1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 *
4 * Copyright SUSE Linux Products GmbH 2010
5 *
6 * Authors: Alexander Graf <agraf@suse.de>
7 */
8
9 #ifndef __ASM_KVM_BOOK3S_64_H__
10 #define __ASM_KVM_BOOK3S_64_H__
11
12 #include <linux/string.h>
13 #include <asm/bitops.h>
14 #include <asm/book3s/64/mmu-hash.h>
15 #include <asm/cpu_has_feature.h>
16 #include <asm/ppc-opcode.h>
17 #include <asm/pte-walk.h>
18
19 #ifdef CONFIG_PPC_PSERIES
kvmhv_on_pseries(void)20 static inline bool kvmhv_on_pseries(void)
21 {
22 return !cpu_has_feature(CPU_FTR_HVMODE);
23 }
24 #else
kvmhv_on_pseries(void)25 static inline bool kvmhv_on_pseries(void)
26 {
27 return false;
28 }
29 #endif
30
31 /*
32 * Structure for a nested guest, that is, for a guest that is managed by
33 * one of our guests.
34 */
35 struct kvm_nested_guest {
36 struct kvm *l1_host; /* L1 VM that owns this nested guest */
37 int l1_lpid; /* lpid L1 guest thinks this guest is */
38 int shadow_lpid; /* real lpid of this nested guest */
39 pgd_t *shadow_pgtable; /* our page table for this guest */
40 u64 l1_gr_to_hr; /* L1's addr of part'n-scoped table */
41 u64 process_table; /* process table entry for this guest */
42 long refcnt; /* number of pointers to this struct */
43 struct mutex tlb_lock; /* serialize page faults and tlbies */
44 struct kvm_nested_guest *next;
45 cpumask_t need_tlb_flush;
46 cpumask_t cpu_in_guest;
47 short prev_cpu[NR_CPUS];
48 u8 radix; /* is this nested guest radix */
49 };
50
51 /*
52 * We define a nested rmap entry as a single 64-bit quantity
53 * 0xFFF0000000000000 12-bit lpid field
54 * 0x000FFFFFFFFFF000 40-bit guest 4k page frame number
55 * 0x0000000000000001 1-bit single entry flag
56 */
57 #define RMAP_NESTED_LPID_MASK 0xFFF0000000000000UL
58 #define RMAP_NESTED_LPID_SHIFT (52)
59 #define RMAP_NESTED_GPA_MASK 0x000FFFFFFFFFF000UL
60 #define RMAP_NESTED_IS_SINGLE_ENTRY 0x0000000000000001UL
61
62 /* Structure for a nested guest rmap entry */
63 struct rmap_nested {
64 struct llist_node list;
65 u64 rmap;
66 };
67
68 /*
69 * for_each_nest_rmap_safe - iterate over the list of nested rmap entries
70 * safe against removal of the list entry or NULL list
71 * @pos: a (struct rmap_nested *) to use as a loop cursor
72 * @node: pointer to the first entry
73 * NOTE: this can be NULL
74 * @rmapp: an (unsigned long *) in which to return the rmap entries on each
75 * iteration
76 * NOTE: this must point to already allocated memory
77 *
78 * The nested_rmap is a llist of (struct rmap_nested) entries pointed to by the
79 * rmap entry in the memslot. The list is always terminated by a "single entry"
80 * stored in the list element of the final entry of the llist. If there is ONLY
81 * a single entry then this is itself in the rmap entry of the memslot, not a
82 * llist head pointer.
83 *
84 * Note that the iterator below assumes that a nested rmap entry is always
85 * non-zero. This is true for our usage because the LPID field is always
86 * non-zero (zero is reserved for the host).
87 *
88 * This should be used to iterate over the list of rmap_nested entries with
89 * processing done on the u64 rmap value given by each iteration. This is safe
90 * against removal of list entries and it is always safe to call free on (pos).
91 *
92 * e.g.
