1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VGIC: KVM DEVICE API
4 *
5 * Copyright (C) 2015 ARM Ltd.
6 * Author: Marc Zyngier <marc.zyngier@arm.com>
7 */
8 #include <linux/kvm_host.h>
9 #include <kvm/arm_vgic.h>
10 #include <linux/uaccess.h>
11 #include <asm/kvm_mmu.h>
12 #include <asm/cputype.h>
13 #include "vgic.h"
14
15 /* common helpers */
16
vgic_check_ioaddr(struct kvm * kvm,phys_addr_t * ioaddr,phys_addr_t addr,phys_addr_t alignment)17 int vgic_check_ioaddr(struct kvm *kvm, phys_addr_t *ioaddr,
18 phys_addr_t addr, phys_addr_t alignment)
19 {
20 if (addr & ~kvm_phys_mask(kvm))
21 return -E2BIG;
22
23 if (!IS_ALIGNED(addr, alignment))
24 return -EINVAL;
25
26 if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
27 return -EEXIST;
28
29 return 0;
30 }
31
vgic_check_type(struct kvm * kvm,int type_needed)32 static int vgic_check_type(struct kvm *kvm, int type_needed)
33 {
34 if (kvm->arch.vgic.vgic_model != type_needed)
35 return -ENODEV;
36 else
37 return 0;
38 }
39
40 /**
41 * kvm_vgic_addr - set or get vgic VM base addresses
42 * @kvm: pointer to the vm struct
43 * @type: the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX
44 * @addr: pointer to address value
45 * @write: if true set the address in the VM address space, if false read the
46 * address
47 *
48 * Set or get the vgic base addresses for the distributor and the virtual CPU
49 * interface in the VM physical address space. These addresses are properties
50 * of the emulated core/SoC and therefore user space initially knows this
51 * information.
52 * Check them for sanity (alignment, double assignment). We can't check for
53 * overlapping regions in case of a virtual GICv3 here, since we don't know
54 * the number of VCPUs yet, so we defer this check to map_resources().
55 */
kvm_vgic_addr(struct kvm * kvm,unsigned long type,u64 * addr,bool write)56 int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
57 {
58 int r = 0;
59 struct vgic_dist *vgic = &kvm->arch.vgic;
60 phys_addr_t *addr_ptr, alignment;
61 u64 undef_value = VGIC_ADDR_UNDEF;
62
63 mutex_lock(&kvm->lock);
64 switch (type) {
65 case KVM_VGIC_V2_ADDR_TYPE_DIST:
66 r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
67 addr_ptr = &vgic->vgic_dist_base;
68 alignment = SZ_4K;
69 break;
70 case KVM_VGIC_V2_ADDR_TYPE_CPU:
71 r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
72 addr_ptr = &vgic->vgic_cpu_base;
73 alignment = SZ_4K;
74 break;
75 case KVM_VGIC_V3_ADDR_TYPE_DIST:
76 r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V3);
77 addr_ptr = &vgic->vgic_dist_base;
78 alignment = SZ_64K;
79 break;
80 case KVM_VGIC_V3_ADDR_TYPE_REDIST: {
81 struct vgic_redist_region *rdreg;
82
83 r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V3);
84 if (r)
85 break;
86 if (write) {
87 r = vgic_v3_set_redist_base(kvm, 0, *addr, 0);
88 goto out;
89 }
90 rdreg = list_first_entry(&vgic->rd_regions,
91 struct vgic_redist_region, list);
92 if (!rdreg)
93 addr_ptr = &undef_value;
94 else
95 addr_ptr = &rdreg->base;
96 break;
97 }
98 case KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION:
99 {
100 struct vgic_redist_region *rdreg;
101 u8 index;
102
103 r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V3);
104 if (r)
105 break;
106
107 index = *addr & KVM_VGIC_V3_RDIST_INDEX_MASK;
108
109 if (write) {
