode, nid_t ino, umode_t mode);
3247 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3248 struct inode *dir, struct inode *inode);
3249 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3250 bool f2fs_empty_dir(struct inode *dir);
3251
f2fs_add_link(struct dentry * dentry,struct inode * inode)3252 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3253 {
3254 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3255 inode, inode->i_ino, inode->i_mode);
3256 }
3257
3258 /*
3259 * super.c
3260 */
3261 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3262 void f2fs_inode_synced(struct inode *inode);
3263 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3264 int f2fs_quota_sync(struct super_block *sb, int type);
3265 void f2fs_quota_off_umount(struct super_block *sb);
3266 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3267 int f2fs_sync_fs(struct super_block *sb, int sync);
3268 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3269
3270 /*
3271 * hash.c
3272 */
3273 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3274
3275 /*
3276 * node.c
3277 */
3278 struct dnode_of_data;
3279 struct node_info;
3280
3281 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3282 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3283 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3284 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3285 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3286 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3287 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3288 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3289 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3290 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3291 struct node_info *ni);
3292 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3293 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3294 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3295 int f2fs_truncate_xattr_node(struct inode *inode);
3296 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3297 unsigned int seq_id);
3298 int f2fs_remove_inode_page(struct inode *inode);
3299 struct page *f2fs_new_inode_page(struct inode *inode);
3300 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3301 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3302 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3303 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3304 int f2fs_move_node_page(struct page *node_page, int gc_type);
3305 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3306 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3307 struct writeback_control *wbc, bool atomic,
3308 unsigned int *seq_id);
3309 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3310 struct writeback_control *wbc,
3311 bool do_balance, enum iostat_type io_type);
3312 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3313 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3314 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3315 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3316 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3317 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3318 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3319 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3320 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3321 unsigned int segno, struct f2fs_summary_block *sum);
3322 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3323 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3324 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3325 int __init f2fs_create_node_manager_caches(void);
3326 void f2fs_destroy_node_manager_caches(void);
3327
3328 /*
3329 * segment.c
3330 */
3331 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3332 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3333 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3334 void f2fs_drop_inmem_pages(struct inode *inode);
3335 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3336 int f2fs_commit_inmem_pages(struct inode *inode);
3337 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3338 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3339 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3340 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3341 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3342 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3343 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3344 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3345 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3346 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3347 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3348 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3349 struct cp_control *cpc);
3350 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3351 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3352 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3353 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3354 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3355 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3356 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3357 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3358 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3359 unsigned int *newseg, bool new_sec, int dir);
3360 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3361 unsigned int start, unsigned int end);
3362 void f2fs_allocate_new_segment(struct f2fs_sb_info *sbi, int type);
3363 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3364 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3365 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3366 struct cp_control *cpc);