93 * struct rmap_nested *cursor;
94 * struct llist_node *first;
95 * unsigned long rmap;
96 * for_each_nest_rmap_safe(cursor, first, &rmap) {
97 * do_something(rmap);
98 * free(cursor);
99 * }
100 */
101 #define for_each_nest_rmap_safe(pos, node, rmapp) \
102 for ((pos) = llist_entry((node), typeof(*(pos)), list); \
103 (node) && \
104 (*(rmapp) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ? \
105 ((u64) (node)) : ((pos)->rmap))) && \
106 (((node) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ? \
107 ((struct llist_node *) ((pos) = NULL)) : \
108 (pos)->list.next)), true); \
109 (pos) = llist_entry((node), typeof(*(pos)), list))
110
111 struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid,
112 bool create);
113 void kvmhv_put_nested(struct kvm_nested_guest *gp);
114 int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid);
115
116 /* Encoding of first parameter for H_TLB_INVALIDATE */
117 #define H_TLBIE_P1_ENC(ric, prs, r) (___PPC_RIC(ric) | ___PPC_PRS(prs) | \
118 ___PPC_R(r))
119
120 /* Power architecture requires HPT is at least 256kiB, at most 64TiB */
121 #define PPC_MIN_HPT_ORDER 18
122 #define PPC_MAX_HPT_ORDER 46
123
124 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
svcpu_get(struct kvm_vcpu * vcpu)125 static inline struct kvmppc_book3s_shadow_vcpu *svcpu_get(struct kvm_vcpu *vcpu)
126 {
127 preempt_disable();
128 return &get_paca()->shadow_vcpu;
129 }
130
svcpu_put(struct kvmppc_book3s_shadow_vcpu * svcpu)131 static inline void svcpu_put(struct kvmppc_book3s_shadow_vcpu *svcpu)
132 {
133 preempt_enable();
134 }
135 #endif
136
137 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
138
kvm_is_radix(struct kvm * kvm)139 static inline bool kvm_is_radix(struct kvm *kvm)
140 {
141 return kvm->arch.radix;
142 }
143
kvmhv_vcpu_is_radix(struct kvm_vcpu * vcpu)144 static inline bool kvmhv_vcpu_is_radix(struct kvm_vcpu *vcpu)
145 {
146 bool radix;
147
148 if (vcpu->arch.nested)
149 radix = vcpu->arch.nested->radix;
150 else
151 radix = kvm_is_radix(vcpu->kvm);
152
153 return radix;
154 }
155
156 #define KVM_DEFAULT_HPT_ORDER 24 /* 16MB HPT by default */
157 #endif
158
159 /*
160 * We use a lock bit in HPTE dword 0 to synchronize updates and
161 * accesses to each HPTE, and another bit to indicate non-present
162 * HPTEs.
163 */
164 #define HPTE_V_HVLOCK 0x40UL
165 #define HPTE_V_ABSENT 0x20UL
166
167 /*
168 * We use this bit in the guest_rpte field of the revmap entry
169 * to indicate a modified HPTE.
170 */
171 #define HPTE_GR_MODIFIED (1ul << 62)
172
173 /* These bits are reserved in the guest view of the HPTE */
174 #define HPTE_GR_RESERVED HPTE_GR_MODIFIED
175
try_lock_hpte(__be64 * hpte,unsigned long bits)176 static inline long try_lock_hpte(__be64 *hpte, unsigned long bits)
177 {
178 unsigned long tmp, old;
179 __be64 be_lockbit, be_bits;
180
181 /*
182 * We load/store in native endian, but the HTAB is in big endian. If
183 * we byte swap all data we apply on the PTE we're implicitly correct
184 * again.
