1 /*
2  * Universal Flash Storage Host controller driver Core
3  *
4  * This code is based on drivers/scsi/ufs/ufshcd.c
5  * Copyright (C) 2011-2013 Samsung India Software Operations
6  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
7  *
8  * Authors:
9  *	Santosh Yaraganavi <santosh.sy@samsung.com>
10  *	Vinayak Holikatti <h.vinayak@samsung.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License
14  * as published by the Free Software Foundation; either version 2
15  * of the License, or (at your option) any later version.
16  * See the COPYING file in the top-level directory or visit
17  * <http://www.gnu.org/licenses/gpl-2.0.html>
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  *
24  * This program is provided "AS IS" and "WITH ALL FAULTS" and
25  * without warranty of any kind. You are solely responsible for
26  * determining the appropriateness of using and distributing
27  * the program and assume all risks associated with your exercise
28  * of rights with respect to the program, including but not limited
29  * to infringement of third party rights, the risks and costs of
30  * program errors, damage to or loss of data, programs or equipment,
31  * and unavailability or interruption of operations. Under no
32  * circumstances will the contributor of this Program be liable for
33  * any damages of any kind arising from your use or distribution of
34  * this program.
35  *
36  * The Linux Foundation chooses to take subject only to the GPLv2
37  * license terms, and distributes only under these terms.
38  */
39 
40 #include <linux/async.h>
41 #include <linux/devfreq.h>
42 #include <linux/nls.h>
43 #include <linux/of.h>
44 #include <linux/bitfield.h>
45 #include "ufshcd.h"
46 #include "ufs_quirks.h"
47 #include "unipro.h"
48 #include "ufs-sysfs.h"
49 #include "ufs_bsg.h"
50 
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/ufs.h>
53 
54 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
55 				 UTP_TASK_REQ_COMPL |\
56 				 UFSHCD_ERROR_MASK)
57 /* UIC command timeout, unit: ms */
58 #define UIC_CMD_TIMEOUT	500
59 
60 /* NOP OUT retries waiting for NOP IN response */
61 #define NOP_OUT_RETRIES    10
62 /* Timeout after 30 msecs if NOP OUT hangs without response */
63 #define NOP_OUT_TIMEOUT    30 /* msecs */
64 
65 /* Query request retries */
66 #define QUERY_REQ_RETRIES 3
67 /* Query request timeout */
68 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
69 
70 /* Task management command timeout */
71 #define TM_CMD_TIMEOUT	100 /* msecs */
72 
73 /* maximum number of retries for a general UIC command  */
74 #define UFS_UIC_COMMAND_RETRIES 3
75 
76 /* maximum number of link-startup retries */
77 #define DME_LINKSTARTUP_RETRIES 3
78 
79 /* Maximum retries for Hibern8 enter */
80 #define UIC_HIBERN8_ENTER_RETRIES 3
81 
82 /* maximum number of reset retries before giving up */
83 #define MAX_HOST_RESET_RETRIES 5
84 
85 /* Expose the flag value from utp_upiu_query.value */
86 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
87 
88 /* Interrupt aggregation default timeout, unit: 40us */
89 #define INT_AGGR_DEF_TO	0x02
90 
91 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
92 	({                                                              \
93 		int _ret;                                               \
94 		if (_on)                                                \
95 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
96 		else                                                    \
97 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
98 		_ret;                                                   \
99 	})
100 
101 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
102 	size_t __len = (len);                                            \
103 	print_hex_dump(KERN_ERR, prefix_str,                             \
104 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
105 		       16, 4, buf, __len, false);                        \
106 } while (0)
107 
ufshcd_dump_regs(struct ufs_hba * hba,size_t offset,size_t len,const char * prefix)108 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
109 		     const char *prefix)
110 {
111 	u32 *regs;
112 	size_t pos;
113 
114 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
115 		return -EINVAL;
116 
117 	regs = kzalloc(len, GFP_KERNEL);
118 	if (!regs)
119 		return -ENOMEM;
120 
121 	for (pos = 0; pos < len; pos += 4)
122 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
123 
124 	ufshcd_hex_dump(prefix, regs, len);
125 	kfree(regs);
126 
127 	return 0;
128 }
129 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
130 
131 enum {
132 	UFSHCD_MAX_CHANNEL	= 0,
133 	UFSHCD_MAX_ID		= 1,
134 	UFSHCD_CMD_PER_LUN	= 32,
135 	UFSHCD_CAN_QUEUE	= 32,
136 };
137 
138 /* UFSHCD states */
139 enum {
140 	UFSHCD_STATE_RESET,
141 	UFSHCD_STATE_ERROR,
142 	UFSHCD_STATE_OPERATIONAL,
143 	UFSHCD_STATE_EH_SCHEDULED,
144 };
145 
146 /* UFSHCD error handling flags */
147 enum {
148 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
149 };
150 
151 /* UFSHCD UIC layer error flags */
152 enum {
153 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
154 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
155 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
156 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
157 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
158 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
159 };
160 
161 #define ufshcd_set_eh_in_progress(h) \
162 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
163 #define ufshcd_eh_in_progress(h) \
164 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
165 #define ufshcd_clear_eh_in_progress(h) \
166 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
167 
168 #define ufshcd_set_ufs_dev_active(h) \
169 	((h)->curr_dev_pwr_mode = UFS_ACTIVE_PWR_MODE)
170 #define ufshcd_set_ufs_dev_sleep(h) \
171 	((h)->curr_dev_pwr_mode = UFS_SLEEP_PWR_MODE)
172 #define ufshcd_set_ufs_dev_poweroff(h) \
173 	((h)->curr_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE)
174 #define ufshcd_is_ufs_dev_active(h) \
175 	((h)->curr_dev_pwr_mode == UFS_ACTIVE_PWR_MODE)
176 #define ufshcd_is_ufs_dev_sleep(h) \
177 	((h)->curr_dev_pwr_mode == UFS_SLEEP_PWR_MODE)
178 #define ufshcd_is_ufs_dev_poweroff(h) \
179 	((h)->curr_dev_pwr_mode == UFS_POWERDOWN_PWR_MODE)
180 
181 struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
182 	{UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
183 	{UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
184 	{UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
185 	{UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
186 	{UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
187 	{UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
188 };
189 
190 static inline enum ufs_dev_pwr_mode
ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)191 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
192 {
193 	return ufs_pm_lvl_states[lvl].dev_state;
194 }
195 
196 static inline enum uic_link_state
ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)197 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
198 {
199 	return ufs_pm_lvl_states[lvl].link_state;
200 }
201 
202 static inline enum ufs_pm_level
ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,enum uic_link_state link_state)203 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
204 					enum uic_link_state link_state)
205 {
206 	enum ufs_pm_level lvl;
207 
208 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
209 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
210 			(ufs_pm_lvl_states[lvl].link_state == link_state))
211 			return lvl;
212 	}
213 
214 	/* if no match found, return the level 0 */
215 	return UFS_PM_LVL_0;
216 }
217 
218 static struct ufs_dev_fix ufs_fixups[] = {
219 	/* UFS cards deviations table */
220 	UFS_FIX(UFS_VENDOR_SAMSUNG, UFS_ANY_MODEL,
221 		UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM),
222 	UFS_FIX(UFS_VENDOR_SAMSUNG, UFS_ANY_MODEL,
223 		UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS),
224 	UFS_FIX(UFS_VENDOR_SAMSUNG, UFS_ANY_MODEL,
225 		UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE),
226 	UFS_FIX(UFS_VENDOR_TOSHIBA, UFS_ANY_MODEL,
227 		UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM),
228 	UFS_FIX(UFS_VENDOR_TOSHIBA, "THGLF2G9C8KBADG",
229 		UFS_DEVICE_QUIRK_PA_TACTIVATE),
230 	UFS_FIX(UFS_VENDOR_TOSHIBA, "THGLF2G9D8KBADG",
231 		UFS_DEVICE_QUIRK_PA_TACTIVATE),
232 	UFS_FIX(UFS_VENDOR_SKHYNIX, UFS_ANY_MODEL,
233 		UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME),
234 	UFS_FIX(UFS_VENDOR_SKHYNIX, "hB8aL1" /*H28U62301AMR*/,
235 		UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME),
236 
237 	END_FIX
238 };
239 
240 static void ufshcd_tmc_handler(struct ufs_hba *hba);
241 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
242 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
243 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
244 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
245 static void ufshcd_hba_exit(struct ufs_hba *hba);
246 static int ufshcd_probe_hba(struct ufs_hba *hba);
247 static int __ufshcd_setup_clocks(struct ufs_hba *hba, bool on,
248 				 bool skip_ref_clk);
249 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
250 static int ufshcd_uic_hibern8_exit(struct ufs_hba *hba);
251 static int ufshcd_uic_hibern8_enter(struct ufs_hba *hba);
252 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
253 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
254 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
255 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
256 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
257 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
258 static irqreturn_t ufshcd_intr(int irq, void *__hba);
259 static int ufshcd_change_power_mode(struct ufs_hba *hba,
260 			     struct ufs_pa_layer_attr *pwr_mode);
ufshcd_valid_tag(struct ufs_hba * hba,int tag)261 static inline bool ufshcd_valid_tag(struct ufs_hba *hba, int tag)
262 {
263 	return tag >= 0 && tag < hba->nutrs;
264 }
265 
ufshcd_enable_irq(struct ufs_hba * hba)266 static inline int ufshcd_enable_irq(struct ufs_hba *hba)
267 {
268 	int ret = 0;
269 
270 	if (!hba->is_irq_enabled) {
271 		ret = request_irq(hba->irq, ufshcd_intr, IRQF_SHARED, UFSHCD,
272 				hba);
273 		if (ret)
274 			dev_err(hba->dev, "%s: request_irq failed, ret=%d\n",
275 				__func__, ret);
276 		hba->is_irq_enabled = true;
277 	}
278 
279 	return ret;
280 }
281 
ufshcd_disable_irq(struct ufs_hba * hba)282 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
283 {
284 	if (hba->is_irq_enabled) {
285 		free_irq(hba->irq, hba);
286 		hba->is_irq_enabled = false;
287 	}
288 }
289 
ufshcd_scsi_unblock_requests(struct ufs_hba * hba)290 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
291 {
292 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
293 		scsi_unblock_requests(hba->host);
294 }
295 
ufshcd_scsi_block_requests(struct ufs_hba * hba)296 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
297 {
298 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
299 		scsi_block_requests(hba->host);
300 }
301 
ufshcd_add_cmd_upiu_trace(struct ufs_hba * hba,unsigned int tag,const char * str)302 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
303 		const char *str)
304 {
305 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
306 
307 	trace_ufshcd_upiu(dev_name(hba->dev), str, &rq->header, &rq->sc.cdb);
308 }
309 
ufshcd_add_query_upiu_trace(struct ufs_hba * hba,unsigned int tag,const char * str)310 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba, unsigned int tag,
311 		const char *str)
312 {
313 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
314 
315 	trace_ufshcd_upiu(dev_name(hba->dev), str, &rq->header, &rq->qr);
316 }
317 
ufshcd_add_tm_upiu_trace(struct ufs_hba * hba,unsigned int tag,const char * str)318 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
319 		const char *str)
320 {
321 	int off = (int)tag - hba->nutrs;
322 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[off];
323 
324 	trace_ufshcd_upiu(dev_name(hba->dev), str, &descp->req_header,
325 			&descp->input_param1);
326 }
327 
ufshcd_add_command_trace(struct ufs_hba * hba,unsigned int tag,const char * str)328 static void ufshcd_add_command_trace(struct ufs_hba *hba,
329 		unsigned int tag, const char *str)
330 {
331 	sector_t lba = -1;
332 	u8 opcode = 0;
333 	u32 intr, doorbell;
334 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
335 	int transfer_len = -1;
336 
337 	if (!trace_ufshcd_command_enabled()) {
338 		/* trace UPIU W/O tracing command */
339 		if (lrbp->cmd)
340 			ufshcd_add_cmd_upiu_trace(hba, tag, str);
341 		return;
342 	}
343 
344 	if (lrbp->cmd) { /* data phase exists */
345 		/* trace UPIU also */
346 		ufshcd_add_cmd_upiu_trace(hba, tag, str);
347 		opcode = (u8)(*lrbp->cmd->cmnd);
348 		if ((opcode == READ_10) || (opcode == WRITE_10)) {
349 			/*
350 			 * Currently we only fully trace read(10) and write(10)
351 			 * commands
352 			 */
353 			if (lrbp->cmd->request && lrbp->cmd->request->bio)
354 				lba =
355 				  lrbp->cmd->request->bio->bi_iter.bi_sector;
356 			transfer_len = be32_to_cpu(
357 				lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
358 		}
359 	}
360 
361 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
362 	doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
363 	trace_ufshcd_command(dev_name(hba->dev), str, tag,
364 				doorbell, transfer_len, intr, lba, opcode);
365 }
366 
ufshcd_print_clk_freqs(struct ufs_hba * hba)367 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
368 {
369 	struct ufs_clk_info *clki;
370 	struct list_head *head = &hba->clk_list_head;
371 
372 	if (list_empty(head))
373 		return;
374 
375 	list_for_each_entry(clki, head, list) {
376 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
377 				clki->max_freq)
378 			dev_err(hba->dev, "clk: %s, rate: %u\n",
379 					clki->name, clki->curr_freq);
380 	}
381 }
382 
ufshcd_print_err_hist(struct ufs_hba * hba,struct ufs_err_reg_hist * err_hist,char * err_name)383 static void ufshcd_print_err_hist(struct ufs_hba *hba,
384 				  struct ufs_err_reg_hist *err_hist,
385 				  char *err_name)
386 {
387 	int i;
388 	bool found = false;
389 
390 	for (i = 0; i < UFS_ERR_REG_HIST_LENGTH; i++) {
391 		int p = (i + err_hist->pos) % UFS_ERR_REG_HIST_LENGTH;
392 
393 		if (err_hist->reg[p] == 0)
394 			continue;
395 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
396 			err_hist->reg[p], ktime_to_us(err_hist->tstamp[p]));
397 		found = true;
398 	}
399 
400 	if (!found)
401 		dev_err(hba->dev, "No record of %s errors\n", err_name);
402 }
403 
ufshcd_print_host_regs(struct ufs_hba * hba)404 static void ufshcd_print_host_regs(struct ufs_hba *hba)
405 {
406 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
407 	dev_err(hba->dev, "hba->ufs_version = 0x%x, hba->capabilities = 0x%x\n",
408 		hba->ufs_version, hba->capabilities);
409 	dev_err(hba->dev,
410 		"hba->outstanding_reqs = 0x%x, hba->outstanding_tasks = 0x%x\n",
411 		(u32)hba->outstanding_reqs, (u32)hba->outstanding_tasks);
412 	dev_err(hba->dev,
413 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt = %d\n",
414 		ktime_to_us(hba->ufs_stats.last_hibern8_exit_tstamp),
415 		hba->ufs_stats.hibern8_exit_cnt);
416 
417 	ufshcd_print_err_hist(hba, &hba->ufs_stats.pa_err, "pa_err");
418 	ufshcd_print_err_hist(hba, &hba->ufs_stats.dl_err, "dl_err");
419 	ufshcd_print_err_hist(hba, &hba->ufs_stats.nl_err, "nl_err");
420 	ufshcd_print_err_hist(hba, &hba->ufs_stats.tl_err, "tl_err");
421 	ufshcd_print_err_hist(hba, &hba->ufs_stats.dme_err, "dme_err");
422 	ufshcd_print_err_hist(hba, &hba->ufs_stats.auto_hibern8_err,
423 			      "auto_hibern8_err");
424 	ufshcd_print_err_hist(hba, &hba->ufs_stats.fatal_err, "fatal_err");
425 	ufshcd_print_err_hist(hba, &hba->ufs_stats.link_startup_err,
426 			      "link_startup_fail");
427 	ufshcd_print_err_hist(hba, &hba->ufs_stats.resume_err, "resume_fail");
428 	ufshcd_print_err_hist(hba, &hba->ufs_stats.suspend_err,
429 			      "suspend_fail");
430 	ufshcd_print_err_hist(hba, &hba->ufs_stats.dev_reset, "dev_reset");
431 	ufshcd_print_err_hist(hba, &hba->ufs_stats.host_reset, "host_reset");
432 	ufshcd_print_err_hist(hba, &hba->ufs_stats.task_abort, "task_abort");
433 
434 	ufshcd_print_clk_freqs(hba);
435 
436 	if (hba->vops && hba->vops->dbg_register_dump)
437 		hba->vops->dbg_register_dump(hba);
438 }
439 
440 static
ufshcd_print_trs(struct ufs_hba * hba,unsigned long bitmap,bool pr_prdt)441 void ufshcd_print_trs(struct ufs_hba *hba, unsigned long bitmap, bool pr_prdt)
442 {
443 	struct ufshcd_lrb *lrbp;
444 	int prdt_length;
445 	int tag;
446 
447 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
448 		lrbp = &hba->lrb[tag];
449 
450 		dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
451 				tag, ktime_to_us(lrbp->issue_time_stamp));
452 		dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
453 				tag, ktime_to_us(lrbp->compl_time_stamp));
454 		dev_err(hba->dev,
455 			"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
456 			tag, (u64)lrbp->utrd_dma_addr);
457 
458 		ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
459 				sizeof(struct utp_transfer_req_desc));
460 		dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
461 			(u64)lrbp->ucd_req_dma_addr);
462 		ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
463 				sizeof(struct utp_upiu_req));
464 		dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
465 			(u64)lrbp->ucd_rsp_dma_addr);
