1  /*
2   * Read-Copy Update mechanism for mutual exclusion
3   *
4   * This program is free software; you can redistribute it and/or modify
5   * it under the terms of the GNU General Public License as published by
6   * the Free Software Foundation; either version 2 of the License, or
7   * (at your option) any later version.
8   *
9   * This program is distributed in the hope that it will be useful,
10   * but WITHOUT ANY WARRANTY; without even the implied warranty of
11   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12   * GNU General Public License for more details.
13   *
14   * You should have received a copy of the GNU General Public License
15   * along with this program; if not, you can access it online at
16   * http://www.gnu.org/licenses/gpl-2.0.html.
17   *
18   * Copyright IBM Corporation, 2001
19   *
20   * Author: Dipankar Sarma <dipankar@in.ibm.com>
21   *
22   * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23   * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24   * Papers:
25   * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26   * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27   *
28   * For detailed explanation of Read-Copy Update mechanism see -
29   *		http://lse.sourceforge.net/locking/rcupdate.html
30   *
31   */
32  
33  #ifndef __LINUX_RCUPDATE_H
34  #define __LINUX_RCUPDATE_H
35  
36  #include <linux/types.h>
37  #include <linux/compiler.h>
38  #include <linux/atomic.h>
39  #include <linux/irqflags.h>
40  #include <linux/preempt.h>
41  #include <linux/bottom_half.h>
42  #include <linux/lockdep.h>
43  #include <asm/processor.h>
44  #include <linux/cpumask.h>
45  
46  #define ULONG_CMP_GE(a, b)	(ULONG_MAX / 2 >= (a) - (b))
47  #define ULONG_CMP_LT(a, b)	(ULONG_MAX / 2 < (a) - (b))
48  #define ulong2long(a)		(*(long *)(&(a)))
49  
50  /* Exported common interfaces */
51  
52  #ifdef CONFIG_PREEMPT_RCU
53  void call_rcu(struct rcu_head *head, rcu_callback_t func);
54  #else /* #ifdef CONFIG_PREEMPT_RCU */
55  #define	call_rcu	call_rcu_sched
56  #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
57  
58  void call_rcu_bh(struct rcu_head *head, rcu_callback_t func);
59  void call_rcu_sched(struct rcu_head *head, rcu_callback_t func);
60  void synchronize_sched(void);
61  void rcu_barrier_tasks(void);
62  
63  #ifdef CONFIG_PREEMPT_RCU
64  
65  void __rcu_read_lock(void);
66  void __rcu_read_unlock(void);
67  void synchronize_rcu(void);
68  
69  /*
70   * Defined as a macro as it is a very low level header included from
71   * areas that don't even know about current.  This gives the rcu_read_lock()
72   * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
73   * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
74   */
75  #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
76  
77  #else /* #ifdef CONFIG_PREEMPT_RCU */
78  
__rcu_read_lock(void)79  static inline void __rcu_read_lock(void)
80  {
81  	if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
82  		preempt_disable();
83  }
84  
__rcu_read_unlock(void)85  static inline void __rcu_read_unlock(void)
86  {
87  	if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
88  		preempt_enable();
89  }
90  
synchronize_rcu(void)91  static inline void synchronize_rcu(void)
92  {
93  	synchronize_sched();
94  }
95  
rcu_preempt_depth(void)96  static inline int rcu_preempt_depth(void)
97  {
98  	return 0;
99  }
100  
101  #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
102  
103  /* Internal to kernel */
104  void rcu_init(void);
105  extern int rcu_scheduler_active __read_mostly;
106  void rcu_sched_qs(void);
107  void rcu_bh_qs(void);
108  void rcu_check_callbacks(int user);
109  void rcu_report_dead(unsigned int cpu);
110  void rcutree_migrate_callbacks(int cpu);
111  
112  #ifdef CONFIG_RCU_STALL_COMMON
113  void rcu_sysrq_start(void);
114  void rcu_sysrq_end(void);
115  #else /* #ifdef CONFIG_RCU_STALL_COMMON */
rcu_sysrq_start(void)116  static inline void rcu_sysrq_start(void) { }
rcu_sysrq_end(void)117  static inline void rcu_sysrq_end(void) { }
118  #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
119  
120  #ifdef CONFIG_NO_HZ_FULL
121  void rcu_user_enter(void);
122  void rcu_user_exit(void);
123  #else
rcu_user_enter(void)124  static inline void rcu_user_enter(void) { }
rcu_user_exit(void)125  static inline void rcu_user_exit(void) { }
126  #endif /* CONFIG_NO_HZ_FULL */
127  
128  #ifdef CONFIG_RCU_NOCB_CPU
129  void rcu_init_nohz(void);
130  #else /* #ifdef CONFIG_RCU_NOCB_CPU */
rcu_init_nohz(void)131  static inline void rcu_init_nohz(void) { }
132  #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
133  
134  /**
135   * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
136   * @a: Code that RCU needs to pay attention to.