110 gpa_t base = *addr & KVM_VGIC_V3_RDIST_BASE_MASK;
111 u32 count = (*addr & KVM_VGIC_V3_RDIST_COUNT_MASK)
112 >> KVM_VGIC_V3_RDIST_COUNT_SHIFT;
113 u8 flags = (*addr & KVM_VGIC_V3_RDIST_FLAGS_MASK)
114 >> KVM_VGIC_V3_RDIST_FLAGS_SHIFT;
115
116 if (!count || flags)
117 r = -EINVAL;
118 else
119 r = vgic_v3_set_redist_base(kvm, index,
120 base, count);
121 goto out;
122 }
123
124 rdreg = vgic_v3_rdist_region_from_index(kvm, index);
125 if (!rdreg) {
126 r = -ENOENT;
127 goto out;
128 }
129
130 *addr = index;
131 *addr |= rdreg->base;
132 *addr |= (u64)rdreg->count << KVM_VGIC_V3_RDIST_COUNT_SHIFT;
133 goto out;
134 }
135 default:
136 r = -ENODEV;
137 }
138
139 if (r)
140 goto out;
141
142 if (write) {
143 r = vgic_check_ioaddr(kvm, addr_ptr, *addr, alignment);
144 if (!r)
145 *addr_ptr = *addr;
146 } else {
147 *addr = *addr_ptr;
148 }
149
150 out:
151 mutex_unlock(&kvm->lock);
152 return r;
153 }
154
vgic_set_common_attr(struct kvm_device * dev,struct kvm_device_attr * attr)155 static int vgic_set_common_attr(struct kvm_device *dev,
156 struct kvm_device_attr *attr)
157 {
158 int r;
159
160 switch (attr->group) {
161 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
162 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
163 u64 addr;
164 unsigned long type = (unsigned long)attr->attr;
165
166 if (copy_from_user(&addr, uaddr, sizeof(addr)))
167 return -EFAULT;
168
169 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
170 return (r == -ENODEV) ? -ENXIO : r;
171 }
172 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
173 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
174 u32 val;
175 int ret = 0;
176
177 if (get_user(val, uaddr))
178 return -EFAULT;
179
180 /*
181 * We require:
182 * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
183 * - at most 1024 interrupts
184 * - a multiple of 32 interrupts
185 */
186 if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
187 val > VGIC_MAX_RESERVED ||
188 (val & 31))
189 return -EINVAL;
190
191 mutex_lock(&dev->kvm->lock);
192
193 if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_spis)
194 ret = -EBUSY;
195 else
196 dev->kvm->arch.vgic.nr_spis =
197 val - VGIC_NR_PRIVATE_IRQS;
198
199 mutex_unlock(&dev->kvm->lock);
200
201 return ret;
202 }
203 case KVM_DEV_ARM_VGIC_GRP_CTRL: {
204 switch (attr->attr) {
205 case KVM_DEV_ARM_VGIC_CTRL_INIT:
206 mutex_lock(&dev->kvm->lock);
207 r = vgic_init(dev->kvm);
208 mutex_unlock(&dev->kvm->lock);
209 return r;
210 }
211 break;
212 }
213 }
214
215 return -ENXIO;
216 }
217
vgic_get_common_attr(struct kvm_device * dev,struct kvm_device_attr * attr)218 static int vgic_get_common_attr(struct kvm_device *dev,
219 struct kvm_device_attr *attr)
220 {
221 int r = -ENXIO;
222
223 switch (attr->group) {
224 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
225 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
226 u64 addr;
227 unsigned long type = (unsigned long)attr->attr;
228
229 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
230 if (r)
231 return (r == -ENODEV) ? -ENXIO : r;
232
233 if (copy_to_user(uaddr, &addr, sizeof(addr)))
234 return -EFAULT;
235 break;
236 }
237 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
238 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
239
240 r = put_user(dev->kvm->arch.vgic.nr_spis +