3367 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3368 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3369 block_t blk_addr);
3370 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3371 enum iostat_type io_type);
3372 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3373 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3374 struct f2fs_io_info *fio);
3375 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3376 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3377 block_t old_blkaddr, block_t new_blkaddr,
3378 bool recover_curseg, bool recover_newaddr,
3379 bool from_gc);
3380 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3381 block_t old_addr, block_t new_addr,
3382 unsigned char version, bool recover_curseg,
3383 bool recover_newaddr);
3384 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3385 block_t old_blkaddr, block_t *new_blkaddr,
3386 struct f2fs_summary *sum, int type,
3387 struct f2fs_io_info *fio);
3388 void f2fs_wait_on_page_writeback(struct page *page,
3389 enum page_type type, bool ordered, bool locked);
3390 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3391 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3392 block_t len);
3393 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3394 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3395 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3396 unsigned int val, int alloc);
3397 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3398 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3399 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3400 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3401 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3402 int __init f2fs_create_segment_manager_caches(void);
3403 void f2fs_destroy_segment_manager_caches(void);
3404 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3405 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3406 enum page_type type, enum temp_type temp);
3407 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3408 unsigned int segno);
3409 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3410 unsigned int segno);
3411
3412 /*
3413 * checkpoint.c
3414 */
3415 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3416 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3417 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3418 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3419 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3420 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3421 block_t blkaddr, int type);
3422 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3423 int type, bool sync);
3424 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3425 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3426 long nr_to_write, enum iostat_type io_type);
3427 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3428 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3429 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3430 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3431 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3432 unsigned int devidx, int type);
3433 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3434 unsigned int devidx, int type);
3435 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3436 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3437 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3438 void f2fs_add_orphan_inode(struct inode *inode);
3439 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3440 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3441 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3442 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3443 void f2fs_remove_dirty_inode(struct inode *inode);
3444 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3445 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3446 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3447 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3448 int __init f2fs_create_checkpoint_caches(void);
3449 void f2fs_destroy_checkpoint_caches(void);
3450
3451 /*
3452 * data.c
3453 */
3454 int __init f2fs_init_bioset(void);
3455 void f2fs_destroy_bioset(void);
3456 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio);
3457 int f2fs_init_bio_entry_cache(void);
3458 void f2fs_destroy_bio_entry_cache(void);
3459 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3460 struct bio *bio, enum page_type type);
3461 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3462 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3463 struct inode *inode, struct page *page,
3464 nid_t ino, enum page_type type);
3465 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3466 struct bio **bio, struct page *page);
3467 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3468 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3469 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3470 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3471 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3472 block_t blk_addr, struct bio *bio);
3473 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3474 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3475 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3476 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3477 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3478 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3479 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3480 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3481 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3482 int op_flags, bool for_write);