137   *
138   * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
139   * in the inner idle loop, that is, between the rcu_idle_enter() and
140   * the rcu_idle_exit() -- RCU will happily ignore any such read-side
141   * critical sections.  However, things like powertop need tracepoints
142   * in the inner idle loop.
143   *
144   * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
145   * will tell RCU that it needs to pay attention, invoke its argument
146   * (in this example, calling the do_something_with_RCU() function),
147   * and then tell RCU to go back to ignoring this CPU.  It is permissible
148   * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
149   * on the order of a million or so, even on 32-bit systems).  It is
150   * not legal to block within RCU_NONIDLE(), nor is it permissible to
151   * transfer control either into or out of RCU_NONIDLE()'s statement.
152   */
153  #define RCU_NONIDLE(a) \
154  	do { \
155  		rcu_irq_enter_irqson(); \
156  		do { a; } while (0); \
157  		rcu_irq_exit_irqson(); \
158  	} while (0)
159  
160  /*
161   * Note a quasi-voluntary context switch for RCU-tasks's benefit.
162   * This is a macro rather than an inline function to avoid #include hell.
163   */
164  #ifdef CONFIG_TASKS_RCU
165  #define rcu_tasks_qs(t) \
166  	do { \
167  		if (READ_ONCE((t)->rcu_tasks_holdout)) \
168  			WRITE_ONCE((t)->rcu_tasks_holdout, false); \
169  	} while (0)
170  #define rcu_note_voluntary_context_switch(t) \
171  	do { \
172  		rcu_all_qs(); \
173  		rcu_tasks_qs(t); \
174  	} while (0)
175  void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
176  void synchronize_rcu_tasks(void);
177  void exit_tasks_rcu_start(void);
178  void exit_tasks_rcu_finish(void);
179  #else /* #ifdef CONFIG_TASKS_RCU */
180  #define rcu_tasks_qs(t)	do { } while (0)
181  #define rcu_note_voluntary_context_switch(t)		rcu_all_qs()
182  #define call_rcu_tasks call_rcu_sched
183  #define synchronize_rcu_tasks synchronize_sched
exit_tasks_rcu_start(void)184  static inline void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_finish(void)185  static inline void exit_tasks_rcu_finish(void) { }
186  #endif /* #else #ifdef CONFIG_TASKS_RCU */
187  
188  /**
189   * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
190   *
191   * This macro resembles cond_resched(), except that it is defined to
192   * report potential quiescent states to RCU-tasks even if the cond_resched()
193   * machinery were to be shut off, as some advocate for PREEMPT kernels.
194   */
195  #define cond_resched_tasks_rcu_qs() \
196  do { \
197  	rcu_tasks_qs(current); \
198  	cond_resched(); \
199  } while (0)
200  
201  /*
202   * Infrastructure to implement the synchronize_() primitives in
203   * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
204   */
205  
206  #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
207  #include <linux/rcutree.h>
208  #elif defined(CONFIG_TINY_RCU)
209  #include <linux/rcutiny.h>
210  #else
211  #error "Unknown RCU implementation specified to kernel configuration"
212  #endif
213  
214  /*
215   * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
216   * are needed for dynamic initialization and destruction of rcu_head
217   * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
218   * dynamic initialization and destruction of statically allocated rcu_head
219   * structures.  However, rcu_head structures allocated dynamically in the
220   * heap don't need any initialization.
