1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VFIO: IOMMU DMA mapping support for Type1 IOMMU
4 *
5 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
6 * Author: Alex Williamson <alex.williamson@redhat.com>
7 *
8 * Derived from original vfio:
9 * Copyright 2010 Cisco Systems, Inc. All rights reserved.
10 * Author: Tom Lyon, pugs@cisco.com
11 *
12 * We arbitrarily define a Type1 IOMMU as one matching the below code.
13 * It could be called the x86 IOMMU as it's designed for AMD-Vi & Intel
14 * VT-d, but that makes it harder to re-use as theoretically anyone
15 * implementing a similar IOMMU could make use of this. We expect the
16 * IOMMU to support the IOMMU API and have few to no restrictions around
17 * the IOVA range that can be mapped. The Type1 IOMMU is currently
18 * optimized for relatively static mappings of a userspace process with
19 * userspace pages pinned into memory. We also assume devices and IOMMU
20 * domains are PCI based as the IOMMU API is still centered around a
21 * device/bus interface rather than a group interface.
22 */
23
24 #include <linux/compat.h>
25 #include <linux/device.h>
26 #include <linux/fs.h>
27 #include <linux/highmem.h>
28 #include <linux/iommu.h>
29 #include <linux/module.h>
30 #include <linux/mm.h>
31 #include <linux/kthread.h>
32 #include <linux/rbtree.h>
33 #include <linux/sched/signal.h>
34 #include <linux/sched/mm.h>
35 #include <linux/slab.h>
36 #include <linux/uaccess.h>
37 #include <linux/vfio.h>
38 #include <linux/workqueue.h>
39 #include <linux/notifier.h>
40 #include <linux/irqdomain.h>
41 #include "vfio.h"
42
43 #define DRIVER_VERSION "0.2"
44 #define DRIVER_AUTHOR "Alex Williamson <alex.williamson@redhat.com>"
45 #define DRIVER_DESC "Type1 IOMMU driver for VFIO"
46
47 static bool allow_unsafe_interrupts;
48 module_param_named(allow_unsafe_interrupts,
49 allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR);
50 MODULE_PARM_DESC(allow_unsafe_interrupts,
51 "Enable VFIO IOMMU support for on platforms without interrupt remapping support.");
52
53 static bool disable_hugepages;
54 module_param_named(disable_hugepages,
55 disable_hugepages, bool, S_IRUGO | S_IWUSR);
56 MODULE_PARM_DESC(disable_hugepages,
57 "Disable VFIO IOMMU support for IOMMU hugepages.");
58
59 static unsigned int dma_entry_limit __read_mostly = U16_MAX;
60 module_param_named(dma_entry_limit, dma_entry_limit, uint, 0644);
61 MODULE_PARM_DESC(dma_entry_limit,
62 "Maximum number of user DMA mappings per container (65535).");
63
64 struct vfio_iommu {
65 struct list_head domain_list;
66 struct list_head iova_list;
67 struct mutex lock;
68 struct rb_root dma_list;
69 struct list_head device_list;
70 struct mutex device_list_lock;
71 unsigned int dma_avail;
72 unsigned int vaddr_invalid_count;
73 uint64_t pgsize_bitmap;
74 uint64_t num_non_pinned_groups;
75 wait_queue_head_t vaddr_wait;
76 bool v2;
77 bool nesting;
78 bool dirty_page_tracking;
79 bool container_open;
80 struct list_head emulated_iommu_groups;
81 };
82
83 struct vfio_domain {
84 struct iommu_domain *domain;
85 struct list_head next;
86 struct list_head group_list;
87 bool fgsp : 1; /* Fine-grained super pages */
88 bool enforce_cache_coherency : 1;
89 };
90
91 struct vfio_dma {
92 struct rb_node node;
93 dma_addr_t iova; /* Device address */
94 unsigned long vaddr; /* Process virtual addr */
95 size_t size; /* Map size (bytes) */
96 int prot; /* IOMMU_READ/WRITE */
97 bool iommu_mapped;
98 bool lock_cap; /* capable(CAP_IPC_LOCK) */
99 bool vaddr_invalid;
100 struct task_struct *task;
101 struct rb_root pfn_list; /* Ex-user pinned pfn list */
102 unsigned long *bitmap;
103 };
104
105 struct vfio_batch {
106 struct page **pages; /* for pin_user_pages_remote */
107 struct page *fallback_page; /* if pages alloc fails */
108 int capacity; /* length of pages array */
109 int size; /* of batch currently */
110 int offset; /* of next entry in pages */
111 };
112
113 struct vfio_iommu_group {
114 struct iommu_group *iommu_group;
115 struct list_head next;
116 bool pinned_page_dirty_scope;
117 };
118
119 struct vfio_iova {
120 struct list_head list;
121 dma_addr_t start;
122 dma_addr_t end;
123 };
124
125 /*
126 * Guest RAM pinning working set or DMA target
127 */
128 struct vfio_pfn {
129 struct rb_node node;
130 dma_addr_t iova; /* Device address */
131 unsigned long pfn; /* Host pfn */
132 unsigned int ref_count;
133 };
134
135 struct vfio_regions {
136 struct list_head list;
137 dma_addr_t iova;
138 phys_addr_t phys;
139 size_t len;
140 };
141
142 #define DIRTY_BITMAP_BYTES(n) (ALIGN(n, BITS_PER_TYPE(u64)) / BITS_PER_BYTE)
143
144 /*
145 * Input argument of number of bits to bitmap_set() is unsigned integer, which
146 * further casts to signed integer for unaligned multi-bit operation,
147 * __bitmap_set().
148 * Then maximum bitmap size supported is 2^31 bits divided by 2^3 bits/byte,
149 * that is 2^28 (256 MB) which maps to 2^31 * 2^12 = 2^43 (8TB) on 4K page
150 * system.
151 */
152 #define DIRTY_BITMAP_PAGES_MAX ((u64)INT_MAX)
153 #define DIRTY_BITMAP_SIZE_MAX DIRTY_BITMAP_BYTES(DIRTY_BITMAP_PAGES_MAX)
154
155 #define WAITED 1
156
157 static int put_pfn(unsigned long pfn, int prot);
158
159 static struct vfio_iommu_group*
160 vfio_iommu_find_iommu_group(struct vfio_iommu *iommu,
161 struct iommu_group *iommu_group);
162
163 /*
164 * This code handles mapping and unmapping of user data buffers
165 * into DMA'ble space using the IOMMU
166 */
167
vfio_find_dma(struct vfio_iommu * iommu,dma_addr_t start,size_t size)168 static struct vfio_dma *vfio_find_dma(struct vfio_iommu *iommu,
169 dma_addr_t start, size_t size)
170 {
171 struct rb_node *node = iommu->dma_list.rb_node;
172
173 while (node) {
174 struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
175
176 if (start + size <= dma->iova)
177 node = node->rb_left;
178 else if (start >= dma->iova + dma->size)
179 node = node->rb_right;
180 else
181 return dma;
182 }
183
184 return NULL;
185 }
186
vfio_find_dma_first_node(struct vfio_iommu * iommu,dma_addr_t start,u64 size)187 static struct rb_node *vfio_find_dma_first_node(struct vfio_iommu *iommu,
188 dma_addr_t start, u64 size)
189 {
190 struct rb_node *res = NULL;
191 struct rb_node *node = iommu->dma_list.rb_node;
192 struct vfio_dma *dma_res = NULL;
193
194 while (node) {
195 struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
196
197 if (start < dma->iova + dma->size) {
198 res = node;
199 dma_res = dma;
200 if (start >= dma->iova)
201 break;
202 node = node->rb_left;
203 } else {
204 node = node->rb_right;
205 }
206 }
207 if (res && size && dma_res->iova >= start + size)
208 res = NULL;
209 return res;
210 }
211
vfio_link_dma(struct vfio_iommu * iommu,struct vfio_dma * new)212 static void vfio_link_dma(struct vfio_iommu *iommu, struct vfio_dma *new)
213 {
214 struct rb_node **link = &iommu->dma_list.rb_node, *parent = NULL;
215 struct vfio_dma *dma;
216
217 while (*link) {
218 parent = *link;
219 dma = rb_entry(parent, struct vfio_dma, node);
220
221 if (new->iova + new->size <= dma->iova)
222 link = &(*link)->rb_left;
223 else
224 link = &(*link)->rb_right;
225 }
226
227 rb_link_node(&new->node, parent, link);
228 rb_insert_color(&new->node, &iommu->dma_list);
229 }
230
vfio_unlink_dma(struct vfio_iommu * iommu,struct vfio_dma * old)231 static void vfio_unlink_dma(struct vfio_iommu *iommu, struct vfio_dma *old)
232 {
233 rb_erase(&old->node, &iommu->dma_list);
234 }
235
236
vfio_dma_bitmap_alloc(struct vfio_dma * dma,size_t pgsize)237 static int vfio_dma_bitmap_alloc(struct vfio_dma *dma, size_t pgsize)
238 {
239 uint64_t npages = dma->size / pgsize;
240
241 if (npages > DIRTY_BITMAP_PAGES_MAX)
242 return -EINVAL;
243
244 /*
245 * Allocate extra 64 bits that are used to calculate shift required for
246 * bitmap_shift_left() to manipulate and club unaligned number of pages
247 * in adjacent vfio_dma ranges.
248 */
249 dma->bitmap = kvzalloc(DIRTY_BITMAP_BYTES(npages) + sizeof(u64),
250 GFP_KERNEL);
251 if (!dma->bitmap)
252 return -ENOMEM;
253
254 return 0;
255 }
256
vfio_dma_bitmap_free(struct vfio_dma * dma)257 static void vfio_dma_bitmap_free(struct vfio_dma *dma)
258 {
259 kvfree(dma->bitmap);
260 dma->bitmap = NULL;
261 }
262
vfio_dma_populate_bitmap(struct vfio_dma * dma,size_t pgsize)263 static void vfio_dma_populate_bitmap(struct vfio_dma *dma, size_t pgsize)
264 {
265 struct rb_node *p;
266 unsigned long pgshift = __ffs(pgsize);
267
268 for (p = rb_first(&dma->pfn_list); p; p = rb_next(p)) {
269 struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn, node);
270
271 bitmap_set(dma->bitmap, (vpfn->iova - dma->iova) >> pgshift, 1);
272 }
273 }
274
vfio_iommu_populate_bitmap_full(struct vfio_iommu * iommu)275 static void vfio_iommu_populate_bitmap_full(struct vfio_iommu *iommu)
276 {
277 struct rb_node *n;
278 unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
279
280 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
281 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
282
283 bitmap_set(dma->bitmap, 0, dma->size >> pgshift);
284 }
285 }
286
vfio_dma_bitmap_alloc_all(struct vfio_iommu * iommu,size_t pgsize)287 static int vfio_dma_bitmap_alloc_all(struct vfio_iommu *iommu, size_t pgsize)
288 {
289 struct rb_node *n;
290
291 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
292 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
293 int ret;
294
295 ret = vfio_dma_bitmap_alloc(dma, pgsize);
296 if (ret) {
297 struct rb_node *p;
298
299 for (p = rb_prev(n); p; p = rb_prev(p)) {
300 struct vfio_dma *dma = rb_entry(n,
301 struct vfio_dma, node);
302
303 vfio_dma_bitmap_free(dma);
304 }
305 return ret;
306 }
307 vfio_dma_populate_bitmap(dma, pgsize);
308 }
309 return 0;
310 }
311
vfio_dma_bitmap_free_all(struct vfio_iommu * iommu)312 static void vfio_dma_bitmap_free_all(struct vfio_iommu *iommu)
313 {
314 struct rb_node *n;
315
316 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
317 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
318
319 vfio_dma_bitmap_free(dma);
320 }
321 }
322
323 /*
324 * Helper Functions for host iova-pfn list
325 */
vfio_find_vpfn(struct vfio_dma * dma,dma_addr_t iova)326 static struct vfio_pfn *vfio_find_vpfn(struct vfio_dma *dma, dma_addr_t iova)
327 {
328 struct vfio_pfn *vpfn;
329 struct rb_node *node = dma->pfn_list.rb_node;
330
331 while (node) {
332 vpfn = rb_entry(node, struct vfio_pfn, node);
333
334 if (iova < vpfn->iova)
335 node = node->rb_left;
336 else if (iova > vpfn->iova)
337 node = node->rb_right;
338 else
339 return vpfn;
340 }
341 return NULL;
342 }
343
vfio_link_pfn(struct vfio_dma * dma,struct vfio_pfn * new)344 static void vfio_link_pfn(struct vfio_dma *dma,
345 struct vfio_pfn *new)
346 {
347 struct rb_node **link, *parent = NULL;
348 struct vfio_pfn *vpfn;
349
350 link = &dma->pfn_list.rb_node;
351 while (*link) {
352 parent = *link;
353 vpfn = rb_entry(parent, struct vfio_pfn, node);
354
355 if (new->iova < vpfn->iova)
356 link = &(*link)->rb_left;
357 else
358 link = &(*link)->rb_right;
359 }
360
361 rb_link_node(&new->node, parent, link);
362 rb_insert_color(&new->node, &dma->pfn_list);
363 }
364
vfio_unlink_pfn(struct vfio_dma * dma,struct vfio_pfn * old)365 static void vfio_unlink_pfn(struct vfio_dma *dma, struct vfio_pfn *old)
366 {
367 rb_erase(&old->node, &dma->pfn_list);
368 }
369
vfio_add_to_pfn_list(struct vfio_dma * dma,dma_addr_t iova,unsigned long pfn)370 static int vfio_add_to_pfn_list(struct vfio_dma *dma, dma_addr_t iova,
371 unsigned long pfn)
372 {
373 struct vfio_pfn *vpfn;
374
375 vpfn = kzalloc(sizeof(*vpfn), GFP_KERNEL);
376 if (!vpfn)
377 return -ENOMEM;
378
379 vpfn->iova = iova;
380 vpfn->pfn = pfn;
381 vpfn->ref_count = 1;
382 vfio_link_pfn(dma, vpfn);
383 return 0;
384 }
385
vfio_remove_from_pfn_list(struct vfio_dma * dma,struct vfio_pfn * vpfn)386 static void vfio_remove_from_pfn_list(struct vfio_dma *dma,
387 struct vfio_pfn *vpfn)
388 {
389 vfio_unlink_pfn(dma, vpfn);
390 kfree(vpfn);
391 }
392
vfio_iova_get_vfio_pfn(struct vfio_dma * dma,unsigned long iova)393 static struct vfio_pfn *vfio_iova_get_vfio_pfn(struct vfio_dma *dma,
394 unsigned long iova)
395 {
396 struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
397
398 if (vpfn)
399 vpfn->ref_count++;
400 return vpfn;
401 }
402
vfio_iova_put_vfio_pfn(struct vfio_dma * dma,struct vfio_pfn * vpfn)403 static int vfio_iova_put_vfio_pfn(struct vfio_dma *dma, struct vfio_pfn *vpfn)
404 {
405 int ret = 0;
406
407 vpfn->ref_count--;
408 if (!vpfn->ref_count) {
409 ret = put_pfn(vpfn->pfn, dma->prot);
410 vfio_remove_from_pfn_list(dma, vpfn);
411 }
412 return ret;
413 }
414
vfio_lock_acct(struct vfio_dma * dma,long npage,bool async)415 static int vfio_lock_acct(struct vfio_dma *dma, long npage, bool async)
416 {
417 struct mm_struct *mm;
418 int ret;
419
420 if (!npage)
421 return 0;
422
423 mm = async ? get_task_mm(dma->task) : dma->task->mm;
424 if (!mm)
425 return -ESRCH; /* process exited */
426
427 ret = mmap_write_lock_killable(mm);
428 if (!ret) {
429 ret = __account_locked_vm(mm, abs(npage), npage > 0, dma->task,
430 dma->lock_cap);
431 mmap_write_unlock(mm);
432 }
433
434 if (async)
435 mmput(mm);
436
437 return ret;
438 }
439
440 /*
441 * Some mappings aren't backed by a struct page, for example an mmap'd
442 * MMIO range for our own or another device. These use a different
443 * pfn conversion and shouldn't be tracked as locked pages.