185 */
186 be_lockbit = cpu_to_be64(HPTE_V_HVLOCK);
187 be_bits = cpu_to_be64(bits);
188
189 asm volatile(" ldarx %0,0,%2\n"
190 " and. %1,%0,%3\n"
191 " bne 2f\n"
192 " or %0,%0,%4\n"
193 " stdcx. %0,0,%2\n"
194 " beq+ 2f\n"
195 " mr %1,%3\n"
196 "2: isync"
197 : "=&r" (tmp), "=&r" (old)
198 : "r" (hpte), "r" (be_bits), "r" (be_lockbit)
199 : "cc", "memory");
200 return old == 0;
201 }
202
unlock_hpte(__be64 * hpte,unsigned long hpte_v)203 static inline void unlock_hpte(__be64 *hpte, unsigned long hpte_v)
204 {
205 hpte_v &= ~HPTE_V_HVLOCK;
206 asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
207 hpte[0] = cpu_to_be64(hpte_v);
208 }
209
210 /* Without barrier */
__unlock_hpte(__be64 * hpte,unsigned long hpte_v)211 static inline void __unlock_hpte(__be64 *hpte, unsigned long hpte_v)
212 {
213 hpte_v &= ~HPTE_V_HVLOCK;
214 hpte[0] = cpu_to_be64(hpte_v);
215 }
216
217 /*
218 * These functions encode knowledge of the POWER7/8/9 hardware
219 * interpretations of the HPTE LP (large page size) field.
220 */
kvmppc_hpte_page_shifts(unsigned long h,unsigned long l)221 static inline int kvmppc_hpte_page_shifts(unsigned long h, unsigned long l)
222 {
223 unsigned int lphi;
224
225 if (!(h & HPTE_V_LARGE))
226 return 12; /* 4kB */
227 lphi = (l >> 16) & 0xf;
228 switch ((l >> 12) & 0xf) {
229 case 0:
230 return !lphi ? 24 : 0; /* 16MB */
231 break;
232 case 1:
233 return 16; /* 64kB */
234 break;
235 case 3:
236 return !lphi ? 34 : 0; /* 16GB */
237 break;
238 case 7:
239 return (16 << 8) + 12; /* 64kB in 4kB */
240 break;
241 case 8:
242 if (!lphi)
243 return (24 << 8) + 16; /* 16MB in 64kkB */
244 if (lphi == 3)
245 return (24 << 8) + 12; /* 16MB in 4kB */
246 break;
247 }
248 return 0;
249 }
250
kvmppc_hpte_base_page_shift(unsigned long h,unsigned long l)251 static inline int kvmppc_hpte_base_page_shift(unsigned long h, unsigned long l)
252 {
253 return kvmppc_hpte_page_shifts(h, l) & 0xff;
254 }
255
kvmppc_hpte_actual_page_shift(unsigned long h,unsigned long l)256 static inline int kvmppc_hpte_actual_page_shift(unsigned long h, unsigned long l)
257 {
258 int tmp = kvmppc_hpte_page_shifts(h, l);
259
260 if (tmp >= 0x100)
261 tmp >>= 8;
262 return tmp;
263 }
264
kvmppc_actual_pgsz(unsigned long v,unsigned long r)265 static inline unsigned long kvmppc_actual_pgsz(unsigned long v, unsigned long r)
266 {
267 int shift = kvmppc_hpte_actual_page_shift(v, r);
268
269 if (shift)
270 return 1ul << shift;
271 return 0;
272 }
273
kvmppc_pgsize_lp_encoding(int base_shift,int actual_shift)274 static inline int kvmppc_pgsize_lp_encoding(int base_shift, int actual_shift)
275 {
276 switch (base_shift) {
277 case 12:
278 switch (actual_shift) {
279 case 12:
280 return 0;
281 case 16:
282 return 7;
283 case 24:
284 return 0x38;
285 }
286 break;
287 case 16:
288 switch (actual_shift) {
289 case 16:
290 return 1;
291 case 24:
292 return 8;
293 }
294 break;
295 case 24:
296 return 0;
297 }
298 return -1;
299 }
300
compute_tlbie_rb(unsigned long v,unsigned long r,unsigned long pte_index)301 static inline unsigned long compute_tlbie_rb(unsigned long v, unsigned long r,
302 unsigned long pte_index)
303 {
304 int a_pgshift, b_pgshift;
305 unsigned long rb = 0, va_low, sllp;
306
307 b_pgshift = a_pgshift = kvmppc_hpte_page_shifts(v, r);
308 if (a_pgshift >= 0x100) {
309 b_pgshift &= 0xff;
310 a_pgshift >>= 8;
311 }
312
313 /*
314 * Ignore the top 14 bits of va
315 * v have top two bits covering segment size, hence move
316 * by 16 bits, Also clear the lower HPTE_V_AVPN_SHIFT (7) bits.