221   */
222  #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
223  void init_rcu_head(struct rcu_head *head);
224  void destroy_rcu_head(struct rcu_head *head);
225  void init_rcu_head_on_stack(struct rcu_head *head);
226  void destroy_rcu_head_on_stack(struct rcu_head *head);
227  #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head(struct rcu_head * head)228  static inline void init_rcu_head(struct rcu_head *head) { }
destroy_rcu_head(struct rcu_head * head)229  static inline void destroy_rcu_head(struct rcu_head *head) { }
init_rcu_head_on_stack(struct rcu_head * head)230  static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
destroy_rcu_head_on_stack(struct rcu_head * head)231  static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
232  #endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
233  
234  #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
235  bool rcu_lockdep_current_cpu_online(void);
236  #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)237  static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
238  #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
239  
240  #ifdef CONFIG_DEBUG_LOCK_ALLOC
241  
rcu_lock_acquire(struct lockdep_map * map)242  static inline void rcu_lock_acquire(struct lockdep_map *map)
243  {
244  	lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
245  }
246  
rcu_lock_release(struct lockdep_map * map)247  static inline void rcu_lock_release(struct lockdep_map *map)
248  {
249  	lock_release(map, 1, _THIS_IP_);
250  }
251  
252  extern struct lockdep_map rcu_lock_map;
253  extern struct lockdep_map rcu_bh_lock_map;
254  extern struct lockdep_map rcu_sched_lock_map;
255  extern struct lockdep_map rcu_callback_map;
256  int debug_lockdep_rcu_enabled(void);
257  int rcu_read_lock_held(void);
258  int rcu_read_lock_bh_held(void);
259  int rcu_read_lock_sched_held(void);
260  
261  #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
262  
263  # define rcu_lock_acquire(a)		do { } while (0)
264  # define rcu_lock_release(a)		do { } while (0)
265  
rcu_read_lock_held(void)266  static inline int rcu_read_lock_held(void)
267  {
268  	return 1;
269  }
270  
rcu_read_lock_bh_held(void)271  static inline int rcu_read_lock_bh_held(void)
272  {
273  	return 1;
274  }
275  
rcu_read_lock_sched_held(void)276  static inline int rcu_read_lock_sched_held(void)
277  {
278  	return !preemptible();
279  }
280  #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
281  
282  #ifdef CONFIG_PROVE_RCU
283  
284  /**
285   * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
286   * @c: condition to check
287   * @s: informative message
288   */
289  #define RCU_LOCKDEP_WARN(c, s)						\
290  	do {								\
291  		static bool __section(.data.unlikely) __warned;		\
292  		if (debug_lockdep_rcu_enabled() && !__warned && (c)) {	\
293  			__warned = true;				\
294  			lockdep_rcu_suspicious(__FILE__, __LINE__, s);	\
295  		}							\
296  	} while (0)
297  
298  #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
rcu_preempt_sleep_check(void)299  static inline void rcu_preempt_sleep_check(void)
300  {
301  	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
302  			 "Illegal context switch in RCU read-side critical section");
303  }
304  #else /* #ifdef CONFIG_PROVE_RCU */
rcu_preempt_sleep_check(void)305  static inline void rcu_preempt_sleep_check(void) { }
306  #endif /* #else #ifdef CONFIG_PROVE_RCU */
307  
308  #define rcu_sleep_check()						\
309  	do {								\
310  		rcu_preempt_sleep_check();				\
311  		RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),	\
312  				 "Illegal context switch in RCU-bh read-side critical section"); \
313  		RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),	\
314  				 "Illegal context switch in RCU-sched read-side critical section"); \
315  	} while (0)
316  
317  #else /* #ifdef CONFIG_PROVE_RCU */
318  
319  #define RCU_LOCKDEP_WARN(c, s) do { } while (0)
320  #define rcu_sleep_check() do { } while (0)
321  
322  #endif /* #else #ifdef CONFIG_PROVE_RCU */
323  
324  /*
325   * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
326   * and rcu_assign_pointer().  Some of these could be folded into their
327   * callers, but they are left separate in order to ease introduction of
328   * multiple flavors of pointers to match the multiple flavors of RCU
329   * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
330   * the future.