444 * For compound pages, any driver that sets the reserved bit in head
445 * page needs to set the reserved bit in all subpages to be safe.
446 */
is_invalid_reserved_pfn(unsigned long pfn)447 static bool is_invalid_reserved_pfn(unsigned long pfn)
448 {
449 if (pfn_valid(pfn))
450 return PageReserved(pfn_to_page(pfn));
451
452 return true;
453 }
454
put_pfn(unsigned long pfn,int prot)455 static int put_pfn(unsigned long pfn, int prot)
456 {
457 if (!is_invalid_reserved_pfn(pfn)) {
458 struct page *page = pfn_to_page(pfn);
459
460 unpin_user_pages_dirty_lock(&page, 1, prot & IOMMU_WRITE);
461 return 1;
462 }
463 return 0;
464 }
465
466 #define VFIO_BATCH_MAX_CAPACITY (PAGE_SIZE / sizeof(struct page *))
467
vfio_batch_init(struct vfio_batch * batch)468 static void vfio_batch_init(struct vfio_batch *batch)
469 {
470 batch->size = 0;
471 batch->offset = 0;
472
473 if (unlikely(disable_hugepages))
474 goto fallback;
475
476 batch->pages = (struct page **) __get_free_page(GFP_KERNEL);
477 if (!batch->pages)
478 goto fallback;
479
480 batch->capacity = VFIO_BATCH_MAX_CAPACITY;
481 return;
482
483 fallback:
484 batch->pages = &batch->fallback_page;
485 batch->capacity = 1;
486 }
487
vfio_batch_unpin(struct vfio_batch * batch,struct vfio_dma * dma)488 static void vfio_batch_unpin(struct vfio_batch *batch, struct vfio_dma *dma)
489 {
490 while (batch->size) {
491 unsigned long pfn = page_to_pfn(batch->pages[batch->offset]);
492
493 put_pfn(pfn, dma->prot);
494 batch->offset++;
495 batch->size--;
496 }
497 }
498
vfio_batch_fini(struct vfio_batch * batch)499 static void vfio_batch_fini(struct vfio_batch *batch)
500 {
501 if (batch->capacity == VFIO_BATCH_MAX_CAPACITY)
502 free_page((unsigned long)batch->pages);
503 }
504
follow_fault_pfn(struct vm_area_struct * vma,struct mm_struct * mm,unsigned long vaddr,unsigned long * pfn,bool write_fault)505 static int follow_fault_pfn(struct vm_area_struct *vma, struct mm_struct *mm,
506 unsigned long vaddr, unsigned long *pfn,
507 bool write_fault)
508 {
509 pte_t *ptep;
510 spinlock_t *ptl;
511 int ret;
512
513 ret = follow_pte(vma->vm_mm, vaddr, &ptep, &ptl);
514 if (ret) {
515 bool unlocked = false;
516
517 ret = fixup_user_fault(mm, vaddr,
518 FAULT_FLAG_REMOTE |
519 (write_fault ? FAULT_FLAG_WRITE : 0),
520 &unlocked);
521 if (unlocked)
522 return -EAGAIN;
523
524 if (ret)
525 return ret;
526
527 ret = follow_pte(vma->vm_mm, vaddr, &ptep, &ptl);
528 if (ret)
529 return ret;
530 }
531
532 if (write_fault && !pte_write(*ptep))
533 ret = -EFAULT;
534 else
535 *pfn = pte_pfn(*ptep);
536
537 pte_unmap_unlock(ptep, ptl);
538 return ret;
539 }
540
541 /*
542 * Returns the positive number of pfns successfully obtained or a negative
543 * error code.
544 */
vaddr_get_pfns(struct mm_struct * mm,unsigned long vaddr,long npages,int prot,unsigned long * pfn,struct page ** pages)545 static int vaddr_get_pfns(struct mm_struct *mm, unsigned long vaddr,
546 long npages, int prot, unsigned long *pfn,
547 struct page **pages)
548 {
549 struct vm_area_struct *vma;
550 unsigned int flags = 0;
551 int ret;
552
553 if (prot & IOMMU_WRITE)
554 flags |= FOLL_WRITE;
555
556 mmap_read_lock(mm);
557 ret = pin_user_pages_remote(mm, vaddr, npages, flags | FOLL_LONGTERM,
558 pages, NULL, NULL);
559 if (ret > 0) {
560 int i;
561
562 /*
563 * The zero page is always resident, we don't need to pin it
564 * and it falls into our invalid/reserved test so we don't
565 * unpin in put_pfn(). Unpin all zero pages in the batch here.
566 */
567 for (i = 0 ; i < ret; i++) {
568 if (unlikely(is_zero_pfn(page_to_pfn(pages[i]))))
569 unpin_user_page(pages[i]);
570 }
571
572 *pfn = page_to_pfn(pages[0]);
573 goto done;
574 }
575
576 vaddr = untagged_addr(vaddr);
577
578 retry:
579 vma = vma_lookup(mm, vaddr);
580
581 if (vma && vma->vm_flags & VM_PFNMAP) {
582 ret = follow_fault_pfn(vma, mm, vaddr, pfn, prot & IOMMU_WRITE);
583 if (ret == -EAGAIN)
584 goto retry;
585
586 if (!ret) {
587 if (is_invalid_reserved_pfn(*pfn))
588 ret = 1;
589 else
590 ret = -EFAULT;
591 }
592 }
593 done:
594 mmap_read_unlock(mm);
595 return ret;
596 }
597
vfio_wait(struct vfio_iommu * iommu)598 static int vfio_wait(struct vfio_iommu *iommu)
599 {
600 DEFINE_WAIT(wait);
601
602 prepare_to_wait(&iommu->vaddr_wait, &wait, TASK_KILLABLE);
603 mutex_unlock(&iommu->lock);
604 schedule();
605 mutex_lock(&iommu->lock);
606 finish_wait(&iommu->vaddr_wait, &wait);
607 if (kthread_should_stop() || !iommu->container_open ||
608 fatal_signal_pending(current)) {
609 return -EFAULT;
610 }
611 return WAITED;
612 }
613
614 /*
615 * Find dma struct and wait for its vaddr to be valid. iommu lock is dropped
616 * if the task waits, but is re-locked on return. Return result in *dma_p.
617 * Return 0 on success with no waiting, WAITED on success if waited, and -errno
618 * on error.
619 */
vfio_find_dma_valid(struct vfio_iommu * iommu,dma_addr_t start,size_t size,struct vfio_dma ** dma_p)620 static int vfio_find_dma_valid(struct vfio_iommu *iommu, dma_addr_t start,
621 size_t size, struct vfio_dma **dma_p)
622 {
623 int ret = 0;
624
625 do {
626 *dma_p = vfio_find_dma(iommu, start, size);
627 if (!*dma_p)
628 return -EINVAL;
629 else if (!(*dma_p)->vaddr_invalid)
630 return ret;
631 else
632 ret = vfio_wait(iommu);
633 } while (ret == WAITED);
634
635 return ret;
636 }
637
638 /*
639 * Wait for all vaddr in the dma_list to become valid. iommu lock is dropped
640 * if the task waits, but is re-locked on return. Return 0 on success with no
641 * waiting, WAITED on success if waited, and -errno on error.
642 */
vfio_wait_all_valid(struct vfio_iommu * iommu)643 static int vfio_wait_all_valid(struct vfio_iommu *iommu)
644 {
645 int ret = 0;
646
647 while (iommu->vaddr_invalid_count && ret >= 0)
648 ret = vfio_wait(iommu);
649
650 return ret;
651 }
652
653 /*
654 * Attempt to pin pages. We really don't want to track all the pfns and
655 * the iommu can only map chunks of consecutive pfns anyway, so get the
656 * first page and all consecutive pages with the same locking.
657 */
vfio_pin_pages_remote(struct vfio_dma * dma,unsigned long vaddr,long npage,unsigned long * pfn_base,unsigned long limit,struct vfio_batch * batch)658 static long vfio_pin_pages_remote(struct vfio_dma *dma, unsigned long vaddr,
659 long npage, unsigned long *pfn_base,
660 unsigned long limit, struct vfio_batch *batch)
661 {
662 unsigned long pfn;
663 struct mm_struct *mm = current->mm;
664 long ret, pinned = 0, lock_acct = 0;
665 bool rsvd;
666 dma_addr_t iova = vaddr - dma->vaddr + dma->iova;
667
668 /* This code path is only user initiated */
669 if (!mm)
670 return -ENODEV;
671
672 if (batch->size) {
673 /* Leftover pages in batch from an earlier call. */
674 *pfn_base = page_to_pfn(batch->pages[batch->offset]);
675 pfn = *pfn_base;
676 rsvd = is_invalid_reserved_pfn(*pfn_base);
677 } else {
678 *pfn_base = 0;
679 }
680
681 while (npage) {
682 if (!batch->size) {
683 /* Empty batch, so refill it. */
684 long req_pages = min_t(long, npage, batch->capacity);
685
686 ret = vaddr_get_pfns(mm, vaddr, req_pages, dma->prot,
687 &pfn, batch->pages);
688 if (ret < 0)
689 goto unpin_out;
690
691 batch->size = ret;
692 batch->offset = 0;
693
694 if (!*pfn_base) {
695 *pfn_base = pfn;
696 rsvd = is_invalid_reserved_pfn(*pfn_base);
697 }
698 }
699
700 /*
701 * pfn is preset for the first iteration of this inner loop and
702 * updated at the end to handle a VM_PFNMAP pfn. In that case,
703 * batch->pages isn't valid (there's no struct page), so allow
704 * batch->pages to be touched only when there's more than one
705 * pfn to check, which guarantees the pfns are from a
706 * !VM_PFNMAP vma.
707 */
708 while (true) {
709 if (pfn != *pfn_base + pinned ||
710 rsvd != is_invalid_reserved_pfn(pfn))
711 goto out;
712
713 /*
714 * Reserved pages aren't counted against the user,
715 * externally pinned pages are already counted against
716 * the user.
717 */
718 if (!rsvd && !vfio_find_vpfn(dma, iova)) {
719 if (!dma->lock_cap &&
720 mm->locked_vm + lock_acct + 1 > limit) {
721 pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n",
722 __func__, limit << PAGE_SHIFT);
723 ret = -ENOMEM;
724 goto unpin_out;
725 }
726 lock_acct++;
727 }
728
729 pinned++;
730 npage--;
731 vaddr += PAGE_SIZE;
732 iova += PAGE_SIZE;
733 batch->offset++;
734 batch->size--;
735
736 if (!batch->size)
737 break;
738
739 pfn = page_to_pfn(batch->pages[batch->offset]);
740 }
741
742 if (unlikely(disable_hugepages))
743 break;
744 }
745
746 out:
747 ret = vfio_lock_acct(dma, lock_acct, false);
748
749 unpin_out:
750 if (batch->size == 1 && !batch->offset) {
751 /* May be a VM_PFNMAP pfn, which the batch can't remember. */
752 put_pfn(pfn, dma->prot);
753 batch->size = 0;
754 }
755
756 if (ret < 0) {
757 if (pinned && !rsvd) {
758 for (pfn = *pfn_base ; pinned ; pfn++, pinned--)
759 put_pfn(pfn, dma->prot);
760 }
761 vfio_batch_unpin(batch, dma);
762
763 return ret;
764 }
765
766 return pinned;
767 }
768
vfio_unpin_pages_remote(struct vfio_dma * dma,dma_addr_t iova,unsigned long pfn,long npage,bool do_accounting)769 static long vfio_unpin_pages_remote(struct vfio_dma *dma, dma_addr_t iova,
770 unsigned long pfn, long npage,
771 bool do_accounting)
772 {
773 long unlocked = 0, locked = 0;
774 long i;
775
776 for (i = 0; i < npage; i++, iova += PAGE_SIZE) {
777 if (put_pfn(pfn++, dma->prot)) {
778 unlocked++;
779 if (vfio_find_vpfn(dma, iova))
780 locked++;
781 }
782 }
783
784 if (do_accounting)
785 vfio_lock_acct(dma, locked - unlocked, true);
786
787 return unlocked;
788 }
789
vfio_pin_page_external(struct vfio_dma * dma,unsigned long vaddr,unsigned long * pfn_base,bool do_accounting)790 static int vfio_pin_page_external(struct vfio_dma *dma, unsigned long vaddr,
791 unsigned long *pfn_base, bool do_accounting)
792 {
793 struct page *pages[1];
794 struct mm_struct *mm;
795 int ret;
796
797 mm = get_task_mm(dma->task);
798 if (!mm)
799 return -ENODEV;
800
801 ret = vaddr_get_pfns(mm, vaddr, 1, dma->prot, pfn_base, pages);
802 if (ret != 1)
803 goto out;
804
805 ret = 0;
806
807 if (do_accounting && !is_invalid_reserved_pfn(*pfn_base)) {
808 ret = vfio_lock_acct(dma, 1, true);
809 if (ret) {
810 put_pfn(*pfn_base, dma->prot);
811 if (ret == -ENOMEM)
812 pr_warn("%s: Task %s (%d) RLIMIT_MEMLOCK "
813 "(%ld) exceeded\n", __func__,
814 dma->task->comm, task_pid_nr(dma->task),
815 task_rlimit(dma->task, RLIMIT_MEMLOCK));
816 }
817 }
818
819 out:
820 mmput(mm);
821 return ret;
822 }
823
vfio_unpin_page_external(struct vfio_dma * dma,dma_addr_t iova,bool do_accounting)824 static int vfio_unpin_page_external(struct vfio_dma *dma, dma_addr_t iova,
825 bool do_accounting)
826 {
827 int unlocked;
828 struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
829
830 if (!vpfn)
831 return 0;
832
833 unlocked = vfio_iova_put_vfio_pfn(dma, vpfn);
834
835 if (do_accounting)
836 vfio_lock_acct(dma, -unlocked, true);
837
838 return unlocked;
839 }
840
vfio_iommu_type1_pin_pages(void * iommu_data,struct iommu_group * iommu_group,dma_addr_t user_iova,int npage,int prot,struct page ** pages)841 static int vfio_iommu_type1_pin_pages(void *iommu_data,
842 struct iommu_group *iommu_group,
843 dma_addr_t user_iova,
844 int npage, int prot,
845 struct page **pages)
846 {
847 struct vfio_iommu *iommu = iommu_data;
848 struct vfio_iommu_group *group;
849 int i, j, ret;
850 unsigned long remote_vaddr;
851 struct vfio_dma *dma;
852 bool do_accounting;
853 dma_addr_t iova;
854
855 if (!iommu || !pages)
856 return -EINVAL;
857
858 /* Supported for v2 version only */
859 if (!iommu->v2)
860 return -EACCES;
861
862 mutex_lock(&iommu->lock);
863
864 /*
865 * Wait for all necessary vaddr's to be valid so they can be used in
866 * the main loop without dropping the lock, to avoid racing vs unmap.