3483 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3484 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3485 bool for_write);
3486 struct page *f2fs_get_new_data_page(struct inode *inode,
3487 struct page *ipage, pgoff_t index, bool new_i_size);
3488 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3489 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3490 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3491 int create, int flag);
3492 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3493 u64 start, u64 len);
3494 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3495 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3496 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3497 int f2fs_write_single_data_page(struct page *page, int *submitted,
3498 struct bio **bio, sector_t *last_block,
3499 struct writeback_control *wbc,
3500 enum iostat_type io_type,
3501 int compr_blocks);
3502 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3503 unsigned int length);
3504 int f2fs_release_page(struct page *page, gfp_t wait);
3505 #ifdef CONFIG_MIGRATION
3506 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3507 struct page *page, enum migrate_mode mode);
3508 #endif
3509 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3510 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3511 int f2fs_init_post_read_processing(void);
3512 void f2fs_destroy_post_read_processing(void);
3513 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3514 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3515
3516 /*
3517 * gc.c
3518 */
3519 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3520 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3521 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3522 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3523 unsigned int segno);
3524 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3525 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3526 int __init f2fs_create_garbage_collection_cache(void);
3527 void f2fs_destroy_garbage_collection_cache(void);
3528
3529 /*
3530 * recovery.c
3531 */
3532 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3533 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3534
3535 /*
3536 * debug.c
3537 */
3538 #ifdef CONFIG_F2FS_STAT_FS
3539 struct f2fs_stat_info {
3540 struct list_head stat_list;
3541 struct f2fs_sb_info *sbi;
3542 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3543 int main_area_segs, main_area_sections, main_area_zones;
3544 unsigned long long hit_largest, hit_cached, hit_rbtree;
3545 unsigned long long hit_total, total_ext;
3546 int ext_tree, zombie_tree, ext_node;
3547 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3548 int ndirty_data, ndirty_qdata;
3549 int inmem_pages;
3550 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3551 int nats, dirty_nats, sits, dirty_sits;
3552 int free_nids, avail_nids, alloc_nids;
3553 int total_count, utilization;
3554 int bg_gc, nr_wb_cp_data, nr_wb_data;
3555 int nr_rd_data, nr_rd_node, nr_rd_meta;
3556 int nr_dio_read, nr_dio_write;
3557 unsigned int io_skip_bggc, other_skip_bggc;
3558 int nr_flushing, nr_flushed, flush_list_empty;
3559 int nr_discarding, nr_discarded;
3560 int nr_discard_cmd;
3561 unsigned int undiscard_blks;
3562 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3563 int compr_inode;
3564 unsigned long long compr_blocks;
3565 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3566 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3567 unsigned int bimodal, avg_vblocks;
3568 int util_free, util_valid, util_invalid;
3569 int rsvd_segs, overp_segs;
3570 int dirty_count, node_pages, meta_pages;
3571 int prefree_count, call_count, cp_count, bg_cp_count;
3572 int tot_segs, node_segs, data_segs, free_segs, free_secs;
3573 int bg_node_segs, bg_data_segs;
3574 int tot_blks, data_blks, node_blks;
3575 int bg_data_blks, bg_node_blks;
3576 unsigned long long skipped_atomic_files[2];
3577 int curseg[NR_CURSEG_TYPE];
3578 int cursec[NR_CURSEG_TYPE];
3579 int curzone[NR_CURSEG_TYPE];
3580 unsigned int dirty_seg[NR_CURSEG_TYPE];
3581 unsigned int full_seg[NR_CURSEG_TYPE];
3582 unsigned int valid_blks[NR_CURSEG_TYPE];
3583
3584 unsigned int meta_count[META_MAX];
3585 unsigned int segment_count[2];
3586 unsigned int block_count[2];
3587 unsigned int inplace_count;
3588 unsigned long long base_mem, cache_mem, page_mem;
3589 };
3590
F2FS_STAT(struct f2fs_sb_info * sbi)3591 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3592 {
3593 return (struct f2fs_stat_info *)sbi->stat_info;
3594 }
3595
3596 #define stat_inc_cp_count(si) ((si)->cp_count++)
3597 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
3598 #define stat_inc_call_count(si) ((si)->call_count++)
3599 #define stat_inc_bggc_count(si) ((si)->bg_gc++)
3600 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
3601 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
3602 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
3603 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
3604 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
3605 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
3606 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
3607 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
3608 #define stat_inc_inline_xattr(inode) \
3609 do { \
3610 if (f2fs_has_inline_xattr(inode)) \
3611 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
3612 } while (0)
3613 #define stat_dec_inline_xattr(inode) \
3614 do { \
3615 if (f2fs_has_inline_xattr(inode)) \
3616 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
3617 } while (0)
3618 #define stat_inc_inline_inode(inode) \
3619 do { \
3620 if (f2fs_has_inline_data(inode)) \
3621 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
3622 } while (0)
