1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2012 - 2018 Microchip Technology Inc., and its subsidiaries.
4  * All rights reserved.
5  */
6 
7 #include <linux/spi/spi.h>
8 
9 #include "wilc_wfi_netdevice.h"
10 #include "wilc_wfi_cfgoperations.h"
11 
12 struct wilc_spi {
13 	int crc_off;
14 	int nint;
15 	int has_thrpt_enh;
16 };
17 
18 static const struct wilc_hif_func wilc_hif_spi;
19 
20 /********************************************
21  *
22  *      Crc7
23  *
24  ********************************************/
25 
26 static const u8 crc7_syndrome_table[256] = {
27 	0x00, 0x09, 0x12, 0x1b, 0x24, 0x2d, 0x36, 0x3f,
28 	0x48, 0x41, 0x5a, 0x53, 0x6c, 0x65, 0x7e, 0x77,
29 	0x19, 0x10, 0x0b, 0x02, 0x3d, 0x34, 0x2f, 0x26,
30 	0x51, 0x58, 0x43, 0x4a, 0x75, 0x7c, 0x67, 0x6e,
31 	0x32, 0x3b, 0x20, 0x29, 0x16, 0x1f, 0x04, 0x0d,
32 	0x7a, 0x73, 0x68, 0x61, 0x5e, 0x57, 0x4c, 0x45,
33 	0x2b, 0x22, 0x39, 0x30, 0x0f, 0x06, 0x1d, 0x14,
34 	0x63, 0x6a, 0x71, 0x78, 0x47, 0x4e, 0x55, 0x5c,
35 	0x64, 0x6d, 0x76, 0x7f, 0x40, 0x49, 0x52, 0x5b,
36 	0x2c, 0x25, 0x3e, 0x37, 0x08, 0x01, 0x1a, 0x13,
37 	0x7d, 0x74, 0x6f, 0x66, 0x59, 0x50, 0x4b, 0x42,
38 	0x35, 0x3c, 0x27, 0x2e, 0x11, 0x18, 0x03, 0x0a,
39 	0x56, 0x5f, 0x44, 0x4d, 0x72, 0x7b, 0x60, 0x69,
40 	0x1e, 0x17, 0x0c, 0x05, 0x3a, 0x33, 0x28, 0x21,
41 	0x4f, 0x46, 0x5d, 0x54, 0x6b, 0x62, 0x79, 0x70,
42 	0x07, 0x0e, 0x15, 0x1c, 0x23, 0x2a, 0x31, 0x38,
43 	0x41, 0x48, 0x53, 0x5a, 0x65, 0x6c, 0x77, 0x7e,
44 	0x09, 0x00, 0x1b, 0x12, 0x2d, 0x24, 0x3f, 0x36,
45 	0x58, 0x51, 0x4a, 0x43, 0x7c, 0x75, 0x6e, 0x67,
46 	0x10, 0x19, 0x02, 0x0b, 0x34, 0x3d, 0x26, 0x2f,
47 	0x73, 0x7a, 0x61, 0x68, 0x57, 0x5e, 0x45, 0x4c,
48 	0x3b, 0x32, 0x29, 0x20, 0x1f, 0x16, 0x0d, 0x04,
49 	0x6a, 0x63, 0x78, 0x71, 0x4e, 0x47, 0x5c, 0x55,
50 	0x22, 0x2b, 0x30, 0x39, 0x06, 0x0f, 0x14, 0x1d,
51 	0x25, 0x2c, 0x37, 0x3e, 0x01, 0x08, 0x13, 0x1a,
52 	0x6d, 0x64, 0x7f, 0x76, 0x49, 0x40, 0x5b, 0x52,
53 	0x3c, 0x35, 0x2e, 0x27, 0x18, 0x11, 0x0a, 0x03,
54 	0x74, 0x7d, 0x66, 0x6f, 0x50, 0x59, 0x42, 0x4b,
55 	0x17, 0x1e, 0x05, 0x0c, 0x33, 0x3a, 0x21, 0x28,
56 	0x5f, 0x56, 0x4d, 0x44, 0x7b, 0x72, 0x69, 0x60,
57 	0x0e, 0x07, 0x1c, 0x15, 0x2a, 0x23, 0x38, 0x31,
58 	0x46, 0x4f, 0x54, 0x5d, 0x62, 0x6b, 0x70, 0x79
59 };
60 
crc7_byte(u8 crc,u8 data)61 static u8 crc7_byte(u8 crc, u8 data)
62 {
63 	return crc7_syndrome_table[(crc << 1) ^ data];
64 }
65 
crc7(u8 crc,const u8 * buffer,u32 len)66 static u8 crc7(u8 crc, const u8 *buffer, u32 len)
67 {
68 	while (len--)
69 		crc = crc7_byte(crc, *buffer++);
70 	return crc;
71 }
72 
73 /********************************************
74  *
75  *      Spi protocol Function
76  *
77  ********************************************/
78 
79 #define CMD_DMA_WRITE				0xc1
80 #define CMD_DMA_READ				0xc2
81 #define CMD_INTERNAL_WRITE			0xc3
82 #define CMD_INTERNAL_READ			0xc4
83 #define CMD_TERMINATE				0xc5
84 #define CMD_REPEAT				0xc6
85 #define CMD_DMA_EXT_WRITE			0xc7
86 #define CMD_DMA_EXT_READ			0xc8
87 #define CMD_SINGLE_WRITE			0xc9
88 #define CMD_SINGLE_READ				0xca
89 #define CMD_RESET				0xcf
90 
91 #define N_OK					1
92 #define N_FAIL					0
93 #define N_RESET					-1
94 #define N_RETRY					-2
95 
96 #define DATA_PKT_SZ_256				256
97 #define DATA_PKT_SZ_512				512
98 #define DATA_PKT_SZ_1K				1024
99 #define DATA_PKT_SZ_4K				(4 * 1024)
100 #define DATA_PKT_SZ_8K				(8 * 1024)
101 #define DATA_PKT_SZ				DATA_PKT_SZ_8K
102 
103 #define USE_SPI_DMA				0
104 
wilc_bus_probe(struct spi_device * spi)105 static int wilc_bus_probe(struct spi_device *spi)
106 {
107 	int ret;
108 	struct wilc *wilc;
109 	struct gpio_desc *gpio;