867 */
868 again:
869 if (iommu->vaddr_invalid_count) {
870 for (i = 0; i < npage; i++) {
871 iova = user_iova + PAGE_SIZE * i;
872 ret = vfio_find_dma_valid(iommu, iova, PAGE_SIZE, &dma);
873 if (ret < 0)
874 goto pin_done;
875 if (ret == WAITED)
876 goto again;
877 }
878 }
879
880 /* Fail if no dma_umap notifier is registered */
881 if (list_empty(&iommu->device_list)) {
882 ret = -EINVAL;
883 goto pin_done;
884 }
885
886 /*
887 * If iommu capable domain exist in the container then all pages are
888 * already pinned and accounted. Accounting should be done if there is no
889 * iommu capable domain in the container.
890 */
891 do_accounting = list_empty(&iommu->domain_list);
892
893 for (i = 0; i < npage; i++) {
894 unsigned long phys_pfn;
895 struct vfio_pfn *vpfn;
896
897 iova = user_iova + PAGE_SIZE * i;
898 dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
899 if (!dma) {
900 ret = -EINVAL;
901 goto pin_unwind;
902 }
903
904 if ((dma->prot & prot) != prot) {
905 ret = -EPERM;
906 goto pin_unwind;
907 }
908
909 vpfn = vfio_iova_get_vfio_pfn(dma, iova);
910 if (vpfn) {
911 pages[i] = pfn_to_page(vpfn->pfn);
912 continue;
913 }
914
915 remote_vaddr = dma->vaddr + (iova - dma->iova);
916 ret = vfio_pin_page_external(dma, remote_vaddr, &phys_pfn,
917 do_accounting);
918 if (ret)
919 goto pin_unwind;
920
921 ret = vfio_add_to_pfn_list(dma, iova, phys_pfn);
922 if (ret) {
923 if (put_pfn(phys_pfn, dma->prot) && do_accounting)
924 vfio_lock_acct(dma, -1, true);
925 goto pin_unwind;
926 }
927
928 pages[i] = pfn_to_page(phys_pfn);
929
930 if (iommu->dirty_page_tracking) {
931 unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
932
933 /*
934 * Bitmap populated with the smallest supported page
935 * size
936 */
937 bitmap_set(dma->bitmap,
938 (iova - dma->iova) >> pgshift, 1);
939 }
940 }
941 ret = i;
942
943 group = vfio_iommu_find_iommu_group(iommu, iommu_group);
944 if (!group->pinned_page_dirty_scope) {
945 group->pinned_page_dirty_scope = true;
946 iommu->num_non_pinned_groups--;
947 }
948
949 goto pin_done;
950
951 pin_unwind:
952 pages[i] = NULL;
953 for (j = 0; j < i; j++) {
954 dma_addr_t iova;
955
956 iova = user_iova + PAGE_SIZE * j;
957 dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
958 vfio_unpin_page_external(dma, iova, do_accounting);
959 pages[j] = NULL;
960 }
961 pin_done:
962 mutex_unlock(&iommu->lock);
963 return ret;
964 }
965
vfio_iommu_type1_unpin_pages(void * iommu_data,dma_addr_t user_iova,int npage)966 static void vfio_iommu_type1_unpin_pages(void *iommu_data,
967 dma_addr_t user_iova, int npage)
968 {
969 struct vfio_iommu *iommu = iommu_data;
970 bool do_accounting;
971 int i;
972
973 /* Supported for v2 version only */
974 if (WARN_ON(!iommu->v2))
975 return;
976
977 mutex_lock(&iommu->lock);
978
979 do_accounting = list_empty(&iommu->domain_list);
980 for (i = 0; i < npage; i++) {
981 dma_addr_t iova = user_iova + PAGE_SIZE * i;
982 struct vfio_dma *dma;
983
984 dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
985 if (!dma)
986 break;
987
988 vfio_unpin_page_external(dma, iova, do_accounting);
989 }
990
991 mutex_unlock(&iommu->lock);
992
993 WARN_ON(i != npage);
994 }
995
vfio_sync_unpin(struct vfio_dma * dma,struct vfio_domain * domain,struct list_head * regions,struct iommu_iotlb_gather * iotlb_gather)996 static long vfio_sync_unpin(struct vfio_dma *dma, struct vfio_domain *domain,
997 struct list_head *regions,
998 struct iommu_iotlb_gather *iotlb_gather)
999 {
1000 long unlocked = 0;
1001 struct vfio_regions *entry, *next;
1002
1003 iommu_iotlb_sync(domain->domain, iotlb_gather);
1004
1005 list_for_each_entry_safe(entry, next, regions, list) {
1006 unlocked += vfio_unpin_pages_remote(dma,
1007 entry->iova,
1008 entry->phys >> PAGE_SHIFT,
1009 entry->len >> PAGE_SHIFT,
1010 false);
1011 list_del(&entry->list);
1012 kfree(entry);
1013 }
1014
1015 cond_resched();
1016
1017 return unlocked;
1018 }
1019
1020 /*
1021 * Generally, VFIO needs to unpin remote pages after each IOTLB flush.
1022 * Therefore, when using IOTLB flush sync interface, VFIO need to keep track
1023 * of these regions (currently using a list).
1024 *
1025 * This value specifies maximum number of regions for each IOTLB flush sync.
1026 */
1027 #define VFIO_IOMMU_TLB_SYNC_MAX 512
1028
unmap_unpin_fast(struct vfio_domain * domain,struct vfio_dma * dma,dma_addr_t * iova,size_t len,phys_addr_t phys,long * unlocked,struct list_head * unmapped_list,int * unmapped_cnt,struct iommu_iotlb_gather * iotlb_gather)1029 static size_t unmap_unpin_fast(struct vfio_domain *domain,
1030 struct vfio_dma *dma, dma_addr_t *iova,
1031 size_t len, phys_addr_t phys, long *unlocked,
1032 struct list_head *unmapped_list,
1033 int *unmapped_cnt,
1034 struct iommu_iotlb_gather *iotlb_gather)
1035 {
1036 size_t unmapped = 0;
1037 struct vfio_regions *entry = kzalloc(sizeof(*entry), GFP_KERNEL);
1038
1039 if (entry) {
1040 unmapped = iommu_unmap_fast(domain->domain, *iova, len,
1041 iotlb_gather);
1042
1043 if (!unmapped) {
1044 kfree(entry);
1045 } else {
1046 entry->iova = *iova;
1047 entry->phys = phys;
1048 entry->len = unmapped;
1049 list_add_tail(&entry->list, unmapped_list);
1050
1051 *iova += unmapped;
1052 (*unmapped_cnt)++;
1053 }
1054 }
1055
1056 /*
1057 * Sync if the number of fast-unmap regions hits the limit
1058 * or in case of errors.
1059 */
1060 if (*unmapped_cnt >= VFIO_IOMMU_TLB_SYNC_MAX || !unmapped) {
1061 *unlocked += vfio_sync_unpin(dma, domain, unmapped_list,
1062 iotlb_gather);
1063 *unmapped_cnt = 0;
1064 }
1065
1066 return unmapped;
1067 }
1068
unmap_unpin_slow(struct vfio_domain * domain,struct vfio_dma * dma,dma_addr_t * iova,size_t len,phys_addr_t phys,long * unlocked)1069 static size_t unmap_unpin_slow(struct vfio_domain *domain,
1070 struct vfio_dma *dma, dma_addr_t *iova,
1071 size_t len, phys_addr_t phys,
1072 long *unlocked)
1073 {
1074 size_t unmapped = iommu_unmap(domain->domain, *iova, len);
1075
1076 if (unmapped) {
1077 *unlocked += vfio_unpin_pages_remote(dma, *iova,
1078 phys >> PAGE_SHIFT,
1079 unmapped >> PAGE_SHIFT,
1080 false);
1081 *iova += unmapped;
1082 cond_resched();
1083 }
1084 return unmapped;
1085 }
1086
vfio_unmap_unpin(struct vfio_iommu * iommu,struct vfio_dma * dma,bool do_accounting)1087 static long vfio_unmap_unpin(struct vfio_iommu *iommu, struct vfio_dma *dma,
1088 bool do_accounting)
1089 {
1090 dma_addr_t iova = dma->iova, end = dma->iova + dma->size;
1091 struct vfio_domain *domain, *d;
1092 LIST_HEAD(unmapped_region_list);
1093 struct iommu_iotlb_gather iotlb_gather;
1094 int unmapped_region_cnt = 0;
1095 long unlocked = 0;
1096
1097 if (!dma->size)
1098 return 0;
1099
1100 if (list_empty(&iommu->domain_list))
1101 return 0;
1102
1103 /*
1104 * We use the IOMMU to track the physical addresses, otherwise we'd
1105 * need a much more complicated tracking system. Unfortunately that
1106 * means we need to use one of the iommu domains to figure out the
1107 * pfns to unpin. The rest need to be unmapped in advance so we have
1108 * no iommu translations remaining when the pages are unpinned.
1109 */
1110 domain = d = list_first_entry(&iommu->domain_list,
1111 struct vfio_domain, next);
1112
1113 list_for_each_entry_continue(d, &iommu->domain_list, next) {
1114 iommu_unmap(d->domain, dma->iova, dma->size);
1115 cond_resched();
1116 }
1117
1118 iommu_iotlb_gather_init(&iotlb_gather);
1119 while (iova < end) {
1120 size_t unmapped, len;
1121 phys_addr_t phys, next;
1122
1123 phys = iommu_iova_to_phys(domain->domain, iova);
1124 if (WARN_ON(!phys)) {
1125 iova += PAGE_SIZE;
1126 continue;
1127 }
1128
1129 /*
1130 * To optimize for fewer iommu_unmap() calls, each of which
1131 * may require hardware cache flushing, try to find the
1132 * largest contiguous physical memory chunk to unmap.
1133 */
1134 for (len = PAGE_SIZE;
1135 !domain->fgsp && iova + len < end; len += PAGE_SIZE) {
1136 next = iommu_iova_to_phys(domain->domain, iova + len);
1137 if (next != phys + len)
1138 break;
1139 }
1140
1141 /*
1142 * First, try to use fast unmap/unpin. In case of failure,
1143 * switch to slow unmap/unpin path.
1144 */
1145 unmapped = unmap_unpin_fast(domain, dma, &iova, len, phys,
1146 &unlocked, &unmapped_region_list,
1147 &unmapped_region_cnt,
1148 &iotlb_gather);
1149 if (!unmapped) {
1150 unmapped = unmap_unpin_slow(domain, dma, &iova, len,
1151 phys, &unlocked);
1152 if (WARN_ON(!unmapped))
1153 break;
1154 }
1155 }
1156
1157 dma->iommu_mapped = false;
1158
1159 if (unmapped_region_cnt) {
1160 unlocked += vfio_sync_unpin(dma, domain, &unmapped_region_list,
1161 &iotlb_gather);
1162 }
1163
1164 if (do_accounting) {
1165 vfio_lock_acct(dma, -unlocked, true);
1166 return 0;
1167 }
1168 return unlocked;
1169 }
1170
vfio_remove_dma(struct vfio_iommu * iommu,struct vfio_dma * dma)1171 static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *dma)
1172 {
1173 WARN_ON(!RB_EMPTY_ROOT(&dma->pfn_list));
1174 vfio_unmap_unpin(iommu, dma, true);
1175 vfio_unlink_dma(iommu, dma);
1176 put_task_struct(dma->task);
1177 vfio_dma_bitmap_free(dma);
1178 if (dma->vaddr_invalid) {
1179 iommu->vaddr_invalid_count--;
1180 wake_up_all(&iommu->vaddr_wait);
1181 }
1182 kfree(dma);
1183 iommu->dma_avail++;
1184 }
1185
vfio_update_pgsize_bitmap(struct vfio_iommu * iommu)1186 static void vfio_update_pgsize_bitmap(struct vfio_iommu *iommu)
1187 {
1188 struct vfio_domain *domain;
1189
1190 iommu->pgsize_bitmap = ULONG_MAX;
1191
1192 list_for_each_entry(domain, &iommu->domain_list, next)
1193 iommu->pgsize_bitmap &= domain->domain->pgsize_bitmap;
1194
1195 /*
1196 * In case the IOMMU supports page sizes smaller than PAGE_SIZE
1197 * we pretend PAGE_SIZE is supported and hide sub-PAGE_SIZE sizes.
1198 * That way the user will be able to map/unmap buffers whose size/
1199 * start address is aligned with PAGE_SIZE. Pinning code uses that
1200 * granularity while iommu driver can use the sub-PAGE_SIZE size
1201 * to map the buffer.
1202 */
1203 if (iommu->pgsize_bitmap & ~PAGE_MASK) {
1204 iommu->pgsize_bitmap &= PAGE_MASK;
1205 iommu->pgsize_bitmap |= PAGE_SIZE;
1206 }
1207 }
1208
update_user_bitmap(u64 __user * bitmap,struct vfio_iommu * iommu,struct vfio_dma * dma,dma_addr_t base_iova,size_t pgsize)1209 static int update_user_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu,
1210 struct vfio_dma *dma, dma_addr_t base_iova,
1211 size_t pgsize)
1212 {
1213 unsigned long pgshift = __ffs(pgsize);
1214 unsigned long nbits = dma->size >> pgshift;
1215 unsigned long bit_offset = (dma->iova - base_iova) >> pgshift;
1216 unsigned long copy_offset = bit_offset / BITS_PER_LONG;
1217 unsigned long shift = bit_offset % BITS_PER_LONG;
1218 unsigned long leftover;
1219
1220 /*
1221 * mark all pages dirty if any IOMMU capable device is not able
1222 * to report dirty pages and all pages are pinned and mapped.
1223 */
1224 if (iommu->num_non_pinned_groups && dma->iommu_mapped)
1225 bitmap_set(dma->bitmap, 0, nbits);
1226
1227 if (shift) {
1228 bitmap_shift_left(dma->bitmap, dma->bitmap, shift,
1229 nbits + shift);
1230
1231 if (copy_from_user(&leftover,
1232 (void __user *)(bitmap + copy_offset),
1233 sizeof(leftover)))
1234 return -EFAULT;
1235
1236 bitmap_or(dma->bitmap, dma->bitmap, &leftover, shift);
1237 }
1238
1239 if (copy_to_user((void __user *)(bitmap + copy_offset), dma->bitmap,
1240 DIRTY_BITMAP_BYTES(nbits + shift)))
1241 return -EFAULT;
1242
1243 return 0;
1244 }
1245
vfio_iova_dirty_bitmap(u64 __user * bitmap,struct vfio_iommu * iommu,dma_addr_t iova,size_t size,size_t pgsize)1246 static int vfio_iova_dirty_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu,
1247 dma_addr_t iova, size_t size, size_t pgsize)
1248 {
1249 struct vfio_dma *dma;
1250 struct rb_node *n;
1251 unsigned long pgshift = __ffs(pgsize);
1252 int ret;
1253
1254 /*
1255 * GET_BITMAP request must fully cover vfio_dma mappings. Multiple
1256 * vfio_dma mappings may be clubbed by specifying large ranges, but
1257 * there must not be any previous mappings bisected by the range.