466 		ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
467 				sizeof(struct utp_upiu_rsp));
468 
469 		prdt_length = le16_to_cpu(
470 			lrbp->utr_descriptor_ptr->prd_table_length);
471 		dev_err(hba->dev,
472 			"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
473 			tag, prdt_length,
474 			(u64)lrbp->ucd_prdt_dma_addr);
475 
476 		if (pr_prdt)
477 			ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
478 				sizeof(struct ufshcd_sg_entry) * prdt_length);
479 	}
480 }
481 
ufshcd_print_tmrs(struct ufs_hba * hba,unsigned long bitmap)482 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
483 {
484 	int tag;
485 
486 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
487 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
488 
489 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
490 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
491 	}
492 }
493 
ufshcd_print_host_state(struct ufs_hba * hba)494 static void ufshcd_print_host_state(struct ufs_hba *hba)
495 {
496 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
497 	dev_err(hba->dev, "lrb in use=0x%lx, outstanding reqs=0x%lx tasks=0x%lx\n",
498 		hba->lrb_in_use, hba->outstanding_reqs, hba->outstanding_tasks);
499 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
500 		hba->saved_err, hba->saved_uic_err);
501 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
502 		hba->curr_dev_pwr_mode, hba->uic_link_state);
503 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
504 		hba->pm_op_in_progress, hba->is_sys_suspended);
505 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
506 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
507 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
508 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
509 		hba->eh_flags, hba->req_abort_count);
510 	dev_err(hba->dev, "Host capabilities=0x%x, caps=0x%x\n",
511 		hba->capabilities, hba->caps);
512 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
513 		hba->dev_quirks);
514 }
515 
516 /**
517  * ufshcd_print_pwr_info - print power params as saved in hba
518  * power info
519  * @hba: per-adapter instance
520  */
ufshcd_print_pwr_info(struct ufs_hba * hba)521 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
522 {
523 	static const char * const names[] = {
524 		"INVALID MODE",
525 		"FAST MODE",
526 		"SLOW_MODE",
527 		"INVALID MODE",
528 		"FASTAUTO_MODE",
529 		"SLOWAUTO_MODE",
530 		"INVALID MODE",
531 	};
532 
533 	dev_err(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
534 		 __func__,
535 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
536 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
537 		 names[hba->pwr_info.pwr_rx],
538 		 names[hba->pwr_info.pwr_tx],
539 		 hba->pwr_info.hs_rate);
540 }
541 
542 /*
543  * ufshcd_wait_for_register - wait for register value to change
544  * @hba - per-adapter interface
545  * @reg - mmio register offset
546  * @mask - mask to apply to read register value
547  * @val - wait condition
548  * @interval_us - polling interval in microsecs
549  * @timeout_ms - timeout in millisecs
550  * @can_sleep - perform sleep or just spin
551  *
552  * Returns -ETIMEDOUT on error, zero on success
553  */
ufshcd_wait_for_register(struct ufs_hba * hba,u32 reg,u32 mask,u32 val,unsigned long interval_us,unsigned long timeout_ms,bool can_sleep)554 int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
555 				u32 val, unsigned long interval_us,
556 				unsigned long timeout_ms, bool can_sleep)
557 {
558 	int err = 0;
559 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
560 
561 	/* ignore bits that we don't intend to wait on */
562 	val = val & mask;
563 
564 	while ((ufshcd_readl(hba, reg) & mask) != val) {
565 		if (can_sleep)
566 			usleep_range(interval_us, interval_us + 50);
567 		else
568 			udelay(interval_us);
569 		if (time_after(jiffies, timeout)) {
570 			if ((ufshcd_readl(hba, reg) & mask) != val)
571 				err = -ETIMEDOUT;
572 			break;
573 		}
574 	}
575 
576 	return err;
577 }
578 
579 /**
580  * ufshcd_get_intr_mask - Get the interrupt bit mask
581  * @hba: Pointer to adapter instance
582  *
583  * Returns interrupt bit mask per version
584  */
ufshcd_get_intr_mask(struct ufs_hba * hba)585 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
586 {
587 	u32 intr_mask = 0;
588 
589 	switch (hba->ufs_version) {
590 	case UFSHCI_VERSION_10:
591 		intr_mask = INTERRUPT_MASK_ALL_VER_10;
592 		break;
593 	case UFSHCI_VERSION_11:
594 	case UFSHCI_VERSION_20:
595 		intr_mask = INTERRUPT_MASK_ALL_VER_11;
596 		break;
597 	case UFSHCI_VERSION_21:
598 	default:
599 		intr_mask = INTERRUPT_MASK_ALL_VER_21;
600 		break;
601 	}
602 
603 	return intr_mask;
604 }
605 
606 /**
607  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
608  * @hba: Pointer to adapter instance
609  *
610  * Returns UFSHCI version supported by the controller
611  */
ufshcd_get_ufs_version(struct ufs_hba * hba)612 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
613 {
614 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
615 		return ufshcd_vops_get_ufs_hci_version(hba);
616 
617 	return ufshcd_readl(hba, REG_UFS_VERSION);
618 }
619 
620 /**
621  * ufshcd_is_device_present - Check if any device connected to
622  *			      the host controller
623  * @hba: pointer to adapter instance
624  *
625  * Returns true if device present, false if no device detected
626  */
ufshcd_is_device_present(struct ufs_hba * hba)627 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
628 {
629 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) &
630 						DEVICE_PRESENT) ? true : false;
631 }
632 
633 /**
634  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
635  * @lrbp: pointer to local command reference block
636  *
637  * This function is used to get the OCS field from UTRD
638  * Returns the OCS field in the UTRD
639  */
ufshcd_get_tr_ocs(struct ufshcd_lrb * lrbp)640 static inline int ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp)
641 {
642 	return le32_to_cpu(lrbp->utr_descriptor_ptr->header.dword_2) & MASK_OCS;
643 }
644 
645 /**
646  * ufshcd_get_tm_free_slot - get a free slot for task management request
647  * @hba: per adapter instance
648  * @free_slot: pointer to variable with available slot value
649  *
650  * Get a free tag and lock it until ufshcd_put_tm_slot() is called.
651  * Returns 0 if free slot is not available, else return 1 with tag value
652  * in @free_slot.
653  */
ufshcd_get_tm_free_slot(struct ufs_hba * hba,int * free_slot)654 static bool ufshcd_get_tm_free_slot(struct ufs_hba *hba, int *free_slot)
655 {
656 	int tag;
657 	bool ret = false;
658 
659 	if (!free_slot)
660 		goto out;
661 
662 	do {
663 		tag = find_first_zero_bit(&hba->tm_slots_in_use, hba->nutmrs);
664 		if (tag >= hba->nutmrs)
665 			goto out;
666 	} while (test_and_set_bit_lock(tag, &hba->tm_slots_in_use));
667 
668 	*free_slot = tag;
669 	ret = true;
670 out:
671 	return ret;
672 }
673 
ufshcd_put_tm_slot(struct ufs_hba * hba,int slot)674 static inline void ufshcd_put_tm_slot(struct ufs_hba *hba, int slot)
675 {
676 	clear_bit_unlock(slot, &hba->tm_slots_in_use);
677 }
678 
679 /**
680  * ufshcd_utrl_clear - Clear a bit in UTRLCLR register
681  * @hba: per adapter instance
682  * @pos: position of the bit to be cleared
683  */
ufshcd_utrl_clear(struct ufs_hba * hba,u32 pos)684 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 pos)
685 {
686 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
687 		ufshcd_writel(hba, (1 << pos), REG_UTP_TRANSFER_REQ_LIST_CLEAR);
688 	else
689 		ufshcd_writel(hba, ~(1 << pos),
690 				REG_UTP_TRANSFER_REQ_LIST_CLEAR);
691 }
692 
693 /**
694  * ufshcd_utmrl_clear - Clear a bit in UTRMLCLR register
695  * @hba: per adapter instance
696  * @pos: position of the bit to be cleared
697  */
ufshcd_utmrl_clear(struct ufs_hba * hba,u32 pos)698 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
699 {
700 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
701 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
702 	else
703 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
704 }
705 
706 /**
707  * ufshcd_outstanding_req_clear - Clear a bit in outstanding request field
708  * @hba: per adapter instance
709  * @tag: position of the bit to be cleared
710  */
ufshcd_outstanding_req_clear(struct ufs_hba * hba,int tag)711 static inline void ufshcd_outstanding_req_clear(struct ufs_hba *hba, int tag)
712 {
713 	__clear_bit(tag, &hba->outstanding_reqs);
714 }
715 
716 /**
717  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
718  * @reg: Register value of host controller status
719  *
720  * Returns integer, 0 on Success and positive value if failed
721  */
ufshcd_get_lists_status(u32 reg)722 static inline int ufshcd_get_lists_status(u32 reg)
723 {
724 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
725 }
726 
727 /**
728  * ufshcd_get_uic_cmd_result - Get the UIC command result
729  * @hba: Pointer to adapter instance
730  *
731  * This function gets the result of UIC command completion
732  * Returns 0 on success, non zero value on error
733  */
ufshcd_get_uic_cmd_result(struct ufs_hba * hba)734 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
735 {
736 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
737 	       MASK_UIC_COMMAND_RESULT;
738 }
739 
740 /**
741  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
742  * @hba: Pointer to adapter instance
743  *
744  * This function gets UIC command argument3
745  * Returns 0 on success, non zero value on error
746  */
ufshcd_get_dme_attr_val(struct ufs_hba * hba)747 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
748 {
749 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
750 }
751 
752 /**
753  * ufshcd_get_req_rsp - returns the TR response transaction type
754  * @ucd_rsp_ptr: pointer to response UPIU
755  */
756 static inline int
ufshcd_get_req_rsp(struct utp_upiu_rsp * ucd_rsp_ptr)757 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
758 {
759 	return be32_to_cpu(ucd_rsp_ptr->header.dword_0) >> 24;
760 }
761 
762 /**
763  * ufshcd_get_rsp_upiu_result - Get the result from response UPIU
764  * @ucd_rsp_ptr: pointer to response UPIU
765  *
766  * This function gets the response status and scsi_status from response UPIU
767  * Returns the response result code.
768  */
769 static inline int
ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp * ucd_rsp_ptr)770 ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp *ucd_rsp_ptr)
771 {
772 	return be32_to_cpu(ucd_rsp_ptr->header.dword_1) & MASK_RSP_UPIU_RESULT;
773 }
774 
775 /*
776  * ufshcd_get_rsp_upiu_data_seg_len - Get the data segment length
777  *				from response UPIU
778  * @ucd_rsp_ptr: pointer to response UPIU
779  *
780  * Return the data segment length.
781  */
782 static inline unsigned int
ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp * ucd_rsp_ptr)783 ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp *ucd_rsp_ptr)
784 {
785 	return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
786 		MASK_RSP_UPIU_DATA_SEG_LEN;
787 }
788 
789 /**
790  * ufshcd_is_exception_event - Check if the device raised an exception event
791  * @ucd_rsp_ptr: pointer to response UPIU
792  *
793  * The function checks if the device raised an exception event indicated in
794  * the Device Information field of response UPIU.
795  *
796  * Returns true if exception is raised, false otherwise.
797  */
ufshcd_is_exception_event(struct utp_upiu_rsp * ucd_rsp_ptr)798 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
799 {
800 	return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
801 			MASK_RSP_EXCEPTION_EVENT ? true : false;
802 }
803 
804 /**
805  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
806  * @hba: per adapter instance
807  */
808 static inline void
ufshcd_reset_intr_aggr(struct ufs_hba * hba)809 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
810 {
811 	ufshcd_writel(hba, INT_AGGR_ENABLE |
812 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
813 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
814 }
815 
816 /**
817  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
818  * @hba: per adapter instance
819  * @cnt: Interrupt aggregation counter threshold
820  * @tmout: Interrupt aggregation timeout value
821  */
822 static inline void
ufshcd_config_intr_aggr(struct ufs_hba * hba,u8 cnt,u8 tmout)823 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
824 {
825 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
826 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
827 		      INT_AGGR_TIMEOUT_VAL(tmout),
828 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
829 }
830 
831 /**
832  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
833  * @hba: per adapter instance
834  */
ufshcd_disable_intr_aggr(struct ufs_hba * hba)835 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
836 {
837 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
838 }
839 
840 /**
841  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
842  *			When run-stop registers are set to 1, it indicates the
843  *			host controller that it can process the requests
844  * @hba: per adapter instance
845  */
ufshcd_enable_run_stop_reg(struct ufs_hba * hba)846 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
847 {
848 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
849 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
850 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
851 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
852 }
853 
854 /**
855  * ufshcd_hba_start - Start controller initialization sequence
856  * @hba: per adapter instance
857  */
ufshcd_hba_start(struct ufs_hba * hba)858 static inline void ufshcd_hba_start(struct ufs_hba *hba)
859 {
860 	ufshcd_writel(hba, CONTROLLER_ENABLE, REG_CONTROLLER_ENABLE);
861 }
862 
863 /**
864  * ufshcd_is_hba_active - Get controller state
865  * @hba: per adapter instance
866  *
867  * Returns false if controller is active, true otherwise
868  */
ufshcd_is_hba_active(struct ufs_hba * hba)869 static inline bool ufshcd_is_hba_active(struct ufs_hba *hba)
870 {
871 	return (ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE)
872 		? false : true;
873 }
874 
ufshcd_get_local_unipro_ver(struct ufs_hba * hba)875 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
876 {
877 	/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
878 	if ((hba->ufs_version == UFSHCI_VERSION_10) ||
879 	    (hba->ufs_version == UFSHCI_VERSION_11))
880 		return UFS_UNIPRO_VER_1_41;
881 	else
882 		return UFS_UNIPRO_VER_1_6;
883 }
884 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
885 
ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba * hba)886 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
887 {
888 	/*
889 	 * If both host and device support UniPro ver1.6 or later, PA layer
890 	 * parameters tuning happens during link startup itself.
891 	 *
892 	 * We can manually tune PA layer parameters if either host or device
893 	 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
894 	 * logic simple, we will only do manual tuning if local unipro version
895 	 * doesn't support ver1.6 or later.
896 	 */
897 	if (ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6)
898 		return true;
899 	else
900 		return false;
901 }
902 
ufshcd_scale_clks(struct ufs_hba * hba,bool scale_up)903 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
904 {
905 	int ret = 0;
906 	struct ufs_clk_info *clki;
907 	struct list_head *head = &hba->clk_list_head;
908 	ktime_t start = ktime_get();
909 	bool clk_state_changed = false;
910 
911 	if (list_empty(head))
912 		goto out;
913 
914 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
915 	if (ret)
916 		return ret;
917 
918 	list_for_each_entry(clki, head, list) {
919 		if (!IS_ERR_OR_NULL(clki->clk)) {
920 			if (scale_up && clki->max_freq) {
921 				if (clki->curr_freq == clki->max_freq)
922 					continue;
923 
924 				clk_state_changed = true;
925 				ret = clk_set_rate(clki->clk, clki->max_freq);
926 				if (ret) {
927 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
928 						__func__, clki->name,
929 						clki->max_freq, ret);
930 					break;
931 				}
932 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
933 						"scaled up", clki->name,
934 						clki->curr_freq,
935 						clki->max_freq);
936 
937 				clki->curr_freq = clki->max_freq;
938 
939 			} else if (!scale_up && clki->min_freq) {
940 				if (clki->curr_freq == clki->min_freq)
941 					continue;
942 
943 				clk_state_changed = true;
944 				ret = clk_set_rate(clki->clk, clki->min_freq);
945 				if (ret) {
946 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
947 						__func__, clki->name,
948 						clki->min_freq, ret);
949 					break;
950 				}
951 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
952 						"scaled down", clki->name,
953 						clki->curr_freq,
954 						clki->min_freq);
955 				clki->curr_freq = clki->min_freq;
956 			}
957 		}
958 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
959 				clki->name, clk_get_rate(clki->clk));
960 	}
961 
962 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
963 
964 out:
965 	if (clk_state_changed)
966 		trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
967 			(scale_up ? "up" : "down"),
968 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
969 	return ret;
970 }
971 
972 /**
973  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
974  * @hba: per adapter instance
975  * @scale_up: True if scaling up and false if scaling down
976  *
977  * Returns true if scaling is required, false otherwise.