317 * AVA field in v also have the lower 23 bits ignored.
318 * For base page size 4K we need 14 .. 65 bits (so need to
319 * collect extra 11 bits)
320 * For others we need 14..14+i
321 */
322 /* This covers 14..54 bits of va*/
323 rb = (v & ~0x7fUL) << 16; /* AVA field */
324
325 /*
326 * AVA in v had cleared lower 23 bits. We need to derive
327 * that from pteg index
328 */
329 va_low = pte_index >> 3;
330 if (v & HPTE_V_SECONDARY)
331 va_low = ~va_low;
332 /*
333 * get the vpn bits from va_low using reverse of hashing.
334 * In v we have va with 23 bits dropped and then left shifted
335 * HPTE_V_AVPN_SHIFT (7) bits. Now to find vsid we need
336 * right shift it with (SID_SHIFT - (23 - 7))
337 */
338 if (!(v & HPTE_V_1TB_SEG))
339 va_low ^= v >> (SID_SHIFT - 16);
340 else
341 va_low ^= v >> (SID_SHIFT_1T - 16);
342 va_low &= 0x7ff;
343
344 if (b_pgshift <= 12) {
345 if (a_pgshift > 12) {
346 sllp = (a_pgshift == 16) ? 5 : 4;
347 rb |= sllp << 5; /* AP field */
348 }
349 rb |= (va_low & 0x7ff) << 12; /* remaining 11 bits of AVA */
350 } else {
351 int aval_shift;
352 /*
353 * remaining bits of AVA/LP fields
354 * Also contain the rr bits of LP
355 */
356 rb |= (va_low << b_pgshift) & 0x7ff000;
357 /*
358 * Now clear not needed LP bits based on actual psize
359 */
360 rb &= ~((1ul << a_pgshift) - 1);
361 /*
362 * AVAL field 58..77 - base_page_shift bits of va
363 * we have space for 58..64 bits, Missing bits should
364 * be zero filled. +1 is to take care of L bit shift
365 */
366 aval_shift = 64 - (77 - b_pgshift) + 1;
367 rb |= ((va_low << aval_shift) & 0xfe);
368
369 rb |= 1; /* L field */
370 rb |= r & 0xff000 & ((1ul << a_pgshift) - 1); /* LP field */
371 }
372 rb |= (v >> HPTE_V_SSIZE_SHIFT) << 8; /* B field */
373 return rb;
374 }
375
hpte_rpn(unsigned long ptel,unsigned long psize)376 static inline unsigned long hpte_rpn(unsigned long ptel, unsigned long psize)
377 {
378 return ((ptel & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT;
379 }
380
hpte_is_writable(unsigned long ptel)381 static inline int hpte_is_writable(unsigned long ptel)
382 {
383 unsigned long pp = ptel & (HPTE_R_PP0 | HPTE_R_PP);
384
385 return pp != PP_RXRX && pp != PP_RXXX;
386 }
387
hpte_make_readonly(unsigned long ptel)388 static inline unsigned long hpte_make_readonly(unsigned long ptel)
389 {
390 if ((ptel & HPTE_R_PP0) || (ptel & HPTE_R_PP) == PP_RWXX)
391 ptel = (ptel & ~HPTE_R_PP) | PP_RXXX;
392 else
393 ptel |= PP_RXRX;
394 return ptel;
395 }
396
hpte_cache_flags_ok(unsigned long hptel,bool is_ci)397 static inline bool hpte_cache_flags_ok(unsigned long hptel, bool is_ci)
398 {
399 unsigned int wimg = hptel & HPTE_R_WIMG;
400
401 /* Handle SAO */
402 if (wimg == (HPTE_R_W | HPTE_R_I | HPTE_R_M) &&
403 cpu_has_feature(CPU_FTR_ARCH_206))
404 wimg = HPTE_R_M;
405
406 if (!is_ci)
407 return wimg == HPTE_R_M;
408 /*
409 * if host is mapped cache inhibited, make sure hptel also have
410 * cache inhibited.