1258 * An error will be returned if these conditions are not met.
1259 */
1260 dma = vfio_find_dma(iommu, iova, 1);
1261 if (dma && dma->iova != iova)
1262 return -EINVAL;
1263
1264 dma = vfio_find_dma(iommu, iova + size - 1, 0);
1265 if (dma && dma->iova + dma->size != iova + size)
1266 return -EINVAL;
1267
1268 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
1269 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1270
1271 if (dma->iova < iova)
1272 continue;
1273
1274 if (dma->iova > iova + size - 1)
1275 break;
1276
1277 ret = update_user_bitmap(bitmap, iommu, dma, iova, pgsize);
1278 if (ret)
1279 return ret;
1280
1281 /*
1282 * Re-populate bitmap to include all pinned pages which are
1283 * considered as dirty but exclude pages which are unpinned and
1284 * pages which are marked dirty by vfio_dma_rw()
1285 */
1286 bitmap_clear(dma->bitmap, 0, dma->size >> pgshift);
1287 vfio_dma_populate_bitmap(dma, pgsize);
1288 }
1289 return 0;
1290 }
1291
verify_bitmap_size(uint64_t npages,uint64_t bitmap_size)1292 static int verify_bitmap_size(uint64_t npages, uint64_t bitmap_size)
1293 {
1294 if (!npages || !bitmap_size || (bitmap_size > DIRTY_BITMAP_SIZE_MAX) ||
1295 (bitmap_size < DIRTY_BITMAP_BYTES(npages)))
1296 return -EINVAL;
1297
1298 return 0;
1299 }
1300
1301 /*
1302 * Notify VFIO drivers using vfio_register_emulated_iommu_dev() to invalidate
1303 * and unmap iovas within the range we're about to unmap. Drivers MUST unpin
1304 * pages in response to an invalidation.
1305 */
vfio_notify_dma_unmap(struct vfio_iommu * iommu,struct vfio_dma * dma)1306 static void vfio_notify_dma_unmap(struct vfio_iommu *iommu,
1307 struct vfio_dma *dma)
1308 {
1309 struct vfio_device *device;
1310
1311 if (list_empty(&iommu->device_list))
1312 return;
1313
1314 /*
1315 * The device is expected to call vfio_unpin_pages() for any IOVA it has
1316 * pinned within the range. Since vfio_unpin_pages() will eventually
1317 * call back down to this code and try to obtain the iommu->lock we must
1318 * drop it.
1319 */
1320 mutex_lock(&iommu->device_list_lock);
1321 mutex_unlock(&iommu->lock);
1322
1323 list_for_each_entry(device, &iommu->device_list, iommu_entry)
1324 device->ops->dma_unmap(device, dma->iova, dma->size);
1325
1326 mutex_unlock(&iommu->device_list_lock);
1327 mutex_lock(&iommu->lock);
1328 }
1329
vfio_dma_do_unmap(struct vfio_iommu * iommu,struct vfio_iommu_type1_dma_unmap * unmap,struct vfio_bitmap * bitmap)1330 static int vfio_dma_do_unmap(struct vfio_iommu *iommu,
1331 struct vfio_iommu_type1_dma_unmap *unmap,
1332 struct vfio_bitmap *bitmap)
1333 {
1334 struct vfio_dma *dma, *dma_last = NULL;
1335 size_t unmapped = 0, pgsize;
1336 int ret = -EINVAL, retries = 0;
1337 unsigned long pgshift;
1338 dma_addr_t iova = unmap->iova;
1339 u64 size = unmap->size;
1340 bool unmap_all = unmap->flags & VFIO_DMA_UNMAP_FLAG_ALL;
1341 bool invalidate_vaddr = unmap->flags & VFIO_DMA_UNMAP_FLAG_VADDR;
1342 struct rb_node *n, *first_n;
1343
1344 mutex_lock(&iommu->lock);
1345
1346 pgshift = __ffs(iommu->pgsize_bitmap);
1347 pgsize = (size_t)1 << pgshift;
1348
1349 if (iova & (pgsize - 1))
1350 goto unlock;
1351
1352 if (unmap_all) {
1353 if (iova || size)
1354 goto unlock;
1355 size = U64_MAX;
1356 } else if (!size || size & (pgsize - 1) ||
1357 iova + size - 1 < iova || size > SIZE_MAX) {
1358 goto unlock;
1359 }
1360
1361 /* When dirty tracking is enabled, allow only min supported pgsize */
1362 if ((unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) &&
1363 (!iommu->dirty_page_tracking || (bitmap->pgsize != pgsize))) {
1364 goto unlock;
1365 }
1366
1367 WARN_ON((pgsize - 1) & PAGE_MASK);
1368 again:
1369 /*
1370 * vfio-iommu-type1 (v1) - User mappings were coalesced together to
1371 * avoid tracking individual mappings. This means that the granularity
1372 * of the original mapping was lost and the user was allowed to attempt
1373 * to unmap any range. Depending on the contiguousness of physical
1374 * memory and page sizes supported by the IOMMU, arbitrary unmaps may
1375 * or may not have worked. We only guaranteed unmap granularity
1376 * matching the original mapping; even though it was untracked here,
1377 * the original mappings are reflected in IOMMU mappings. This
1378 * resulted in a couple unusual behaviors. First, if a range is not
1379 * able to be unmapped, ex. a set of 4k pages that was mapped as a
1380 * 2M hugepage into the IOMMU, the unmap ioctl returns success but with
1381 * a zero sized unmap. Also, if an unmap request overlaps the first
1382 * address of a hugepage, the IOMMU will unmap the entire hugepage.
1383 * This also returns success and the returned unmap size reflects the
1384 * actual size unmapped.
1385 *
1386 * We attempt to maintain compatibility with this "v1" interface, but
1387 * we take control out of the hands of the IOMMU. Therefore, an unmap
1388 * request offset from the beginning of the original mapping will
1389 * return success with zero sized unmap. And an unmap request covering
1390 * the first iova of mapping will unmap the entire range.
1391 *
1392 * The v2 version of this interface intends to be more deterministic.
1393 * Unmap requests must fully cover previous mappings. Multiple
1394 * mappings may still be unmaped by specifying large ranges, but there
1395 * must not be any previous mappings bisected by the range. An error
1396 * will be returned if these conditions are not met. The v2 interface
1397 * will only return success and a size of zero if there were no
1398 * mappings within the range.
1399 */
1400 if (iommu->v2 && !unmap_all) {
1401 dma = vfio_find_dma(iommu, iova, 1);
1402 if (dma && dma->iova != iova)
1403 goto unlock;
1404
1405 dma = vfio_find_dma(iommu, iova + size - 1, 0);
1406 if (dma && dma->iova + dma->size != iova + size)
1407 goto unlock;
1408 }
1409
1410 ret = 0;
1411 n = first_n = vfio_find_dma_first_node(iommu, iova, size);
1412
1413 while (n) {
1414 dma = rb_entry(n, struct vfio_dma, node);
1415 if (dma->iova >= iova + size)
1416 break;
1417
1418 if (!iommu->v2 && iova > dma->iova)
1419 break;
1420
1421 if (invalidate_vaddr) {
1422 if (dma->vaddr_invalid) {
1423 struct rb_node *last_n = n;
1424
1425 for (n = first_n; n != last_n; n = rb_next(n)) {
1426 dma = rb_entry(n,
1427 struct vfio_dma, node);
1428 dma->vaddr_invalid = false;
1429 iommu->vaddr_invalid_count--;
1430 }
1431 ret = -EINVAL;
1432 unmapped = 0;
1433 break;
1434 }
1435 dma->vaddr_invalid = true;
1436 iommu->vaddr_invalid_count++;
1437 unmapped += dma->size;
1438 n = rb_next(n);
1439 continue;
1440 }
1441
1442 if (!RB_EMPTY_ROOT(&dma->pfn_list)) {
1443 if (dma_last == dma) {
1444 BUG_ON(++retries > 10);
1445 } else {
1446 dma_last = dma;
1447 retries = 0;
1448 }
1449
1450 vfio_notify_dma_unmap(iommu, dma);
1451 goto again;
1452 }
1453
1454 if (unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) {
1455 ret = update_user_bitmap(bitmap->data, iommu, dma,
1456 iova, pgsize);
1457 if (ret)
1458 break;
1459 }
1460
1461 unmapped += dma->size;
1462 n = rb_next(n);
1463 vfio_remove_dma(iommu, dma);
1464 }
1465
1466 unlock:
1467 mutex_unlock(&iommu->lock);
1468
1469 /* Report how much was unmapped */
1470 unmap->size = unmapped;
1471
1472 return ret;
1473 }
1474
vfio_iommu_map(struct vfio_iommu * iommu,dma_addr_t iova,unsigned long pfn,long npage,int prot)1475 static int vfio_iommu_map(struct vfio_iommu *iommu, dma_addr_t iova,
1476 unsigned long pfn, long npage, int prot)
1477 {
1478 struct vfio_domain *d;
1479 int ret;
1480
1481 list_for_each_entry(d, &iommu->domain_list, next) {
1482 ret = iommu_map(d->domain, iova, (phys_addr_t)pfn << PAGE_SHIFT,
1483 npage << PAGE_SHIFT, prot | IOMMU_CACHE);
1484 if (ret)
1485 goto unwind;
1486
1487 cond_resched();
1488 }
1489
1490 return 0;
1491
1492 unwind:
1493 list_for_each_entry_continue_reverse(d, &iommu->domain_list, next) {
1494 iommu_unmap(d->domain, iova, npage << PAGE_SHIFT);
1495 cond_resched();
1496 }
1497
1498 return ret;
1499 }
1500
vfio_pin_map_dma(struct vfio_iommu * iommu,struct vfio_dma * dma,size_t map_size)1501 static int vfio_pin_map_dma(struct vfio_iommu *iommu, struct vfio_dma *dma,
1502 size_t map_size)
1503 {
1504 dma_addr_t iova = dma->iova;
1505 unsigned long vaddr = dma->vaddr;
1506 struct vfio_batch batch;
1507 size_t size = map_size;
1508 long npage;
1509 unsigned long pfn, limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1510 int ret = 0;
1511
1512 vfio_batch_init(&batch);
1513
1514 while (size) {
1515 /* Pin a contiguous chunk of memory */
1516 npage = vfio_pin_pages_remote(dma, vaddr + dma->size,
1517 size >> PAGE_SHIFT, &pfn, limit,
1518 &batch);
1519 if (npage <= 0) {
1520 WARN_ON(!npage);
1521 ret = (int)npage;
1522 break;
1523 }
1524
1525 /* Map it! */
1526 ret = vfio_iommu_map(iommu, iova + dma->size, pfn, npage,
1527 dma->prot);
1528 if (ret) {
1529 vfio_unpin_pages_remote(dma, iova + dma->size, pfn,
1530 npage, true);
1531 vfio_batch_unpin(&batch, dma);
1532 break;
1533 }
1534
1535 size -= npage << PAGE_SHIFT;
1536 dma->size += npage << PAGE_SHIFT;
1537 }
1538
1539 vfio_batch_fini(&batch);
1540 dma->iommu_mapped = true;
1541
1542 if (ret)
1543 vfio_remove_dma(iommu, dma);
1544
1545 return ret;
1546 }
1547
1548 /*
1549 * Check dma map request is within a valid iova range
1550 */
vfio_iommu_iova_dma_valid(struct vfio_iommu * iommu,dma_addr_t start,dma_addr_t end)1551 static bool vfio_iommu_iova_dma_valid(struct vfio_iommu *iommu,
1552 dma_addr_t start, dma_addr_t end)
1553 {
1554 struct list_head *iova = &iommu->iova_list;
1555 struct vfio_iova *node;
1556
1557 list_for_each_entry(node, iova, list) {
1558 if (start >= node->start && end <= node->end)
1559 return true;
1560 }
1561
1562 /*
1563 * Check for list_empty() as well since a container with
1564 * a single mdev device will have an empty list.
1565 */
1566 return list_empty(iova);
1567 }
1568
vfio_dma_do_map(struct vfio_iommu * iommu,struct vfio_iommu_type1_dma_map * map)1569 static int vfio_dma_do_map(struct vfio_iommu *iommu,
1570 struct vfio_iommu_type1_dma_map *map)
1571 {
1572 bool set_vaddr = map->flags & VFIO_DMA_MAP_FLAG_VADDR;
1573 dma_addr_t iova = map->iova;
1574 unsigned long vaddr = map->vaddr;
1575 size_t size = map->size;
1576 int ret = 0, prot = 0;
1577 size_t pgsize;
1578 struct vfio_dma *dma;
1579
1580 /* Verify that none of our __u64 fields overflow */
1581 if (map->size != size || map->vaddr != vaddr || map->iova != iova)
1582 return -EINVAL;
1583
1584 /* READ/WRITE from device perspective */
1585 if (map->flags & VFIO_DMA_MAP_FLAG_WRITE)
1586 prot |= IOMMU_WRITE;
1587 if (map->flags & VFIO_DMA_MAP_FLAG_READ)
1588 prot |= IOMMU_READ;
1589
1590 if ((prot && set_vaddr) || (!prot && !set_vaddr))
1591 return -EINVAL;
1592
1593 mutex_lock(&iommu->lock);
1594
1595 pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap);
1596
1597 WARN_ON((pgsize - 1) & PAGE_MASK);
1598
1599 if (!size || (size | iova | vaddr) & (pgsize - 1)) {
1600 ret = -EINVAL;
1601 goto out_unlock;
1602 }
1603
1604 /* Don't allow IOVA or virtual address wrap */
1605 if (iova + size - 1 < iova || vaddr + size - 1 < vaddr) {
1606 ret = -EINVAL;
1607 goto out_unlock;
1608 }
1609
1610 dma = vfio_find_dma(iommu, iova, size);
1611 if (set_vaddr) {
1612 if (!dma) {
1613 ret = -ENOENT;
1614 } else if (!dma->vaddr_invalid || dma->iova != iova ||
1615 dma->size != size) {
1616 ret = -EINVAL;
1617 } else {
1618 dma->vaddr = vaddr;
1619 dma->vaddr_invalid = false;
1620 iommu->vaddr_invalid_count--;
1621 wake_up_all(&iommu->vaddr_wait);
1622 }
1623 goto out_unlock;
1624 } else if (dma) {
1625 ret = -EEXIST;
1626 goto out_unlock;
1627 }
1628
1629 if (!iommu->dma_avail) {
1630 ret = -ENOSPC;
1631 goto out_unlock;
1632 }
1633
1634 if (!vfio_iommu_iova_dma_valid(iommu, iova, iova + size - 1)) {
1635 ret = -EINVAL;
1636 goto out_unlock;
1637 }
1638
1639 dma = kzalloc(sizeof(*dma), GFP_KERNEL);
1640 if (!dma) {
1641 ret = -ENOMEM;
1642 goto out_unlock;
1643 }
1644
1645 iommu->dma_avail--;
1646 dma->iova = iova;
1647 dma->vaddr = vaddr;
1648 dma->prot = prot;
1649
1650 /*
1651 * We need to be able to both add to a task's locked memory and test
1652 * against the locked memory limit and we need to be able to do both
1653 * outside of this call path as pinning can be asynchronous via the
1654 * external interfaces for mdev devices. RLIMIT_MEMLOCK requires a
1655 * task_struct and VM locked pages requires an mm_struct, however
1656 * holding an indefinite mm reference is not recommended, therefore we
1657 * only hold a reference to a task. We could hold a reference to
1658 * current, however QEMU uses this call path through vCPU threads,
1659 * which can be killed resulting in a NULL mm and failure in the unmap
1660 * path when called via a different thread. Avoid this problem by
1661 * using the group_leader as threads within the same group require
1662 * both CLONE_THREAD and CLONE_VM and will therefore use the same
1663 * mm_struct.