331   */
332  
333  #ifdef __CHECKER__
334  #define rcu_dereference_sparse(p, space) \
335  	((void)(((typeof(*p) space *)p) == p))
336  #else /* #ifdef __CHECKER__ */
337  #define rcu_dereference_sparse(p, space)
338  #endif /* #else #ifdef __CHECKER__ */
339  
340  #define __rcu_access_pointer(p, space) \
341  ({ \
342  	typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
343  	rcu_dereference_sparse(p, space); \
344  	((typeof(*p) __force __kernel *)(_________p1)); \
345  })
346  #define __rcu_dereference_check(p, c, space) \
347  ({ \
348  	/* Dependency order vs. p above. */ \
349  	typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \
350  	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
351  	rcu_dereference_sparse(p, space); \
352  	((typeof(*p) __force __kernel *)(________p1)); \
353  })
354  #define __rcu_dereference_protected(p, c, space) \
355  ({ \
356  	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
357  	rcu_dereference_sparse(p, space); \
358  	((typeof(*p) __force __kernel *)(p)); \
359  })
360  #define rcu_dereference_raw(p) \
361  ({ \
362  	/* Dependency order vs. p above. */ \
363  	typeof(p) ________p1 = READ_ONCE(p); \
364  	((typeof(*p) __force __kernel *)(________p1)); \
365  })
366  
367  /**
368   * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
369   * @v: The value to statically initialize with.
370   */
371  #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
372  
373  /**
374   * rcu_assign_pointer() - assign to RCU-protected pointer
375   * @p: pointer to assign to
376   * @v: value to assign (publish)
377   *
378   * Assigns the specified value to the specified RCU-protected
379   * pointer, ensuring that any concurrent RCU readers will see
380   * any prior initialization.
381   *
382   * Inserts memory barriers on architectures that require them
383   * (which is most of them), and also prevents the compiler from
384   * reordering the code that initializes the structure after the pointer
385   * assignment.  More importantly, this call documents which pointers
386   * will be dereferenced by RCU read-side code.
387   *
388   * In some special cases, you may use RCU_INIT_POINTER() instead
389   * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
390   * to the fact that it does not constrain either the CPU or the compiler.
391   * That said, using RCU_INIT_POINTER() when you should have used
392   * rcu_assign_pointer() is a very bad thing that results in
393   * impossible-to-diagnose memory corruption.  So please be careful.
394   * See the RCU_INIT_POINTER() comment header for details.
395   *
396   * Note that rcu_assign_pointer() evaluates each of its arguments only
397   * once, appearances notwithstanding.  One of the "extra" evaluations
398   * is in typeof() and the other visible only to sparse (__CHECKER__),
399   * neither of which actually execute the argument.  As with most cpp
400   * macros, this execute-arguments-only-once property is important, so
401   * please be careful when making changes to rcu_assign_pointer() and the
402   * other macros that it invokes.
403   */
404  #define rcu_assign_pointer(p, v)					      \
405  ({									      \
406  	uintptr_t _r_a_p__v = (uintptr_t)(v);				      \
407  									      \
408  	if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL)	      \
409  		WRITE_ONCE((p), (typeof(p))(_r_a_p__v));		      \
410  	else								      \
411  		smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
412  	_r_a_p__v;							      \
413  })
414  
415  /**
416   * rcu_swap_protected() - swap an RCU and a regular pointer
417   * @rcu_ptr: RCU pointer
418   * @ptr: regular pointer
419   * @c: the conditions under which the dereference will take place
420   *
421   * Perform swap(@rcu_ptr, @ptr) where @rcu_ptr is an RCU-annotated pointer and
422   * @c is the argument that is passed to the rcu_dereference_protected() call
423   * used to read that pointer.
424   */
425  #define rcu_swap_protected(rcu_ptr, ptr, c) do {			\
426  	typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));	\
427  	rcu_assign_pointer((rcu_ptr), (ptr));				\
428  	(ptr) = __tmp;							\
429  } while (0)
430  
431  /**
432   * rcu_access_pointer() - fetch RCU pointer with no dereferencing
433   * @p: The pointer to read
434   *
435   * Return the value of the specified RCU-protected pointer, but omit the
436   * lockdep checks for being in an RCU read-side critical section.  This is
437   * useful when the value of this pointer is accessed, but the pointer is
438   * not dereferenced, for example, when testing an RCU-protected pointer
439   * against NULL.  Although rcu_access_pointer() may also be used in cases
440   * where update-side locks prevent the value of the pointer from changing,
441   * you should instead use rcu_dereference_protected() for this use case.
442   *
443   * It is also permissible to use rcu_access_pointer() when read-side
444   * access to the pointer was removed at least one grace period ago, as
445   * is the case in the context of the RCU callback that is freeing up
446   * the data, or after a synchronize_rcu() returns.  This can be useful
447   * when tearing down multi-linked structures after a grace period
448   * has elapsed.