978  */
ufshcd_is_devfreq_scaling_required(struct ufs_hba * hba,bool scale_up)979 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
980 					       bool scale_up)
981 {
982 	struct ufs_clk_info *clki;
983 	struct list_head *head = &hba->clk_list_head;
984 
985 	if (list_empty(head))
986 		return false;
987 
988 	list_for_each_entry(clki, head, list) {
989 		if (!IS_ERR_OR_NULL(clki->clk)) {
990 			if (scale_up && clki->max_freq) {
991 				if (clki->curr_freq == clki->max_freq)
992 					continue;
993 				return true;
994 			} else if (!scale_up && clki->min_freq) {
995 				if (clki->curr_freq == clki->min_freq)
996 					continue;
997 				return true;
998 			}
999 		}
1000 	}
1001 
1002 	return false;
1003 }
1004 
ufshcd_wait_for_doorbell_clr(struct ufs_hba * hba,u64 wait_timeout_us)1005 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1006 					u64 wait_timeout_us)
1007 {
1008 	unsigned long flags;
1009 	int ret = 0;
1010 	u32 tm_doorbell;
1011 	u32 tr_doorbell;
1012 	bool timeout = false, do_last_check = false;
1013 	ktime_t start;
1014 
1015 	ufshcd_hold(hba, false);
1016 	spin_lock_irqsave(hba->host->host_lock, flags);
1017 	/*
1018 	 * Wait for all the outstanding tasks/transfer requests.
1019 	 * Verify by checking the doorbell registers are clear.
1020 	 */
1021 	start = ktime_get();
1022 	do {
1023 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1024 			ret = -EBUSY;
1025 			goto out;
1026 		}
1027 
1028 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1029 		tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
1030 		if (!tm_doorbell && !tr_doorbell) {
1031 			timeout = false;
1032 			break;
1033 		} else if (do_last_check) {
1034 			break;
1035 		}
1036 
1037 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1038 		schedule();
1039 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1040 		    wait_timeout_us) {
1041 			timeout = true;
1042 			/*
1043 			 * We might have scheduled out for long time so make
1044 			 * sure to check if doorbells are cleared by this time
1045 			 * or not.
1046 			 */
1047 			do_last_check = true;
1048 		}
1049 		spin_lock_irqsave(hba->host->host_lock, flags);
1050 	} while (tm_doorbell || tr_doorbell);
1051 
1052 	if (timeout) {
1053 		dev_err(hba->dev,
1054 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1055 			__func__, tm_doorbell, tr_doorbell);
1056 		ret = -EBUSY;
1057 	}
1058 out:
1059 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1060 	ufshcd_release(hba);
1061 	return ret;
1062 }
1063 
1064 /**
1065  * ufshcd_scale_gear - scale up/down UFS gear
1066  * @hba: per adapter instance
1067  * @scale_up: True for scaling up gear and false for scaling down
1068  *
1069  * Returns 0 for success,
1070  * Returns -EBUSY if scaling can't happen at this time
1071  * Returns non-zero for any other errors
1072  */
ufshcd_scale_gear(struct ufs_hba * hba,bool scale_up)1073 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1074 {
1075 	#define UFS_MIN_GEAR_TO_SCALE_DOWN	UFS_HS_G1
1076 	int ret = 0;
1077 	struct ufs_pa_layer_attr new_pwr_info;
1078 
1079 	if (scale_up) {
1080 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info.info,
1081 		       sizeof(struct ufs_pa_layer_attr));
1082 	} else {
1083 		memcpy(&new_pwr_info, &hba->pwr_info,
1084 		       sizeof(struct ufs_pa_layer_attr));
1085 
1086 		if (hba->pwr_info.gear_tx > UFS_MIN_GEAR_TO_SCALE_DOWN
1087 		    || hba->pwr_info.gear_rx > UFS_MIN_GEAR_TO_SCALE_DOWN) {
1088 			/* save the current power mode */
1089 			memcpy(&hba->clk_scaling.saved_pwr_info.info,
1090 				&hba->pwr_info,
1091 				sizeof(struct ufs_pa_layer_attr));
1092 
1093 			/* scale down gear */
1094 			new_pwr_info.gear_tx = UFS_MIN_GEAR_TO_SCALE_DOWN;
1095 			new_pwr_info.gear_rx = UFS_MIN_GEAR_TO_SCALE_DOWN;
1096 		}
1097 	}
1098 
1099 	/* check if the power mode needs to be changed or not? */
1100 	ret = ufshcd_change_power_mode(hba, &new_pwr_info);
1101 
1102 	if (ret)
1103 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1104 			__func__, ret,
1105 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1106 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1107 
1108 	return ret;
1109 }
1110 
ufshcd_clock_scaling_prepare(struct ufs_hba * hba)1111 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba)
1112 {
1113 	#define DOORBELL_CLR_TOUT_US		(1000 * 1000) /* 1 sec */
1114 	int ret = 0;
1115 	/*
1116 	 * make sure that there are no outstanding requests when
1117 	 * clock scaling is in progress
1118 	 */
1119 	ufshcd_scsi_block_requests(hba);
1120 	down_write(&hba->clk_scaling_lock);
1121 	if (ufshcd_wait_for_doorbell_clr(hba, DOORBELL_CLR_TOUT_US)) {
1122 		ret = -EBUSY;
1123 		up_write(&hba->clk_scaling_lock);
1124 		ufshcd_scsi_unblock_requests(hba);
1125 	}
1126 
1127 	return ret;
1128 }
1129 
ufshcd_clock_scaling_unprepare(struct ufs_hba * hba)1130 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba)
1131 {
1132 	up_write(&hba->clk_scaling_lock);
1133 	ufshcd_scsi_unblock_requests(hba);
1134 }
1135 
1136 /**
1137  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1138  * @hba: per adapter instance
1139  * @scale_up: True for scaling up and false for scalin down
1140  *
1141  * Returns 0 for success,
1142  * Returns -EBUSY if scaling can't happen at this time
1143  * Returns non-zero for any other errors
1144  */
ufshcd_devfreq_scale(struct ufs_hba * hba,bool scale_up)1145 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1146 {
1147 	int ret = 0;
1148 
1149 	/* let's not get into low power until clock scaling is completed */
1150 	ufshcd_hold(hba, false);
1151 
1152 	ret = ufshcd_clock_scaling_prepare(hba);
1153 	if (ret)
1154 		return ret;
1155 
1156 	/* scale down the gear before scaling down clocks */
1157 	if (!scale_up) {
1158 		ret = ufshcd_scale_gear(hba, false);
1159 		if (ret)
1160 			goto out;
1161 	}
1162 
1163 	ret = ufshcd_scale_clks(hba, scale_up);
1164 	if (ret) {
1165 		if (!scale_up)
1166 			ufshcd_scale_gear(hba, true);
1167 		goto out;
1168 	}
1169 
1170 	/* scale up the gear after scaling up clocks */
1171 	if (scale_up) {
1172 		ret = ufshcd_scale_gear(hba, true);
1173 		if (ret) {
1174 			ufshcd_scale_clks(hba, false);
1175 			goto out;
1176 		}
1177 	}
1178 
1179 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1180 
1181 out:
1182 	ufshcd_clock_scaling_unprepare(hba);
1183 	ufshcd_release(hba);
1184 	return ret;
1185 }
1186 
ufshcd_clk_scaling_suspend_work(struct work_struct * work)1187 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1188 {
1189 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1190 					   clk_scaling.suspend_work);
1191 	unsigned long irq_flags;
1192 
1193 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1194 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1195 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1196 		return;
1197 	}
1198 	hba->clk_scaling.is_suspended = true;
1199 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1200 
1201 	__ufshcd_suspend_clkscaling(hba);
1202 }
1203 
ufshcd_clk_scaling_resume_work(struct work_struct * work)1204 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1205 {
1206 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1207 					   clk_scaling.resume_work);
1208 	unsigned long irq_flags;
1209 
1210 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1211 	if (!hba->clk_scaling.is_suspended) {
1212 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1213 		return;
1214 	}
1215 	hba->clk_scaling.is_suspended = false;
1216 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1217 
1218 	devfreq_resume_device(hba->devfreq);
1219 }
1220 
ufshcd_devfreq_target(struct device * dev,unsigned long * freq,u32 flags)1221 static int ufshcd_devfreq_target(struct device *dev,
1222 				unsigned long *freq, u32 flags)
1223 {
1224 	int ret = 0;
1225 	struct ufs_hba *hba = dev_get_drvdata(dev);
1226 	ktime_t start;
1227 	bool scale_up, sched_clk_scaling_suspend_work = false;
1228 	struct list_head *clk_list = &hba->clk_list_head;
1229 	struct ufs_clk_info *clki;
1230 	unsigned long irq_flags;
1231 
1232 	if (!ufshcd_is_clkscaling_supported(hba))
1233 		return -EINVAL;
1234 
1235 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1236 	if (ufshcd_eh_in_progress(hba)) {
1237 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1238 		return 0;
1239 	}
1240 
1241 	if (!hba->clk_scaling.active_reqs)
1242 		sched_clk_scaling_suspend_work = true;
1243 
1244 	if (list_empty(clk_list)) {
1245 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1246 		goto out;
1247 	}
1248 
1249 	clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1250 	scale_up = (*freq == clki->max_freq) ? true : false;
1251 	if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) {
1252 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1253 		ret = 0;
1254 		goto out; /* no state change required */
1255 	}
1256 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1257 
1258 	start = ktime_get();
1259 	ret = ufshcd_devfreq_scale(hba, scale_up);
1260 
1261 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1262 		(scale_up ? "up" : "down"),
1263 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1264 
1265 out:
1266 	if (sched_clk_scaling_suspend_work)
1267 		queue_work(hba->clk_scaling.workq,
1268 			   &hba->clk_scaling.suspend_work);
1269 
1270 	return ret;
1271 }
1272 
1273 
ufshcd_devfreq_get_dev_status(struct device * dev,struct devfreq_dev_status * stat)1274 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1275 		struct devfreq_dev_status *stat)
1276 {
1277 	struct ufs_hba *hba = dev_get_drvdata(dev);
1278 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1279 	unsigned long flags;
1280 
1281 	if (!ufshcd_is_clkscaling_supported(hba))
1282 		return -EINVAL;
1283 
1284 	memset(stat, 0, sizeof(*stat));
1285 
1286 	spin_lock_irqsave(hba->host->host_lock, flags);
1287 	if (!scaling->window_start_t)
1288 		goto start_window;
1289 
1290 	if (scaling->is_busy_started)
1291 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
1292 					scaling->busy_start_t));
1293 
1294 	stat->total_time = jiffies_to_usecs((long)jiffies -
1295 				(long)scaling->window_start_t);
1296 	stat->busy_time = scaling->tot_busy_t;
1297 start_window:
1298 	scaling->window_start_t = jiffies;
1299 	scaling->tot_busy_t = 0;
1300 
1301 	if (hba->outstanding_reqs) {
1302 		scaling->busy_start_t = ktime_get();
1303 		scaling->is_busy_started = true;
1304 	} else {
1305 		scaling->busy_start_t = 0;
1306 		scaling->is_busy_started = false;
1307 	}
1308 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1309 	return 0;
1310 }
1311 
1312 static struct devfreq_dev_profile ufs_devfreq_profile = {
1313 	.polling_ms	= 100,
1314 	.target		= ufshcd_devfreq_target,
1315 	.get_dev_status	= ufshcd_devfreq_get_dev_status,
1316 };
1317 
ufshcd_devfreq_init(struct ufs_hba * hba)1318 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1319 {
1320 	struct list_head *clk_list = &hba->clk_list_head;
1321 	struct ufs_clk_info *clki;
1322 	struct devfreq *devfreq;
1323 	int ret;
1324 
1325 	/* Skip devfreq if we don't have any clocks in the list */
1326 	if (list_empty(clk_list))
1327 		return 0;
1328 
1329 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1330 	dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1331 	dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1332 
1333 	devfreq = devfreq_add_device(hba->dev,
1334 			&ufs_devfreq_profile,
1335 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1336 			NULL);
1337 	if (IS_ERR(devfreq)) {
1338 		ret = PTR_ERR(devfreq);
1339 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1340 
1341 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1342 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1343 		return ret;
1344 	}
1345 
1346 	hba->devfreq = devfreq;
1347 
1348 	return 0;
1349 }
1350 
ufshcd_devfreq_remove(struct ufs_hba * hba)1351 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1352 {
1353 	struct list_head *clk_list = &hba->clk_list_head;
1354 	struct ufs_clk_info *clki;
1355 
1356 	if (!hba->devfreq)
1357 		return;
1358 
1359 	devfreq_remove_device(hba->devfreq);
1360 	hba->devfreq = NULL;
1361 
1362 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1363 	dev_pm_opp_remove(hba->dev, clki->min_freq);
1364 	dev_pm_opp_remove(hba->dev, clki->max_freq);
1365 }
1366 
__ufshcd_suspend_clkscaling(struct ufs_hba * hba)1367 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1368 {
1369 	unsigned long flags;
1370 
1371 	devfreq_suspend_device(hba->devfreq);
1372 	spin_lock_irqsave(hba->host->host_lock, flags);
1373 	hba->clk_scaling.window_start_t = 0;
1374 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1375 }
1376 
ufshcd_suspend_clkscaling(struct ufs_hba * hba)1377 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1378 {
1379 	unsigned long flags;
1380 	bool suspend = false;
1381 
1382 	if (!ufshcd_is_clkscaling_supported(hba))
1383 		return;
1384 
1385 	spin_lock_irqsave(hba->host->host_lock, flags);
1386 	if (!hba->clk_scaling.is_suspended) {
1387 		suspend = true;
1388 		hba->clk_scaling.is_suspended = true;
1389 	}
1390 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1391 
1392 	if (suspend)
1393 		__ufshcd_suspend_clkscaling(hba);
1394 }
1395 
ufshcd_resume_clkscaling(struct ufs_hba * hba)1396 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1397 {
1398 	unsigned long flags;
1399 	bool resume = false;
1400 
1401 	if (!ufshcd_is_clkscaling_supported(hba))
1402 		return;
1403 
1404 	spin_lock_irqsave(hba->host->host_lock, flags);
1405 	if (hba->clk_scaling.is_suspended) {
1406 		resume = true;
1407 		hba->clk_scaling.is_suspended = false;
1408 	}
1409 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1410 
1411 	if (resume)
1412 		devfreq_resume_device(hba->devfreq);
1413 }
1414 
ufshcd_clkscale_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1415 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1416 		struct device_attribute *attr, char *buf)
1417 {
1418 	struct ufs_hba *hba = dev_get_drvdata(dev);
1419 
1420 	return snprintf(buf, PAGE_SIZE, "%d\n", hba->clk_scaling.is_allowed);
1421 }
1422 
ufshcd_clkscale_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1423 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1424 		struct device_attribute *attr, const char *buf, size_t count)
1425 {
1426 	struct ufs_hba *hba = dev_get_drvdata(dev);
1427 	u32 value;
1428 	int err;
1429 
1430 	if (kstrtou32(buf, 0, &value))
1431 		return -EINVAL;
1432 
1433 	value = !!value;
1434 	if (value == hba->clk_scaling.is_allowed)
1435 		goto out;
1436 
1437 	pm_runtime_get_sync(hba->dev);
1438 	ufshcd_hold(hba, false);
1439 
1440 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1441 	cancel_work_sync(&hba->clk_scaling.resume_work);
1442 
1443 	hba->clk_scaling.is_allowed = value;
1444 
1445 	if (value) {
1446 		ufshcd_resume_clkscaling(hba);
1447 	} else {
1448 		ufshcd_suspend_clkscaling(hba);
1449 		err = ufshcd_devfreq_scale(hba, true);
1450 		if (err)
1451 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1452 					__func__, err);
1453 	}
1454 
1455 	ufshcd_release(hba);
1456 	pm_runtime_put_sync(hba->dev);
1457 out:
1458 	return count;
1459 }
1460 
ufshcd_clkscaling_init_sysfs(struct ufs_hba * hba)1461 static void ufshcd_clkscaling_init_sysfs(struct ufs_hba *hba)
1462 {
1463 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1464 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1465 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1466 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1467 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1468 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1469 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1470 }
1471 
ufshcd_ungate_work(struct work_struct * work)1472 static void ufshcd_ungate_work(struct work_struct *work)
1473 {
1474 	int ret;
1475 	unsigned long flags;
1476 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1477 			clk_gating.ungate_work);
1478 
1479 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1480 
1481 	spin_lock_irqsave(hba->host->host_lock, flags);
1482 	if (hba->clk_gating.state == CLKS_ON) {
1483 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1484 		goto unblock_reqs;
1485 	}
1486 
1487 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1488 	ufshcd_setup_clocks(hba, true);
1489 
1490 	/* Exit from hibern8 */
1491 	if (ufshcd_can_hibern8_during_gating(hba)) {
1492 		/* Prevent gating in this path */
1493 		hba->clk_gating.is_suspended = true;
1494 		if (ufshcd_is_link_hibern8(hba)) {
1495 			ret = ufshcd_uic_hibern8_exit(hba);
1496 			if (ret)
1497 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1498 					__func__, ret);
1499 			else
1500 				ufshcd_set_link_active(hba);
1501 		}
1502 		hba->clk_gating.is_suspended = false;
1503 	}
1504 unblock_reqs:
1505 	ufshcd_scsi_unblock_requests(hba);
1506 }
1507 
1508 /**
1509  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1510  * Also, exit from hibern8 mode and set the link as active.