1664 *
1665 * Previously we also used the task for testing CAP_IPC_LOCK at the
1666 * time of pinning and accounting, however has_capability() makes use
1667 * of real_cred, a copy-on-write field, so we can't guarantee that it
1668 * matches group_leader, or in fact that it might not change by the
1669 * time it's evaluated. If a process were to call MAP_DMA with
1670 * CAP_IPC_LOCK but later drop it, it doesn't make sense that they
1671 * possibly see different results for an iommu_mapped vfio_dma vs
1672 * externally mapped. Therefore track CAP_IPC_LOCK in vfio_dma at the
1673 * time of calling MAP_DMA.
1674 */
1675 get_task_struct(current->group_leader);
1676 dma->task = current->group_leader;
1677 dma->lock_cap = capable(CAP_IPC_LOCK);
1678
1679 dma->pfn_list = RB_ROOT;
1680
1681 /* Insert zero-sized and grow as we map chunks of it */
1682 vfio_link_dma(iommu, dma);
1683
1684 /* Don't pin and map if container doesn't contain IOMMU capable domain*/
1685 if (list_empty(&iommu->domain_list))
1686 dma->size = size;
1687 else
1688 ret = vfio_pin_map_dma(iommu, dma, size);
1689
1690 if (!ret && iommu->dirty_page_tracking) {
1691 ret = vfio_dma_bitmap_alloc(dma, pgsize);
1692 if (ret)
1693 vfio_remove_dma(iommu, dma);
1694 }
1695
1696 out_unlock:
1697 mutex_unlock(&iommu->lock);
1698 return ret;
1699 }
1700
vfio_iommu_replay(struct vfio_iommu * iommu,struct vfio_domain * domain)1701 static int vfio_iommu_replay(struct vfio_iommu *iommu,
1702 struct vfio_domain *domain)
1703 {
1704 struct vfio_batch batch;
1705 struct vfio_domain *d = NULL;
1706 struct rb_node *n;
1707 unsigned long limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1708 int ret;
1709
1710 ret = vfio_wait_all_valid(iommu);
1711 if (ret < 0)
1712 return ret;
1713
1714 /* Arbitrarily pick the first domain in the list for lookups */
1715 if (!list_empty(&iommu->domain_list))
1716 d = list_first_entry(&iommu->domain_list,
1717 struct vfio_domain, next);
1718
1719 vfio_batch_init(&batch);
1720
1721 n = rb_first(&iommu->dma_list);
1722
1723 for (; n; n = rb_next(n)) {
1724 struct vfio_dma *dma;
1725 dma_addr_t iova;
1726
1727 dma = rb_entry(n, struct vfio_dma, node);
1728 iova = dma->iova;
1729
1730 while (iova < dma->iova + dma->size) {
1731 phys_addr_t phys;
1732 size_t size;
1733
1734 if (dma->iommu_mapped) {
1735 phys_addr_t p;
1736 dma_addr_t i;
1737
1738 if (WARN_ON(!d)) { /* mapped w/o a domain?! */
1739 ret = -EINVAL;
1740 goto unwind;
1741 }
1742
1743 phys = iommu_iova_to_phys(d->domain, iova);
1744
1745 if (WARN_ON(!phys)) {
1746 iova += PAGE_SIZE;
1747 continue;
1748 }
1749
1750 size = PAGE_SIZE;
1751 p = phys + size;
1752 i = iova + size;
1753 while (i < dma->iova + dma->size &&
1754 p == iommu_iova_to_phys(d->domain, i)) {
1755 size += PAGE_SIZE;
1756 p += PAGE_SIZE;
1757 i += PAGE_SIZE;
1758 }
1759 } else {
1760 unsigned long pfn;
1761 unsigned long vaddr = dma->vaddr +
1762 (iova - dma->iova);
1763 size_t n = dma->iova + dma->size - iova;
1764 long npage;
1765
1766 npage = vfio_pin_pages_remote(dma, vaddr,
1767 n >> PAGE_SHIFT,
1768 &pfn, limit,
1769 &batch);
1770 if (npage <= 0) {
1771 WARN_ON(!npage);
1772 ret = (int)npage;
1773 goto unwind;
1774 }
1775
1776 phys = pfn << PAGE_SHIFT;
1777 size = npage << PAGE_SHIFT;
1778 }
1779
1780 ret = iommu_map(domain->domain, iova, phys,
1781 size, dma->prot | IOMMU_CACHE);
1782 if (ret) {
1783 if (!dma->iommu_mapped) {
1784 vfio_unpin_pages_remote(dma, iova,
1785 phys >> PAGE_SHIFT,
1786 size >> PAGE_SHIFT,
1787 true);
1788 vfio_batch_unpin(&batch, dma);
1789 }
1790 goto unwind;
1791 }
1792
1793 iova += size;
1794 }
1795 }
1796
1797 /* All dmas are now mapped, defer to second tree walk for unwind */
1798 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
1799 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1800
1801 dma->iommu_mapped = true;
1802 }
1803
1804 vfio_batch_fini(&batch);
1805 return 0;
1806
1807 unwind:
1808 for (; n; n = rb_prev(n)) {
1809 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1810 dma_addr_t iova;
1811
1812 if (dma->iommu_mapped) {
1813 iommu_unmap(domain->domain, dma->iova, dma->size);
1814 continue;
1815 }
1816
1817 iova = dma->iova;
1818 while (iova < dma->iova + dma->size) {
1819 phys_addr_t phys, p;
1820 size_t size;
1821 dma_addr_t i;
1822
1823 phys = iommu_iova_to_phys(domain->domain, iova);
1824 if (!phys) {
1825 iova += PAGE_SIZE;
1826 continue;
1827 }
1828
1829 size = PAGE_SIZE;
1830 p = phys + size;
1831 i = iova + size;
1832 while (i < dma->iova + dma->size &&
1833 p == iommu_iova_to_phys(domain->domain, i)) {
1834 size += PAGE_SIZE;
1835 p += PAGE_SIZE;
1836 i += PAGE_SIZE;
1837 }
1838
1839 iommu_unmap(domain->domain, iova, size);
1840 vfio_unpin_pages_remote(dma, iova, phys >> PAGE_SHIFT,
1841 size >> PAGE_SHIFT, true);
1842 }
1843 }
1844
1845 vfio_batch_fini(&batch);
1846 return ret;
1847 }
1848
1849 /*
1850 * We change our unmap behavior slightly depending on whether the IOMMU
1851 * supports fine-grained superpages. IOMMUs like AMD-Vi will use a superpage
1852 * for practically any contiguous power-of-two mapping we give it. This means
1853 * we don't need to look for contiguous chunks ourselves to make unmapping
1854 * more efficient. On IOMMUs with coarse-grained super pages, like Intel VT-d
1855 * with discrete 2M/1G/512G/1T superpages, identifying contiguous chunks
1856 * significantly boosts non-hugetlbfs mappings and doesn't seem to hurt when
1857 * hugetlbfs is in use.
1858 */
vfio_test_domain_fgsp(struct vfio_domain * domain)1859 static void vfio_test_domain_fgsp(struct vfio_domain *domain)
1860 {
1861 struct page *pages;
1862 int ret, order = get_order(PAGE_SIZE * 2);
1863
1864 pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
1865 if (!pages)
1866 return;
1867
1868 ret = iommu_map(domain->domain, 0, page_to_phys(pages), PAGE_SIZE * 2,
1869 IOMMU_READ | IOMMU_WRITE | IOMMU_CACHE);
1870 if (!ret) {
1871 size_t unmapped = iommu_unmap(domain->domain, 0, PAGE_SIZE);
1872
1873 if (unmapped == PAGE_SIZE)
1874 iommu_unmap(domain->domain, PAGE_SIZE, PAGE_SIZE);
1875 else
1876 domain->fgsp = true;
1877 }
1878
1879 __free_pages(pages, order);
1880 }
1881
find_iommu_group(struct vfio_domain * domain,struct iommu_group * iommu_group)1882 static struct vfio_iommu_group *find_iommu_group(struct vfio_domain *domain,
1883 struct iommu_group *iommu_group)
1884 {
1885 struct vfio_iommu_group *g;
1886
1887 list_for_each_entry(g, &domain->group_list, next) {
1888 if (g->iommu_group == iommu_group)
1889 return g;
1890 }
1891
1892 return NULL;
1893 }
1894
1895 static struct vfio_iommu_group*
vfio_iommu_find_iommu_group(struct vfio_iommu * iommu,struct iommu_group * iommu_group)1896 vfio_iommu_find_iommu_group(struct vfio_iommu *iommu,
1897 struct iommu_group *iommu_group)
1898 {
1899 struct vfio_iommu_group *group;
1900 struct vfio_domain *domain;
1901
1902 list_for_each_entry(domain, &iommu->domain_list, next) {
1903 group = find_iommu_group(domain, iommu_group);
1904 if (group)
1905 return group;
1906 }
1907
1908 list_for_each_entry(group, &iommu->emulated_iommu_groups, next)
1909 if (group->iommu_group == iommu_group)
1910 return group;
1911 return NULL;
1912 }
1913
vfio_iommu_has_sw_msi(struct list_head * group_resv_regions,phys_addr_t * base)1914 static bool vfio_iommu_has_sw_msi(struct list_head *group_resv_regions,
1915 phys_addr_t *base)
1916 {
1917 struct iommu_resv_region *region;
1918 bool ret = false;
1919
1920 list_for_each_entry(region, group_resv_regions, list) {
1921 /*
1922 * The presence of any 'real' MSI regions should take
1923 * precedence over the software-managed one if the
1924 * IOMMU driver happens to advertise both types.
1925 */
1926 if (region->type == IOMMU_RESV_MSI) {
1927 ret = false;
1928 break;
1929 }
1930
1931 if (region->type == IOMMU_RESV_SW_MSI) {
1932 *base = region->start;
1933 ret = true;
1934 }
1935 }
1936
1937 return ret;
1938 }
1939
1940 /*
1941 * This is a helper function to insert an address range to iova list.
1942 * The list is initially created with a single entry corresponding to
1943 * the IOMMU domain geometry to which the device group is attached.
1944 * The list aperture gets modified when a new domain is added to the
1945 * container if the new aperture doesn't conflict with the current one
1946 * or with any existing dma mappings. The list is also modified to
1947 * exclude any reserved regions associated with the device group.
1948 */
vfio_iommu_iova_insert(struct list_head * head,dma_addr_t start,dma_addr_t end)1949 static int vfio_iommu_iova_insert(struct list_head *head,
1950 dma_addr_t start, dma_addr_t end)
1951 {
1952 struct vfio_iova *region;
1953
1954 region = kmalloc(sizeof(*region), GFP_KERNEL);
1955 if (!region)
1956 return -ENOMEM;
1957
1958 INIT_LIST_HEAD(®ion->list);
1959 region->start = start;
1960 region->end = end;
1961
1962 list_add_tail(®ion->list, head);
1963 return 0;
1964 }
1965
1966 /*
1967 * Check the new iommu aperture conflicts with existing aper or with any
1968 * existing dma mappings.
1969 */
vfio_iommu_aper_conflict(struct vfio_iommu * iommu,dma_addr_t start,dma_addr_t end)1970 static bool vfio_iommu_aper_conflict(struct vfio_iommu *iommu,
1971 dma_addr_t start, dma_addr_t end)
1972 {
1973 struct vfio_iova *first, *last;
1974 struct list_head *iova = &iommu->iova_list;
1975
1976 if (list_empty(iova))
1977 return false;
1978
1979 /* Disjoint sets, return conflict */
1980 first = list_first_entry(iova, struct vfio_iova, list);
1981 last = list_last_entry(iova, struct vfio_iova, list);
1982 if (start > last->end || end < first->start)
1983 return true;
1984
1985 /* Check for any existing dma mappings below the new start */
1986 if (start > first->start) {
1987 if (vfio_find_dma(iommu, first->start, start - first->start))
1988 return true;
1989 }
1990
1991 /* Check for any existing dma mappings beyond the new end */
1992 if (end < last->end) {
1993 if (vfio_find_dma(iommu, end + 1, last->end - end))
1994 return true;
1995 }
1996
1997 return false;
1998 }
1999
2000 /*
2001 * Resize iommu iova aperture window. This is called only if the new
2002 * aperture has no conflict with existing aperture and dma mappings.
2003 */
vfio_iommu_aper_resize(struct list_head * iova,dma_addr_t start,dma_addr_t end)2004 static int vfio_iommu_aper_resize(struct list_head *iova,
2005 dma_addr_t start, dma_addr_t end)
2006 {
2007 struct vfio_iova *node, *next;
2008
2009 if (list_empty(iova))
2010 return vfio_iommu_iova_insert(iova, start, end);
2011
2012 /* Adjust iova list start */
2013 list_for_each_entry_safe(node, next, iova, list) {
2014 if (start < node->start)
2015 break;
2016 if (start >= node->start && start < node->end) {
2017 node->start = start;
2018 break;
2019 }
2020 /* Delete nodes before new start */
2021 list_del(&node->list);
2022 kfree(node);
2023 }
2024
2025 /* Adjust iova list end */
2026 list_for_each_entry_safe(node, next, iova, list) {
2027 if (end > node->end)
2028 continue;
2029 if (end > node->start && end <= node->end) {
2030 node->end = end;
2031 continue;
2032 }
2033 /* Delete nodes after new end */
2034 list_del(&node->list);
2035 kfree(node);
2036 }
2037
2038 return 0;
2039 }
2040
2041 /*
2042 * Check reserved region conflicts with existing dma mappings
2043 */
vfio_iommu_resv_conflict(struct vfio_iommu * iommu,struct list_head * resv_regions)2044 static bool vfio_iommu_resv_conflict(struct vfio_iommu *iommu,
2045 struct list_head *resv_regions)
2046 {
2047 struct iommu_resv_region *region;
2048
2049 /* Check for conflict with existing dma mappings */
2050 list_for_each_entry(region, resv_regions, list) {
2051 if (region->type == IOMMU_RESV_DIRECT_RELAXABLE)
2052 continue;
2053
2054 if (vfio_find_dma(iommu, region->start, region->length))
2055 return true;
2056 }
2057
2058 return false;
2059 }
2060
2061 /*
2062 * Check iova region overlap with reserved regions and
2063 * exclude them from the iommu iova range
2064 */
vfio_iommu_resv_exclude(struct list_head * iova,struct list_head * resv_regions)2065 static int vfio_iommu_resv_exclude(struct list_head *iova,
2066 struct list_head *resv_regions)
2067 {
2068 struct iommu_resv_region *resv;
2069 struct vfio_iova *n, *next;
2070
2071 list_for_each_entry(resv, resv_regions, list) {
2072 phys_addr_t start, end;
2073
2074 if (resv->type == IOMMU_RESV_DIRECT_RELAXABLE)
2075 continue;
2076
2077 start = resv->start;
2078 end = resv->start + resv->length - 1;
2079
2080 list_for_each_entry_safe(n, next, iova, list) {
2081 int ret = 0;
2082
2083 /* No overlap */
2084 if (start > n->end || end < n->start)
2085 continue;
2086 /*
2087 * Insert a new node if current node overlaps with the
2088 * reserve region to exclude that from valid iova range.