110 	struct wilc_spi *spi_priv;
111 
112 	spi_priv = kzalloc(sizeof(*spi_priv), GFP_KERNEL);
113 	if (!spi_priv)
114 		return -ENOMEM;
115 
116 	gpio = gpiod_get(&spi->dev, "irq", GPIOD_IN);
117 	if (IS_ERR(gpio)) {
118 		/* get the GPIO descriptor from hardcode GPIO number */
119 		gpio = gpio_to_desc(GPIO_NUM);
120 		if (!gpio)
121 			dev_err(&spi->dev, "failed to get the irq gpio\n");
122 	}
123 
124 	ret = wilc_cfg80211_init(&wilc, &spi->dev, WILC_HIF_SPI, &wilc_hif_spi);
125 	if (ret) {
126 		kfree(spi_priv);
127 		return ret;
128 	}
129 
130 	spi_set_drvdata(spi, wilc);
131 	wilc->dev = &spi->dev;
132 	wilc->bus_data = spi_priv;
133 	wilc->gpio_irq = gpio;
134 
135 	return 0;
136 }
137 
wilc_bus_remove(struct spi_device * spi)138 static int wilc_bus_remove(struct spi_device *spi)
139 {
140 	struct wilc *wilc = spi_get_drvdata(spi);
141 
142 	/* free the GPIO in module remove */
143 	if (wilc->gpio_irq)
144 		gpiod_put(wilc->gpio_irq);
145 	wilc_netdev_cleanup(wilc);
146 	return 0;
147 }
148 
149 static const struct of_device_id wilc_of_match[] = {
150 	{ .compatible = "microchip,wilc1000-spi", },
151 	{ /* sentinel */ }
152 };
153 MODULE_DEVICE_TABLE(of, wilc_of_match);
154 
155 static struct spi_driver wilc_spi_driver = {
156 	.driver = {
157 		.name = MODALIAS,
158 		.of_match_table = wilc_of_match,
159 	},
160 	.probe =  wilc_bus_probe,
161 	.remove = wilc_bus_remove,
162 };
163 module_spi_driver(wilc_spi_driver);
164 MODULE_LICENSE("GPL");
165 
wilc_spi_tx(struct wilc * wilc,u8 * b,u32 len)166 static int wilc_spi_tx(struct wilc *wilc, u8 *b, u32 len)
167 {
168 	struct spi_device *spi = to_spi_device(wilc->dev);
169 	int ret;
170 	struct spi_message msg;
171 
172 	if (len > 0 && b) {
173 		struct spi_transfer tr = {
174 			.tx_buf = b,
175 			.len = len,
176 			.delay_usecs = 0,
177 		};
178 		char *r_buffer = kzalloc(len, GFP_KERNEL);
179 
180 		if (!r_buffer)
181 			return -ENOMEM;
182 
183 		tr.rx_buf = r_buffer;
184 		dev_dbg(&spi->dev, "Request writing %d bytes\n", len);
185 
186 		memset(&msg, 0, sizeof(msg));
187 		spi_message_init(&msg);
188 		msg.spi = spi;
189 		msg.is_dma_mapped = USE_SPI_DMA;
190 		spi_message_add_tail(&tr, &msg);
191 
192 		ret = spi_sync(spi, &msg);
193 		if (ret < 0)
194 			dev_err(&spi->dev, "SPI transaction failed\n");
195 
196 		kfree(r_buffer);
197 	} else {
198 		dev_err(&spi->dev,
199 			"can't write data with the following length: %d\n",
200 			len);
201 		ret = -EINVAL;
202 	}
203 
204 	return ret;
205 }
206 
wilc_spi_rx(struct wilc * wilc,u8 * rb,u32 rlen)207 static int wilc_spi_rx(struct wilc *wilc, u8 *rb, u32 rlen)
208 {
209 	struct spi_device *spi = to_spi_device(wilc->dev);
210 	int ret;
211 
212 	if (rlen > 0) {
213 		struct spi_message msg;
214 		struct spi_transfer tr = {
215 			.rx_buf = rb,
216 			.len = rlen,
217 			.delay_usecs = 0,
218 
219 		};
220 		char *t_buffer = kzalloc(rlen, GFP_KERNEL);
221 
222 		if (!t_buffer)
223 			return -ENOMEM;
224 
225 		tr.tx_buf = t_buffer;
226 
227 		memset(&msg, 0, sizeof(msg));
228 		spi_message_init(&msg);
229 		msg.spi = spi;
230 		msg.is_dma_mapped = USE_SPI_DMA;
231 		spi_message_add_tail(&tr, &msg);
232 
233 		ret = spi_sync(spi, &msg);
234 		if (ret < 0)
235 			dev_err(&spi->dev, "SPI transaction failed\n");
236 		kfree(t_buffer);
237 	} else {
238 		dev_err(&spi->dev,
239 			"can't read data with the following length: %u\n",
240 			rlen);
241 		ret = -EINVAL;
242 	}
243 
244 	return ret;
245 }
246 
wilc_spi_tx_rx(struct wilc * wilc,u8 * wb,u8 * rb,u32 rlen)247 static int wilc_spi_tx_rx(struct wilc *wilc, u8 *wb, u8 *rb, u32 rlen)
248 {