411 */
412 if (wimg & HPTE_R_W) /* FIXME!! is this ok for all guest. ? */
413 return false;
414 return !!(wimg & HPTE_R_I);
415 }
416
417 /*
418 * If it's present and writable, atomically set dirty and referenced bits and
419 * return the PTE, otherwise return 0.
420 */
kvmppc_read_update_linux_pte(pte_t * ptep,int writing)421 static inline pte_t kvmppc_read_update_linux_pte(pte_t *ptep, int writing)
422 {
423 pte_t old_pte, new_pte = __pte(0);
424
425 while (1) {
426 /*
427 * Make sure we don't reload from ptep
428 */
429 old_pte = READ_ONCE(*ptep);
430 /*
431 * wait until H_PAGE_BUSY is clear then set it atomically
432 */
433 if (unlikely(pte_val(old_pte) & H_PAGE_BUSY)) {
434 cpu_relax();
435 continue;
436 }
437 /* If pte is not present return None */
438 if (unlikely(!pte_present(old_pte)))
439 return __pte(0);
440
441 new_pte = pte_mkyoung(old_pte);
442 if (writing && pte_write(old_pte))
443 new_pte = pte_mkdirty(new_pte);
444
445 if (pte_xchg(ptep, old_pte, new_pte))
446 break;
447 }
448 return new_pte;
449 }
450
hpte_read_permission(unsigned long pp,unsigned long key)451 static inline bool hpte_read_permission(unsigned long pp, unsigned long key)
452 {
453 if (key)
454 return PP_RWRX <= pp && pp <= PP_RXRX;
455 return true;
456 }
457
hpte_write_permission(unsigned long pp,unsigned long key)458 static inline bool hpte_write_permission(unsigned long pp, unsigned long key)
459 {
460 if (key)
461 return pp == PP_RWRW;
462 return pp <= PP_RWRW;
463 }
464
hpte_get_skey_perm(unsigned long hpte_r,unsigned long amr)465 static inline int hpte_get_skey_perm(unsigned long hpte_r, unsigned long amr)
466 {
467 unsigned long skey;
468
469 skey = ((hpte_r & HPTE_R_KEY_HI) >> 57) |
470 ((hpte_r & HPTE_R_KEY_LO) >> 9);
471 return (amr >> (62 - 2 * skey)) & 3;
472 }
473
lock_rmap(unsigned long * rmap)474 static inline void lock_rmap(unsigned long *rmap)
475 {
476 do {
477 while (test_bit(KVMPPC_RMAP_LOCK_BIT, rmap))
478 cpu_relax();
479 } while (test_and_set_bit_lock(KVMPPC_RMAP_LOCK_BIT, rmap));
480 }
481
unlock_rmap(unsigned long * rmap)482 static inline void unlock_rmap(unsigned long *rmap)
483 {
484 __clear_bit_unlock(KVMPPC_RMAP_LOCK_BIT, rmap);
485 }
486
slot_is_aligned(struct kvm_memory_slot * memslot,unsigned long pagesize)487 static inline bool slot_is_aligned(struct kvm_memory_slot *memslot,
488 unsigned long pagesize)
489 {
490 unsigned long mask = (pagesize >> PAGE_SHIFT) - 1;
491
492 if (pagesize <= PAGE_SIZE)
493 return true;
494 return !(memslot->base_gfn & mask) && !(memslot->npages & mask);
495 }
496
497 /*
498 * This works for 4k, 64k and 16M pages on POWER7,
499 * and 4k and 16M pages on PPC970.