241 VGIC_NR_PRIVATE_IRQS, uaddr);
242 break;
243 }
244 }
245
246 return r;
247 }
248
vgic_create(struct kvm_device * dev,u32 type)249 static int vgic_create(struct kvm_device *dev, u32 type)
250 {
251 return kvm_vgic_create(dev->kvm, type);
252 }
253
vgic_destroy(struct kvm_device * dev)254 static void vgic_destroy(struct kvm_device *dev)
255 {
256 kfree(dev);
257 }
258
kvm_register_vgic_device(unsigned long type)259 int kvm_register_vgic_device(unsigned long type)
260 {
261 int ret = -ENODEV;
262
263 switch (type) {
264 case KVM_DEV_TYPE_ARM_VGIC_V2:
265 ret = kvm_register_device_ops(&kvm_arm_vgic_v2_ops,
266 KVM_DEV_TYPE_ARM_VGIC_V2);
267 break;
268 case KVM_DEV_TYPE_ARM_VGIC_V3:
269 ret = kvm_register_device_ops(&kvm_arm_vgic_v3_ops,
270 KVM_DEV_TYPE_ARM_VGIC_V3);
271
272 if (ret)
273 break;
274 ret = kvm_vgic_register_its_device();
275 break;
276 }
277
278 return ret;
279 }
280
vgic_v2_parse_attr(struct kvm_device * dev,struct kvm_device_attr * attr,struct vgic_reg_attr * reg_attr)281 int vgic_v2_parse_attr(struct kvm_device *dev, struct kvm_device_attr *attr,
282 struct vgic_reg_attr *reg_attr)
283 {
284 int cpuid;
285
286 cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
287 KVM_DEV_ARM_VGIC_CPUID_SHIFT;
288
289 if (cpuid >= atomic_read(&dev->kvm->online_vcpus))
290 return -EINVAL;
291
292 reg_attr->vcpu = kvm_get_vcpu(dev->kvm, cpuid);
293 reg_attr->addr = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
294
295 return 0;
296 }
297
298 /* unlocks vcpus from @vcpu_lock_idx and smaller */
unlock_vcpus(struct kvm * kvm,int vcpu_lock_idx)299 static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx)
300 {
301 struct kvm_vcpu *tmp_vcpu;
302
303 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
304 tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
305 mutex_unlock(&tmp_vcpu->mutex);
306 }
307 }
308
unlock_all_vcpus(struct kvm * kvm)309 void unlock_all_vcpus(struct kvm *kvm)
310 {
311 unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1);
312 }
313
314 /* Returns true if all vcpus were locked, false otherwise */
lock_all_vcpus(struct kvm * kvm)315 bool lock_all_vcpus(struct kvm *kvm)
316 {
317 struct kvm_vcpu *tmp_vcpu;
318 int c;
319
320 /*
321 * Any time a vcpu is run, vcpu_load is called which tries to grab the
322 * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
323 * that no other VCPUs are run and fiddle with the vgic state while we
324 * access it.
325 */
326 kvm_for_each_vcpu(c, tmp_vcpu, kvm) {
327 if (!mutex_trylock(&tmp_vcpu->mutex)) {
328 unlock_vcpus(kvm, c - 1);
329 return false;
330 }
331 }
332
333 return true;
334 }
335
336 /**
337 * vgic_v2_attr_regs_access - allows user space to access VGIC v2 state
338 *
339 * @dev: kvm device handle
340 * @attr: kvm device attribute
341 * @reg: address the value is read or written
342 * @is_write: true if userspace is writing a register
343 */
vgic_v2_attr_regs_access(struct kvm_device * dev,struct kvm_device_attr * attr,u32 * reg,bool is_write)344 static int vgic_v2_attr_regs_access(struct kvm_device *dev,
345 struct kvm_device_attr *attr,
346 u32 *reg, bool is_write)
347 {
348 struct vgic_reg_attr reg_attr;
349 gpa_t addr;
350 struct kvm_vcpu *vcpu;
351 int ret;
352
353 ret = vgic_v2_parse_attr(dev, attr, ®_attr);
354 if (ret)
355 return ret;
356
357 vcpu = reg_attr.vcpu;