3623 #define stat_dec_inline_inode(inode) \
3624 do { \
3625 if (f2fs_has_inline_data(inode)) \
3626 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
3627 } while (0)
3628 #define stat_inc_inline_dir(inode) \
3629 do { \
3630 if (f2fs_has_inline_dentry(inode)) \
3631 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
3632 } while (0)
3633 #define stat_dec_inline_dir(inode) \
3634 do { \
3635 if (f2fs_has_inline_dentry(inode)) \
3636 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
3637 } while (0)
3638 #define stat_inc_compr_inode(inode) \
3639 do { \
3640 if (f2fs_compressed_file(inode)) \
3641 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \
3642 } while (0)
3643 #define stat_dec_compr_inode(inode) \
3644 do { \
3645 if (f2fs_compressed_file(inode)) \
3646 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \
3647 } while (0)
3648 #define stat_add_compr_blocks(inode, blocks) \
3649 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3650 #define stat_sub_compr_blocks(inode, blocks) \
3651 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3652 #define stat_inc_meta_count(sbi, blkaddr) \
3653 do { \
3654 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
3655 atomic_inc(&(sbi)->meta_count[META_CP]); \
3656 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
3657 atomic_inc(&(sbi)->meta_count[META_SIT]); \
3658 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
3659 atomic_inc(&(sbi)->meta_count[META_NAT]); \
3660 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
3661 atomic_inc(&(sbi)->meta_count[META_SSA]); \
3662 } while (0)
3663 #define stat_inc_seg_type(sbi, curseg) \
3664 ((sbi)->segment_count[(curseg)->alloc_type]++)
3665 #define stat_inc_block_count(sbi, curseg) \
3666 ((sbi)->block_count[(curseg)->alloc_type]++)
3667 #define stat_inc_inplace_blocks(sbi) \
3668 (atomic_inc(&(sbi)->inplace_count))
3669 #define stat_update_max_atomic_write(inode) \
3670 do { \
3671 int cur = F2FS_I_SB(inode)->atomic_files; \
3672 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
3673 if (cur > max) \
3674 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
3675 } while (0)
3676 #define stat_inc_volatile_write(inode) \
3677 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3678 #define stat_dec_volatile_write(inode) \
3679 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3680 #define stat_update_max_volatile_write(inode) \
3681 do { \
3682 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
3683 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
3684 if (cur > max) \
3685 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
3686 } while (0)
3687 #define stat_inc_seg_count(sbi, type, gc_type) \
3688 do { \
3689 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3690 si->tot_segs++; \
3691 if ((type) == SUM_TYPE_DATA) { \
3692 si->data_segs++; \
3693 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
3694 } else { \
3695 si->node_segs++; \
3696 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
3697 } \
3698 } while (0)
3699
3700 #define stat_inc_tot_blk_count(si, blks) \
3701 ((si)->tot_blks += (blks))
3702
3703 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
3704 do { \
3705 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3706 stat_inc_tot_blk_count(si, blks); \
3707 si->data_blks += (blks); \
3708 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3709 } while (0)
3710
3711 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
3712 do { \
3713 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3714 stat_inc_tot_blk_count(si, blks); \
3715 si->node_blks += (blks); \
3716 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3717 } while (0)
3718
3719 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3720 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3721 void __init f2fs_create_root_stats(void);
3722 void f2fs_destroy_root_stats(void);
3723 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3724 #else
3725 #define stat_inc_cp_count(si) do { } while (0)
3726 #define stat_inc_bg_cp_count(si) do { } while (0)
3727 #define stat_inc_call_count(si) do { } while (0)
3728 #define stat_inc_bggc_count(si) do { } while (0)
3729 #define stat_io_skip_bggc_count(sbi) do { } while (0)
3730 #define stat_other_skip_bggc_count(sbi) do { } while (0)
3731 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
3732 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
3733 #define stat_inc_total_hit(sbi) do { } while (0)
3734 #define stat_inc_rbtree_node_hit(sbi) do { } while (0)
3735 #define stat_inc_largest_node_hit(sbi) do { } while (0)
3736 #define stat_inc_cached_node_hit(sbi) do { } while (0)
3737 #define stat_inc_inline_xattr(inode) do { } while (0)
3738 #define stat_dec_inline_xattr(inode) do { } while (0)
3739 #define stat_inc_inline_inode(inode) do { } while (0)
3740 #define stat_dec_inline_inode(inode) do { } while (0)
3741 #define stat_inc_inline_dir(inode) do { } while (0)
3742 #define stat_dec_inline_dir(inode) do { } while (0)
3743 #define stat_inc_compr_inode(inode) do { } while (0)
3744 #define stat_dec_compr_inode(inode) do { } while (0)
3745 #define stat_add_compr_blocks(inode, blocks) do { } while (0)
3746 #define stat_sub_compr_blocks(inode, blocks) do { } while (0)
3747 #define stat_inc_atomic_write(inode) do { } while (0)
3748 #define stat_dec_atomic_write(inode) do { } while (0)
3749 #define stat_update_max_atomic_write(inode) do { } while (0)
3750 #define stat_inc_volatile_write(inode) do { } while (0)
3751 #define stat_dec_volatile_write(inode) do { } while (0)
3752 #define stat_update_max_volatile_write(inode) do { } while (0)
3753 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
3754 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