1511  * @hba: per adapter instance
1512  * @async: This indicates whether caller should ungate clocks asynchronously.
1513  */
ufshcd_hold(struct ufs_hba * hba,bool async)1514 int ufshcd_hold(struct ufs_hba *hba, bool async)
1515 {
1516 	int rc = 0;
1517 	unsigned long flags;
1518 
1519 	if (!ufshcd_is_clkgating_allowed(hba))
1520 		goto out;
1521 	spin_lock_irqsave(hba->host->host_lock, flags);
1522 	hba->clk_gating.active_reqs++;
1523 
1524 	if (ufshcd_eh_in_progress(hba)) {
1525 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1526 		return 0;
1527 	}
1528 
1529 start:
1530 	switch (hba->clk_gating.state) {
1531 	case CLKS_ON:
1532 		/*
1533 		 * Wait for the ungate work to complete if in progress.
1534 		 * Though the clocks may be in ON state, the link could
1535 		 * still be in hibner8 state if hibern8 is allowed
1536 		 * during clock gating.
1537 		 * Make sure we exit hibern8 state also in addition to
1538 		 * clocks being ON.
1539 		 */
1540 		if (ufshcd_can_hibern8_during_gating(hba) &&
1541 		    ufshcd_is_link_hibern8(hba)) {
1542 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1543 			flush_work(&hba->clk_gating.ungate_work);
1544 			spin_lock_irqsave(hba->host->host_lock, flags);
1545 			goto start;
1546 		}
1547 		break;
1548 	case REQ_CLKS_OFF:
1549 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1550 			hba->clk_gating.state = CLKS_ON;
1551 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1552 						hba->clk_gating.state);
1553 			break;
1554 		}
1555 		/*
1556 		 * If we are here, it means gating work is either done or
1557 		 * currently running. Hence, fall through to cancel gating
1558 		 * work and to enable clocks.
1559 		 */
1560 		/* fallthrough */
1561 	case CLKS_OFF:
1562 		ufshcd_scsi_block_requests(hba);
1563 		hba->clk_gating.state = REQ_CLKS_ON;
1564 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1565 					hba->clk_gating.state);
1566 		queue_work(hba->clk_gating.clk_gating_workq,
1567 			   &hba->clk_gating.ungate_work);
1568 		/*
1569 		 * fall through to check if we should wait for this
1570 		 * work to be done or not.
1571 		 */
1572 		/* fallthrough */
1573 	case REQ_CLKS_ON:
1574 		if (async) {
1575 			rc = -EAGAIN;
1576 			hba->clk_gating.active_reqs--;
1577 			break;
1578 		}
1579 
1580 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1581 		flush_work(&hba->clk_gating.ungate_work);
1582 		/* Make sure state is CLKS_ON before returning */
1583 		spin_lock_irqsave(hba->host->host_lock, flags);
1584 		goto start;
1585 	default:
1586 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1587 				__func__, hba->clk_gating.state);
1588 		break;
1589 	}
1590 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1591 out:
1592 	return rc;
1593 }
1594 EXPORT_SYMBOL_GPL(ufshcd_hold);
1595 
ufshcd_gate_work(struct work_struct * work)1596 static void ufshcd_gate_work(struct work_struct *work)
1597 {
1598 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1599 			clk_gating.gate_work.work);
1600 	unsigned long flags;
1601 
1602 	spin_lock_irqsave(hba->host->host_lock, flags);
1603 	/*
1604 	 * In case you are here to cancel this work the gating state
1605 	 * would be marked as REQ_CLKS_ON. In this case save time by
1606 	 * skipping the gating work and exit after changing the clock
1607 	 * state to CLKS_ON.
1608 	 */
1609 	if (hba->clk_gating.is_suspended ||
1610 		(hba->clk_gating.state == REQ_CLKS_ON)) {
1611 		hba->clk_gating.state = CLKS_ON;
1612 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1613 					hba->clk_gating.state);
1614 		goto rel_lock;
1615 	}
1616 
1617 	if (hba->clk_gating.active_reqs
1618 		|| hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1619 		|| hba->lrb_in_use || hba->outstanding_tasks
1620 		|| hba->active_uic_cmd || hba->uic_async_done)
1621 		goto rel_lock;
1622 
1623 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1624 
1625 	/* put the link into hibern8 mode before turning off clocks */
1626 	if (ufshcd_can_hibern8_during_gating(hba)) {
1627 		if (ufshcd_uic_hibern8_enter(hba)) {
1628 			hba->clk_gating.state = CLKS_ON;
1629 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1630 						hba->clk_gating.state);
1631 			goto out;
1632 		}
1633 		ufshcd_set_link_hibern8(hba);
1634 	}
1635 
1636 	if (!ufshcd_is_link_active(hba))
1637 		ufshcd_setup_clocks(hba, false);
1638 	else
1639 		/* If link is active, device ref_clk can't be switched off */
1640 		__ufshcd_setup_clocks(hba, false, true);
1641 
1642 	/*
1643 	 * In case you are here to cancel this work the gating state
1644 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1645 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1646 	 * and a request to turn them on is pending. By doing this way,
1647 	 * we keep the state machine in tact and this would ultimately
1648 	 * prevent from doing cancel work multiple times when there are
1649 	 * new requests arriving before the current cancel work is done.
1650 	 */
1651 	spin_lock_irqsave(hba->host->host_lock, flags);
1652 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1653 		hba->clk_gating.state = CLKS_OFF;
1654 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1655 					hba->clk_gating.state);
1656 	}
1657 rel_lock:
1658 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1659 out:
1660 	return;
1661 }
1662 
1663 /* host lock must be held before calling this variant */
__ufshcd_release(struct ufs_hba * hba)1664 static void __ufshcd_release(struct ufs_hba *hba)
1665 {
1666 	if (!ufshcd_is_clkgating_allowed(hba))
1667 		return;
1668 
1669 	hba->clk_gating.active_reqs--;
1670 
1671 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended
1672 		|| hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1673 		|| hba->lrb_in_use || hba->outstanding_tasks
1674 		|| hba->active_uic_cmd || hba->uic_async_done
1675 		|| ufshcd_eh_in_progress(hba))
1676 		return;
1677 
1678 	hba->clk_gating.state = REQ_CLKS_OFF;
1679 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1680 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
1681 			   &hba->clk_gating.gate_work,
1682 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
1683 }
1684 
ufshcd_release(struct ufs_hba * hba)1685 void ufshcd_release(struct ufs_hba *hba)
1686 {
1687 	unsigned long flags;
1688 
1689 	spin_lock_irqsave(hba->host->host_lock, flags);
1690 	__ufshcd_release(hba);
1691 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1692 }
1693 EXPORT_SYMBOL_GPL(ufshcd_release);
1694 
ufshcd_clkgate_delay_show(struct device * dev,struct device_attribute * attr,char * buf)1695 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1696 		struct device_attribute *attr, char *buf)
1697 {
1698 	struct ufs_hba *hba = dev_get_drvdata(dev);
1699 
1700 	return snprintf(buf, PAGE_SIZE, "%lu\n", hba->clk_gating.delay_ms);
1701 }
1702 
ufshcd_clkgate_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1703 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1704 		struct device_attribute *attr, const char *buf, size_t count)
1705 {
1706 	struct ufs_hba *hba = dev_get_drvdata(dev);
1707 	unsigned long flags, value;
1708 
1709 	if (kstrtoul(buf, 0, &value))
1710 		return -EINVAL;
1711 
1712 	spin_lock_irqsave(hba->host->host_lock, flags);
1713 	hba->clk_gating.delay_ms = value;
1714 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1715 	return count;
1716 }
1717 
ufshcd_clkgate_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1718 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
1719 		struct device_attribute *attr, char *buf)
1720 {
1721 	struct ufs_hba *hba = dev_get_drvdata(dev);
1722 
1723 	return snprintf(buf, PAGE_SIZE, "%d\n", hba->clk_gating.is_enabled);
1724 }
1725 
ufshcd_clkgate_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1726 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
1727 		struct device_attribute *attr, const char *buf, size_t count)
1728 {
1729 	struct ufs_hba *hba = dev_get_drvdata(dev);
1730 	unsigned long flags;
1731 	u32 value;
1732 
1733 	if (kstrtou32(buf, 0, &value))
1734 		return -EINVAL;
1735 
1736 	value = !!value;
1737 	if (value == hba->clk_gating.is_enabled)
1738 		goto out;
1739 
1740 	if (value) {
1741 		ufshcd_release(hba);
1742 	} else {
1743 		spin_lock_irqsave(hba->host->host_lock, flags);
1744 		hba->clk_gating.active_reqs++;
1745 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1746 	}
1747 
1748 	hba->clk_gating.is_enabled = value;
1749 out:
1750 	return count;
1751 }
1752 
ufshcd_init_clk_scaling(struct ufs_hba * hba)1753 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1754 {
1755 	char wq_name[sizeof("ufs_clkscaling_00")];
1756 
1757 	if (!ufshcd_is_clkscaling_supported(hba))
1758 		return;
1759 
1760 	INIT_WORK(&hba->clk_scaling.suspend_work,
1761 		  ufshcd_clk_scaling_suspend_work);
1762 	INIT_WORK(&hba->clk_scaling.resume_work,
1763 		  ufshcd_clk_scaling_resume_work);
1764 
1765 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1766 		 hba->host->host_no);
1767 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1768 
1769 	ufshcd_clkscaling_init_sysfs(hba);
1770 }
1771 
ufshcd_exit_clk_scaling(struct ufs_hba * hba)1772 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1773 {
1774 	if (!ufshcd_is_clkscaling_supported(hba))
1775 		return;
1776 
1777 	destroy_workqueue(hba->clk_scaling.workq);
1778 	ufshcd_devfreq_remove(hba);
1779 }
1780 
ufshcd_init_clk_gating(struct ufs_hba * hba)1781 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
1782 {
1783 	char wq_name[sizeof("ufs_clk_gating_00")];
1784 
1785 	if (!ufshcd_is_clkgating_allowed(hba))
1786 		return;
1787 
1788 	hba->clk_gating.delay_ms = 150;
1789 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
1790 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
1791 
1792 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
1793 		 hba->host->host_no);
1794 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
1795 							   WQ_MEM_RECLAIM);
1796 
1797 	hba->clk_gating.is_enabled = true;
1798 
1799 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
1800 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
1801 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
1802 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
1803 	hba->clk_gating.delay_attr.attr.mode = 0644;
1804 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
1805 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
1806 
1807 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
1808 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
1809 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
1810 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
1811 	hba->clk_gating.enable_attr.attr.mode = 0644;
1812 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
1813 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
1814 }
1815 
ufshcd_exit_clk_gating(struct ufs_hba * hba)1816 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
1817 {
1818 	if (!ufshcd_is_clkgating_allowed(hba))
1819 		return;
1820 	device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
1821 	device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
1822 	cancel_work_sync(&hba->clk_gating.ungate_work);
1823 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1824 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
1825 }
1826 
1827 /* Must be called with host lock acquired */
ufshcd_clk_scaling_start_busy(struct ufs_hba * hba)1828 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
1829 {
1830 	bool queue_resume_work = false;
1831 
1832 	if (!ufshcd_is_clkscaling_supported(hba))
1833 		return;
1834 
1835 	if (!hba->clk_scaling.active_reqs++)
1836 		queue_resume_work = true;
1837 
1838 	if (!hba->clk_scaling.is_allowed || hba->pm_op_in_progress)
1839 		return;
1840 
1841 	if (queue_resume_work)
1842 		queue_work(hba->clk_scaling.workq,
1843 			   &hba->clk_scaling.resume_work);
1844 
1845 	if (!hba->clk_scaling.window_start_t) {
1846 		hba->clk_scaling.window_start_t = jiffies;
1847 		hba->clk_scaling.tot_busy_t = 0;
1848 		hba->clk_scaling.is_busy_started = false;
1849 	}
1850 
1851 	if (!hba->clk_scaling.is_busy_started) {
1852 		hba->clk_scaling.busy_start_t = ktime_get();
1853 		hba->clk_scaling.is_busy_started = true;
1854 	}
1855 }
1856 
ufshcd_clk_scaling_update_busy(struct ufs_hba * hba)1857 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
1858 {
1859 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1860 
1861 	if (!ufshcd_is_clkscaling_supported(hba))
1862 		return;
1863 
1864 	if (!hba->outstanding_reqs && scaling->is_busy_started) {
1865 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
1866 					scaling->busy_start_t));
1867 		scaling->busy_start_t = 0;
1868 		scaling->is_busy_started = false;
1869 	}
1870 }
1871 /**
1872  * ufshcd_send_command - Send SCSI or device management commands
1873  * @hba: per adapter instance
1874  * @task_tag: Task tag of the command
1875  */
1876 static inline
ufshcd_send_command(struct ufs_hba * hba,unsigned int task_tag)1877 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag)
1878 {
1879 	hba->lrb[task_tag].issue_time_stamp = ktime_get();
1880 	hba->lrb[task_tag].compl_time_stamp = ktime_set(0, 0);
1881 	ufshcd_clk_scaling_start_busy(hba);
1882 	__set_bit(task_tag, &hba->outstanding_reqs);
1883 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TRANSFER_REQ_DOOR_BELL);
1884 	/* Make sure that doorbell is committed immediately */
1885 	wmb();
1886 	ufshcd_add_command_trace(hba, task_tag, "send");
1887 }
1888 
1889 /**
1890  * ufshcd_copy_sense_data - Copy sense data in case of check condition
1891  * @lrbp: pointer to local reference block
1892  */
ufshcd_copy_sense_data(struct ufshcd_lrb * lrbp)1893 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
1894 {
1895 	int len;
1896 	if (lrbp->sense_buffer &&
1897 	    ufshcd_get_rsp_upiu_data_seg_len(lrbp->ucd_rsp_ptr)) {
1898 		int len_to_copy;
1899 
1900 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
1901 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
1902 
1903 		memcpy(lrbp->sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
1904 		       len_to_copy);
1905 	}
1906 }
1907 
1908 /**
1909  * ufshcd_copy_query_response() - Copy the Query Response and the data
1910  * descriptor
1911  * @hba: per adapter instance
1912  * @lrbp: pointer to local reference block
1913  */
1914 static
ufshcd_copy_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)1915 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
1916 {
1917 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
1918 
1919 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
1920 
1921 	/* Get the descriptor */
1922 	if (hba->dev_cmd.query.descriptor &&
1923 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
1924 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
1925 				GENERAL_UPIU_REQUEST_SIZE;
1926 		u16 resp_len;
1927 		u16 buf_len;
1928 
1929 		/* data segment length */
1930 		resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
1931 						MASK_QUERY_DATA_SEG_LEN;
1932 		buf_len = be16_to_cpu(
1933 				hba->dev_cmd.query.request.upiu_req.length);
1934 		if (likely(buf_len >= resp_len)) {
1935 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
1936 		} else {
1937 			dev_warn(hba->dev,
1938 				"%s: Response size is bigger than buffer",
1939 				__func__);
1940 			return -EINVAL;
1941 		}
1942 	}
1943 
1944 	return 0;
1945 }
1946 
1947 /**
1948  * ufshcd_hba_capabilities - Read controller capabilities
1949  * @hba: per adapter instance
1950  */
ufshcd_hba_capabilities(struct ufs_hba * hba)1951 static inline void ufshcd_hba_capabilities(struct ufs_hba *hba)
1952 {
1953 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
1954 
1955 	/* nutrs and nutmrs are 0 based values */
1956 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
1957 	hba->nutmrs =
1958 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
1959 }
1960 
1961 /**
1962  * ufshcd_ready_for_uic_cmd - Check if controller is ready
1963  *                            to accept UIC commands
1964  * @hba: per adapter instance
1965  * Return true on success, else false
1966  */
ufshcd_ready_for_uic_cmd(struct ufs_hba * hba)1967 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
1968 {
1969 	if (ufshcd_readl(hba, REG_CONTROLLER_STATUS) & UIC_COMMAND_READY)
1970 		return true;
1971 	else
1972 		return false;
1973 }
1974 
1975 /**
1976  * ufshcd_get_upmcrs - Get the power mode change request status
1977  * @hba: Pointer to adapter instance
1978  *
1979  * This function gets the UPMCRS field of HCS register
1980  * Returns value of UPMCRS field
1981  */
ufshcd_get_upmcrs(struct ufs_hba * hba)1982 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
1983 {
1984 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
1985 }
1986 
1987 /**
1988  * ufshcd_dispatch_uic_cmd - Dispatch UIC commands to unipro layers
1989  * @hba: per adapter instance
1990  * @uic_cmd: UIC command
1991  *
1992  * Mutex must be held.