358 addr = reg_attr.addr;
359
360 mutex_lock(&dev->kvm->lock);
361
362 ret = vgic_init(dev->kvm);
363 if (ret)
364 goto out;
365
366 if (!lock_all_vcpus(dev->kvm)) {
367 ret = -EBUSY;
368 goto out;
369 }
370
371 switch (attr->group) {
372 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
373 ret = vgic_v2_cpuif_uaccess(vcpu, is_write, addr, reg);
374 break;
375 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
376 ret = vgic_v2_dist_uaccess(vcpu, is_write, addr, reg);
377 break;
378 default:
379 ret = -EINVAL;
380 break;
381 }
382
383 unlock_all_vcpus(dev->kvm);
384 out:
385 mutex_unlock(&dev->kvm->lock);
386 return ret;
387 }
388
vgic_v2_set_attr(struct kvm_device * dev,struct kvm_device_attr * attr)389 static int vgic_v2_set_attr(struct kvm_device *dev,
390 struct kvm_device_attr *attr)
391 {
392 int ret;
393
394 ret = vgic_set_common_attr(dev, attr);
395 if (ret != -ENXIO)
396 return ret;
397
398 switch (attr->group) {
399 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
400 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
401 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
402 u32 reg;
403
404 if (get_user(reg, uaddr))
405 return -EFAULT;
406
407 return vgic_v2_attr_regs_access(dev, attr, ®, true);
408 }
409 }
410
411 return -ENXIO;
412 }
413
vgic_v2_get_attr(struct kvm_device * dev,struct kvm_device_attr * attr)414 static int vgic_v2_get_attr(struct kvm_device *dev,
415 struct kvm_device_attr *attr)
416 {
417 int ret;
418
419 ret = vgic_get_common_attr(dev, attr);
420 if (ret != -ENXIO)
421 return ret;
422
423 switch (attr->group) {
424 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
425 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
426 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
427 u32 reg = 0;
428
429 ret = vgic_v2_attr_regs_access(dev, attr, ®, false);
430 if (ret)
431 return ret;
432 return put_user(reg, uaddr);
433 }
434 }
435
436 return -ENXIO;
437 }
438
vgic_v2_has_attr(struct kvm_device * dev,struct kvm_device_attr * attr)439 static int vgic_v2_has_attr(struct kvm_device *dev,
440 struct kvm_device_attr *attr)
441 {
442 switch (attr->group) {
443 case KVM_DEV_ARM_VGIC_GRP_ADDR:
444 switch (attr->attr) {
445 case KVM_VGIC_V2_ADDR_TYPE_DIST:
446 case KVM_VGIC_V2_ADDR_TYPE_CPU:
447 return 0;
448 }
449 break;
450 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
451 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
452 return vgic_v2_has_attr_regs(dev, attr);
453 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS:
454 return 0;
455 case KVM_DEV_ARM_VGIC_GRP_CTRL:
456 switch (attr->attr) {
457 case KVM_DEV_ARM_VGIC_CTRL_INIT:
458 return 0;
459 }
460 }
461 return -ENXIO;
462 }
463
464 struct kvm_device_ops kvm_arm_vgic_v2_ops = {
465 .name = "kvm-arm-vgic-v2",
466 .create = vgic_create,
467 .destroy = vgic_destroy,
468 .set_attr = vgic_v2_set_attr,
469 .get_attr = vgic_v2_get_attr,
470 .has_attr = vgic_v2_has_attr,
471 };
472
vgic_v3_parse_attr(struct kvm_device * dev,struct kvm_device_attr * attr,struct vgic_reg_attr * reg_attr)473 int vgic_v3_parse_attr(struct kvm_device *dev, struct kvm_device_attr *attr,
474 struct vgic_reg_attr *reg_attr)
475 {
476 unsigned long vgic_mpidr, mpidr_reg;
477
478 /*
479 * For KVM_DEV_ARM_VGIC_GRP_DIST_REGS group,
480 * attr might not hold MPIDR. Hence assume vcpu0.