249 	struct spi_device *spi = to_spi_device(wilc->dev);
250 	int ret;
251 
252 	if (rlen > 0) {
253 		struct spi_message msg;
254 		struct spi_transfer tr = {
255 			.rx_buf = rb,
256 			.tx_buf = wb,
257 			.len = rlen,
258 			.bits_per_word = 8,
259 			.delay_usecs = 0,
260 
261 		};
262 
263 		memset(&msg, 0, sizeof(msg));
264 		spi_message_init(&msg);
265 		msg.spi = spi;
266 		msg.is_dma_mapped = USE_SPI_DMA;
267 
268 		spi_message_add_tail(&tr, &msg);
269 		ret = spi_sync(spi, &msg);
270 		if (ret < 0)
271 			dev_err(&spi->dev, "SPI transaction failed\n");
272 	} else {
273 		dev_err(&spi->dev,
274 			"can't read data with the following length: %u\n",
275 			rlen);
276 		ret = -EINVAL;
277 	}
278 
279 	return ret;
280 }
281 
spi_cmd_complete(struct wilc * wilc,u8 cmd,u32 adr,u8 * b,u32 sz,u8 clockless)282 static int spi_cmd_complete(struct wilc *wilc, u8 cmd, u32 adr, u8 *b, u32 sz,
283 			    u8 clockless)
284 {
285 	struct spi_device *spi = to_spi_device(wilc->dev);
286 	struct wilc_spi *spi_priv = wilc->bus_data;
287 	u8 wb[32], rb[32];
288 	u8 wix, rix;
289 	u32 len2;
290 	u8 rsp;
291 	int len = 0;
292 	int result = N_OK;
293 	int retry;
294 	u8 crc[2];
295 
296 	wb[0] = cmd;
297 	switch (cmd) {
298 	case CMD_SINGLE_READ: /* single word (4 bytes) read */
299 		wb[1] = (u8)(adr >> 16);
300 		wb[2] = (u8)(adr >> 8);
301 		wb[3] = (u8)adr;
302 		len = 5;
303 		break;
304 
305 	case CMD_INTERNAL_READ: /* internal register read */
306 		wb[1] = (u8)(adr >> 8);
307 		if (clockless == 1)
308 			wb[1] |= BIT(7);
309 		wb[2] = (u8)adr;
310 		wb[3] = 0x00;
311 		len = 5;
312 		break;
313 
314 	case CMD_TERMINATE:
315 		wb[1] = 0x00;
316 		wb[2] = 0x00;
317 		wb[3] = 0x00;
318 		len = 5;
319 		break;
320 
321 	case CMD_REPEAT:
322 		wb[1] = 0x00;
323 		wb[2] = 0x00;
324 		wb[3] = 0x00;
325 		len = 5;
326 		break;
327 
328 	case CMD_RESET:
329 		wb[1] = 0xff;
330 		wb[2] = 0xff;
331 		wb[3] = 0xff;
332 		len = 5;
333 		break;
334 
335 	case CMD_DMA_WRITE: /* dma write */
336 	case CMD_DMA_READ:  /* dma read */
337 		wb[1] = (u8)(adr >> 16);
338 		wb[2] = (u8)(adr >> 8);
339 		wb[3] = (u8)adr;
340 		wb[4] = (u8)(sz >> 8);
341 		wb[5] = (u8)(sz);
342 		len = 7;
343 		break;
344 
345 	case CMD_DMA_EXT_WRITE: /* dma extended write */
346 	case CMD_DMA_EXT_READ:  /* dma extended read */
347 		wb[1] = (u8)(adr >> 16);
348 		wb[2] = (u8)(adr >> 8);
349 		wb[3] = (u8)adr;
350 		wb[4] = (u8)(sz >> 16);
351 		wb[5] = (u8)(sz >> 8);
352 		wb[6] = (u8)(sz);
353 		len = 8;
354 		break;
355 
356 	case CMD_INTERNAL_WRITE: /* internal register write */
357 		wb[1] = (u8)(adr >> 8);
358 		if (clockless == 1)
359 			wb[1] |= BIT(7);
360 		wb[2] = (u8)(adr);
361 		wb[3] = b[3];
362 		wb[4] = b[2];
363 		wb[5] = b[1];
364 		wb[6] = b[0];
365 		len = 8;
366 		break;
367 
368 	case CMD_SINGLE_WRITE: /* single word write */
369 		wb[1] = (u8)(adr >> 16);
370 		wb[2] = (u8)(adr >> 8);
371 		wb[3] = (u8)(adr);
372 		wb[4] = b[3];
373 		wb[5] = b[2];
374 		wb[6] = b[1];
375 		wb[7] = b[0];
376 		len = 9;
377 		break;
378 
379 	default:
380 		result = N_FAIL;
381 		break;
382 	}
383 
384 	if (result != N_OK)
385 		return result;
386 
387 	if (!spi_priv->crc_off)
388 		wb[len - 1] = (crc7(0x7f, (const u8 *)&wb[0], len - 1)) << 1;
389 	else
390 		len -= 1;
391 
392 #define NUM_SKIP_BYTES (1)
393 #define NUM_RSP_BYTES (2)
394 #define NUM_DATA_HDR_BYTES (1)
395 #define NUM_DATA_BYTES (4)
396 #define NUM_CRC_BYTES (2)
397 #define NUM_DUMMY_BYTES (3)
398 	if (cmd == CMD_RESET ||
399 	    cmd == CMD_TERMINATE ||
400 	    cmd == CMD_REPEAT) {
401 		len2 = len + (NUM_SKIP_BYTES + NUM_RSP_BYTES + NUM_DUMMY_BYTES);