1993  */
1994 static inline void
ufshcd_dispatch_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)1995 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
1996 {
1997 	WARN_ON(hba->active_uic_cmd);
1998 
1999 	hba->active_uic_cmd = uic_cmd;
2000 
2001 	/* Write Args */
2002 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2003 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2004 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2005 
2006 	/* Write UIC Cmd */
2007 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2008 		      REG_UIC_COMMAND);
2009 }
2010 
2011 /**
2012  * ufshcd_wait_for_uic_cmd - Wait complectioin of UIC command
2013  * @hba: per adapter instance
2014  * @uic_cmd: UIC command
2015  *
2016  * Must be called with mutex held.
2017  * Returns 0 only if success.
2018  */
2019 static int
ufshcd_wait_for_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2020 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2021 {
2022 	int ret;
2023 	unsigned long flags;
2024 
2025 	if (wait_for_completion_timeout(&uic_cmd->done,
2026 					msecs_to_jiffies(UIC_CMD_TIMEOUT)))
2027 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2028 	else
2029 		ret = -ETIMEDOUT;
2030 
2031 	spin_lock_irqsave(hba->host->host_lock, flags);
2032 	hba->active_uic_cmd = NULL;
2033 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2034 
2035 	return ret;
2036 }
2037 
2038 /**
2039  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2040  * @hba: per adapter instance
2041  * @uic_cmd: UIC command
2042  * @completion: initialize the completion only if this is set to true
2043  *
2044  * Identical to ufshcd_send_uic_cmd() expect mutex. Must be called
2045  * with mutex held and host_lock locked.
2046  * Returns 0 only if success.
2047  */
2048 static int
__ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd,bool completion)2049 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2050 		      bool completion)
2051 {
2052 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2053 		dev_err(hba->dev,
2054 			"Controller not ready to accept UIC commands\n");
2055 		return -EIO;
2056 	}
2057 
2058 	if (completion)
2059 		init_completion(&uic_cmd->done);
2060 
2061 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2062 
2063 	return 0;
2064 }
2065 
2066 /**
2067  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2068  * @hba: per adapter instance
2069  * @uic_cmd: UIC command
2070  *
2071  * Returns 0 only if success.
2072  */
ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2073 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2074 {
2075 	int ret;
2076 	unsigned long flags;
2077 
2078 	ufshcd_hold(hba, false);
2079 	mutex_lock(&hba->uic_cmd_mutex);
2080 	ufshcd_add_delay_before_dme_cmd(hba);
2081 
2082 	spin_lock_irqsave(hba->host->host_lock, flags);
2083 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2084 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2085 	if (!ret)
2086 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2087 
2088 	mutex_unlock(&hba->uic_cmd_mutex);
2089 
2090 	ufshcd_release(hba);
2091 	return ret;
2092 }
2093 
2094 /**
2095  * ufshcd_map_sg - Map scatter-gather list to prdt
2096  * @hba: per adapter instance
2097  * @lrbp: pointer to local reference block
2098  *
2099  * Returns 0 in case of success, non-zero value in case of failure
2100  */
ufshcd_map_sg(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2101 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2102 {
2103 	struct ufshcd_sg_entry *prd_table;
2104 	struct scatterlist *sg;
2105 	struct scsi_cmnd *cmd;
2106 	int sg_segments;
2107 	int i;
2108 
2109 	cmd = lrbp->cmd;
2110 	sg_segments = scsi_dma_map(cmd);
2111 	if (sg_segments < 0)
2112 		return sg_segments;
2113 
2114 	if (sg_segments) {
2115 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2116 			lrbp->utr_descriptor_ptr->prd_table_length =
2117 				cpu_to_le16((u16)(sg_segments *
2118 					sizeof(struct ufshcd_sg_entry)));
2119 		else
2120 			lrbp->utr_descriptor_ptr->prd_table_length =
2121 				cpu_to_le16((u16) (sg_segments));
2122 
2123 		prd_table = (struct ufshcd_sg_entry *)lrbp->ucd_prdt_ptr;
2124 
2125 		scsi_for_each_sg(cmd, sg, sg_segments, i) {
2126 			prd_table[i].size  =
2127 				cpu_to_le32(((u32) sg_dma_len(sg))-1);
2128 			prd_table[i].base_addr =
2129 				cpu_to_le32(lower_32_bits(sg->dma_address));
2130 			prd_table[i].upper_addr =
2131 				cpu_to_le32(upper_32_bits(sg->dma_address));
2132 			prd_table[i].reserved = 0;
2133 		}
2134 	} else {
2135 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2136 	}
2137 
2138 	return 0;
2139 }
2140 
2141 /**
2142  * ufshcd_enable_intr - enable interrupts
2143  * @hba: per adapter instance
2144  * @intrs: interrupt bits
2145  */
ufshcd_enable_intr(struct ufs_hba * hba,u32 intrs)2146 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2147 {
2148 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2149 
2150 	if (hba->ufs_version == UFSHCI_VERSION_10) {
2151 		u32 rw;
2152 		rw = set & INTERRUPT_MASK_RW_VER_10;
2153 		set = rw | ((set ^ intrs) & intrs);
2154 	} else {
2155 		set |= intrs;
2156 	}
2157 
2158 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2159 }
2160 
2161 /**
2162  * ufshcd_disable_intr - disable interrupts
2163  * @hba: per adapter instance
2164  * @intrs: interrupt bits
2165  */
ufshcd_disable_intr(struct ufs_hba * hba,u32 intrs)2166 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2167 {
2168 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2169 
2170 	if (hba->ufs_version == UFSHCI_VERSION_10) {
2171 		u32 rw;
2172 		rw = (set & INTERRUPT_MASK_RW_VER_10) &
2173 			~(intrs & INTERRUPT_MASK_RW_VER_10);
2174 		set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2175 
2176 	} else {
2177 		set &= ~intrs;
2178 	}
2179 
2180 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2181 }
2182 
2183 /**
2184  * ufshcd_prepare_req_desc_hdr() - Fills the requests header
2185  * descriptor according to request
2186  * @lrbp: pointer to local reference block
2187  * @upiu_flags: flags required in the header
2188  * @cmd_dir: requests data direction
2189  */
ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb * lrbp,u32 * upiu_flags,enum dma_data_direction cmd_dir)2190 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp,
2191 			u32 *upiu_flags, enum dma_data_direction cmd_dir)
2192 {
2193 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2194 	u32 data_direction;
2195 	u32 dword_0;
2196 
2197 	if (cmd_dir == DMA_FROM_DEVICE) {
2198 		data_direction = UTP_DEVICE_TO_HOST;
2199 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2200 	} else if (cmd_dir == DMA_TO_DEVICE) {
2201 		data_direction = UTP_HOST_TO_DEVICE;
2202 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2203 	} else {
2204 		data_direction = UTP_NO_DATA_TRANSFER;
2205 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2206 	}
2207 
2208 	dword_0 = data_direction | (lrbp->command_type
2209 				<< UPIU_COMMAND_TYPE_OFFSET);
2210 	if (lrbp->intr_cmd)
2211 		dword_0 |= UTP_REQ_DESC_INT_CMD;
2212 
2213 	/* Transfer request descriptor header fields */
2214 	req_desc->header.dword_0 = cpu_to_le32(dword_0);
2215 	/* dword_1 is reserved, hence it is set to 0 */
2216 	req_desc->header.dword_1 = 0;
2217 	/*
2218 	 * assigning invalid value for command status. Controller
2219 	 * updates OCS on command completion, with the command
2220 	 * status
2221 	 */
2222 	req_desc->header.dword_2 =
2223 		cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
2224 	/* dword_3 is reserved, hence it is set to 0 */
2225 	req_desc->header.dword_3 = 0;
2226 
2227 	req_desc->prd_table_length = 0;
2228 }
2229 
2230 /**
2231  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2232  * for scsi commands
2233  * @lrbp: local reference block pointer
2234  * @upiu_flags: flags
2235  */
2236 static
ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb * lrbp,u32 upiu_flags)2237 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u32 upiu_flags)
2238 {
2239 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2240 	unsigned short cdb_len;
2241 
2242 	/* command descriptor fields */
2243 	ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2244 				UPIU_TRANSACTION_COMMAND, upiu_flags,
2245 				lrbp->lun, lrbp->task_tag);
2246 	ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2247 				UPIU_COMMAND_SET_TYPE_SCSI, 0, 0, 0);
2248 
2249 	/* Total EHS length and Data segment length will be zero */
2250 	ucd_req_ptr->header.dword_2 = 0;
2251 
2252 	ucd_req_ptr->sc.exp_data_transfer_len =
2253 		cpu_to_be32(lrbp->cmd->sdb.length);
2254 
2255 	cdb_len = min_t(unsigned short, lrbp->cmd->cmd_len, UFS_CDB_SIZE);
2256 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2257 	memcpy(ucd_req_ptr->sc.cdb, lrbp->cmd->cmnd, cdb_len);
2258 
2259 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2260 }
2261 
2262 /**
2263  * ufshcd_prepare_utp_query_req_upiu() - fills the utp_transfer_req_desc,
2264  * for query requsts
2265  * @hba: UFS hba
2266  * @lrbp: local reference block pointer
2267  * @upiu_flags: flags
2268  */
ufshcd_prepare_utp_query_req_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u32 upiu_flags)2269 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2270 				struct ufshcd_lrb *lrbp, u32 upiu_flags)
2271 {
2272 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2273 	struct ufs_query *query = &hba->dev_cmd.query;
2274 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2275 
2276 	/* Query request header */
2277 	ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2278 			UPIU_TRANSACTION_QUERY_REQ, upiu_flags,
2279 			lrbp->lun, lrbp->task_tag);
2280 	ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2281 			0, query->request.query_func, 0, 0);
2282 
2283 	/* Data segment length only need for WRITE_DESC */
2284 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2285 		ucd_req_ptr->header.dword_2 =
2286 			UPIU_HEADER_DWORD(0, 0, (len >> 8), (u8)len);
2287 	else
2288 		ucd_req_ptr->header.dword_2 = 0;
2289 
2290 	/* Copy the Query Request buffer as is */
2291 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2292 			QUERY_OSF_SIZE);
2293 
2294 	/* Copy the Descriptor */
2295 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2296 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2297 
2298 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2299 }
2300 
ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb * lrbp)2301 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2302 {
2303 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2304 
2305 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2306 
2307 	/* command descriptor fields */
2308 	ucd_req_ptr->header.dword_0 =
2309 		UPIU_HEADER_DWORD(
2310 			UPIU_TRANSACTION_NOP_OUT, 0, 0, lrbp->task_tag);
2311 	/* clear rest of the fields of basic header */
2312 	ucd_req_ptr->header.dword_1 = 0;
2313 	ucd_req_ptr->header.dword_2 = 0;
2314 
2315 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2316 }
2317 
2318 /**
2319  * ufshcd_comp_devman_upiu - UFS Protocol Information Unit(UPIU)
2320  *			     for Device Management Purposes
2321  * @hba: per adapter instance
2322  * @lrbp: pointer to local reference block
2323  */
ufshcd_comp_devman_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2324 static int ufshcd_comp_devman_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2325 {
2326 	u32 upiu_flags;
2327 	int ret = 0;
2328 
2329 	if ((hba->ufs_version == UFSHCI_VERSION_10) ||
2330 	    (hba->ufs_version == UFSHCI_VERSION_11))
2331 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2332 	else
2333 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2334 
2335 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE);
2336 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2337 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2338 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2339 		ufshcd_prepare_utp_nop_upiu(lrbp);
2340 	else
2341 		ret = -EINVAL;
2342 
2343 	return ret;
2344 }
2345 
2346 /**
2347  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2348  *			   for SCSI Purposes
2349  * @hba: per adapter instance
2350  * @lrbp: pointer to local reference block
2351  */
ufshcd_comp_scsi_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2352 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2353 {
2354 	u32 upiu_flags;
2355 	int ret = 0;
2356 
2357 	if ((hba->ufs_version == UFSHCI_VERSION_10) ||
2358 	    (hba->ufs_version == UFSHCI_VERSION_11))
2359 		lrbp->command_type = UTP_CMD_TYPE_SCSI;
2360 	else
2361 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2362 
2363 	if (likely(lrbp->cmd)) {
2364 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags,
2365 						lrbp->cmd->sc_data_direction);
2366 		ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2367 	} else {
2368 		ret = -EINVAL;
2369 	}
2370 
2371 	return ret;
2372 }
2373 
2374 /**
2375  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2376  * @upiu_wlun_id: UPIU W-LUN id
2377  *
2378  * Returns SCSI W-LUN id
2379  */
ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)2380 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2381 {
2382 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2383 }
2384 
2385 /**
2386  * ufshcd_queuecommand - main entry point for SCSI requests
2387  * @host: SCSI host pointer
2388  * @cmd: command from SCSI Midlayer
2389  *
2390  * Returns 0 for success, non-zero in case of failure
2391  */
ufshcd_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * cmd)2392 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2393 {
2394 	struct ufshcd_lrb *lrbp;
2395 	struct ufs_hba *hba;
2396 	unsigned long flags;
2397 	int tag;
2398 	int err = 0;
2399 
2400 	hba = shost_priv(host);
2401 
2402 	tag = cmd->request->tag;
2403 	if (!ufshcd_valid_tag(hba, tag)) {
2404 		dev_err(hba->dev,
2405 			"%s: invalid command tag %d: cmd=0x%p, cmd->request=0x%p",
2406 			__func__, tag, cmd, cmd->request);
2407 		BUG();
2408 	}
2409 
2410 	if (!down_read_trylock(&hba->clk_scaling_lock))
2411 		return SCSI_MLQUEUE_HOST_BUSY;
2412 
2413 	spin_lock_irqsave(hba->host->host_lock, flags);
2414 	switch (hba->ufshcd_state) {
2415 	case UFSHCD_STATE_OPERATIONAL:
2416 		break;
2417 	case UFSHCD_STATE_EH_SCHEDULED:
2418 	case UFSHCD_STATE_RESET:
2419 		err = SCSI_MLQUEUE_HOST_BUSY;
2420 		goto out_unlock;
2421 	case UFSHCD_STATE_ERROR:
2422 		set_host_byte(cmd, DID_ERROR);
2423 		cmd->scsi_done(cmd);
2424 		goto out_unlock;
2425 	default:
2426 		dev_WARN_ONCE(hba->dev, 1, "%s: invalid state %d\n",
2427 				__func__, hba->ufshcd_state);
2428 		set_host_byte(cmd, DID_BAD_TARGET);
2429 		cmd->scsi_done(cmd);
2430 		goto out_unlock;
2431 	}
2432 
2433 	/* if error handling is in progress, don't issue commands */
2434 	if (ufshcd_eh_in_progress(hba)) {
2435 		set_host_byte(cmd, DID_ERROR);
2436 		cmd->scsi_done(cmd);
2437 		goto out_unlock;
2438 	}
2439 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2440 
2441 	hba->req_abort_count = 0;
2442 
2443 	/* acquire the tag to make sure device cmds don't use it */
2444 	if (test_and_set_bit_lock(tag, &hba->lrb_in_use)) {
2445 		/*
2446 		 * Dev manage command in progress, requeue the command.
2447 		 * Requeuing the command helps in cases where the request *may*
2448 		 * find different tag instead of waiting for dev manage command
2449 		 * completion.