449   */
450  #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
451  
452  /**
453   * rcu_dereference_check() - rcu_dereference with debug checking
454   * @p: The pointer to read, prior to dereferencing
455   * @c: The conditions under which the dereference will take place
456   *
457   * Do an rcu_dereference(), but check that the conditions under which the
458   * dereference will take place are correct.  Typically the conditions
459   * indicate the various locking conditions that should be held at that
460   * point.  The check should return true if the conditions are satisfied.
461   * An implicit check for being in an RCU read-side critical section
462   * (rcu_read_lock()) is included.
463   *
464   * For example:
465   *
466   *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
467   *
468   * could be used to indicate to lockdep that foo->bar may only be dereferenced
469   * if either rcu_read_lock() is held, or that the lock required to replace
470   * the bar struct at foo->bar is held.
471   *
472   * Note that the list of conditions may also include indications of when a lock
473   * need not be held, for example during initialisation or destruction of the
474   * target struct:
475   *
476   *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
477   *					      atomic_read(&foo->usage) == 0);
478   *
479   * Inserts memory barriers on architectures that require them
480   * (currently only the Alpha), prevents the compiler from refetching
481   * (and from merging fetches), and, more importantly, documents exactly
482   * which pointers are protected by RCU and checks that the pointer is
483   * annotated as __rcu.
484   */
485  #define rcu_dereference_check(p, c) \
486  	__rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
487  
488  /**
489   * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
490   * @p: The pointer to read, prior to dereferencing
491   * @c: The conditions under which the dereference will take place
492   *
493   * This is the RCU-bh counterpart to rcu_dereference_check().
494   */
495  #define rcu_dereference_bh_check(p, c) \
496  	__rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
497  
498  /**
499   * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
500   * @p: The pointer to read, prior to dereferencing
501   * @c: The conditions under which the dereference will take place
502   *
503   * This is the RCU-sched counterpart to rcu_dereference_check().
504   */
505  #define rcu_dereference_sched_check(p, c) \
506  	__rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
507  				__rcu)
508  
509  /*
510   * The tracing infrastructure traces RCU (we want that), but unfortunately
511   * some of the RCU checks causes tracing to lock up the system.
512   *
513   * The no-tracing version of rcu_dereference_raw() must not call
514   * rcu_read_lock_held().
515   */
516  #define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
517  
518  /**
519   * rcu_dereference_protected() - fetch RCU pointer when updates prevented
520   * @p: The pointer to read, prior to dereferencing
521   * @c: The conditions under which the dereference will take place
522   *
523   * Return the value of the specified RCU-protected pointer, but omit
524   * the READ_ONCE().  This is useful in cases where update-side locks
525   * prevent the value of the pointer from changing.  Please note that this
526   * primitive does *not* prevent the compiler from repeating this reference
527   * or combining it with other references, so it should not be used without
528   * protection of appropriate locks.
529   *
530   * This function is only for update-side use.  Using this function
531   * when protected only by rcu_read_lock() will result in infrequent
532   * but very ugly failures.
533   */
534  #define rcu_dereference_protected(p, c) \
535  	__rcu_dereference_protected((p), (c), __rcu)
536  
537  
538  /**
539   * rcu_dereference() - fetch RCU-protected pointer for dereferencing
540   * @p: The pointer to read, prior to dereferencing
541   *
542   * This is a simple wrapper around rcu_dereference_check().
543   */
544  #define rcu_dereference(p) rcu_dereference_check(p, 0)
545  
546  /**
547   * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
548   * @p: The pointer to read, prior to dereferencing
549   *
550   * Makes rcu_dereference_check() do the dirty work.
551   */
552  #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
553  
554  /**
555   * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
556   * @p: The pointer to read, prior to dereferencing
557   *
558   * Makes rcu_dereference_check() do the dirty work.