402 	} else if (cmd == CMD_INTERNAL_READ || cmd == CMD_SINGLE_READ) {
403 		int tmp = NUM_RSP_BYTES + NUM_DATA_HDR_BYTES + NUM_DATA_BYTES
404 			+ NUM_DUMMY_BYTES;
405 		if (!spi_priv->crc_off)
406 			len2 = len + tmp + NUM_CRC_BYTES;
407 		else
408 			len2 = len + tmp;
409 	} else {
410 		len2 = len + (NUM_RSP_BYTES + NUM_DUMMY_BYTES);
411 	}
412 #undef NUM_DUMMY_BYTES
413 
414 	if (len2 > ARRAY_SIZE(wb)) {
415 		dev_err(&spi->dev, "spi buffer size too small (%d) (%zu)\n",
416 			len2, ARRAY_SIZE(wb));
417 		return N_FAIL;
418 	}
419 	/* zero spi write buffers. */
420 	for (wix = len; wix < len2; wix++)
421 		wb[wix] = 0;
422 	rix = len;
423 
424 	if (wilc_spi_tx_rx(wilc, wb, rb, len2)) {
425 		dev_err(&spi->dev, "Failed cmd write, bus error...\n");
426 		return N_FAIL;
427 	}
428 
429 	/*
430 	 * Command/Control response
431 	 */
432 	if (cmd == CMD_RESET || cmd == CMD_TERMINATE || cmd == CMD_REPEAT)
433 		rix++; /* skip 1 byte */
434 
435 	rsp = rb[rix++];
436 
437 	if (rsp != cmd) {
438 		dev_err(&spi->dev,
439 			"Failed cmd response, cmd (%02x), resp (%02x)\n",
440 			cmd, rsp);
441 		return N_FAIL;
442 	}
443 
444 	/*
445 	 * State response
446 	 */
447 	rsp = rb[rix++];
448 	if (rsp != 0x00) {
449 		dev_err(&spi->dev, "Failed cmd state response state (%02x)\n",
450 			rsp);
451 		return N_FAIL;
452 	}
453 
454 	if (cmd == CMD_INTERNAL_READ || cmd == CMD_SINGLE_READ ||
455 	    cmd == CMD_DMA_READ || cmd == CMD_DMA_EXT_READ) {
456 		/*
457 		 * Data Respnose header
458 		 */
459 		retry = 100;
460 		do {
461 			/*
462 			 * ensure there is room in buffer later
463 			 * to read data and crc
464 			 */
465 			if (rix < len2) {
466 				rsp = rb[rix++];
467 			} else {
468 				retry = 0;
469 				break;
470 			}
471 			if (((rsp >> 4) & 0xf) == 0xf)
472 				break;
473 		} while (retry--);
474 
475 		if (retry <= 0) {
476 			dev_err(&spi->dev,
477 				"Error, data read response (%02x)\n", rsp);
478 			return N_RESET;
479 		}
480 	}
481 
482 	if (cmd == CMD_INTERNAL_READ || cmd == CMD_SINGLE_READ) {
483 		/*
484 		 * Read bytes
485 		 */
486 		if ((rix + 3) < len2) {
487 			b[0] = rb[rix++];
488 			b[1] = rb[rix++];
489 			b[2] = rb[rix++];
490 			b[3] = rb[rix++];
491 		} else {
492 			dev_err(&spi->dev,
493 				"buffer overrun when reading data.\n");
494 			return N_FAIL;
495 		}
496 
497 		if (!spi_priv->crc_off) {
498 			/*
499 			 * Read Crc
500 			 */
501 			if ((rix + 1) < len2) {
502 				crc[0] = rb[rix++];
503 				crc[1] = rb[rix++];
504 			} else {
505 				dev_err(&spi->dev,
506 					"buffer overrun when reading crc.\n");
507 				return N_FAIL;
508 			}
509 		}
510 	} else if ((cmd == CMD_DMA_READ) || (cmd == CMD_DMA_EXT_READ)) {
511 		int ix;
512 
513 		/* some data may be read in response to dummy bytes. */
514 		for (ix = 0; (rix < len2) && (ix < sz); )
515 			b[ix++] = rb[rix++];
516 
517 		sz -= ix;
518 
519 		if (sz > 0) {
520 			int nbytes;
521 
522 			if (sz <= (DATA_PKT_SZ - ix))
523 				nbytes = sz;
524 			else
525 				nbytes = DATA_PKT_SZ - ix;
526 
527 			/*
528 			 * Read bytes
529 			 */
530 			if (wilc_spi_rx(wilc, &b[ix], nbytes)) {
531 				dev_err(&spi->dev,
532 					"Failed block read, bus err\n");
533 				return N_FAIL;
534 			}
535 
536 			/*
537 			 * Read Crc
538 			 */
539 			if (!spi_priv->crc_off && wilc_spi_rx(wilc, crc, 2)) {
540 				dev_err(&spi->dev,
541 					"Failed block crc read, bus err\n");
542 				return N_FAIL;
543 			}
544 
545 			ix += nbytes;
546 			sz -= nbytes;
547 		}
548 
549 		/*
550 		 * if any data in left unread,
551 		 * then read the rest using normal DMA code.