2450 		 */
2451 		err = SCSI_MLQUEUE_HOST_BUSY;
2452 		goto out;
2453 	}
2454 
2455 	err = ufshcd_hold(hba, true);
2456 	if (err) {
2457 		err = SCSI_MLQUEUE_HOST_BUSY;
2458 		clear_bit_unlock(tag, &hba->lrb_in_use);
2459 		goto out;
2460 	}
2461 	WARN_ON(hba->clk_gating.state != CLKS_ON);
2462 
2463 	lrbp = &hba->lrb[tag];
2464 
2465 	WARN_ON(lrbp->cmd);
2466 	lrbp->cmd = cmd;
2467 	lrbp->sense_bufflen = UFS_SENSE_SIZE;
2468 	lrbp->sense_buffer = cmd->sense_buffer;
2469 	lrbp->task_tag = tag;
2470 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2471 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba) ? true : false;
2472 	lrbp->req_abort_skip = false;
2473 
2474 	ufshcd_comp_scsi_upiu(hba, lrbp);
2475 
2476 	err = ufshcd_map_sg(hba, lrbp);
2477 	if (err) {
2478 		lrbp->cmd = NULL;
2479 		clear_bit_unlock(tag, &hba->lrb_in_use);
2480 		goto out;
2481 	}
2482 	/* Make sure descriptors are ready before ringing the doorbell */
2483 	wmb();
2484 
2485 	/* issue command to the controller */
2486 	spin_lock_irqsave(hba->host->host_lock, flags);
2487 	ufshcd_vops_setup_xfer_req(hba, tag, (lrbp->cmd ? true : false));
2488 	ufshcd_send_command(hba, tag);
2489 out_unlock:
2490 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2491 out:
2492 	up_read(&hba->clk_scaling_lock);
2493 	return err;
2494 }
2495 
ufshcd_compose_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,int tag)2496 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2497 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2498 {
2499 	lrbp->cmd = NULL;
2500 	lrbp->sense_bufflen = 0;
2501 	lrbp->sense_buffer = NULL;
2502 	lrbp->task_tag = tag;
2503 	lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2504 	lrbp->intr_cmd = true; /* No interrupt aggregation */
2505 	hba->dev_cmd.type = cmd_type;
2506 
2507 	return ufshcd_comp_devman_upiu(hba, lrbp);
2508 }
2509 
2510 static int
ufshcd_clear_cmd(struct ufs_hba * hba,int tag)2511 ufshcd_clear_cmd(struct ufs_hba *hba, int tag)
2512 {
2513 	int err = 0;
2514 	unsigned long flags;
2515 	u32 mask = 1 << tag;
2516 
2517 	/* clear outstanding transaction before retry */
2518 	spin_lock_irqsave(hba->host->host_lock, flags);
2519 	ufshcd_utrl_clear(hba, tag);
2520 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2521 
2522 	/*
2523 	 * wait for for h/w to clear corresponding bit in door-bell.
2524 	 * max. wait is 1 sec.
2525 	 */
2526 	err = ufshcd_wait_for_register(hba,
2527 			REG_UTP_TRANSFER_REQ_DOOR_BELL,
2528 			mask, ~mask, 1000, 1000, true);
2529 
2530 	return err;
2531 }
2532 
2533 static int
ufshcd_check_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2534 ufshcd_check_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2535 {
2536 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2537 
2538 	/* Get the UPIU response */
2539 	query_res->response = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr) >>
2540 				UPIU_RSP_CODE_OFFSET;
2541 	return query_res->response;
2542 }
2543 
2544 /**
2545  * ufshcd_dev_cmd_completion() - handles device management command responses
2546  * @hba: per adapter instance
2547  * @lrbp: pointer to local reference block
2548  */
2549 static int
ufshcd_dev_cmd_completion(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2550 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2551 {
2552 	int resp;
2553 	int err = 0;
2554 
2555 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
2556 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
2557 
2558 	switch (resp) {
2559 	case UPIU_TRANSACTION_NOP_IN:
2560 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
2561 			err = -EINVAL;
2562 			dev_err(hba->dev, "%s: unexpected response %x\n",
2563 					__func__, resp);
2564 		}
2565 		break;
2566 	case UPIU_TRANSACTION_QUERY_RSP:
2567 		err = ufshcd_check_query_response(hba, lrbp);
2568 		if (!err)
2569 			err = ufshcd_copy_query_response(hba, lrbp);
2570 		break;
2571 	case UPIU_TRANSACTION_REJECT_UPIU:
2572 		/* TODO: handle Reject UPIU Response */
2573 		err = -EPERM;
2574 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
2575 				__func__);
2576 		break;
2577 	default:
2578 		err = -EINVAL;
2579 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
2580 				__func__, resp);
2581 		break;
2582 	}
2583 
2584 	return err;
2585 }
2586 
ufshcd_wait_for_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int max_timeout)2587 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
2588 		struct ufshcd_lrb *lrbp, int max_timeout)
2589 {
2590 	int err = 0;
2591 	unsigned long time_left;
2592 	unsigned long flags;
2593 
2594 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
2595 			msecs_to_jiffies(max_timeout));
2596 
2597 	/* Make sure descriptors are ready before ringing the doorbell */
2598 	wmb();
2599 	spin_lock_irqsave(hba->host->host_lock, flags);
2600 	hba->dev_cmd.complete = NULL;
2601 	if (likely(time_left)) {
2602 		err = ufshcd_get_tr_ocs(lrbp);
2603 		if (!err)
2604 			err = ufshcd_dev_cmd_completion(hba, lrbp);
2605 	}
2606 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2607 
2608 	if (!time_left) {
2609 		err = -ETIMEDOUT;
2610 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
2611 			__func__, lrbp->task_tag);
2612 		if (!ufshcd_clear_cmd(hba, lrbp->task_tag))
2613 			/* successfully cleared the command, retry if needed */
2614 			err = -EAGAIN;
2615 		/*
2616 		 * in case of an error, after clearing the doorbell,
2617 		 * we also need to clear the outstanding_request
2618 		 * field in hba
2619 		 */
2620 		ufshcd_outstanding_req_clear(hba, lrbp->task_tag);
2621 	}
2622 
2623 	return err;
2624 }
2625 
2626 /**
2627  * ufshcd_get_dev_cmd_tag - Get device management command tag
2628  * @hba: per-adapter instance
2629  * @tag_out: pointer to variable with available slot value
2630  *
2631  * Get a free slot and lock it until device management command
2632  * completes.
2633  *
2634  * Returns false if free slot is unavailable for locking, else
2635  * return true with tag value in @tag.
2636  */
ufshcd_get_dev_cmd_tag(struct ufs_hba * hba,int * tag_out)2637 static bool ufshcd_get_dev_cmd_tag(struct ufs_hba *hba, int *tag_out)
2638 {
2639 	int tag;
2640 	bool ret = false;
2641 	unsigned long tmp;
2642 
2643 	if (!tag_out)
2644 		goto out;
2645 
2646 	do {
2647 		tmp = ~hba->lrb_in_use;
2648 		tag = find_last_bit(&tmp, hba->nutrs);
2649 		if (tag >= hba->nutrs)
2650 			goto out;
2651 	} while (test_and_set_bit_lock(tag, &hba->lrb_in_use));
2652 
2653 	*tag_out = tag;
2654 	ret = true;
2655 out:
2656 	return ret;
2657 }
2658 
ufshcd_put_dev_cmd_tag(struct ufs_hba * hba,int tag)2659 static inline void ufshcd_put_dev_cmd_tag(struct ufs_hba *hba, int tag)
2660 {
2661 	clear_bit_unlock(tag, &hba->lrb_in_use);
2662 }
2663 
2664 /**
2665  * ufshcd_exec_dev_cmd - API for sending device management requests
2666  * @hba: UFS hba
2667  * @cmd_type: specifies the type (NOP, Query...)
2668  * @timeout: time in seconds
2669  *
2670  * NOTE: Since there is only one available tag for device management commands,
2671  * it is expected you hold the hba->dev_cmd.lock mutex.
2672  */
ufshcd_exec_dev_cmd(struct ufs_hba * hba,enum dev_cmd_type cmd_type,int timeout)2673 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
2674 		enum dev_cmd_type cmd_type, int timeout)
2675 {
2676 	struct ufshcd_lrb *lrbp;
2677 	int err;
2678 	int tag;
2679 	struct completion wait;
2680 	unsigned long flags;
2681 
2682 	down_read(&hba->clk_scaling_lock);
2683 
2684 	/*
2685 	 * Get free slot, sleep if slots are unavailable.
2686 	 * Even though we use wait_event() which sleeps indefinitely,
2687 	 * the maximum wait time is bounded by SCSI request timeout.
2688 	 */
2689 	wait_event(hba->dev_cmd.tag_wq, ufshcd_get_dev_cmd_tag(hba, &tag));
2690 
2691 	init_completion(&wait);
2692 	lrbp = &hba->lrb[tag];
2693 	WARN_ON(lrbp->cmd);
2694 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
2695 	if (unlikely(err))
2696 		goto out_put_tag;
2697 
2698 	hba->dev_cmd.complete = &wait;
2699 
2700 	ufshcd_add_query_upiu_trace(hba, tag, "query_send");
2701 	/* Make sure descriptors are ready before ringing the doorbell */
2702 	wmb();
2703 	spin_lock_irqsave(hba->host->host_lock, flags);
2704 	ufshcd_vops_setup_xfer_req(hba, tag, (lrbp->cmd ? true : false));
2705 	ufshcd_send_command(hba, tag);
2706 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2707 
2708 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
2709 
2710 	ufshcd_add_query_upiu_trace(hba, tag,
2711 			err ? "query_complete_err" : "query_complete");
2712 
2713 out_put_tag:
2714 	ufshcd_put_dev_cmd_tag(hba, tag);
2715 	wake_up(&hba->dev_cmd.tag_wq);
2716 	up_read(&hba->clk_scaling_lock);
2717 	return err;
2718 }
2719 
2720 /**
2721  * ufshcd_init_query() - init the query response and request parameters
2722  * @hba: per-adapter instance
2723  * @request: address of the request pointer to be initialized
2724  * @response: address of the response pointer to be initialized
2725  * @opcode: operation to perform
2726  * @idn: flag idn to access
2727  * @index: LU number to access
2728  * @selector: query/flag/descriptor further identification
2729  */
ufshcd_init_query(struct ufs_hba * hba,struct ufs_query_req ** request,struct ufs_query_res ** response,enum query_opcode opcode,u8 idn,u8 index,u8 selector)2730 static inline void ufshcd_init_query(struct ufs_hba *hba,
2731 		struct ufs_query_req **request, struct ufs_query_res **response,
2732 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
2733 {
2734 	*request = &hba->dev_cmd.query.request;
2735 	*response = &hba->dev_cmd.query.response;
2736 	memset(*request, 0, sizeof(struct ufs_query_req));
2737 	memset(*response, 0, sizeof(struct ufs_query_res));
2738 	(*request)->upiu_req.opcode = opcode;
2739 	(*request)->upiu_req.idn = idn;
2740 	(*request)->upiu_req.index = index;
2741 	(*request)->upiu_req.selector = selector;
2742 }
2743 
ufshcd_query_flag_retry(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,bool * flag_res)2744 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
2745 	enum query_opcode opcode, enum flag_idn idn, bool *flag_res)
2746 {
2747 	int ret;
2748 	int retries;
2749 
2750 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
2751 		ret = ufshcd_query_flag(hba, opcode, idn, flag_res);
2752 		if (ret)
2753 			dev_dbg(hba->dev,
2754 				"%s: failed with error %d, retries %d\n",
2755 				__func__, ret, retries);
2756 		else
2757 			break;
2758 	}
2759 
2760 	if (ret)
2761 		dev_err(hba->dev,
2762 			"%s: query attribute, opcode %d, idn %d, failed with error %d after %d retires\n",
2763 			__func__, opcode, idn, ret, retries);
2764 	return ret;
2765 }
2766 
2767 /**
2768  * ufshcd_query_flag() - API function for sending flag query requests
2769  * @hba: per-adapter instance
2770  * @opcode: flag query to perform
2771  * @idn: flag idn to access
2772  * @flag_res: the flag value after the query request completes
2773  *
2774  * Returns 0 for success, non-zero in case of failure
2775  */
ufshcd_query_flag(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,bool * flag_res)2776 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
2777 			enum flag_idn idn, bool *flag_res)
2778 {
2779 	struct ufs_query_req *request = NULL;
2780 	struct ufs_query_res *response = NULL;
2781 	int err, index = 0, selector = 0;
2782 	int timeout = QUERY_REQ_TIMEOUT;
2783 
2784 	BUG_ON(!hba);
2785 
2786 	ufshcd_hold(hba, false);
2787 	mutex_lock(&hba->dev_cmd.lock);
2788 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
2789 			selector);
2790 
2791 	switch (opcode) {
2792 	case UPIU_QUERY_OPCODE_SET_FLAG:
2793 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
2794 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
2795 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
2796 		break;
2797 	case UPIU_QUERY_OPCODE_READ_FLAG:
2798 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
2799 		if (!flag_res) {
2800 			/* No dummy reads */
2801 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
2802 					__func__);
2803 			err = -EINVAL;
2804 			goto out_unlock;
2805 		}
2806 		break;
2807 	default:
2808 		dev_err(hba->dev,
2809 			"%s: Expected query flag opcode but got = %d\n",
2810 			__func__, opcode);
2811 		err = -EINVAL;
2812 		goto out_unlock;
2813 	}
2814 
2815 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
2816 
2817 	if (err) {
2818 		dev_err(hba->dev,
2819 			"%s: Sending flag query for idn %d failed, err = %d\n",
2820 			__func__, idn, err);
2821 		goto out_unlock;
2822 	}
2823 
2824 	if (flag_res)
2825 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
2826 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
2827 
2828 out_unlock:
2829 	mutex_unlock(&hba->dev_cmd.lock);
2830 	ufshcd_release(hba);
2831 	return err;
2832 }
2833 
2834 /**
2835  * ufshcd_query_attr - API function for sending attribute requests
2836  * @hba: per-adapter instance
2837  * @opcode: attribute opcode
2838  * @idn: attribute idn to access
2839  * @index: index field
2840  * @selector: selector field
2841  * @attr_val: the attribute value after the query request completes
2842  *
2843  * Returns 0 for success, non-zero in case of failure
2844 */
ufshcd_query_attr(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)2845 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
2846 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
2847 {
2848 	struct ufs_query_req *request = NULL;
2849 	struct ufs_query_res *response = NULL;
2850 	int err;
2851 
2852 	BUG_ON(!hba);
2853 
2854 	ufshcd_hold(hba, false);
2855 	if (!attr_val) {
2856 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
2857 				__func__, opcode);
2858 		err = -EINVAL;
2859 		goto out;
2860 	}
2861 
2862 	mutex_lock(&hba->dev_cmd.lock);
2863 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
2864 			selector);
2865 
2866 	switch (opcode) {
2867 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
2868 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
2869 		request->upiu_req.value = cpu_to_be32(*attr_val);
2870 		break;
2871 	case UPIU_QUERY_OPCODE_READ_ATTR:
2872 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
2873 		break;
2874 	default:
2875 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
2876 				__func__, opcode);
2877 		err = -EINVAL;
2878 		goto out_unlock;
2879 	}
2880 
2881 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
2882 
2883 	if (err) {
2884 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
2885 				__func__, opcode, idn, index, err);
2886 		goto out_unlock;
2887 	}
2888 
2889 	*attr_val = be32_to_cpu(response->upiu_res.value);
2890 
2891 out_unlock:
2892 	mutex_unlock(&hba->dev_cmd.lock);
2893 out:
2894 	ufshcd_release(hba);
2895 	return err;
2896 }
2897 
2898 /**
2899  * ufshcd_query_attr_retry() - API function for sending query
2900  * attribute with retries
2901  * @hba: per-adapter instance
2902  * @opcode: attribute opcode
2903  * @idn: attribute idn to access
2904  * @index: index field
2905  * @selector: selector field
2906  * @attr_val: the attribute value after the query request
2907  * completes
2908  *
2909  * Returns 0 for success, non-zero in case of failure
2910 */
ufshcd_query_attr_retry(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)2911 static int ufshcd_query_attr_retry(struct ufs_hba *hba,
2912 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
2913 	u32 *attr_val)
2914 {
2915 	int ret = 0;
2916 	u32 retries;
2917 
2918 	 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
2919 		ret = ufshcd_query_attr(hba, opcode, idn, index,
2920 						selector, attr_val);
2921 		if (ret)
2922 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
2923 				__func__, ret, retries);
2924 		else
2925 			break;
2926 	}
2927 
2928 	if (ret)
2929 		dev_err(hba->dev,
2930 			"%s: query attribute, idn %d, failed with error %d after %d retires\n",
2931 			__func__, idn, ret, QUERY_REQ_RETRIES);
2932 	return ret;
2933 }
2934 
__ufshcd_query_descriptor(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)2935 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
2936 			enum query_opcode opcode, enum desc_idn idn, u8 index,
2937 			u8 selector, u8 *desc_buf, int *buf_len)
2938 {
2939 	struct ufs_query_req *request = NULL;
2940 	struct ufs_query_res *response = NULL;
2941 	int err;
2942 
2943 	BUG_ON(!hba);
2944 
2945 	ufshcd_hold(hba, false);
2946 	if (!desc_buf) {
2947 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
2948 				__func__, opcode);
2949 		err = -EINVAL;
2950 		goto out;
2951 	}
2952 
2953 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
2954 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
2955 				__func__, *buf_len);
2956 		err = -EINVAL;
2957 		goto out;
2958 	}
2959 
2960 	mutex_lock(&hba->dev_cmd.lock);
2961 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
2962 			selector);
2963 	hba->dev_cmd.query.descriptor = desc_buf;
2964 	request->upiu_req.length = cpu_to_be16(*buf_len);
2965 
2966 	switch (opcode) {
2967 	case UPIU_QUERY_OPCODE_WRITE_DESC:
2968 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
2969 		break;
2970 	case UPIU_QUERY_OPCODE_READ_DESC:
2971 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
2972 		break;
2973 	default:
2974 		dev_err(hba->dev,
2975 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
2976 				__func__, opcode);
2977 		err = -EINVAL;
2978 		goto out_unlock;
2979 	}
2980 
2981 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
2982 
2983 	if (err) {
2984 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
2985 				__func__, opcode, idn, index, err);
2986 		goto out_unlock;
2987 	}
2988 
2989 	hba->dev_cmd.query.descriptor = NULL;
2990 	*buf_len = be16_to_cpu(response->upiu_res.length);
2991 
2992 out_unlock:
2993 	mutex_unlock(&hba->dev_cmd.lock);
2994 out:
2995 	ufshcd_release(hba);
2996 	return err;
2997 }
2998 
2999 /**
3000  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3001  * @hba: per-adapter instance
3002  * @opcode: attribute opcode
3003  * @idn: attribute idn to access
3004  * @index: index field
3005  * @selector: selector field
3006  * @desc_buf: the buffer that contains the descriptor
3007  * @buf_len: length parameter passed to the device
3008  *
3009  * Returns 0 for success, non-zero in case of failure.