559   */
560  #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
561  
562  /**
563   * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
564   * @p: The pointer to hand off
565   *
566   * This is simply an identity function, but it documents where a pointer
567   * is handed off from RCU to some other synchronization mechanism, for
568   * example, reference counting or locking.  In C11, it would map to
569   * kill_dependency().  It could be used as follows::
570   *
571   *	rcu_read_lock();
572   *	p = rcu_dereference(gp);
573   *	long_lived = is_long_lived(p);
574   *	if (long_lived) {
575   *		if (!atomic_inc_not_zero(p->refcnt))
576   *			long_lived = false;
577   *		else
578   *			p = rcu_pointer_handoff(p);
579   *	}
580   *	rcu_read_unlock();
581   */
582  #define rcu_pointer_handoff(p) (p)
583  
584  /**
585   * rcu_read_lock() - mark the beginning of an RCU read-side critical section
586   *
587   * When synchronize_rcu() is invoked on one CPU while other CPUs
588   * are within RCU read-side critical sections, then the
589   * synchronize_rcu() is guaranteed to block until after all the other
590   * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
591   * on one CPU while other CPUs are within RCU read-side critical
592   * sections, invocation of the corresponding RCU callback is deferred
593   * until after the all the other CPUs exit their critical sections.
594   *
595   * Note, however, that RCU callbacks are permitted to run concurrently
596   * with new RCU read-side critical sections.  One way that this can happen
597   * is via the following sequence of events: (1) CPU 0 enters an RCU
598   * read-side critical section, (2) CPU 1 invokes call_rcu() to register
599   * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
600   * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
601   * callback is invoked.  This is legal, because the RCU read-side critical
602   * section that was running concurrently with the call_rcu() (and which
603   * therefore might be referencing something that the corresponding RCU
604   * callback would free up) has completed before the corresponding
605   * RCU callback is invoked.
606   *
607   * RCU read-side critical sections may be nested.  Any deferred actions
608   * will be deferred until the outermost RCU read-side critical section
609   * completes.
610   *
611   * You can avoid reading and understanding the next paragraph by
612   * following this rule: don't put anything in an rcu_read_lock() RCU
613   * read-side critical section that would block in a !PREEMPT kernel.
614   * But if you want the full story, read on!
615   *
616   * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
617   * it is illegal to block while in an RCU read-side critical section.
618   * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
619   * kernel builds, RCU read-side critical sections may be preempted,
620   * but explicit blocking is illegal.  Finally, in preemptible RCU
621   * implementations in real-time (with -rt patchset) kernel builds, RCU
622   * read-side critical sections may be preempted and they may also block, but
623   * only when acquiring spinlocks that are subject to priority inheritance.
624   */
rcu_read_lock(void)625  static inline void rcu_read_lock(void)
626  {
627  	__rcu_read_lock();
628  	__acquire(RCU);
629  	rcu_lock_acquire(&rcu_lock_map);
630  	RCU_LOCKDEP_WARN(!rcu_is_watching(),
631  			 "rcu_read_lock() used illegally while idle");
632  }
633  
634  /*
635   * So where is rcu_write_lock()?  It does not exist, as there is no
636   * way for writers to lock out RCU readers.  This is a feature, not
637   * a bug -- this property is what provides RCU's performance benefits.
638   * Of course, writers must coordinate with each other.  The normal
639   * spinlock primitives work well for this, but any other technique may be
640   * used as well.  RCU does not care how the writers keep out of each
641   * others' way, as long as they do so.
642   */
643  
644  /**
645   * rcu_read_unlock() - marks the end of an RCU read-side critical section.
646   *
647   * In most situations, rcu_read_unlock() is immune from deadlock.
648   * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
649   * is responsible for deboosting, which it does via rt_mutex_unlock().
650   * Unfortunately, this function acquires the scheduler's runqueue and
651   * priority-inheritance spinlocks.  This means that deadlock could result
652   * if the caller of rcu_read_unlock() already holds one of these locks or
653   * any lock that is ever acquired while holding them.
654   *
655   * That said, RCU readers are never priority boosted unless they were
656   * preempted.  Therefore, one way to avoid deadlock is to make sure
657   * that preemption never happens within any RCU read-side critical
658   * section whose outermost rcu_read_unlock() is called with one of
659   * rt_mutex_unlock()'s locks held.  Such preemption can be avoided in
660   * a number of ways, for example, by invoking preempt_disable() before
661   * critical section's outermost rcu_read_lock().
662   *
663   * Given that the set of locks acquired by rt_mutex_unlock() might change
664   * at any time, a somewhat more future-proofed approach is to make sure
665   * that that preemption never happens within any RCU read-side critical
666   * section whose outermost rcu_read_unlock() is called with irqs disabled.