552 		 */
553 		while (sz > 0) {
554 			int nbytes;
555 
556 			if (sz <= DATA_PKT_SZ)
557 				nbytes = sz;
558 			else
559 				nbytes = DATA_PKT_SZ;
560 
561 			/*
562 			 * read data response only on the next DMA cycles not
563 			 * the first DMA since data response header is already
564 			 * handled above for the first DMA.
565 			 */
566 			/*
567 			 * Data Respnose header
568 			 */
569 			retry = 10;
570 			do {
571 				if (wilc_spi_rx(wilc, &rsp, 1)) {
572 					dev_err(&spi->dev,
573 						"Failed resp read, bus err\n");
574 					result = N_FAIL;
575 					break;
576 				}
577 				if (((rsp >> 4) & 0xf) == 0xf)
578 					break;
579 			} while (retry--);
580 
581 			if (result == N_FAIL)
582 				break;
583 
584 			/*
585 			 * Read bytes
586 			 */
587 			if (wilc_spi_rx(wilc, &b[ix], nbytes)) {
588 				dev_err(&spi->dev,
589 					"Failed block read, bus err\n");
590 				result = N_FAIL;
591 				break;
592 			}
593 
594 			/*
595 			 * Read Crc
596 			 */
597 			if (!spi_priv->crc_off && wilc_spi_rx(wilc, crc, 2)) {
598 				dev_err(&spi->dev,
599 					"Failed block crc read, bus err\n");
600 				result = N_FAIL;
601 				break;
602 			}
603 
604 			ix += nbytes;
605 			sz -= nbytes;
606 		}
607 	}
608 	return result;
609 }
610 
spi_data_write(struct wilc * wilc,u8 * b,u32 sz)611 static int spi_data_write(struct wilc *wilc, u8 *b, u32 sz)
612 {
613 	struct spi_device *spi = to_spi_device(wilc->dev);
614 	struct wilc_spi *spi_priv = wilc->bus_data;
615 	int ix, nbytes;
616 	int result = 1;
617 	u8 cmd, order, crc[2] = {0};
618 
619 	/*
620 	 * Data
621 	 */
622 	ix = 0;
623 	do {
624 		if (sz <= DATA_PKT_SZ) {
625 			nbytes = sz;
626 			order = 0x3;
627 		} else {
628 			nbytes = DATA_PKT_SZ;
629 			if (ix == 0)
630 				order = 0x1;
631 			else
632 				order = 0x02;
633 		}
634 
635 		/*
636 		 * Write command
637 		 */
638 		cmd = 0xf0;
639 		cmd |= order;
640 
641 		if (wilc_spi_tx(wilc, &cmd, 1)) {
642 			dev_err(&spi->dev,
643 				"Failed data block cmd write, bus error...\n");
644 			result = N_FAIL;
645 			break;
646 		}
647 
648 		/*
649 		 * Write data
650 		 */
651 		if (wilc_spi_tx(wilc, &b[ix], nbytes)) {
652 			dev_err(&spi->dev,
653 				"Failed data block write, bus error...\n");
654 			result = N_FAIL;
655 			break;
656 		}
657 
658 		/*
659 		 * Write Crc
660 		 */
661 		if (!spi_priv->crc_off) {
662 			if (wilc_spi_tx(wilc, crc, 2)) {
663 				dev_err(&spi->dev, "Failed data block crc write, bus error...\n");
664 				result = N_FAIL;
665 				break;
666 			}
667 		}
668 
669 		/*
670 		 * No need to wait for response
671 		 */
672 		ix += nbytes;
673 		sz -= nbytes;
674 	} while (sz);
675 
676 	return result;
677 }
678 
679 /********************************************
680  *
681  *      Spi Internal Read/Write Function
682  *
683  ********************************************/
684 
spi_internal_write(struct wilc * wilc,u32 adr,u32 dat)685 static int spi_internal_write(struct wilc *wilc, u32 adr, u32 dat)
686 {
687 	struct spi_device *spi = to_spi_device(wilc->dev);
688 	int result;
689 
690 	cpu_to_le32s(&dat);
691 	result = spi_cmd_complete(wilc, CMD_INTERNAL_WRITE, adr, (u8 *)&dat, 4,
692 				  0);
693 	if (result != N_OK)
694 		dev_err(&spi->dev, "Failed internal write cmd...\n");
695 
696 	return result;
697 }
698 
spi_internal_read(struct wilc * wilc,u32 adr,u32 * data)699 static int spi_internal_read(struct wilc *wilc, u32 adr, u32 *data)
700 {
701 	struct spi_device *spi = to_spi_device(wilc->dev);
702 	int result;
703 
704 	result = spi_cmd_complete(wilc, CMD_INTERNAL_READ, adr, (u8 *)data, 4,
705 				  0);
706 	if (result != N_OK) {
707 		dev_err(&spi->dev, "Failed internal read cmd...\n");
708 		return 0;
709 	}
710 
711 	le32_to_cpus(data);
712 
713 	return 1;
714 }
715 
716 /********************************************