3010  * The buf_len parameter will contain, on return, the length parameter
3011  * received on the response.
3012  */
ufshcd_query_descriptor_retry(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3013 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3014 				  enum query_opcode opcode,
3015 				  enum desc_idn idn, u8 index,
3016 				  u8 selector,
3017 				  u8 *desc_buf, int *buf_len)
3018 {
3019 	int err;
3020 	int retries;
3021 
3022 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3023 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3024 						selector, desc_buf, buf_len);
3025 		if (!err || err == -EINVAL)
3026 			break;
3027 	}
3028 
3029 	return err;
3030 }
3031 
3032 /**
3033  * ufshcd_read_desc_length - read the specified descriptor length from header
3034  * @hba: Pointer to adapter instance
3035  * @desc_id: descriptor idn value
3036  * @desc_index: descriptor index
3037  * @desc_length: pointer to variable to read the length of descriptor
3038  *
3039  * Return 0 in case of success, non-zero otherwise
3040  */
ufshcd_read_desc_length(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,int * desc_length)3041 static int ufshcd_read_desc_length(struct ufs_hba *hba,
3042 	enum desc_idn desc_id,
3043 	int desc_index,
3044 	int *desc_length)
3045 {
3046 	int ret;
3047 	u8 header[QUERY_DESC_HDR_SIZE];
3048 	int header_len = QUERY_DESC_HDR_SIZE;
3049 
3050 	if (desc_id >= QUERY_DESC_IDN_MAX)
3051 		return -EINVAL;
3052 
3053 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3054 					desc_id, desc_index, 0, header,
3055 					&header_len);
3056 
3057 	if (ret) {
3058 		dev_err(hba->dev, "%s: Failed to get descriptor header id %d",
3059 			__func__, desc_id);
3060 		return ret;
3061 	} else if (desc_id != header[QUERY_DESC_DESC_TYPE_OFFSET]) {
3062 		dev_warn(hba->dev, "%s: descriptor header id %d and desc_id %d mismatch",
3063 			__func__, header[QUERY_DESC_DESC_TYPE_OFFSET],
3064 			desc_id);
3065 		ret = -EINVAL;
3066 	}
3067 
3068 	*desc_length = header[QUERY_DESC_LENGTH_OFFSET];
3069 	return ret;
3070 
3071 }
3072 
3073 /**
3074  * ufshcd_map_desc_id_to_length - map descriptor IDN to its length
3075  * @hba: Pointer to adapter instance
3076  * @desc_id: descriptor idn value
3077  * @desc_len: mapped desc length (out)
3078  *
3079  * Return 0 in case of success, non-zero otherwise
3080  */
ufshcd_map_desc_id_to_length(struct ufs_hba * hba,enum desc_idn desc_id,int * desc_len)3081 int ufshcd_map_desc_id_to_length(struct ufs_hba *hba,
3082 	enum desc_idn desc_id, int *desc_len)
3083 {
3084 	switch (desc_id) {
3085 	case QUERY_DESC_IDN_DEVICE:
3086 		*desc_len = hba->desc_size.dev_desc;
3087 		break;
3088 	case QUERY_DESC_IDN_POWER:
3089 		*desc_len = hba->desc_size.pwr_desc;
3090 		break;
3091 	case QUERY_DESC_IDN_GEOMETRY:
3092 		*desc_len = hba->desc_size.geom_desc;
3093 		break;
3094 	case QUERY_DESC_IDN_CONFIGURATION:
3095 		*desc_len = hba->desc_size.conf_desc;
3096 		break;
3097 	case QUERY_DESC_IDN_UNIT:
3098 		*desc_len = hba->desc_size.unit_desc;
3099 		break;
3100 	case QUERY_DESC_IDN_INTERCONNECT:
3101 		*desc_len = hba->desc_size.interc_desc;
3102 		break;
3103 	case QUERY_DESC_IDN_STRING:
3104 		*desc_len = QUERY_DESC_MAX_SIZE;
3105 		break;
3106 	case QUERY_DESC_IDN_HEALTH:
3107 		*desc_len = hba->desc_size.hlth_desc;
3108 		break;
3109 	case QUERY_DESC_IDN_RFU_0:
3110 	case QUERY_DESC_IDN_RFU_1:
3111 		*desc_len = 0;
3112 		break;
3113 	default:
3114 		*desc_len = 0;
3115 		return -EINVAL;
3116 	}
3117 	return 0;
3118 }
3119 EXPORT_SYMBOL(ufshcd_map_desc_id_to_length);
3120 
3121 /**
3122  * ufshcd_read_desc_param - read the specified descriptor parameter
3123  * @hba: Pointer to adapter instance
3124  * @desc_id: descriptor idn value
3125  * @desc_index: descriptor index
3126  * @param_offset: offset of the parameter to read
3127  * @param_read_buf: pointer to buffer where parameter would be read
3128  * @param_size: sizeof(param_read_buf)
3129  *
3130  * Return 0 in case of success, non-zero otherwise
3131  */
ufshcd_read_desc_param(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,u8 param_offset,u8 * param_read_buf,u8 param_size)3132 int ufshcd_read_desc_param(struct ufs_hba *hba,
3133 			   enum desc_idn desc_id,
3134 			   int desc_index,
3135 			   u8 param_offset,
3136 			   u8 *param_read_buf,
3137 			   u8 param_size)
3138 {
3139 	int ret;
3140 	u8 *desc_buf;
3141 	int buff_len;
3142 	bool is_kmalloc = true;
3143 
3144 	/* Safety check */
3145 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3146 		return -EINVAL;
3147 
3148 	/* Get the max length of descriptor from structure filled up at probe
3149 	 * time.
3150 	 */
3151 	ret = ufshcd_map_desc_id_to_length(hba, desc_id, &buff_len);
3152 
3153 	/* Sanity checks */
3154 	if (ret || !buff_len) {
3155 		dev_err(hba->dev, "%s: Failed to get full descriptor length",
3156 			__func__);
3157 		return ret;
3158 	}
3159 
3160 	/* Check whether we need temp memory */
3161 	if (param_offset != 0 || param_size < buff_len) {
3162 		desc_buf = kmalloc(buff_len, GFP_KERNEL);
3163 		if (!desc_buf)
3164 			return -ENOMEM;
3165 	} else {
3166 		desc_buf = param_read_buf;
3167 		is_kmalloc = false;
3168 	}
3169 
3170 	/* Request for full descriptor */
3171 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3172 					desc_id, desc_index, 0,
3173 					desc_buf, &buff_len);
3174 
3175 	if (ret) {
3176 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d",
3177 			__func__, desc_id, desc_index, param_offset, ret);
3178 		goto out;
3179 	}
3180 
3181 	/* Sanity check */
3182 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3183 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header",
3184 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3185 		ret = -EINVAL;
3186 		goto out;
3187 	}
3188 
3189 	/* Check wherher we will not copy more data, than available */
3190 	if (is_kmalloc && param_size > buff_len)
3191 		param_size = buff_len;
3192 
3193 	if (is_kmalloc)
3194 		memcpy(param_read_buf, &desc_buf[param_offset], param_size);
3195 out:
3196 	if (is_kmalloc)
3197 		kfree(desc_buf);
3198 	return ret;
3199 }
3200 
ufshcd_read_desc(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,void * buf,u32 size)3201 static inline int ufshcd_read_desc(struct ufs_hba *hba,
3202 				   enum desc_idn desc_id,
3203 				   int desc_index,
3204 				   void *buf,
3205 				   u32 size)
3206 {
3207 	return ufshcd_read_desc_param(hba, desc_id, desc_index, 0, buf, size);
3208 }
3209 
ufshcd_read_power_desc(struct ufs_hba * hba,u8 * buf,u32 size)3210 static inline int ufshcd_read_power_desc(struct ufs_hba *hba,
3211 					 u8 *buf,
3212 					 u32 size)
3213 {
3214 	return ufshcd_read_desc(hba, QUERY_DESC_IDN_POWER, 0, buf, size);
3215 }
3216 
ufshcd_read_device_desc(struct ufs_hba * hba,u8 * buf,u32 size)3217 static int ufshcd_read_device_desc(struct ufs_hba *hba, u8 *buf, u32 size)
3218 {
3219 	return ufshcd_read_desc(hba, QUERY_DESC_IDN_DEVICE, 0, buf, size);
3220 }
3221 
3222 /**
3223  * struct uc_string_id - unicode string
3224  *
3225  * @len: size of this descriptor inclusive
3226  * @type: descriptor type
3227  * @uc: unicode string character
3228  */
3229 struct uc_string_id {
3230 	u8 len;
3231 	u8 type;
3232 	wchar_t uc[0];
3233 } __packed;
3234 
3235 /* replace non-printable or non-ASCII characters with spaces */
ufshcd_remove_non_printable(u8 ch)3236 static inline char ufshcd_remove_non_printable(u8 ch)
3237 {
3238 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3239 }
3240 
3241 /**
3242  * ufshcd_read_string_desc - read string descriptor
3243  * @hba: pointer to adapter instance
3244  * @desc_index: descriptor index
3245  * @buf: pointer to buffer where descriptor would be read,
3246  *       the caller should free the memory.
3247  * @ascii: if true convert from unicode to ascii characters
3248  *         null terminated string.
3249  *
3250  * Return:
3251  * *      string size on success.
3252  * *      -ENOMEM: on allocation failure
3253  * *      -EINVAL: on a wrong parameter
3254  */
ufshcd_read_string_desc(struct ufs_hba * hba,u8 desc_index,u8 ** buf,bool ascii)3255 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3256 			    u8 **buf, bool ascii)
3257 {
3258 	struct uc_string_id *uc_str;
3259 	u8 *str;
3260 	int ret;
3261 
3262 	if (!buf)
3263 		return -EINVAL;
3264 
3265 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3266 	if (!uc_str)
3267 		return -ENOMEM;
3268 
3269 	ret = ufshcd_read_desc(hba, QUERY_DESC_IDN_STRING,
3270 			       desc_index, uc_str,
3271 			       QUERY_DESC_MAX_SIZE);
3272 	if (ret < 0) {
3273 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3274 			QUERY_REQ_RETRIES, ret);
3275 		str = NULL;
3276 		goto out;
3277 	}
3278 
3279 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3280 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3281 		str = NULL;
3282 		ret = 0;
3283 		goto out;
3284 	}
3285 
3286 	if (ascii) {
3287 		ssize_t ascii_len;
3288 		int i;
3289 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3290 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3291 		str = kzalloc(ascii_len, GFP_KERNEL);
3292 		if (!str) {
3293 			ret = -ENOMEM;
3294 			goto out;
3295 		}
3296 
3297 		/*
3298 		 * the descriptor contains string in UTF16 format
3299 		 * we need to convert to utf-8 so it can be displayed
3300 		 */
3301 		ret = utf16s_to_utf8s(uc_str->uc,
3302 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3303 				      UTF16_BIG_ENDIAN, str, ascii_len);
3304 
3305 		/* replace non-printable or non-ASCII characters with spaces */
3306 		for (i = 0; i < ret; i++)
3307 			str[i] = ufshcd_remove_non_printable(str[i]);
3308 
3309 		str[ret++] = '\0';
3310 
3311 	} else {
3312 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3313 		if (!str) {
3314 			ret = -ENOMEM;
3315 			goto out;
3316 		}
3317 		ret = uc_str->len;
3318 	}
3319 out:
3320 	*buf = str;
3321 	kfree(uc_str);
3322 	return ret;
3323 }
3324 
3325 /**
3326  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3327  * @hba: Pointer to adapter instance
3328  * @lun: lun id
3329  * @param_offset: offset of the parameter to read
3330  * @param_read_buf: pointer to buffer where parameter would be read
3331  * @param_size: sizeof(param_read_buf)
3332  *
3333  * Return 0 in case of success, non-zero otherwise
3334  */
ufshcd_read_unit_desc_param(struct ufs_hba * hba,int lun,enum unit_desc_param param_offset,u8 * param_read_buf,u32 param_size)3335 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3336 					      int lun,
3337 					      enum unit_desc_param param_offset,
3338 					      u8 *param_read_buf,
3339 					      u32 param_size)
3340 {
3341 	/*
3342 	 * Unit descriptors are only available for general purpose LUs (LUN id
3343 	 * from 0 to 7) and RPMB Well known LU.
3344 	 */
3345 	if (!ufs_is_valid_unit_desc_lun(lun))
3346 		return -EOPNOTSUPP;
3347 
3348 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3349 				      param_offset, param_read_buf, param_size);
3350 }
3351 
3352 /**
3353  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3354  * @hba: per adapter instance
3355  *
3356  * 1. Allocate DMA memory for Command Descriptor array
3357  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3358  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3359  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3360  *	(UTMRDL)
3361  * 4. Allocate memory for local reference block(lrb).
3362  *
3363  * Returns 0 for success, non-zero in case of failure
3364  */
ufshcd_memory_alloc(struct ufs_hba * hba)3365 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3366 {
3367 	size_t utmrdl_size, utrdl_size, ucdl_size;
3368 
3369 	/* Allocate memory for UTP command descriptors */
3370 	ucdl_size = (sizeof(struct utp_transfer_cmd_desc) * hba->nutrs);
3371 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3372 						  ucdl_size,
3373 						  &hba->ucdl_dma_addr,
3374 						  GFP_KERNEL);
3375 
3376 	/*
3377 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3378 	 * make sure hba->ucdl_dma_addr is aligned to PAGE_SIZE
3379 	 * if hba->ucdl_dma_addr is aligned to PAGE_SIZE, then it will
3380 	 * be aligned to 128 bytes as well
3381 	 */
3382 	if (!hba->ucdl_base_addr ||
3383 	    WARN_ON(hba->ucdl_dma_addr & (PAGE_SIZE - 1))) {
3384 		dev_err(hba->dev,
3385 			"Command Descriptor Memory allocation failed\n");
3386 		goto out;
3387 	}
3388 
3389 	/*
3390 	 * Allocate memory for UTP Transfer descriptors
3391 	 * UFSHCI requires 1024 byte alignment of UTRD
3392 	 */
3393 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3394 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3395 						   utrdl_size,
3396 						   &hba->utrdl_dma_addr,
3397 						   GFP_KERNEL);
3398 	if (!hba->utrdl_base_addr ||
3399 	    WARN_ON(hba->utrdl_dma_addr & (PAGE_SIZE - 1))) {
3400 		dev_err(hba->dev,
3401 			"Transfer Descriptor Memory allocation failed\n");
3402 		goto out;
3403 	}
3404 
3405 	/*
3406 	 * Allocate memory for UTP Task Management descriptors
3407 	 * UFSHCI requires 1024 byte alignment of UTMRD
3408 	 */
3409 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3410 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3411 						    utmrdl_size,
3412 						    &hba->utmrdl_dma_addr,
3413 						    GFP_KERNEL);
3414 	if (!hba->utmrdl_base_addr ||
3415 	    WARN_ON(hba->utmrdl_dma_addr & (PAGE_SIZE - 1))) {
3416 		dev_err(hba->dev,
3417 		"Task Management Descriptor Memory allocation failed\n");
3418 		goto out;
3419 	}
3420 
3421 	/* Allocate memory for local reference block */
3422 	hba->lrb = devm_kcalloc(hba->dev,
3423 				hba->nutrs, sizeof(struct ufshcd_lrb),
3424 				GFP_KERNEL);
3425 	if (!hba->lrb) {
3426 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3427 		goto out;
3428 	}
3429 	return 0;
3430 out:
3431 	return -ENOMEM;
3432 }
3433 
3434 /**
3435  * ufshcd_host_memory_configure - configure local reference block with
3436  *				memory offsets
3437  * @hba: per adapter instance
3438  *
3439  * Configure Host memory space
3440  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3441  * address.