3755 #define stat_inc_block_count(sbi, curseg) do { } while (0)
3756 #define stat_inc_inplace_blocks(sbi) do { } while (0)
3757 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
3758 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
3759 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
3760 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
3761
f2fs_build_stats(struct f2fs_sb_info * sbi)3762 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)3763 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)3764 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)3765 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)3766 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3767 #endif
3768
3769 extern const struct file_operations f2fs_dir_operations;
3770 #ifdef CONFIG_UNICODE
3771 extern const struct dentry_operations f2fs_dentry_ops;
3772 #endif
3773 extern const struct file_operations f2fs_file_operations;
3774 extern const struct inode_operations f2fs_file_inode_operations;
3775 extern const struct address_space_operations f2fs_dblock_aops;
3776 extern const struct address_space_operations f2fs_node_aops;
3777 extern const struct address_space_operations f2fs_meta_aops;
3778 extern const struct inode_operations f2fs_dir_inode_operations;
3779 extern const struct inode_operations f2fs_symlink_inode_operations;
3780 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3781 extern const struct inode_operations f2fs_special_inode_operations;
3782 extern struct kmem_cache *f2fs_inode_entry_slab;
3783
3784 /*
3785 * inline.c
3786 */
3787 bool f2fs_may_inline_data(struct inode *inode);
3788 bool f2fs_may_inline_dentry(struct inode *inode);
3789 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3790 void f2fs_truncate_inline_inode(struct inode *inode,
3791 struct page *ipage, u64 from);
3792 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3793 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3794 int f2fs_convert_inline_inode(struct inode *inode);
3795 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3796 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3797 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3798 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3799 const struct f2fs_filename *fname,
3800 struct page **res_page);
3801 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3802 struct page *ipage);
3803 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3804 struct inode *inode, nid_t ino, umode_t mode);
3805 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3806 struct page *page, struct inode *dir,
3807 struct inode *inode);
3808 bool f2fs_empty_inline_dir(struct inode *dir);
3809 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3810 struct fscrypt_str *fstr);
3811 int f2fs_inline_data_fiemap(struct inode *inode,
3812 struct fiemap_extent_info *fieinfo,
3813 __u64 start, __u64 len);
3814
3815 /*
3816 * shrinker.c
3817 */
3818 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3819 struct shrink_control *sc);
3820 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3821 struct shrink_control *sc);
3822 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3823 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3824
3825 /*
3826 * extent_cache.c
3827 */
3828 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3829 struct rb_entry *cached_re, unsigned int ofs);
3830 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
3831 struct rb_root_cached *root,
3832 struct rb_node **parent,
3833 unsigned long long key, bool *left_most);
3834 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3835 struct rb_root_cached *root,
3836 struct rb_node **parent,
3837 unsigned int ofs, bool *leftmost);
3838 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3839 struct rb_entry *cached_re, unsigned int ofs,
3840 struct rb_entry **prev_entry, struct rb_entry **next_entry,
3841 struct rb_node ***insert_p, struct rb_node **insert_parent,
3842 bool force, bool *leftmost);
3843 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3844 struct rb_root_cached *root, bool check_key);
3845 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3846 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
3847 void f2fs_drop_extent_tree(struct inode *inode);
3848 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3849 void f2fs_destroy_extent_tree(struct inode *inode);
3850 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3851 struct extent_info *ei);
3852 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3853 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3854 pgoff_t fofs, block_t blkaddr, unsigned int len);
3855 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3856 int __init f2fs_create_extent_cache(void);
3857 void f2fs_destroy_extent_cache(void);
3858
3859 /*
3860 * sysfs.c
3861 */
3862 int __init f2fs_init_sysfs(void);
3863 void f2fs_exit_sysfs(void);
3864 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3865 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3866
3867 /* verity.c */
3868 extern const struct fsverity_operations f2fs_verityops;
3869
3870 /*
3871 * crypto support
3872 */
f2fs_encrypted_file(struct inode * inode)3873 static inline bool f2fs_encrypted_file(struct inode *inode)
3874 {
3875 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3876 }
3877
f2fs_set_encrypted_inode(struct inode * inode)3878 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3879 {
3880 #ifdef CONFIG_FS_ENCRYPTION
3881 file_set_encrypt(inode);
3882 f2fs_set_inode_flags(inode);
3883 #endif
3884 }
3885
3886 /*
3887 * Returns true if the reads of the inode's data need to undergo some
3888 * postprocessing step, like decryption or authenticity verification.