717  *
718  *      Spi interfaces
719  *
720  ********************************************/
721 
wilc_spi_write_reg(struct wilc * wilc,u32 addr,u32 data)722 static int wilc_spi_write_reg(struct wilc *wilc, u32 addr, u32 data)
723 {
724 	struct spi_device *spi = to_spi_device(wilc->dev);
725 	int result = N_OK;
726 	u8 cmd = CMD_SINGLE_WRITE;
727 	u8 clockless = 0;
728 
729 	cpu_to_le32s(&data);
730 	if (addr < 0x30) {
731 		/* Clockless register */
732 		cmd = CMD_INTERNAL_WRITE;
733 		clockless = 1;
734 	}
735 
736 	result = spi_cmd_complete(wilc, cmd, addr, (u8 *)&data, 4, clockless);
737 	if (result != N_OK)
738 		dev_err(&spi->dev, "Failed cmd, write reg (%08x)...\n", addr);
739 
740 	return result;
741 }
742 
wilc_spi_write(struct wilc * wilc,u32 addr,u8 * buf,u32 size)743 static int wilc_spi_write(struct wilc *wilc, u32 addr, u8 *buf, u32 size)
744 {
745 	struct spi_device *spi = to_spi_device(wilc->dev);
746 	int result;
747 
748 	/*
749 	 * has to be greated than 4
750 	 */
751 	if (size <= 4)
752 		return 0;
753 
754 	result = spi_cmd_complete(wilc, CMD_DMA_EXT_WRITE, addr, NULL, size, 0);
755 	if (result != N_OK) {
756 		dev_err(&spi->dev,
757 			"Failed cmd, write block (%08x)...\n", addr);
758 		return 0;
759 	}
760 
761 	/*
762 	 * Data
763 	 */
764 	result = spi_data_write(wilc, buf, size);
765 	if (result != N_OK)
766 		dev_err(&spi->dev, "Failed block data write...\n");
767 
768 	return 1;
769 }
770 
wilc_spi_read_reg(struct wilc * wilc,u32 addr,u32 * data)771 static int wilc_spi_read_reg(struct wilc *wilc, u32 addr, u32 *data)
772 {
773 	struct spi_device *spi = to_spi_device(wilc->dev);
774 	int result = N_OK;
775 	u8 cmd = CMD_SINGLE_READ;
776 	u8 clockless = 0;
777 
778 	if (addr < 0x30) {
779 		/* Clockless register */
780 		cmd = CMD_INTERNAL_READ;
781 		clockless = 1;
782 	}
783 
784 	result = spi_cmd_complete(wilc, cmd, addr, (u8 *)data, 4, clockless);
785 	if (result != N_OK) {
786 		dev_err(&spi->dev, "Failed cmd, read reg (%08x)...\n", addr);
787 		return 0;
788 	}
789 
790 	le32_to_cpus(data);
791 
792 	return 1;
793 }
794 
wilc_spi_read(struct wilc * wilc,u32 addr,u8 * buf,u32 size)795 static int wilc_spi_read(struct wilc *wilc, u32 addr, u8 *buf, u32 size)
796 {
797 	struct spi_device *spi = to_spi_device(wilc->dev);
798 	int result;
799 
800 	if (size <= 4)
801 		return 0;
802 
803 	result = spi_cmd_complete(wilc, CMD_DMA_EXT_READ, addr, buf, size, 0);
804 	if (result != N_OK) {
805 		dev_err(&spi->dev, "Failed cmd, read block (%08x)...\n", addr);
806 		return 0;
807 	}
808 
809 	return 1;
810 }
811 
812 /********************************************
813  *
814  *      Bus interfaces
815  *
816  ********************************************/
817 
wilc_spi_deinit(struct wilc * wilc)818 static int wilc_spi_deinit(struct wilc *wilc)
819 {
820 	/*
821 	 * TODO:
822 	 */
823 	return 1;
824 }
825 
wilc_spi_init(struct wilc * wilc,bool resume)826 static int wilc_spi_init(struct wilc *wilc, bool resume)
827 {
828 	struct spi_device *spi = to_spi_device(wilc->dev);
829 	struct wilc_spi *spi_priv = wilc->bus_data;
830 	u32 reg;
831 	u32 chipid;
832 	static int isinit;
833 
834 	if (isinit) {
835 		if (!wilc_spi_read_reg(wilc, 0x1000, &chipid)) {
836 			dev_err(&spi->dev, "Fail cmd read chip id...\n");
837 			return 0;
838 		}
839 		return 1;
840 	}
841 
842 	/*
843 	 * configure protocol
844 	 */
845 
846 	/*
847 	 * TODO: We can remove the CRC trials if there is a definite
848 	 * way to reset
849 	 */
850 	/* the SPI to it's initial value. */
851 	if (!spi_internal_read(wilc, WILC_SPI_PROTOCOL_OFFSET, &reg)) {
852 		/*
853 		 * Read failed. Try with CRC off. This might happen when module
854 		 * is removed but chip isn't reset
855 		 */
856 		spi_priv->crc_off = 1;
857 		dev_err(&spi->dev,