667   * This approach relies on the fact that rt_mutex_unlock() currently only
668   * acquires irq-disabled locks.
669   *
670   * The second of these two approaches is best in most situations,
671   * however, the first approach can also be useful, at least to those
672   * developers willing to keep abreast of the set of locks acquired by
673   * rt_mutex_unlock().
674   *
675   * See rcu_read_lock() for more information.
676   */
rcu_read_unlock(void)677  static inline void rcu_read_unlock(void)
678  {
679  	RCU_LOCKDEP_WARN(!rcu_is_watching(),
680  			 "rcu_read_unlock() used illegally while idle");
681  	__release(RCU);
682  	__rcu_read_unlock();
683  	rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
684  }
685  
686  /**
687   * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
688   *
689   * This is equivalent of rcu_read_lock(), but to be used when updates
690   * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
691   * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
692   * softirq handler to be a quiescent state, a process in RCU read-side
693   * critical section must be protected by disabling softirqs. Read-side
694   * critical sections in interrupt context can use just rcu_read_lock(),
695   * though this should at least be commented to avoid confusing people
696   * reading the code.
697   *
698   * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
699   * must occur in the same context, for example, it is illegal to invoke
700   * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
701   * was invoked from some other task.
702   */
rcu_read_lock_bh(void)703  static inline void rcu_read_lock_bh(void)
704  {
705  	local_bh_disable();
706  	__acquire(RCU_BH);
707  	rcu_lock_acquire(&rcu_bh_lock_map);
708  	RCU_LOCKDEP_WARN(!rcu_is_watching(),
709  			 "rcu_read_lock_bh() used illegally while idle");
710  }
711  
712  /*
713   * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
714   *
715   * See rcu_read_lock_bh() for more information.
716   */
rcu_read_unlock_bh(void)717  static inline void rcu_read_unlock_bh(void)
718  {
719  	RCU_LOCKDEP_WARN(!rcu_is_watching(),
720  			 "rcu_read_unlock_bh() used illegally while idle");
721  	rcu_lock_release(&rcu_bh_lock_map);
722  	__release(RCU_BH);
723  	local_bh_enable();
724  }
725  
726  /**
727   * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
728   *
729   * This is equivalent of rcu_read_lock(), but to be used when updates
730   * are being done using call_rcu_sched() or synchronize_rcu_sched().
731   * Read-side critical sections can also be introduced by anything that
732   * disables preemption, including local_irq_disable() and friends.
733   *
734   * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
735   * must occur in the same context, for example, it is illegal to invoke
736   * rcu_read_unlock_sched() from process context if the matching
737   * rcu_read_lock_sched() was invoked from an NMI handler.
738   */
rcu_read_lock_sched(void)739  static inline void rcu_read_lock_sched(void)
740  {
741  	preempt_disable();
742  	__acquire(RCU_SCHED);
743  	rcu_lock_acquire(&rcu_sched_lock_map);
744  	RCU_LOCKDEP_WARN(!rcu_is_watching(),
745  			 "rcu_read_lock_sched() used illegally while idle");
746  }
747  
748  /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)749  static inline notrace void rcu_read_lock_sched_notrace(void)
750  {
751  	preempt_disable_notrace();
752  	__acquire(RCU_SCHED);
753  }
754  
755  /*
756   * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
757   *
758   * See rcu_read_lock_sched for more information.
759   */
rcu_read_unlock_sched(void)760  static inline void rcu_read_unlock_sched(void)
761  {
762  	RCU_LOCKDEP_WARN(!rcu_is_watching(),
763  			 "rcu_read_unlock_sched() used illegally while idle");
764  	rcu_lock_release(&rcu_sched_lock_map);
765  	__release(RCU_SCHED);
766  	preempt_enable();
767  }
768  
769  /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)770  static inline notrace void rcu_read_unlock_sched_notrace(void)
771  {
772  	__release(RCU_SCHED);
773  	preempt_enable_notrace();
774  }
775  
776  /**
777   * RCU_INIT_POINTER() - initialize an RCU protected pointer
778   * @p: The pointer to be initialized.
779   * @v: The value to initialized the pointer to.