2089 * Note that, new node is inserted before the current
2090 * node and finally the current node is deleted keeping
2091 * the list updated and sorted.
2092 */
2093 if (start > n->start)
2094 ret = vfio_iommu_iova_insert(&n->list, n->start,
2095 start - 1);
2096 if (!ret && end < n->end)
2097 ret = vfio_iommu_iova_insert(&n->list, end + 1,
2098 n->end);
2099 if (ret)
2100 return ret;
2101
2102 list_del(&n->list);
2103 kfree(n);
2104 }
2105 }
2106
2107 if (list_empty(iova))
2108 return -EINVAL;
2109
2110 return 0;
2111 }
2112
vfio_iommu_resv_free(struct list_head * resv_regions)2113 static void vfio_iommu_resv_free(struct list_head *resv_regions)
2114 {
2115 struct iommu_resv_region *n, *next;
2116
2117 list_for_each_entry_safe(n, next, resv_regions, list) {
2118 list_del(&n->list);
2119 kfree(n);
2120 }
2121 }
2122
vfio_iommu_iova_free(struct list_head * iova)2123 static void vfio_iommu_iova_free(struct list_head *iova)
2124 {
2125 struct vfio_iova *n, *next;
2126
2127 list_for_each_entry_safe(n, next, iova, list) {
2128 list_del(&n->list);
2129 kfree(n);
2130 }
2131 }
2132
vfio_iommu_iova_get_copy(struct vfio_iommu * iommu,struct list_head * iova_copy)2133 static int vfio_iommu_iova_get_copy(struct vfio_iommu *iommu,
2134 struct list_head *iova_copy)
2135 {
2136 struct list_head *iova = &iommu->iova_list;
2137 struct vfio_iova *n;
2138 int ret;
2139
2140 list_for_each_entry(n, iova, list) {
2141 ret = vfio_iommu_iova_insert(iova_copy, n->start, n->end);
2142 if (ret)
2143 goto out_free;
2144 }
2145
2146 return 0;
2147
2148 out_free:
2149 vfio_iommu_iova_free(iova_copy);
2150 return ret;
2151 }
2152
vfio_iommu_iova_insert_copy(struct vfio_iommu * iommu,struct list_head * iova_copy)2153 static void vfio_iommu_iova_insert_copy(struct vfio_iommu *iommu,
2154 struct list_head *iova_copy)
2155 {
2156 struct list_head *iova = &iommu->iova_list;
2157
2158 vfio_iommu_iova_free(iova);
2159
2160 list_splice_tail(iova_copy, iova);
2161 }
2162
2163 /* Redundantly walks non-present capabilities to simplify caller */
vfio_iommu_device_capable(struct device * dev,void * data)2164 static int vfio_iommu_device_capable(struct device *dev, void *data)
2165 {
2166 return device_iommu_capable(dev, (enum iommu_cap)data);
2167 }
2168
vfio_iommu_domain_alloc(struct device * dev,void * data)2169 static int vfio_iommu_domain_alloc(struct device *dev, void *data)
2170 {
2171 struct iommu_domain **domain = data;
2172
2173 *domain = iommu_domain_alloc(dev->bus);
2174 return 1; /* Don't iterate */
2175 }
2176
vfio_iommu_type1_attach_group(void * iommu_data,struct iommu_group * iommu_group,enum vfio_group_type type)2177 static int vfio_iommu_type1_attach_group(void *iommu_data,
2178 struct iommu_group *iommu_group, enum vfio_group_type type)
2179 {
2180 struct vfio_iommu *iommu = iommu_data;
2181 struct vfio_iommu_group *group;
2182 struct vfio_domain *domain, *d;
2183 bool resv_msi, msi_remap;
2184 phys_addr_t resv_msi_base = 0;
2185 struct iommu_domain_geometry *geo;
2186 LIST_HEAD(iova_copy);
2187 LIST_HEAD(group_resv_regions);
2188 int ret = -EINVAL;
2189
2190 mutex_lock(&iommu->lock);
2191
2192 /* Check for duplicates */
2193 if (vfio_iommu_find_iommu_group(iommu, iommu_group))
2194 goto out_unlock;
2195
2196 ret = -ENOMEM;
2197 group = kzalloc(sizeof(*group), GFP_KERNEL);
2198 if (!group)
2199 goto out_unlock;
2200 group->iommu_group = iommu_group;
2201
2202 if (type == VFIO_EMULATED_IOMMU) {
2203 list_add(&group->next, &iommu->emulated_iommu_groups);
2204 /*
2205 * An emulated IOMMU group cannot dirty memory directly, it can
2206 * only use interfaces that provide dirty tracking.
2207 * The iommu scope can only be promoted with the addition of a
2208 * dirty tracking group.
2209 */
2210 group->pinned_page_dirty_scope = true;
2211 ret = 0;
2212 goto out_unlock;
2213 }
2214
2215 ret = -ENOMEM;
2216 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2217 if (!domain)
2218 goto out_free_group;
2219
2220 /*
2221 * Going via the iommu_group iterator avoids races, and trivially gives
2222 * us a representative device for the IOMMU API call. We don't actually
2223 * want to iterate beyond the first device (if any).
2224 */
2225 ret = -EIO;
2226 iommu_group_for_each_dev(iommu_group, &domain->domain,
2227 vfio_iommu_domain_alloc);
2228 if (!domain->domain)
2229 goto out_free_domain;
2230
2231 if (iommu->nesting) {
2232 ret = iommu_enable_nesting(domain->domain);
2233 if (ret)
2234 goto out_domain;
2235 }
2236
2237 ret = iommu_attach_group(domain->domain, group->iommu_group);
2238 if (ret)
2239 goto out_domain;
2240
2241 /* Get aperture info */
2242 geo = &domain->domain->geometry;
2243 if (vfio_iommu_aper_conflict(iommu, geo->aperture_start,
2244 geo->aperture_end)) {
2245 ret = -EINVAL;
2246 goto out_detach;
2247 }
2248
2249 ret = iommu_get_group_resv_regions(iommu_group, &group_resv_regions);
2250 if (ret)
2251 goto out_detach;
2252
2253 if (vfio_iommu_resv_conflict(iommu, &group_resv_regions)) {
2254 ret = -EINVAL;
2255 goto out_detach;
2256 }
2257
2258 /*
2259 * We don't want to work on the original iova list as the list
2260 * gets modified and in case of failure we have to retain the
2261 * original list. Get a copy here.
2262 */
2263 ret = vfio_iommu_iova_get_copy(iommu, &iova_copy);
2264 if (ret)
2265 goto out_detach;
2266
2267 ret = vfio_iommu_aper_resize(&iova_copy, geo->aperture_start,
2268 geo->aperture_end);
2269 if (ret)
2270 goto out_detach;
2271
2272 ret = vfio_iommu_resv_exclude(&iova_copy, &group_resv_regions);
2273 if (ret)
2274 goto out_detach;
2275
2276 resv_msi = vfio_iommu_has_sw_msi(&group_resv_regions, &resv_msi_base);
2277
2278 INIT_LIST_HEAD(&domain->group_list);
2279 list_add(&group->next, &domain->group_list);
2280
2281 msi_remap = irq_domain_check_msi_remap() ||
2282 iommu_group_for_each_dev(iommu_group, (void *)IOMMU_CAP_INTR_REMAP,
2283 vfio_iommu_device_capable);
2284
2285 if (!allow_unsafe_interrupts && !msi_remap) {
2286 pr_warn("%s: No interrupt remapping support. Use the module param \"allow_unsafe_interrupts\" to enable VFIO IOMMU support on this platform\n",
2287 __func__);
2288 ret = -EPERM;
2289 goto out_detach;
2290 }
2291
2292 /*
2293 * If the IOMMU can block non-coherent operations (ie PCIe TLPs with
2294 * no-snoop set) then VFIO always turns this feature on because on Intel
2295 * platforms it optimizes KVM to disable wbinvd emulation.
2296 */
2297 if (domain->domain->ops->enforce_cache_coherency)
2298 domain->enforce_cache_coherency =
2299 domain->domain->ops->enforce_cache_coherency(
2300 domain->domain);
2301
2302 /*
2303 * Try to match an existing compatible domain. We don't want to
2304 * preclude an IOMMU driver supporting multiple bus_types and being
2305 * able to include different bus_types in the same IOMMU domain, so
2306 * we test whether the domains use the same iommu_ops rather than
2307 * testing if they're on the same bus_type.
2308 */
2309 list_for_each_entry(d, &iommu->domain_list, next) {
2310 if (d->domain->ops == domain->domain->ops &&
2311 d->enforce_cache_coherency ==
2312 domain->enforce_cache_coherency) {
2313 iommu_detach_group(domain->domain, group->iommu_group);
2314 if (!iommu_attach_group(d->domain,
2315 group->iommu_group)) {
2316 list_add(&group->next, &d->group_list);
2317 iommu_domain_free(domain->domain);
2318 kfree(domain);
2319 goto done;
2320 }
2321
2322 ret = iommu_attach_group(domain->domain,
2323 group->iommu_group);
2324 if (ret)
2325 goto out_domain;
2326 }
2327 }
2328
2329 vfio_test_domain_fgsp(domain);
2330
2331 /* replay mappings on new domains */
2332 ret = vfio_iommu_replay(iommu, domain);
2333 if (ret)
2334 goto out_detach;
2335
2336 if (resv_msi) {
2337 ret = iommu_get_msi_cookie(domain->domain, resv_msi_base);
2338 if (ret && ret != -ENODEV)
2339 goto out_detach;
2340 }
2341
2342 list_add(&domain->next, &iommu->domain_list);
2343 vfio_update_pgsize_bitmap(iommu);
2344 done:
2345 /* Delete the old one and insert new iova list */
2346 vfio_iommu_iova_insert_copy(iommu, &iova_copy);
2347
2348 /*
2349 * An iommu backed group can dirty memory directly and therefore
2350 * demotes the iommu scope until it declares itself dirty tracking
2351 * capable via the page pinning interface.
2352 */
2353 iommu->num_non_pinned_groups++;
2354 mutex_unlock(&iommu->lock);
2355 vfio_iommu_resv_free(&group_resv_regions);
2356
2357 return 0;
2358
2359 out_detach:
2360 iommu_detach_group(domain->domain, group->iommu_group);
2361 out_domain:
2362 iommu_domain_free(domain->domain);
2363 vfio_iommu_iova_free(&iova_copy);
2364 vfio_iommu_resv_free(&group_resv_regions);
2365 out_free_domain:
2366 kfree(domain);
2367 out_free_group:
2368 kfree(group);
2369 out_unlock:
2370 mutex_unlock(&iommu->lock);
2371 return ret;
2372 }
2373
vfio_iommu_unmap_unpin_all(struct vfio_iommu * iommu)2374 static void vfio_iommu_unmap_unpin_all(struct vfio_iommu *iommu)
2375 {
2376 struct rb_node *node;
2377
2378 while ((node = rb_first(&iommu->dma_list)))
2379 vfio_remove_dma(iommu, rb_entry(node, struct vfio_dma, node));
2380 }
2381
vfio_iommu_unmap_unpin_reaccount(struct vfio_iommu * iommu)2382 static void vfio_iommu_unmap_unpin_reaccount(struct vfio_iommu *iommu)
2383 {
2384 struct rb_node *n, *p;
2385
2386 n = rb_first(&iommu->dma_list);
2387 for (; n; n = rb_next(n)) {
2388 struct vfio_dma *dma;
2389 long locked = 0, unlocked = 0;
2390
2391 dma = rb_entry(n, struct vfio_dma, node);
2392 unlocked += vfio_unmap_unpin(iommu, dma, false);
2393 p = rb_first(&dma->pfn_list);
2394 for (; p; p = rb_next(p)) {
2395 struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn,
2396 node);
2397
2398 if (!is_invalid_reserved_pfn(vpfn->pfn))
2399 locked++;
2400 }
2401 vfio_lock_acct(dma, locked - unlocked, true);
2402 }
2403 }
2404
2405 /*
2406 * Called when a domain is removed in detach. It is possible that
2407 * the removed domain decided the iova aperture window. Modify the
2408 * iova aperture with the smallest window among existing domains.
2409 */
vfio_iommu_aper_expand(struct vfio_iommu * iommu,struct list_head * iova_copy)2410 static void vfio_iommu_aper_expand(struct vfio_iommu *iommu,
2411 struct list_head *iova_copy)
2412 {
2413 struct vfio_domain *domain;
2414 struct vfio_iova *node;
2415 dma_addr_t start = 0;
2416 dma_addr_t end = (dma_addr_t)~0;
2417
2418 if (list_empty(iova_copy))
2419 return;
2420
2421 list_for_each_entry(domain, &iommu->domain_list, next) {
2422 struct iommu_domain_geometry *geo = &domain->domain->geometry;
2423
2424 if (geo->aperture_start > start)
2425 start = geo->aperture_start;
2426 if (geo->aperture_end < end)
2427 end = geo->aperture_end;
2428 }
2429
2430 /* Modify aperture limits. The new aper is either same or bigger */
2431 node = list_first_entry(iova_copy, struct vfio_iova, list);
2432 node->start = start;
2433 node = list_last_entry(iova_copy, struct vfio_iova, list);
2434 node->end = end;
2435 }
2436
2437 /*
2438 * Called when a group is detached. The reserved regions for that
2439 * group can be part of valid iova now. But since reserved regions
2440 * may be duplicated among groups, populate the iova valid regions
2441 * list again.