3889 */
f2fs_post_read_required(struct inode * inode)3890 static inline bool f2fs_post_read_required(struct inode *inode)
3891 {
3892 return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
3893 f2fs_compressed_file(inode);
3894 }
3895
3896 /*
3897 * compress.c
3898 */
3899 #ifdef CONFIG_F2FS_FS_COMPRESSION
3900 bool f2fs_is_compressed_page(struct page *page);
3901 struct page *f2fs_compress_control_page(struct page *page);
3902 int f2fs_prepare_compress_overwrite(struct inode *inode,
3903 struct page **pagep, pgoff_t index, void **fsdata);
3904 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
3905 pgoff_t index, unsigned copied);
3906 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
3907 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
3908 bool f2fs_is_compress_backend_ready(struct inode *inode);
3909 int f2fs_init_compress_mempool(void);
3910 void f2fs_destroy_compress_mempool(void);
3911 void f2fs_decompress_pages(struct bio *bio, struct page *page, bool verity);
3912 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
3913 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
3914 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
3915 int f2fs_write_multi_pages(struct compress_ctx *cc,
3916 int *submitted,
3917 struct writeback_control *wbc,
3918 enum iostat_type io_type);
3919 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
3920 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
3921 unsigned nr_pages, sector_t *last_block_in_bio,
3922 bool is_readahead, bool for_write);
3923 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
3924 void f2fs_free_dic(struct decompress_io_ctx *dic);
3925 void f2fs_decompress_end_io(struct page **rpages,
3926 unsigned int cluster_size, bool err, bool verity);
3927 int f2fs_init_compress_ctx(struct compress_ctx *cc);
3928 void f2fs_destroy_compress_ctx(struct compress_ctx *cc);
3929 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
3930 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
3931 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
3932 int __init f2fs_init_compress_cache(void);
3933 void f2fs_destroy_compress_cache(void);
3934 #else
f2fs_is_compressed_page(struct page * page)3935 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)3936 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
3937 {
3938 if (!f2fs_compressed_file(inode))
3939 return true;
3940 /* not support compression */
3941 return false;
3942 }
f2fs_compress_control_page(struct page * page)3943 static inline struct page *f2fs_compress_control_page(struct page *page)
3944 {
3945 WARN_ON_ONCE(1);
3946 return ERR_PTR(-EINVAL);
3947 }
f2fs_init_compress_mempool(void)3948 static inline int f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)3949 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)3950 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)3951 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)3952 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)3953 static inline void f2fs_destroy_compress_cache(void) { }
3954 #endif
3955
set_compress_context(struct inode * inode)3956 static inline void set_compress_context(struct inode *inode)
3957 {
3958 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3959
3960 F2FS_I(inode)->i_compress_algorithm =
3961 F2FS_OPTION(sbi).compress_algorithm;
3962 F2FS_I(inode)->i_log_cluster_size =
3963 F2FS_OPTION(sbi).compress_log_size;
3964 F2FS_I(inode)->i_cluster_size =
3965 1 << F2FS_I(inode)->i_log_cluster_size;
3966 F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
3967 set_inode_flag(inode, FI_COMPRESSED_FILE);
3968 stat_inc_compr_inode(inode);
3969 f2fs_mark_inode_dirty_sync(inode, true);
3970 }
3971
f2fs_disable_compressed_file(struct inode * inode)3972 static inline bool f2fs_disable_compressed_file(struct inode *inode)
3973 {
3974 struct f2fs_inode_info *fi = F2FS_I(inode);
3975
3976 if (!f2fs_compressed_file(inode))
3977 return true;
3978 if (S_ISREG(inode->i_mode) &&
3979 (get_dirty_pages(inode) || atomic_read(&fi->i_compr_blocks)))
3980 return false;
3981
3982 fi->i_flags &= ~F2FS_COMPR_FL;
3983 stat_dec_compr_inode(inode);
3984 clear_inode_flag(inode, FI_COMPRESSED_FILE);
3985 f2fs_mark_inode_dirty_sync(inode, true);
3986 return true;
3987 }
3988
3989 #define F2FS_FEATURE_FUNCS(name, flagname) \
3990 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3991 { \
3992 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3993 }
3994
3995 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3996 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3997 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3998 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3999 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4000 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4001 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4002 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4003 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4004 F2FS_FEATURE_FUNCS(verity, VERITY);
4005 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4006 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4007 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4008
4009 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4010 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4011 block_t blkaddr)