858 			"Failed read with CRC on, retrying with CRC off\n");
859 		if (!spi_internal_read(wilc, WILC_SPI_PROTOCOL_OFFSET, &reg)) {
860 			/*
861 			 * Read failed with both CRC on and off,
862 			 * something went bad
863 			 */
864 			dev_err(&spi->dev, "Failed internal read protocol\n");
865 			return 0;
866 		}
867 	}
868 	if (spi_priv->crc_off == 0) {
869 		reg &= ~0xc; /* disable crc checking */
870 		reg &= ~0x70;
871 		reg |= (0x5 << 4);
872 		if (!spi_internal_write(wilc, WILC_SPI_PROTOCOL_OFFSET, reg)) {
873 			dev_err(&spi->dev,
874 				"[wilc spi %d]: Failed internal write reg\n",
875 				__LINE__);
876 			return 0;
877 		}
878 		spi_priv->crc_off = 1;
879 	}
880 
881 	/*
882 	 * make sure can read back chip id correctly
883 	 */
884 	if (!wilc_spi_read_reg(wilc, 0x1000, &chipid)) {
885 		dev_err(&spi->dev, "Fail cmd read chip id...\n");
886 		return 0;
887 	}
888 
889 	spi_priv->has_thrpt_enh = 1;
890 
891 	isinit = 1;
892 
893 	return 1;
894 }
895 
wilc_spi_read_size(struct wilc * wilc,u32 * size)896 static int wilc_spi_read_size(struct wilc *wilc, u32 *size)
897 {
898 	struct spi_device *spi = to_spi_device(wilc->dev);
899 	struct wilc_spi *spi_priv = wilc->bus_data;
900 	int ret;
901 
902 	if (spi_priv->has_thrpt_enh) {
903 		ret = spi_internal_read(wilc, 0xe840 - WILC_SPI_REG_BASE,
904 					size);
905 		*size = *size  & IRQ_DMA_WD_CNT_MASK;
906 	} else {
907 		u32 tmp;
908 		u32 byte_cnt;
909 
910 		ret = wilc_spi_read_reg(wilc, WILC_VMM_TO_HOST_SIZE,
911 					&byte_cnt);
912 		if (!ret) {
913 			dev_err(&spi->dev,
914 				"Failed read WILC_VMM_TO_HOST_SIZE ...\n");
915 			return ret;
916 		}
917 		tmp = (byte_cnt >> 2) & IRQ_DMA_WD_CNT_MASK;
918 		*size = tmp;
919 	}
920 
921 	return ret;
922 }
923 
wilc_spi_read_int(struct wilc * wilc,u32 * int_status)924 static int wilc_spi_read_int(struct wilc *wilc, u32 *int_status)
925 {
926 	struct spi_device *spi = to_spi_device(wilc->dev);
927 	struct wilc_spi *spi_priv = wilc->bus_data;
928 	int ret;
929 	u32 tmp;
930 	u32 byte_cnt;
931 	bool unexpected_irq;
932 	int j;
933 	u32 unknown_mask;
934 	u32 irq_flags;
935 	int k = IRG_FLAGS_OFFSET + 5;
936 
937 	if (spi_priv->has_thrpt_enh)
938 		return spi_internal_read(wilc, 0xe840 - WILC_SPI_REG_BASE,
939 					 int_status);
940 	ret = wilc_spi_read_reg(wilc, WILC_VMM_TO_HOST_SIZE, &byte_cnt);
941 	if (!ret) {
942 		dev_err(&spi->dev,
943 			"Failed read WILC_VMM_TO_HOST_SIZE ...\n");
944 		return ret;
945 	}
946 	tmp = (byte_cnt >> 2) & IRQ_DMA_WD_CNT_MASK;
947 
948 	j = 0;
949 	do {
950 		wilc_spi_read_reg(wilc, 0x1a90, &irq_flags);
951 		tmp |= ((irq_flags >> 27) << IRG_FLAGS_OFFSET);
952 
953 		if (spi_priv->nint > 5) {
954 			wilc_spi_read_reg(wilc, 0x1a94, &irq_flags);
955 			tmp |= (((irq_flags >> 0) & 0x7) << k);
956 		}
957 
958 		unknown_mask = ~((1ul << spi_priv->nint) - 1);
959 
960 		unexpected_irq = (tmp >> IRG_FLAGS_OFFSET) & unknown_mask;
961 		if (unexpected_irq) {
962 			dev_err(&spi->dev,
963 				"Unexpected interrupt(2):j=%d,tmp=%x,mask=%x\n",
964 				j, tmp, unknown_mask);
965 		}
966 
967 		j++;
968 	} while (unexpected_irq);
969 
970 	*int_status = tmp;
971 
972 	return ret;
973 }
974 
wilc_spi_clear_int_ext(struct wilc * wilc,u32 val)975 static int wilc_spi_clear_int_ext(struct wilc *wilc, u32 val)
976 {
977 	struct spi_device *spi = to_spi_device(wilc->dev);
978 	struct wilc_spi *spi_priv = wilc->bus_data;
979 	int ret;
980 	u32 flags;
981 	u32 tbl_ctl;
982 
983 	if (spi_priv->has_thrpt_enh) {
984 		return spi_internal_write(wilc, 0xe844 - WILC_SPI_REG_BASE,
985 					  val);
986 	}
987 
988 	flags = val & (BIT(MAX_NUM_INT) - 1);
989 	if (flags) {
990 		int i;
991 
992 		ret = 1;
993 		for (i = 0; i < spi_priv->nint; i++) {
994 			/*
995 			 * No matter what you write 1 or 0,
996 			 * it will clear interrupt.