780   *
781   * Initialize an RCU-protected pointer in special cases where readers
782   * do not need ordering constraints on the CPU or the compiler.  These
783   * special cases are:
784   *
785   * 1.	This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
786   * 2.	The caller has taken whatever steps are required to prevent
787   *	RCU readers from concurrently accessing this pointer *or*
788   * 3.	The referenced data structure has already been exposed to
789   *	readers either at compile time or via rcu_assign_pointer() *and*
790   *
791   *	a.	You have not made *any* reader-visible changes to
792   *		this structure since then *or*
793   *	b.	It is OK for readers accessing this structure from its
794   *		new location to see the old state of the structure.  (For
795   *		example, the changes were to statistical counters or to
796   *		other state where exact synchronization is not required.)
797   *
798   * Failure to follow these rules governing use of RCU_INIT_POINTER() will
799   * result in impossible-to-diagnose memory corruption.  As in the structures
800   * will look OK in crash dumps, but any concurrent RCU readers might
801   * see pre-initialized values of the referenced data structure.  So
802   * please be very careful how you use RCU_INIT_POINTER()!!!
803   *
804   * If you are creating an RCU-protected linked structure that is accessed
805   * by a single external-to-structure RCU-protected pointer, then you may
806   * use RCU_INIT_POINTER() to initialize the internal RCU-protected
807   * pointers, but you must use rcu_assign_pointer() to initialize the
808   * external-to-structure pointer *after* you have completely initialized
809   * the reader-accessible portions of the linked structure.
810   *
811   * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
812   * ordering guarantees for either the CPU or the compiler.
813   */
814  #define RCU_INIT_POINTER(p, v) \
815  	do { \
816  		rcu_dereference_sparse(p, __rcu); \
817  		WRITE_ONCE(p, RCU_INITIALIZER(v)); \
818  	} while (0)
819  
820  /**
821   * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
822   * @p: The pointer to be initialized.
823   * @v: The value to initialized the pointer to.
824   *
825   * GCC-style initialization for an RCU-protected pointer in a structure field.
826   */
827  #define RCU_POINTER_INITIALIZER(p, v) \
828  		.p = RCU_INITIALIZER(v)
829  
830  /*
831   * Does the specified offset indicate that the corresponding rcu_head
832   * structure can be handled by kfree_rcu()?
833   */
834  #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
835  
836  /*
837   * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
838   */
839  #define __kfree_rcu(head, offset) \
840  	do { \
841  		BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
842  		kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
843  	} while (0)
844  
845  /**
846   * kfree_rcu() - kfree an object after a grace period.
847   * @ptr:	pointer to kfree
848   * @rcu_head:	the name of the struct rcu_head within the type of @ptr.
849   *
850   * Many rcu callbacks functions just call kfree() on the base structure.
851   * These functions are trivial, but their size adds up, and furthermore
852   * when they are used in a kernel module, that module must invoke the
853   * high-latency rcu_barrier() function at module-unload time.
854   *
855   * The kfree_rcu() function handles this issue.  Rather than encoding a
856   * function address in the embedded rcu_head structure, kfree_rcu() instead
857   * encodes the offset of the rcu_head structure within the base structure.
858   * Because the functions are not allowed in the low-order 4096 bytes of
859   * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
860   * If the offset is larger than 4095 bytes, a compile-time error will
861   * be generated in __kfree_rcu().  If this error is triggered, you can
862   * either fall back to use of call_rcu() or rearrange the structure to
863   * position the rcu_head structure into the first 4096 bytes.
864   *
865   * Note that the allowable offset might decrease in the future, for example,
866   * to allow something like kmem_cache_free_rcu().
867   *
868   * The BUILD_BUG_ON check must not involve any function calls, hence the
869   * checks are done in macros here.
870   */
871  #define kfree_rcu(ptr, rcu_head)					\
872  	__kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
873  
874  
875  /*
876   * Place this after a lock-acquisition primitive to guarantee that
877   * an UNLOCK+LOCK pair acts as a full barrier.  This guarantee applies
878   * if the UNLOCK and LOCK are executed by the same CPU or if the
879   * UNLOCK and LOCK operate on the same lock variable.
880   */
881  #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
882  #define smp_mb__after_unlock_lock()	smp_mb()  /* Full ordering for lock. */
883  #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
884  #define smp_mb__after_unlock_lock()	do { } while (0)
885  #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
886  
887  
888  #endif /* __LINUX_RCUPDATE_H */
889