4012 {
4013 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4014
4015 return test_bit(zno, FDEV(devi).blkz_seq);
4016 }
4017 #endif
4018
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4019 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4020 {
4021 return f2fs_sb_has_blkzoned(sbi);
4022 }
4023
f2fs_bdev_support_discard(struct block_device * bdev)4024 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4025 {
4026 return blk_queue_discard(bdev_get_queue(bdev)) ||
4027 bdev_is_zoned(bdev);
4028 }
4029
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4030 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4031 {
4032 int i;
4033
4034 if (!f2fs_is_multi_device(sbi))
4035 return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4036
4037 for (i = 0; i < sbi->s_ndevs; i++)
4038 if (f2fs_bdev_support_discard(FDEV(i).bdev))
4039 return true;
4040 return false;
4041 }
4042
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4043 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4044 {
4045 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4046 f2fs_hw_should_discard(sbi);
4047 }
4048
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4049 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4050 {
4051 int i;
4052
4053 if (!f2fs_is_multi_device(sbi))
4054 return bdev_read_only(sbi->sb->s_bdev);
4055
4056 for (i = 0; i < sbi->s_ndevs; i++)
4057 if (bdev_read_only(FDEV(i).bdev))
4058 return true;
4059 return false;
4060 }
4061
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4062 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4063 {
4064 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4065 }
4066
f2fs_may_compress(struct inode * inode)4067 static inline bool f2fs_may_compress(struct inode *inode)
4068 {
4069 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4070 f2fs_is_atomic_file(inode) ||
4071 f2fs_is_volatile_file(inode))
4072 return false;
4073 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4074 }
4075
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4076 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4077 u64 blocks, bool add)
4078 {
4079 int diff = F2FS_I(inode)->i_cluster_size - blocks;
4080 struct f2fs_inode_info *fi = F2FS_I(inode);
4081
4082 /* don't update i_compr_blocks if saved blocks were released */
4083 if (!add && !atomic_read(&fi->i_compr_blocks))
4084 return;
4085
4086 if (add) {
4087 atomic_add(diff, &fi->i_compr_blocks);
4088 stat_add_compr_blocks(inode, diff);
4089 } else {
4090 atomic_sub(diff, &fi->i_compr_blocks);
4091 stat_sub_compr_blocks(inode, diff);
4092 }
4093 f2fs_mark_inode_dirty_sync(inode, true);
4094 }
4095
block_unaligned_IO(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4096 static inline int block_unaligned_IO(struct inode *inode,
4097 struct kiocb *iocb, struct iov_iter *iter)
4098 {
4099 unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4100 unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4101 loff_t offset = iocb->ki_pos;
4102 unsigned long align = offset | iov_iter_alignment(iter);
4103
4104 return align & blocksize_mask;
4105 }
4106
allow_outplace_dio(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4107 static inline int allow_outplace_dio(struct inode *inode,
4108 struct kiocb *iocb, struct iov_iter *iter)
4109 {
4110 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4111 int rw = iov_iter_rw(iter);
4112
4113 return (f2fs_lfs_mode(sbi) && (rw == WRITE) &&
4114 !block_unaligned_IO(inode, iocb, iter));
4115 }
4116
f2fs_force_buffered_io(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4117 static inline bool f2fs_force_buffered_io(struct inode *inode,
4118 struct kiocb *iocb, struct iov_iter *iter)
4119 {
4120 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4121 int rw = iov_iter_rw(iter);
4122
4123 if (f2fs_post_read_required(inode))
4124 return true;
4125 if (f2fs_is_multi_device(sbi))
4126 return true;
4127 /*
4128 * for blkzoned device, fallback direct IO to buffered IO, so
4129 * all IOs can be serialized by log-structured write.
4130 */
4131 if (f2fs_sb_has_blkzoned(sbi))
4132 return true;
4133 if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4134 if (block_unaligned_IO(inode, iocb, iter))
4135 return true;
4136 if (F2FS_IO_ALIGNED(sbi))
4137 return true;
4138 }
4139 if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) &&
4140 !IS_SWAPFILE(inode))
4141 return true;
4142
4143 return false;
4144 }
4145
4146 #ifdef CONFIG_F2FS_FAULT_INJECTION
4147 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4148 unsigned int type);
4149 #else
4150 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0)
4151 #endif
4152
is_journalled_quota(struct f2fs_sb_info * sbi)4153 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4154 {
4155 #ifdef CONFIG_QUOTA
4156 if (f2fs_sb_has_quota_ino(sbi))
4157 return true;
4158 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4159 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4160 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4161 return true;
4162 #endif
4163 return false;
4164 }
4165
4166 #define EFSBADCRC EBADMSG /* Bad CRC detected */
4167 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
4168
4169 #endif /* _LINUX_F2FS_H */
4170