2442 */
vfio_iommu_resv_refresh(struct vfio_iommu * iommu,struct list_head * iova_copy)2443 static int vfio_iommu_resv_refresh(struct vfio_iommu *iommu,
2444 struct list_head *iova_copy)
2445 {
2446 struct vfio_domain *d;
2447 struct vfio_iommu_group *g;
2448 struct vfio_iova *node;
2449 dma_addr_t start, end;
2450 LIST_HEAD(resv_regions);
2451 int ret;
2452
2453 if (list_empty(iova_copy))
2454 return -EINVAL;
2455
2456 list_for_each_entry(d, &iommu->domain_list, next) {
2457 list_for_each_entry(g, &d->group_list, next) {
2458 ret = iommu_get_group_resv_regions(g->iommu_group,
2459 &resv_regions);
2460 if (ret)
2461 goto done;
2462 }
2463 }
2464
2465 node = list_first_entry(iova_copy, struct vfio_iova, list);
2466 start = node->start;
2467 node = list_last_entry(iova_copy, struct vfio_iova, list);
2468 end = node->end;
2469
2470 /* purge the iova list and create new one */
2471 vfio_iommu_iova_free(iova_copy);
2472
2473 ret = vfio_iommu_aper_resize(iova_copy, start, end);
2474 if (ret)
2475 goto done;
2476
2477 /* Exclude current reserved regions from iova ranges */
2478 ret = vfio_iommu_resv_exclude(iova_copy, &resv_regions);
2479 done:
2480 vfio_iommu_resv_free(&resv_regions);
2481 return ret;
2482 }
2483
vfio_iommu_type1_detach_group(void * iommu_data,struct iommu_group * iommu_group)2484 static void vfio_iommu_type1_detach_group(void *iommu_data,
2485 struct iommu_group *iommu_group)
2486 {
2487 struct vfio_iommu *iommu = iommu_data;
2488 struct vfio_domain *domain;
2489 struct vfio_iommu_group *group;
2490 bool update_dirty_scope = false;
2491 LIST_HEAD(iova_copy);
2492
2493 mutex_lock(&iommu->lock);
2494 list_for_each_entry(group, &iommu->emulated_iommu_groups, next) {
2495 if (group->iommu_group != iommu_group)
2496 continue;
2497 update_dirty_scope = !group->pinned_page_dirty_scope;
2498 list_del(&group->next);
2499 kfree(group);
2500
2501 if (list_empty(&iommu->emulated_iommu_groups) &&
2502 list_empty(&iommu->domain_list)) {
2503 WARN_ON(!list_empty(&iommu->device_list));
2504 vfio_iommu_unmap_unpin_all(iommu);
2505 }
2506 goto detach_group_done;
2507 }
2508
2509 /*
2510 * Get a copy of iova list. This will be used to update
2511 * and to replace the current one later. Please note that
2512 * we will leave the original list as it is if update fails.
2513 */
2514 vfio_iommu_iova_get_copy(iommu, &iova_copy);
2515
2516 list_for_each_entry(domain, &iommu->domain_list, next) {
2517 group = find_iommu_group(domain, iommu_group);
2518 if (!group)
2519 continue;
2520
2521 iommu_detach_group(domain->domain, group->iommu_group);
2522 update_dirty_scope = !group->pinned_page_dirty_scope;
2523 list_del(&group->next);
2524 kfree(group);
2525 /*
2526 * Group ownership provides privilege, if the group list is
2527 * empty, the domain goes away. If it's the last domain with
2528 * iommu and external domain doesn't exist, then all the
2529 * mappings go away too. If it's the last domain with iommu and
2530 * external domain exist, update accounting
2531 */
2532 if (list_empty(&domain->group_list)) {
2533 if (list_is_singular(&iommu->domain_list)) {
2534 if (list_empty(&iommu->emulated_iommu_groups)) {
2535 WARN_ON(!list_empty(
2536 &iommu->device_list));
2537 vfio_iommu_unmap_unpin_all(iommu);
2538 } else {
2539 vfio_iommu_unmap_unpin_reaccount(iommu);
2540 }
2541 }
2542 iommu_domain_free(domain->domain);
2543 list_del(&domain->next);
2544 kfree(domain);
2545 vfio_iommu_aper_expand(iommu, &iova_copy);
2546 vfio_update_pgsize_bitmap(iommu);
2547 }
2548 break;
2549 }
2550
2551 if (!vfio_iommu_resv_refresh(iommu, &iova_copy))
2552 vfio_iommu_iova_insert_copy(iommu, &iova_copy);
2553 else
2554 vfio_iommu_iova_free(&iova_copy);
2555
2556 detach_group_done:
2557 /*
2558 * Removal of a group without dirty tracking may allow the iommu scope
2559 * to be promoted.
2560 */
2561 if (update_dirty_scope) {
2562 iommu->num_non_pinned_groups--;
2563 if (iommu->dirty_page_tracking)
2564 vfio_iommu_populate_bitmap_full(iommu);
2565 }
2566 mutex_unlock(&iommu->lock);
2567 }
2568
vfio_iommu_type1_open(unsigned long arg)2569 static void *vfio_iommu_type1_open(unsigned long arg)
2570 {
2571 struct vfio_iommu *iommu;
2572
2573 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
2574 if (!iommu)
2575 return ERR_PTR(-ENOMEM);
2576
2577 switch (arg) {
2578 case VFIO_TYPE1_IOMMU:
2579 break;
2580 case VFIO_TYPE1_NESTING_IOMMU:
2581 iommu->nesting = true;
2582 fallthrough;
2583 case VFIO_TYPE1v2_IOMMU:
2584 iommu->v2 = true;
2585 break;
2586 default:
2587 kfree(iommu);
2588 return ERR_PTR(-EINVAL);
2589 }
2590
2591 INIT_LIST_HEAD(&iommu->domain_list);
2592 INIT_LIST_HEAD(&iommu->iova_list);
2593 iommu->dma_list = RB_ROOT;
2594 iommu->dma_avail = dma_entry_limit;
2595 iommu->container_open = true;
2596 mutex_init(&iommu->lock);
2597 mutex_init(&iommu->device_list_lock);
2598 INIT_LIST_HEAD(&iommu->device_list);
2599 init_waitqueue_head(&iommu->vaddr_wait);
2600 iommu->pgsize_bitmap = PAGE_MASK;
2601 INIT_LIST_HEAD(&iommu->emulated_iommu_groups);
2602
2603 return iommu;
2604 }
2605
vfio_release_domain(struct vfio_domain * domain)2606 static void vfio_release_domain(struct vfio_domain *domain)
2607 {
2608 struct vfio_iommu_group *group, *group_tmp;
2609
2610 list_for_each_entry_safe(group, group_tmp,
2611 &domain->group_list, next) {
2612 iommu_detach_group(domain->domain, group->iommu_group);
2613 list_del(&group->next);
2614 kfree(group);
2615 }
2616
2617 iommu_domain_free(domain->domain);
2618 }
2619
vfio_iommu_type1_release(void * iommu_data)2620 static void vfio_iommu_type1_release(void *iommu_data)
2621 {
2622 struct vfio_iommu *iommu = iommu_data;
2623 struct vfio_domain *domain, *domain_tmp;
2624 struct vfio_iommu_group *group, *next_group;
2625
2626 list_for_each_entry_safe(group, next_group,
2627 &iommu->emulated_iommu_groups, next) {
2628 list_del(&group->next);
2629 kfree(group);
2630 }
2631
2632 vfio_iommu_unmap_unpin_all(iommu);
2633
2634 list_for_each_entry_safe(domain, domain_tmp,
2635 &iommu->domain_list, next) {
2636 vfio_release_domain(domain);
2637 list_del(&domain->next);
2638 kfree(domain);
2639 }
2640
2641 vfio_iommu_iova_free(&iommu->iova_list);
2642
2643 kfree(iommu);
2644 }
2645
vfio_domains_have_enforce_cache_coherency(struct vfio_iommu * iommu)2646 static int vfio_domains_have_enforce_cache_coherency(struct vfio_iommu *iommu)
2647 {
2648 struct vfio_domain *domain;
2649 int ret = 1;
2650
2651 mutex_lock(&iommu->lock);
2652 list_for_each_entry(domain, &iommu->domain_list, next) {
2653 if (!(domain->enforce_cache_coherency)) {
2654 ret = 0;
2655 break;
2656 }
2657 }
2658 mutex_unlock(&iommu->lock);
2659
2660 return ret;
2661 }
2662
vfio_iommu_type1_check_extension(struct vfio_iommu * iommu,unsigned long arg)2663 static int vfio_iommu_type1_check_extension(struct vfio_iommu *iommu,
2664 unsigned long arg)
2665 {
2666 switch (arg) {
2667 case VFIO_TYPE1_IOMMU:
2668 case VFIO_TYPE1v2_IOMMU:
2669 case VFIO_TYPE1_NESTING_IOMMU:
2670 case VFIO_UNMAP_ALL:
2671 case VFIO_UPDATE_VADDR:
2672 return 1;
2673 case VFIO_DMA_CC_IOMMU:
2674 if (!iommu)
2675 return 0;
2676 return vfio_domains_have_enforce_cache_coherency(iommu);
2677 default:
2678 return 0;
2679 }
2680 }
2681
vfio_iommu_iova_add_cap(struct vfio_info_cap * caps,struct vfio_iommu_type1_info_cap_iova_range * cap_iovas,size_t size)2682 static int vfio_iommu_iova_add_cap(struct vfio_info_cap *caps,
2683 struct vfio_iommu_type1_info_cap_iova_range *cap_iovas,
2684 size_t size)
2685 {
2686 struct vfio_info_cap_header *header;
2687 struct vfio_iommu_type1_info_cap_iova_range *iova_cap;
2688
2689 header = vfio_info_cap_add(caps, size,
2690 VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE, 1);
2691 if (IS_ERR(header))
2692 return PTR_ERR(header);
2693
2694 iova_cap = container_of(header,
2695 struct vfio_iommu_type1_info_cap_iova_range,
2696 header);
2697 iova_cap->nr_iovas = cap_iovas->nr_iovas;
2698 memcpy(iova_cap->iova_ranges, cap_iovas->iova_ranges,
2699 cap_iovas->nr_iovas * sizeof(*cap_iovas->iova_ranges));
2700 return 0;
2701 }
2702
vfio_iommu_iova_build_caps(struct vfio_iommu * iommu,struct vfio_info_cap * caps)2703 static int vfio_iommu_iova_build_caps(struct vfio_iommu *iommu,
2704 struct vfio_info_cap *caps)
2705 {
2706 struct vfio_iommu_type1_info_cap_iova_range *cap_iovas;
2707 struct vfio_iova *iova;
2708 size_t size;
2709 int iovas = 0, i = 0, ret;
2710
2711 list_for_each_entry(iova, &iommu->iova_list, list)
2712 iovas++;
2713
2714 if (!iovas) {
2715 /*
2716 * Return 0 as a container with a single mdev device
2717 * will have an empty list
2718 */
2719 return 0;
2720 }
2721
2722 size = struct_size(cap_iovas, iova_ranges, iovas);
2723
2724 cap_iovas = kzalloc(size, GFP_KERNEL);
2725 if (!cap_iovas)
2726 return -ENOMEM;
2727
2728 cap_iovas->nr_iovas = iovas;
2729
2730 list_for_each_entry(iova, &iommu->iova_list, list) {
2731 cap_iovas->iova_ranges[i].start = iova->start;
2732 cap_iovas->iova_ranges[i].end = iova->end;
2733 i++;
2734 }
2735
2736 ret = vfio_iommu_iova_add_cap(caps, cap_iovas, size);
2737
2738 kfree(cap_iovas);
2739 return ret;
2740 }
2741
vfio_iommu_migration_build_caps(struct vfio_iommu * iommu,struct vfio_info_cap * caps)2742 static int vfio_iommu_migration_build_caps(struct vfio_iommu *iommu,
2743 struct vfio_info_cap *caps)
2744 {
2745 struct vfio_iommu_type1_info_cap_migration cap_mig;
2746
2747 cap_mig.header.id = VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION;
2748 cap_mig.header.version = 1;
2749
2750 cap_mig.flags = 0;
2751 /* support minimum pgsize */
2752 cap_mig.pgsize_bitmap = (size_t)1 << __ffs(iommu->pgsize_bitmap);
2753 cap_mig.max_dirty_bitmap_size = DIRTY_BITMAP_SIZE_MAX;
2754
2755 return vfio_info_add_capability(caps, &cap_mig.header, sizeof(cap_mig));
2756 }
2757
vfio_iommu_dma_avail_build_caps(struct vfio_iommu * iommu,struct vfio_info_cap * caps)2758 static int vfio_iommu_dma_avail_build_caps(struct vfio_iommu *iommu,
2759 struct vfio_info_cap *caps)
2760 {
2761 struct vfio_iommu_type1_info_dma_avail cap_dma_avail;
2762
2763 cap_dma_avail.header.id = VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL;
2764 cap_dma_avail.header.version = 1;
2765
2766 cap_dma_avail.avail = iommu->dma_avail;
2767
2768 return vfio_info_add_capability(caps, &cap_dma_avail.header,
2769 sizeof(cap_dma_avail));
2770 }
2771
vfio_iommu_type1_get_info(struct vfio_iommu * iommu,unsigned long arg)2772 static int vfio_iommu_type1_get_info(struct vfio_iommu *iommu,
2773 unsigned long arg)
2774 {
2775 struct vfio_iommu_type1_info info;
2776 unsigned long minsz;
2777 struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
2778 unsigned long capsz;
2779 int ret;
2780
2781 minsz = offsetofend(struct vfio_iommu_type1_info, iova_pgsizes);
2782
2783 /* For backward compatibility, cannot require this */
2784 capsz = offsetofend(struct vfio_iommu_type1_info, cap_offset);
2785
2786 if (copy_from_user(&info, (void __user *)arg, minsz))
2787 return -EFAULT;
2788
2789 if (info.argsz < minsz)
2790 return -EINVAL;
2791
2792 if (info.argsz >= capsz) {
2793 minsz = capsz;
2794 info.cap_offset = 0; /* output, no-recopy necessary */
2795 }
2796
2797 mutex_lock(&iommu->lock);
2798 info.flags = VFIO_IOMMU_INFO_PGSIZES;
2799
2800 info.iova_pgsizes = iommu->pgsize_bitmap;
2801
2802 ret = vfio_iommu_migration_build_caps(iommu, &caps);
2803
2804 if (!ret)
2805 ret = vfio_iommu_dma_avail_build_caps(iommu, &caps);
2806
2807 if (!ret)
2808 ret = vfio_iommu_iova_build_caps(iommu, &caps);
2809
2810 mutex_unlock(&iommu->lock);
2811
2812 if (ret)
2813 return ret;
2814
2815 if (caps.size) {
2816 info.flags |= VFIO_IOMMU_INFO_CAPS;
2817
2818 if (info.argsz < sizeof(info) + caps.size) {
2819 info.argsz = sizeof(info) + caps.size;
2820 } else {
2821 vfio_info_cap_shift(&caps, sizeof(info));
2822 if (copy_to_user((void __user *)arg +
2823 sizeof(info), caps.buf,
2824 caps.size)) {
2825 kfree(caps.buf);
2826 return -EFAULT;
2827 }
2828 info.cap_offset = sizeof(info);
2829 }
2830
2831 kfree(caps.buf);
2832 }
2833
2834 return copy_to_user((void __user *)arg, &info, minsz) ?