997 			 */
998 			if (flags & 1)
999 				ret = wilc_spi_write_reg(wilc,
1000 							 0x10c8 + i * 4, 1);
1001 			if (!ret)
1002 				break;
1003 			flags >>= 1;
1004 		}
1005 		if (!ret) {
1006 			dev_err(&spi->dev,
1007 				"Failed wilc_spi_write_reg, set reg %x ...\n",
1008 				0x10c8 + i * 4);
1009 			return ret;
1010 		}
1011 		for (i = spi_priv->nint; i < MAX_NUM_INT; i++) {
1012 			if (flags & 1)
1013 				dev_err(&spi->dev,
1014 					"Unexpected interrupt cleared %d...\n",
1015 					i);
1016 			flags >>= 1;
1017 		}
1018 	}
1019 
1020 	tbl_ctl = 0;
1021 	/* select VMM table 0 */
1022 	if (val & SEL_VMM_TBL0)
1023 		tbl_ctl |= BIT(0);
1024 	/* select VMM table 1 */
1025 	if (val & SEL_VMM_TBL1)
1026 		tbl_ctl |= BIT(1);
1027 
1028 	ret = wilc_spi_write_reg(wilc, WILC_VMM_TBL_CTL, tbl_ctl);
1029 	if (!ret) {
1030 		dev_err(&spi->dev, "fail write reg vmm_tbl_ctl...\n");
1031 		return ret;
1032 	}
1033 
1034 	if (val & EN_VMM) {
1035 		/*
1036 		 * enable vmm transfer.
1037 		 */
1038 		ret = wilc_spi_write_reg(wilc, WILC_VMM_CORE_CTL, 1);
1039 		if (!ret) {
1040 			dev_err(&spi->dev, "fail write reg vmm_core_ctl...\n");
1041 			return ret;
1042 		}
1043 	}
1044 
1045 	return ret;
1046 }
1047 
wilc_spi_sync_ext(struct wilc * wilc,int nint)1048 static int wilc_spi_sync_ext(struct wilc *wilc, int nint)
1049 {
1050 	struct spi_device *spi = to_spi_device(wilc->dev);
1051 	struct wilc_spi *spi_priv = wilc->bus_data;
1052 	u32 reg;
1053 	int ret, i;
1054 
1055 	if (nint > MAX_NUM_INT) {
1056 		dev_err(&spi->dev, "Too many interrupts (%d)...\n", nint);
1057 		return 0;
1058 	}
1059 
1060 	spi_priv->nint = nint;
1061 
1062 	/*
1063 	 * interrupt pin mux select
1064 	 */
1065 	ret = wilc_spi_read_reg(wilc, WILC_PIN_MUX_0, &reg);
1066 	if (!ret) {
1067 		dev_err(&spi->dev, "Failed read reg (%08x)...\n",
1068 			WILC_PIN_MUX_0);
1069 		return 0;
1070 	}
1071 	reg |= BIT(8);
1072 	ret = wilc_spi_write_reg(wilc, WILC_PIN_MUX_0, reg);
1073 	if (!ret) {
1074 		dev_err(&spi->dev, "Failed write reg (%08x)...\n",
1075 			WILC_PIN_MUX_0);
1076 		return 0;
1077 	}
1078 
1079 	/*
1080 	 * interrupt enable
1081 	 */
1082 	ret = wilc_spi_read_reg(wilc, WILC_INTR_ENABLE, &reg);
1083 	if (!ret) {
1084 		dev_err(&spi->dev, "Failed read reg (%08x)...\n",
1085 			WILC_INTR_ENABLE);
1086 		return 0;
1087 	}
1088 
1089 	for (i = 0; (i < 5) && (nint > 0); i++, nint--)
1090 		reg |= (BIT((27 + i)));
1091 
1092 	ret = wilc_spi_write_reg(wilc, WILC_INTR_ENABLE, reg);
1093 	if (!ret) {
1094 		dev_err(&spi->dev, "Failed write reg (%08x)...\n",
1095 			WILC_INTR_ENABLE);
1096 		return 0;
1097 	}
1098 	if (nint) {
1099 		ret = wilc_spi_read_reg(wilc, WILC_INTR2_ENABLE, &reg);
1100 		if (!ret) {
1101 			dev_err(&spi->dev, "Failed read reg (%08x)...\n",
1102 				WILC_INTR2_ENABLE);
1103 			return 0;
1104 		}
1105 
1106 		for (i = 0; (i < 3) && (nint > 0); i++, nint--)
1107 			reg |= BIT(i);
1108 
1109 		ret = wilc_spi_read_reg(wilc, WILC_INTR2_ENABLE, &reg);
1110 		if (!ret) {
1111 			dev_err(&spi->dev, "Failed write reg (%08x)...\n",
1112 				WILC_INTR2_ENABLE);
1113 			return 0;
1114 		}
1115 	}
1116 
1117 	return 1;
1118 }
1119 
1120 /* Global spi HIF function table */
1121 static const struct wilc_hif_func wilc_hif_spi = {
1122 	.hif_init = wilc_spi_init,
1123 	.hif_deinit = wilc_spi_deinit,
1124 	.hif_read_reg = wilc_spi_read_reg,
1125 	.hif_write_reg = wilc_spi_write_reg,
1126 	.hif_block_rx = wilc_spi_read,
1127 	.hif_block_tx = wilc_spi_write,
1128 	.hif_read_int = wilc_spi_read_int,
1129 	.hif_clear_int_ext = wilc_spi_clear_int_ext,
1130 	.hif_read_size = wilc_spi_read_size,
1131 	.hif_block_tx_ext = wilc_spi_write,
1132 	.hif_block_rx_ext = wilc_spi_read,
1133 	.hif_sync_ext = wilc_spi_sync_ext,
1134 };
1135