500 */
slb_pgsize_encoding(unsigned long psize)501 static inline unsigned long slb_pgsize_encoding(unsigned long psize)
502 {
503 unsigned long senc = 0;
504
505 if (psize > 0x1000) {
506 senc = SLB_VSID_L;
507 if (psize == 0x10000)
508 senc |= SLB_VSID_LP_01;
509 }
510 return senc;
511 }
512
is_vrma_hpte(unsigned long hpte_v)513 static inline int is_vrma_hpte(unsigned long hpte_v)
514 {
515 return (hpte_v & ~0xffffffUL) ==
516 (HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)));
517 }
518
519 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
520 /*
521 * Note modification of an HPTE; set the HPTE modified bit
522 * if anyone is interested.
523 */
note_hpte_modification(struct kvm * kvm,struct revmap_entry * rev)524 static inline void note_hpte_modification(struct kvm *kvm,
525 struct revmap_entry *rev)
526 {
527 if (atomic_read(&kvm->arch.hpte_mod_interest))
528 rev->guest_rpte |= HPTE_GR_MODIFIED;
529 }
530
531 /*
532 * Like kvm_memslots(), but for use in real mode when we can't do
533 * any RCU stuff (since the secondary threads are offline from the
534 * kernel's point of view), and we can't print anything.
535 * Thus we use rcu_dereference_raw() rather than rcu_dereference_check().
536 */
kvm_memslots_raw(struct kvm * kvm)537 static inline struct kvm_memslots *kvm_memslots_raw(struct kvm *kvm)
538 {
539 return rcu_dereference_raw_check(kvm->memslots[0]);
540 }
541
542 extern void kvmppc_mmu_debugfs_init(struct kvm *kvm);
543 extern void kvmhv_radix_debugfs_init(struct kvm *kvm);
544
545 extern void kvmhv_rm_send_ipi(int cpu);
546
kvmppc_hpt_npte(struct kvm_hpt_info * hpt)547 static inline unsigned long kvmppc_hpt_npte(struct kvm_hpt_info *hpt)
548 {
549 /* HPTEs are 2**4 bytes long */
550 return 1UL << (hpt->order - 4);
551 }
552
kvmppc_hpt_mask(struct kvm_hpt_info * hpt)553 static inline unsigned long kvmppc_hpt_mask(struct kvm_hpt_info *hpt)
554 {
555 /* 128 (2**7) bytes in each HPTEG */
556 return (1UL << (hpt->order - 7)) - 1;
557 }
558
559 /* Set bits in a dirty bitmap, which is in LE format */
set_dirty_bits(unsigned long * map,unsigned long i,unsigned long npages)560 static inline void set_dirty_bits(unsigned long *map, unsigned long i,
561 unsigned long npages)
562 {
563
564 if (npages >= 8)
565 memset((char *)map + i / 8, 0xff, npages / 8);
566 else
567 for (; npages; ++i, --npages)
568 __set_bit_le(i, map);
569 }
570
set_dirty_bits_atomic(unsigned long * map,unsigned long i,unsigned long npages)571 static inline void set_dirty_bits_atomic(unsigned long *map, unsigned long i,
572 unsigned long npages)
573 {
574 if (npages >= 8)
575 memset((char *)map + i / 8, 0xff, npages / 8);
576 else
577 for (; npages; ++i, --npages)
578 set_bit_le(i, map);
579 }
580
sanitize_msr(u64 msr)581 static inline u64 sanitize_msr(u64 msr)
582 {
583 msr &= ~MSR_HV;
584 msr |= MSR_ME;
585 return msr;
586 }
587
588 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
copy_from_checkpoint(struct kvm_vcpu * vcpu)589 static inline void copy_from_checkpoint(struct kvm_vcpu *vcpu)
590 {
591 vcpu->arch.regs.ccr = vcpu->arch.cr_tm;
592 vcpu->arch.regs.xer = vcpu->arch.xer_tm;
593 vcpu->arch.regs.link = vcpu->arch.lr_tm;
594 vcpu->arch.regs.ctr = vcpu->arch.ctr_tm;