481 */
482 if (attr->group != KVM_DEV_ARM_VGIC_GRP_DIST_REGS) {
483 vgic_mpidr = (attr->attr & KVM_DEV_ARM_VGIC_V3_MPIDR_MASK) >>
484 KVM_DEV_ARM_VGIC_V3_MPIDR_SHIFT;
485
486 mpidr_reg = VGIC_TO_MPIDR(vgic_mpidr);
487 reg_attr->vcpu = kvm_mpidr_to_vcpu(dev->kvm, mpidr_reg);
488 } else {
489 reg_attr->vcpu = kvm_get_vcpu(dev->kvm, 0);
490 }
491
492 if (!reg_attr->vcpu)
493 return -EINVAL;
494
495 reg_attr->addr = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
496
497 return 0;
498 }
499
500 /*
501 * vgic_v3_attr_regs_access - allows user space to access VGIC v3 state
502 *
503 * @dev: kvm device handle
504 * @attr: kvm device attribute
505 * @reg: address the value is read or written
506 * @is_write: true if userspace is writing a register
507 */
vgic_v3_attr_regs_access(struct kvm_device * dev,struct kvm_device_attr * attr,u64 * reg,bool is_write)508 static int vgic_v3_attr_regs_access(struct kvm_device *dev,
509 struct kvm_device_attr *attr,
510 u64 *reg, bool is_write)
511 {
512 struct vgic_reg_attr reg_attr;
513 gpa_t addr;
514 struct kvm_vcpu *vcpu;
515 int ret;
516 u32 tmp32;
517
518 ret = vgic_v3_parse_attr(dev, attr, ®_attr);
519 if (ret)
520 return ret;
521
522 vcpu = reg_attr.vcpu;
523 addr = reg_attr.addr;
524
525 mutex_lock(&dev->kvm->lock);
526
527 if (unlikely(!vgic_initialized(dev->kvm))) {
528 ret = -EBUSY;
529 goto out;
530 }
531
532 if (!lock_all_vcpus(dev->kvm)) {
533 ret = -EBUSY;
534 goto out;
535 }
536
537 switch (attr->group) {
538 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
539 if (is_write)
540 tmp32 = *reg;
541
542 ret = vgic_v3_dist_uaccess(vcpu, is_write, addr, &tmp32);
543 if (!is_write)
544 *reg = tmp32;
545 break;
546 case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:
547 if (is_write)
548 tmp32 = *reg;
549
550 ret = vgic_v3_redist_uaccess(vcpu, is_write, addr, &tmp32);
551 if (!is_write)
552 *reg = tmp32;
553 break;
554 case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
555 u64 regid;
556
557 regid = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK);
558 ret = vgic_v3_cpu_sysregs_uaccess(vcpu, is_write,
559 regid, reg);
560 break;
561 }
562 case KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO: {
563 unsigned int info, intid;
564
565 info = (attr->attr & KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_MASK) >>
566 KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT;
567 if (info == VGIC_LEVEL_INFO_LINE_LEVEL) {
568 intid = attr->attr &
569 KVM_DEV_ARM_VGIC_LINE_LEVEL_INTID_MASK;
570 ret = vgic_v3_line_level_info_uaccess(vcpu, is_write,
571 intid, reg);
572 } else {
573 ret = -EINVAL;
574 }
575 break;
576 }
577 default:
578 ret = -EINVAL;
579 break;
580 }
581
582 unlock_all_vcpus(dev->kvm);
583 out:
584 mutex_unlock(&dev->kvm->lock);
585 return ret;
586 }
587
vgic_v3_set_attr(struct kvm_device * dev,struct kvm_device_attr * attr)588 static int vgic_v3_set_attr(struct kvm_device *dev,
589 struct kvm_device_attr *attr)
590 {
591 int ret;
592
593 ret = vgic_set_common_attr(dev, attr);
594 if (ret != -ENXIO)
595 return ret;
596
597 switch (attr->group) {
598 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
599 case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS: {
600 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
601 u32 tmp32;
602 u64 reg;
603
604 if (get_user(tmp32, uaddr))
605 return -EFAULT;
606
607 reg = tmp32;
608 return vgic_v3_attr_regs_access(dev, attr, ®, true);
609 }
610 case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
611 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
612 u64 reg;
613
614 if (get_user(reg, uaddr))