2835 -EFAULT : 0;
2836 }
2837
vfio_iommu_type1_map_dma(struct vfio_iommu * iommu,unsigned long arg)2838 static int vfio_iommu_type1_map_dma(struct vfio_iommu *iommu,
2839 unsigned long arg)
2840 {
2841 struct vfio_iommu_type1_dma_map map;
2842 unsigned long minsz;
2843 uint32_t mask = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE |
2844 VFIO_DMA_MAP_FLAG_VADDR;
2845
2846 minsz = offsetofend(struct vfio_iommu_type1_dma_map, size);
2847
2848 if (copy_from_user(&map, (void __user *)arg, minsz))
2849 return -EFAULT;
2850
2851 if (map.argsz < minsz || map.flags & ~mask)
2852 return -EINVAL;
2853
2854 return vfio_dma_do_map(iommu, &map);
2855 }
2856
vfio_iommu_type1_unmap_dma(struct vfio_iommu * iommu,unsigned long arg)2857 static int vfio_iommu_type1_unmap_dma(struct vfio_iommu *iommu,
2858 unsigned long arg)
2859 {
2860 struct vfio_iommu_type1_dma_unmap unmap;
2861 struct vfio_bitmap bitmap = { 0 };
2862 uint32_t mask = VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP |
2863 VFIO_DMA_UNMAP_FLAG_VADDR |
2864 VFIO_DMA_UNMAP_FLAG_ALL;
2865 unsigned long minsz;
2866 int ret;
2867
2868 minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size);
2869
2870 if (copy_from_user(&unmap, (void __user *)arg, minsz))
2871 return -EFAULT;
2872
2873 if (unmap.argsz < minsz || unmap.flags & ~mask)
2874 return -EINVAL;
2875
2876 if ((unmap.flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) &&
2877 (unmap.flags & (VFIO_DMA_UNMAP_FLAG_ALL |
2878 VFIO_DMA_UNMAP_FLAG_VADDR)))
2879 return -EINVAL;
2880
2881 if (unmap.flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) {
2882 unsigned long pgshift;
2883
2884 if (unmap.argsz < (minsz + sizeof(bitmap)))
2885 return -EINVAL;
2886
2887 if (copy_from_user(&bitmap,
2888 (void __user *)(arg + minsz),
2889 sizeof(bitmap)))
2890 return -EFAULT;
2891
2892 if (!access_ok((void __user *)bitmap.data, bitmap.size))
2893 return -EINVAL;
2894
2895 pgshift = __ffs(bitmap.pgsize);
2896 ret = verify_bitmap_size(unmap.size >> pgshift,
2897 bitmap.size);
2898 if (ret)
2899 return ret;
2900 }
2901
2902 ret = vfio_dma_do_unmap(iommu, &unmap, &bitmap);
2903 if (ret)
2904 return ret;
2905
2906 return copy_to_user((void __user *)arg, &unmap, minsz) ?
2907 -EFAULT : 0;
2908 }
2909
vfio_iommu_type1_dirty_pages(struct vfio_iommu * iommu,unsigned long arg)2910 static int vfio_iommu_type1_dirty_pages(struct vfio_iommu *iommu,
2911 unsigned long arg)
2912 {
2913 struct vfio_iommu_type1_dirty_bitmap dirty;
2914 uint32_t mask = VFIO_IOMMU_DIRTY_PAGES_FLAG_START |
2915 VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP |
2916 VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP;
2917 unsigned long minsz;
2918 int ret = 0;
2919
2920 if (!iommu->v2)
2921 return -EACCES;
2922
2923 minsz = offsetofend(struct vfio_iommu_type1_dirty_bitmap, flags);
2924
2925 if (copy_from_user(&dirty, (void __user *)arg, minsz))
2926 return -EFAULT;
2927
2928 if (dirty.argsz < minsz || dirty.flags & ~mask)
2929 return -EINVAL;
2930
2931 /* only one flag should be set at a time */
2932 if (__ffs(dirty.flags) != __fls(dirty.flags))
2933 return -EINVAL;
2934
2935 if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_START) {
2936 size_t pgsize;
2937
2938 mutex_lock(&iommu->lock);
2939 pgsize = 1 << __ffs(iommu->pgsize_bitmap);
2940 if (!iommu->dirty_page_tracking) {
2941 ret = vfio_dma_bitmap_alloc_all(iommu, pgsize);
2942 if (!ret)
2943 iommu->dirty_page_tracking = true;
2944 }
2945 mutex_unlock(&iommu->lock);
2946 return ret;
2947 } else if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP) {
2948 mutex_lock(&iommu->lock);
2949 if (iommu->dirty_page_tracking) {
2950 iommu->dirty_page_tracking = false;
2951 vfio_dma_bitmap_free_all(iommu);
2952 }
2953 mutex_unlock(&iommu->lock);
2954 return 0;
2955 } else if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP) {
2956 struct vfio_iommu_type1_dirty_bitmap_get range;
2957 unsigned long pgshift;
2958 size_t data_size = dirty.argsz - minsz;
2959 size_t iommu_pgsize;
2960
2961 if (!data_size || data_size < sizeof(range))
2962 return -EINVAL;
2963
2964 if (copy_from_user(&range, (void __user *)(arg + minsz),
2965 sizeof(range)))
2966 return -EFAULT;
2967
2968 if (range.iova + range.size < range.iova)
2969 return -EINVAL;
2970 if (!access_ok((void __user *)range.bitmap.data,
2971 range.bitmap.size))
2972 return -EINVAL;
2973
2974 pgshift = __ffs(range.bitmap.pgsize);
2975 ret = verify_bitmap_size(range.size >> pgshift,
2976 range.bitmap.size);
2977 if (ret)
2978 return ret;
2979
2980 mutex_lock(&iommu->lock);
2981
2982 iommu_pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap);
2983
2984 /* allow only smallest supported pgsize */
2985 if (range.bitmap.pgsize != iommu_pgsize) {
2986 ret = -EINVAL;
2987 goto out_unlock;
2988 }
2989 if (range.iova & (iommu_pgsize - 1)) {
2990 ret = -EINVAL;
2991 goto out_unlock;
2992 }
2993 if (!range.size || range.size & (iommu_pgsize - 1)) {
2994 ret = -EINVAL;
2995 goto out_unlock;
2996 }
2997
2998 if (iommu->dirty_page_tracking)
2999 ret = vfio_iova_dirty_bitmap(range.bitmap.data,
3000 iommu, range.iova,
3001 range.size,
3002 range.bitmap.pgsize);
3003 else
3004 ret = -EINVAL;
3005 out_unlock:
3006 mutex_unlock(&iommu->lock);
3007
3008 return ret;
3009 }
3010
3011 return -EINVAL;
3012 }
3013
vfio_iommu_type1_ioctl(void * iommu_data,unsigned int cmd,unsigned long arg)3014 static long vfio_iommu_type1_ioctl(void *iommu_data,
3015 unsigned int cmd, unsigned long arg)
3016 {
3017 struct vfio_iommu *iommu = iommu_data;
3018
3019 switch (cmd) {
3020 case VFIO_CHECK_EXTENSION:
3021 return vfio_iommu_type1_check_extension(iommu, arg);
3022 case VFIO_IOMMU_GET_INFO:
3023 return vfio_iommu_type1_get_info(iommu, arg);
3024 case VFIO_IOMMU_MAP_DMA:
3025 return vfio_iommu_type1_map_dma(iommu, arg);
3026 case VFIO_IOMMU_UNMAP_DMA:
3027 return vfio_iommu_type1_unmap_dma(iommu, arg);
3028 case VFIO_IOMMU_DIRTY_PAGES:
3029 return vfio_iommu_type1_dirty_pages(iommu, arg);
3030 default:
3031 return -ENOTTY;
3032 }
3033 }
3034
vfio_iommu_type1_register_device(void * iommu_data,struct vfio_device * vdev)3035 static void vfio_iommu_type1_register_device(void *iommu_data,
3036 struct vfio_device *vdev)
3037 {
3038 struct vfio_iommu *iommu = iommu_data;
3039
3040 if (!vdev->ops->dma_unmap)
3041 return;
3042
3043 /*
3044 * list_empty(&iommu->device_list) is tested under the iommu->lock while
3045 * iteration for dma_unmap must be done under the device_list_lock.
3046 * Holding both locks here allows avoiding the device_list_lock in
3047 * several fast paths. See vfio_notify_dma_unmap()
3048 */
3049 mutex_lock(&iommu->lock);
3050 mutex_lock(&iommu->device_list_lock);
3051 list_add(&vdev->iommu_entry, &iommu->device_list);
3052 mutex_unlock(&iommu->device_list_lock);
3053 mutex_unlock(&iommu->lock);
3054 }
3055
vfio_iommu_type1_unregister_device(void * iommu_data,struct vfio_device * vdev)3056 static void vfio_iommu_type1_unregister_device(void *iommu_data,
3057 struct vfio_device *vdev)
3058 {
3059 struct vfio_iommu *iommu = iommu_data;
3060
3061 if (!vdev->ops->dma_unmap)
3062 return;
3063
3064 mutex_lock(&iommu->lock);
3065 mutex_lock(&iommu->device_list_lock);
3066 list_del(&vdev->iommu_entry);
3067 mutex_unlock(&iommu->device_list_lock);
3068 mutex_unlock(&iommu->lock);
3069 }
3070
vfio_iommu_type1_dma_rw_chunk(struct vfio_iommu * iommu,dma_addr_t user_iova,void * data,size_t count,bool write,size_t * copied)3071 static int vfio_iommu_type1_dma_rw_chunk(struct vfio_iommu *iommu,
3072 dma_addr_t user_iova, void *data,
3073 size_t count, bool write,
3074 size_t *copied)
3075 {
3076 struct mm_struct *mm;
3077 unsigned long vaddr;
3078 struct vfio_dma *dma;
3079 bool kthread = current->mm == NULL;
3080 size_t offset;
3081 int ret;
3082
3083 *copied = 0;
3084
3085 ret = vfio_find_dma_valid(iommu, user_iova, 1, &dma);
3086 if (ret < 0)
3087 return ret;
3088
3089 if ((write && !(dma->prot & IOMMU_WRITE)) ||
3090 !(dma->prot & IOMMU_READ))
3091 return -EPERM;
3092
3093 mm = get_task_mm(dma->task);
3094
3095 if (!mm)
3096 return -EPERM;
3097
3098 if (kthread)
3099 kthread_use_mm(mm);
3100 else if (current->mm != mm)
3101 goto out;
3102
3103 offset = user_iova - dma->iova;
3104
3105 if (count > dma->size - offset)
3106 count = dma->size - offset;
3107
3108 vaddr = dma->vaddr + offset;
3109
3110 if (write) {
3111 *copied = copy_to_user((void __user *)vaddr, data,
3112 count) ? 0 : count;
3113 if (*copied && iommu->dirty_page_tracking) {
3114 unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
3115 /*
3116 * Bitmap populated with the smallest supported page
3117 * size
3118 */
3119 bitmap_set(dma->bitmap, offset >> pgshift,
3120 ((offset + *copied - 1) >> pgshift) -
3121 (offset >> pgshift) + 1);
3122 }
3123 } else
3124 *copied = copy_from_user(data, (void __user *)vaddr,
3125 count) ? 0 : count;
3126 if (kthread)
3127 kthread_unuse_mm(mm);
3128 out:
3129 mmput(mm);
3130 return *copied ? 0 : -EFAULT;
3131 }
3132
vfio_iommu_type1_dma_rw(void * iommu_data,dma_addr_t user_iova,void * data,size_t count,bool write)3133 static int vfio_iommu_type1_dma_rw(void *iommu_data, dma_addr_t user_iova,
3134 void *data, size_t count, bool write)
3135 {
3136 struct vfio_iommu *iommu = iommu_data;
3137 int ret = 0;
3138 size_t done;
3139
3140 mutex_lock(&iommu->lock);
3141 while (count > 0) {
3142 ret = vfio_iommu_type1_dma_rw_chunk(iommu, user_iova, data,
3143 count, write, &done);
3144 if (ret)
3145 break;
3146
3147 count -= done;
3148 data += done;
3149 user_iova += done;
3150 }
3151
3152 mutex_unlock(&iommu->lock);
3153 return ret;
3154 }
3155
3156 static struct iommu_domain *
vfio_iommu_type1_group_iommu_domain(void * iommu_data,struct iommu_group * iommu_group)3157 vfio_iommu_type1_group_iommu_domain(void *iommu_data,
3158 struct iommu_group *iommu_group)
3159 {
3160 struct iommu_domain *domain = ERR_PTR(-ENODEV);
3161 struct vfio_iommu *iommu = iommu_data;
3162 struct vfio_domain *d;
3163
3164 if (!iommu || !iommu_group)
3165 return ERR_PTR(-EINVAL);
3166
3167 mutex_lock(&iommu->lock);
3168 list_for_each_entry(d, &iommu->domain_list, next) {
3169 if (find_iommu_group(d, iommu_group)) {
3170 domain = d->domain;
3171 break;
3172 }
3173 }
3174 mutex_unlock(&iommu->lock);
3175
3176 return domain;
3177 }
3178
vfio_iommu_type1_notify(void * iommu_data,enum vfio_iommu_notify_type event)3179 static void vfio_iommu_type1_notify(void *iommu_data,
3180 enum vfio_iommu_notify_type event)
3181 {
3182 struct vfio_iommu *iommu = iommu_data;
3183
3184 if (event != VFIO_IOMMU_CONTAINER_CLOSE)
3185 return;
3186 mutex_lock(&iommu->lock);
3187 iommu->container_open = false;
3188 mutex_unlock(&iommu->lock);
3189 wake_up_all(&iommu->vaddr_wait);
3190 }
3191
3192 static const struct vfio_iommu_driver_ops vfio_iommu_driver_ops_type1 = {
3193 .name = "vfio-iommu-type1",
3194 .owner = THIS_MODULE,
3195 .open = vfio_iommu_type1_open,
3196 .release = vfio_iommu_type1_release,
3197 .ioctl = vfio_iommu_type1_ioctl,
3198 .attach_group = vfio_iommu_type1_attach_group,
3199 .detach_group = vfio_iommu_type1_detach_group,
3200 .pin_pages = vfio_iommu_type1_pin_pages,
3201 .unpin_pages = vfio_iommu_type1_unpin_pages,
3202 .register_device = vfio_iommu_type1_register_device,
3203 .unregister_device = vfio_iommu_type1_unregister_device,
3204 .dma_rw = vfio_iommu_type1_dma_rw,
3205 .group_iommu_domain = vfio_iommu_type1_group_iommu_domain,
3206 .notify = vfio_iommu_type1_notify,
3207 };
3208
vfio_iommu_type1_init(void)3209 static int __init vfio_iommu_type1_init(void)
3210 {
3211 return vfio_register_iommu_driver(&vfio_iommu_driver_ops_type1);
3212 }
3213
vfio_iommu_type1_cleanup(void)3214 static void __exit vfio_iommu_type1_cleanup(void)
3215 {
3216 vfio_unregister_iommu_driver(&vfio_iommu_driver_ops_type1);
3217 }
3218
3219 module_init(vfio_iommu_type1_init);
3220 module_exit(vfio_iommu_type1_cleanup);
3221
3222 MODULE_VERSION(DRIVER_VERSION);
3223 MODULE_LICENSE("GPL v2");
3224 MODULE_AUTHOR(DRIVER_AUTHOR);
3225 MODULE_DESCRIPTION(DRIVER_DESC);
3226