595 vcpu->arch.amr = vcpu->arch.amr_tm;
596 vcpu->arch.ppr = vcpu->arch.ppr_tm;
597 vcpu->arch.dscr = vcpu->arch.dscr_tm;
598 vcpu->arch.tar = vcpu->arch.tar_tm;
599 memcpy(vcpu->arch.regs.gpr, vcpu->arch.gpr_tm,
600 sizeof(vcpu->arch.regs.gpr));
601 vcpu->arch.fp = vcpu->arch.fp_tm;
602 vcpu->arch.vr = vcpu->arch.vr_tm;
603 vcpu->arch.vrsave = vcpu->arch.vrsave_tm;
604 }
605
copy_to_checkpoint(struct kvm_vcpu * vcpu)606 static inline void copy_to_checkpoint(struct kvm_vcpu *vcpu)
607 {
608 vcpu->arch.cr_tm = vcpu->arch.regs.ccr;
609 vcpu->arch.xer_tm = vcpu->arch.regs.xer;
610 vcpu->arch.lr_tm = vcpu->arch.regs.link;
611 vcpu->arch.ctr_tm = vcpu->arch.regs.ctr;
612 vcpu->arch.amr_tm = vcpu->arch.amr;
613 vcpu->arch.ppr_tm = vcpu->arch.ppr;
614 vcpu->arch.dscr_tm = vcpu->arch.dscr;
615 vcpu->arch.tar_tm = vcpu->arch.tar;
616 memcpy(vcpu->arch.gpr_tm, vcpu->arch.regs.gpr,
617 sizeof(vcpu->arch.regs.gpr));
618 vcpu->arch.fp_tm = vcpu->arch.fp;
619 vcpu->arch.vr_tm = vcpu->arch.vr;
620 vcpu->arch.vrsave_tm = vcpu->arch.vrsave;
621 }
622 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
623
624 extern int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte,
625 unsigned long gpa, unsigned int level,
626 unsigned long mmu_seq, unsigned int lpid,
627 unsigned long *rmapp, struct rmap_nested **n_rmap);
628 extern void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp,
629 struct rmap_nested **n_rmap);
630 extern void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp,
631 unsigned long clr, unsigned long set,
632 unsigned long hpa, unsigned long nbytes);
633 extern void kvmhv_remove_nest_rmap_range(struct kvm *kvm,
634 const struct kvm_memory_slot *memslot,
635 unsigned long gpa, unsigned long hpa,
636 unsigned long nbytes);
637
638 static inline pte_t *
find_kvm_secondary_pte_unlocked(struct kvm * kvm,unsigned long ea,unsigned * hshift)639 find_kvm_secondary_pte_unlocked(struct kvm *kvm, unsigned long ea,
640 unsigned *hshift)
641 {
642 pte_t *pte;
643
644 pte = __find_linux_pte(kvm->arch.pgtable, ea, NULL, hshift);
645 return pte;
646 }
647
find_kvm_secondary_pte(struct kvm * kvm,unsigned long ea,unsigned * hshift)648 static inline pte_t *find_kvm_secondary_pte(struct kvm *kvm, unsigned long ea,
649 unsigned *hshift)
650 {
651 pte_t *pte;
652
653 VM_WARN(!spin_is_locked(&kvm->mmu_lock),
654 "%s called with kvm mmu_lock not held \n", __func__);
655 pte = __find_linux_pte(kvm->arch.pgtable, ea, NULL, hshift);
656
657 return pte;
658 }
659
find_kvm_host_pte(struct kvm * kvm,unsigned long mmu_seq,unsigned long ea,unsigned * hshift)660 static inline pte_t *find_kvm_host_pte(struct kvm *kvm, unsigned long mmu_seq,
661 unsigned long ea, unsigned *hshift)
662 {
663 pte_t *pte;
664
665 VM_WARN(!spin_is_locked(&kvm->mmu_lock),
666 "%s called with kvm mmu_lock not held \n", __func__);
667
668 if (mmu_notifier_retry(kvm, mmu_seq))
669 return NULL;
670
671 pte = __find_linux_pte(kvm->mm->pgd, ea, NULL, hshift);
672
673 return pte;
674 }
675
676 extern pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid,
677 unsigned long ea, unsigned *hshift);
678
679 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
680
681 #endif /* __ASM_KVM_BOOK3S_64_H__ */
682