615 return -EFAULT;
616
617 return vgic_v3_attr_regs_access(dev, attr, ®, true);
618 }
619 case KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO: {
620 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
621 u64 reg;
622 u32 tmp32;
623
624 if (get_user(tmp32, uaddr))
625 return -EFAULT;
626
627 reg = tmp32;
628 return vgic_v3_attr_regs_access(dev, attr, ®, true);
629 }
630 case KVM_DEV_ARM_VGIC_GRP_CTRL: {
631 int ret;
632
633 switch (attr->attr) {
634 case KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES:
635 mutex_lock(&dev->kvm->lock);
636
637 if (!lock_all_vcpus(dev->kvm)) {
638 mutex_unlock(&dev->kvm->lock);
639 return -EBUSY;
640 }
641 ret = vgic_v3_save_pending_tables(dev->kvm);
642 unlock_all_vcpus(dev->kvm);
643 mutex_unlock(&dev->kvm->lock);
644 return ret;
645 }
646 break;
647 }
648 }
649 return -ENXIO;
650 }
651
vgic_v3_get_attr(struct kvm_device * dev,struct kvm_device_attr * attr)652 static int vgic_v3_get_attr(struct kvm_device *dev,
653 struct kvm_device_attr *attr)
654 {
655 int ret;
656
657 ret = vgic_get_common_attr(dev, attr);
658 if (ret != -ENXIO)
659 return ret;
660
661 switch (attr->group) {
662 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
663 case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS: {
664 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
665 u64 reg;
666 u32 tmp32;
667
668 ret = vgic_v3_attr_regs_access(dev, attr, ®, false);
669 if (ret)
670 return ret;
671 tmp32 = reg;
672 return put_user(tmp32, uaddr);
673 }
674 case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
675 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
676 u64 reg;
677
678 ret = vgic_v3_attr_regs_access(dev, attr, ®, false);
679 if (ret)
680 return ret;
681 return put_user(reg, uaddr);
682 }
683 case KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO: {
684 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
685 u64 reg;
686 u32 tmp32;
687
688 ret = vgic_v3_attr_regs_access(dev, attr, ®, false);
689 if (ret)
690 return ret;
691 tmp32 = reg;
692 return put_user(tmp32, uaddr);
693 }
694 }
695 return -ENXIO;
696 }
697
vgic_v3_has_attr(struct kvm_device * dev,struct kvm_device_attr * attr)698 static int vgic_v3_has_attr(struct kvm_device *dev,
699 struct kvm_device_attr *attr)
700 {
701 switch (attr->group) {
702 case KVM_DEV_ARM_VGIC_GRP_ADDR:
703 switch (attr->attr) {
704 case KVM_VGIC_V3_ADDR_TYPE_DIST:
705 case KVM_VGIC_V3_ADDR_TYPE_REDIST:
706 case KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION:
707 return 0;
708 }
709 break;
710 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
711 case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:
712 case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
713 return vgic_v3_has_attr_regs(dev, attr);
714 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS:
715 return 0;
716 case KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO: {
717 if (((attr->attr & KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_MASK) >>
718 KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT) ==
719 VGIC_LEVEL_INFO_LINE_LEVEL)
720 return 0;
721 break;
722 }
723 case KVM_DEV_ARM_VGIC_GRP_CTRL:
724 switch (attr->attr) {
725 case KVM_DEV_ARM_VGIC_CTRL_INIT:
726 return 0;
727 case KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES:
728 return 0;
729 }
730 }
731 return -ENXIO;
732 }
733
734 struct kvm_device_ops kvm_arm_vgic_v3_ops = {
735 .name = "kvm-arm-vgic-v3",
736 .create = vgic_create,
737 .destroy = vgic_destroy,
738 .set_attr = vgic_v3_set_attr,
739 .get_attr = vgic_v3_get_attr,
740 .has_attr = vgic_v3_has_attr,
741 };
742