3442  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3443  * and PRDT offset.
3444  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3445  * into local reference block.
3446  */
ufshcd_host_memory_configure(struct ufs_hba * hba)3447 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3448 {
3449 	struct utp_transfer_cmd_desc *cmd_descp;
3450 	struct utp_transfer_req_desc *utrdlp;
3451 	dma_addr_t cmd_desc_dma_addr;
3452 	dma_addr_t cmd_desc_element_addr;
3453 	u16 response_offset;
3454 	u16 prdt_offset;
3455 	int cmd_desc_size;
3456 	int i;
3457 
3458 	utrdlp = hba->utrdl_base_addr;
3459 	cmd_descp = hba->ucdl_base_addr;
3460 
3461 	response_offset =
3462 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3463 	prdt_offset =
3464 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3465 
3466 	cmd_desc_size = sizeof(struct utp_transfer_cmd_desc);
3467 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3468 
3469 	for (i = 0; i < hba->nutrs; i++) {
3470 		/* Configure UTRD with command descriptor base address */
3471 		cmd_desc_element_addr =
3472 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3473 		utrdlp[i].command_desc_base_addr_lo =
3474 				cpu_to_le32(lower_32_bits(cmd_desc_element_addr));
3475 		utrdlp[i].command_desc_base_addr_hi =
3476 				cpu_to_le32(upper_32_bits(cmd_desc_element_addr));
3477 
3478 		/* Response upiu and prdt offset should be in double words */
3479 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3480 			utrdlp[i].response_upiu_offset =
3481 				cpu_to_le16(response_offset);
3482 			utrdlp[i].prd_table_offset =
3483 				cpu_to_le16(prdt_offset);
3484 			utrdlp[i].response_upiu_length =
3485 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3486 		} else {
3487 			utrdlp[i].response_upiu_offset =
3488 				cpu_to_le16((response_offset >> 2));
3489 			utrdlp[i].prd_table_offset =
3490 				cpu_to_le16((prdt_offset >> 2));
3491 			utrdlp[i].response_upiu_length =
3492 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3493 		}
3494 
3495 		hba->lrb[i].utr_descriptor_ptr = (utrdlp + i);
3496 		hba->lrb[i].utrd_dma_addr = hba->utrdl_dma_addr +
3497 				(i * sizeof(struct utp_transfer_req_desc));
3498 		hba->lrb[i].ucd_req_ptr =
3499 			(struct utp_upiu_req *)(cmd_descp + i);
3500 		hba->lrb[i].ucd_req_dma_addr = cmd_desc_element_addr;
3501 		hba->lrb[i].ucd_rsp_ptr =
3502 			(struct utp_upiu_rsp *)cmd_descp[i].response_upiu;
3503 		hba->lrb[i].ucd_rsp_dma_addr = cmd_desc_element_addr +
3504 				response_offset;
3505 		hba->lrb[i].ucd_prdt_ptr =
3506 			(struct ufshcd_sg_entry *)cmd_descp[i].prd_table;
3507 		hba->lrb[i].ucd_prdt_dma_addr = cmd_desc_element_addr +
3508 				prdt_offset;
3509 	}
3510 }
3511 
3512 /**
3513  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3514  * @hba: per adapter instance
3515  *
3516  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3517  * in order to initialize the Unipro link startup procedure.
3518  * Once the Unipro links are up, the device connected to the controller
3519  * is detected.
3520  *
3521  * Returns 0 on success, non-zero value on failure
3522  */
ufshcd_dme_link_startup(struct ufs_hba * hba)3523 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3524 {
3525 	struct uic_command uic_cmd = {0};
3526 	int ret;
3527 
3528 	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3529 
3530 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3531 	if (ret)
3532 		dev_dbg(hba->dev,
3533 			"dme-link-startup: error code %d\n", ret);
3534 	return ret;
3535 }
3536 /**
3537  * ufshcd_dme_reset - UIC command for DME_RESET
3538  * @hba: per adapter instance
3539  *
3540  * DME_RESET command is issued in order to reset UniPro stack.
3541  * This function now deal with cold reset.
3542  *
3543  * Returns 0 on success, non-zero value on failure
3544  */
ufshcd_dme_reset(struct ufs_hba * hba)3545 static int ufshcd_dme_reset(struct ufs_hba *hba)
3546 {
3547 	struct uic_command uic_cmd = {0};
3548 	int ret;
3549 
3550 	uic_cmd.command = UIC_CMD_DME_RESET;
3551 
3552 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3553 	if (ret)
3554 		dev_err(hba->dev,
3555 			"dme-reset: error code %d\n", ret);
3556 
3557 	return ret;
3558 }
3559 
3560 /**
3561  * ufshcd_dme_enable - UIC command for DME_ENABLE
3562  * @hba: per adapter instance
3563  *
3564  * DME_ENABLE command is issued in order to enable UniPro stack.
3565  *
3566  * Returns 0 on success, non-zero value on failure
3567  */
ufshcd_dme_enable(struct ufs_hba * hba)3568 static int ufshcd_dme_enable(struct ufs_hba *hba)
3569 {
3570 	struct uic_command uic_cmd = {0};
3571 	int ret;
3572 
3573 	uic_cmd.command = UIC_CMD_DME_ENABLE;
3574 
3575 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3576 	if (ret)
3577 		dev_err(hba->dev,
3578 			"dme-reset: error code %d\n", ret);
3579 
3580 	return ret;
3581 }
3582 
ufshcd_add_delay_before_dme_cmd(struct ufs_hba * hba)3583 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3584 {
3585 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
3586 	unsigned long min_sleep_time_us;
3587 
3588 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3589 		return;
3590 
3591 	/*
3592 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
3593 	 * this function
3594 	 */
3595 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
3596 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
3597 	} else {
3598 		unsigned long delta =
3599 			(unsigned long) ktime_to_us(
3600 				ktime_sub(ktime_get(),
3601 				hba->last_dme_cmd_tstamp));
3602 
3603 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
3604 			min_sleep_time_us =
3605 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
3606 		else
3607 			return; /* no more delay required */
3608 	}
3609 
3610 	/* allow sleep for extra 50us if needed */
3611 	usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
3612 }
3613 
3614 /**
3615  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
3616  * @hba: per adapter instance
3617  * @attr_sel: uic command argument1
3618  * @attr_set: attribute set type as uic command argument2
3619  * @mib_val: setting value as uic command argument3
3620  * @peer: indicate whether peer or local
3621  *
3622  * Returns 0 on success, non-zero value on failure
3623  */
ufshcd_dme_set_attr(struct ufs_hba * hba,u32 attr_sel,u8 attr_set,u32 mib_val,u8 peer)3624 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
3625 			u8 attr_set, u32 mib_val, u8 peer)
3626 {
3627 	struct uic_command uic_cmd = {0};
3628 	static const char *const action[] = {
3629 		"dme-set",
3630 		"dme-peer-set"
3631 	};
3632 	const char *set = action[!!peer];
3633 	int ret;
3634 	int retries = UFS_UIC_COMMAND_RETRIES;
3635 
3636 	uic_cmd.command = peer ?
3637 		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
3638 	uic_cmd.argument1 = attr_sel;
3639 	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
3640 	uic_cmd.argument3 = mib_val;
3641 
3642 	do {
3643 		/* for peer attributes we retry upon failure */
3644 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3645 		if (ret)
3646 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
3647 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
3648 	} while (ret && peer && --retries);
3649 
3650 	if (ret)
3651 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
3652 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
3653 			UFS_UIC_COMMAND_RETRIES - retries);
3654 
3655 	return ret;
3656 }
3657 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
3658 
3659 /**
3660  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
3661  * @hba: per adapter instance
3662  * @attr_sel: uic command argument1
3663  * @mib_val: the value of the attribute as returned by the UIC command
3664  * @peer: indicate whether peer or local
3665  *
3666  * Returns 0 on success, non-zero value on failure
3667  */
ufshcd_dme_get_attr(struct ufs_hba * hba,u32 attr_sel,u32 * mib_val,u8 peer)3668 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
3669 			u32 *mib_val, u8 peer)
3670 {
3671 	struct uic_command uic_cmd = {0};
3672 	static const char *const action[] = {
3673 		"dme-get",
3674 		"dme-peer-get"
3675 	};
3676 	const char *get = action[!!peer];
3677 	int ret;
3678 	int retries = UFS_UIC_COMMAND_RETRIES;
3679 	struct ufs_pa_layer_attr orig_pwr_info;
3680 	struct ufs_pa_layer_attr temp_pwr_info;
3681 	bool pwr_mode_change = false;
3682 
3683 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
3684 		orig_pwr_info = hba->pwr_info;
3685 		temp_pwr_info = orig_pwr_info;
3686 
3687 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
3688 		    orig_pwr_info.pwr_rx == FAST_MODE) {
3689 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
3690 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
3691 			pwr_mode_change = true;
3692 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
3693 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
3694 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
3695 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
3696 			pwr_mode_change = true;
3697 		}
3698 		if (pwr_mode_change) {
3699 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
3700 			if (ret)
3701 				goto out;
3702 		}
3703 	}
3704 
3705 	uic_cmd.command = peer ?
3706 		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
3707 	uic_cmd.argument1 = attr_sel;
3708 
3709 	do {
3710 		/* for peer attributes we retry upon failure */
3711 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3712 		if (ret)
3713 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
3714 				get, UIC_GET_ATTR_ID(attr_sel), ret);
3715 	} while (ret && peer && --retries);
3716 
3717 	if (ret)
3718 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
3719 			get, UIC_GET_ATTR_ID(attr_sel),
3720 			UFS_UIC_COMMAND_RETRIES - retries);
3721 
3722 	if (mib_val && !ret)
3723 		*mib_val = uic_cmd.argument3;
3724 
3725 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
3726 	    && pwr_mode_change)
3727 		ufshcd_change_power_mode(hba, &orig_pwr_info);
3728 out:
3729 	return ret;
3730 }
3731 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
3732 
3733 /**
3734  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
3735  * state) and waits for it to take effect.
3736  *
3737  * @hba: per adapter instance
3738  * @cmd: UIC command to execute
3739  *
3740  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
3741  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
3742  * and device UniPro link and hence it's final completion would be indicated by
3743  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
3744  * addition to normal UIC command completion Status (UCCS). This function only
3745  * returns after the relevant status bits indicate the completion.
3746  *
3747  * Returns 0 on success, non-zero value on failure
3748  */
ufshcd_uic_pwr_ctrl(struct ufs_hba * hba,struct uic_command * cmd)3749 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
3750 {
3751 	struct completion uic_async_done;
3752 	unsigned long flags;
3753 	u8 status;
3754 	int ret;
3755 	bool reenable_intr = false;
3756 
3757 	mutex_lock(&hba->uic_cmd_mutex);
3758 	init_completion(&uic_async_done);
3759 	ufshcd_add_delay_before_dme_cmd(hba);
3760 
3761 	spin_lock_irqsave(hba->host->host_lock, flags);
3762 	hba->uic_async_done = &uic_async_done;
3763 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
3764 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
3765 		/*
3766 		 * Make sure UIC command completion interrupt is disabled before
3767 		 * issuing UIC command.
3768 		 */
3769 		wmb();
3770 		reenable_intr = true;
3771 	}
3772 	ret = __ufshcd_send_uic_cmd(hba, cmd, false);
3773 	spin_unlock_irqrestore(hba->host->host_lock, flags);
3774 	if (ret) {
3775 		dev_err(hba->dev,
3776 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
3777 			cmd->command, cmd->argument3, ret);
3778 		goto out;
3779 	}
3780 
3781 	if (!wait_for_completion_timeout(hba->uic_async_done,
3782 					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
3783 		dev_err(hba->dev,
3784 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
3785 			cmd->command, cmd->argument3);
3786 		ret = -ETIMEDOUT;
3787 		goto out;
3788 	}
3789 
3790 	status = ufshcd_get_upmcrs(hba);
3791 	if (status != PWR_LOCAL) {
3792 		dev_err(hba->dev,
3793 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
3794 			cmd->command, status);
3795 		ret = (status != PWR_OK) ? status : -1;
3796 	}
3797 out:
3798 	if (ret) {
3799 		ufshcd_print_host_state(hba);
3800 		ufshcd_print_pwr_info(hba);
3801 		ufshcd_print_host_regs(hba);
3802 	}
3803 
3804 	spin_lock_irqsave(hba->host->host_lock, flags);
3805 	hba->active_uic_cmd = NULL;
3806 	hba->uic_async_done = NULL;
3807 	if (reenable_intr)
3808 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
3809 	spin_unlock_irqrestore(hba->host->host_lock, flags);
3810 	mutex_unlock(&hba->uic_cmd_mutex);
3811 
3812 	return ret;
3813 }
3814 
3815 /**
3816  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
3817  *				using DME_SET primitives.
3818  * @hba: per adapter instance
3819  * @mode: powr mode value
3820  *
3821  * Returns 0 on success, non-zero value on failure
3822  */
ufshcd_uic_change_pwr_mode(struct ufs_hba * hba,u8 mode)3823 static int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
3824 {
3825 	struct uic_command uic_cmd = {0};
3826 	int ret;
3827 
3828 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
3829 		ret = ufshcd_dme_set(hba,
3830 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
3831 		if (ret) {
3832 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
3833 						__func__, ret);
3834 			goto out;
3835 		}
3836 	}
3837 
3838 	uic_cmd.command = UIC_CMD_DME_SET;
3839 	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
3840 	uic_cmd.argument3 = mode;
3841 	ufshcd_hold(hba, false);
3842 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
3843 	ufshcd_release(hba);
3844 
3845 out:
3846 	return ret;
3847 }
3848 
ufshcd_link_recovery(struct ufs_hba * hba)3849 static int ufshcd_link_recovery(struct ufs_hba *hba)
3850 {
3851 	int ret;
3852 	unsigned long flags;
3853 
3854 	spin_lock_irqsave(hba->host->host_lock, flags);
3855 	hba->ufshcd_state = UFSHCD_STATE_RESET;
3856 	ufshcd_set_eh_in_progress(hba);
3857 	spin_unlock_irqrestore(hba->host->host_lock, flags);
3858 
3859 	ret = ufshcd_host_reset_and_restore(hba);
3860 
3861 	spin_lock_irqsave(hba->host->host_lock, flags);
3862 	if (ret)
3863 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
3864 	ufshcd_clear_eh_in_progress(hba);
3865 	spin_unlock_irqrestore(hba->host->host_lock, flags);
3866 
3867 	if (ret)
3868 		dev_err(hba->dev, "%s: link recovery failed, err %d",
3869 			__func__, ret);
3870 
3871 	return ret;
3872 }
3873 
__ufshcd_uic_hibern8_enter(struct ufs_hba * hba)3874 static int __ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
3875 {
3876 	int ret;
3877 	struct uic_command uic_cmd = {0};
3878 	ktime_t start = ktime_get();
3879 
3880 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
3881 
3882 	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
3883 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
3884 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
3885 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
3886 
3887 	if (ret) {
3888 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
3889 			__func__, ret);
3890 
3891 		/*
3892 		 * If link recovery fails then return error so that caller
3893 		 * don't retry the hibern8 enter again.
3894 		 */
3895 		if (ufshcd_link_recovery(hba))
3896 			ret = -ENOLINK;
3897 	} else
3898 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
3899 								POST_CHANGE);
3900 
3901 	return ret;
3902 }
3903 
ufshcd_uic_hibern8_enter(struct ufs_hba * hba)3904 static int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
3905 {
3906 	int ret = 0, retries;
3907 
3908 	for (retries = UIC_HIBERN8_ENTER_RETRIES; retries > 0; retries--) {
3909 		ret = __ufshcd_uic_hibern8_enter(hba);
3910 		if (!ret || ret == -ENOLINK)
3911 			goto out;
3912 	}
3913 out:
3914 	return ret;
3915 }
3916 
ufshcd_uic_hibern8_exit(struct ufs_hba * hba)3917 static int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
3918 {
3919 	struct uic_command uic_cmd = {0};
3920 	int ret;
3921 	ktime_t start = ktime_get();
3922 
3923 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
3924 
3925 	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
3926 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
3927 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
3928 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
3929 
3930 	if (ret) {
3931 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
3932 			__func__, ret);
3933 		ret = ufshcd_link_recovery(hba);
3934 	} else {
3935 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
3936 								POST_CHANGE);
3937 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_get();
3938 		hba->ufs_stats.hibern8_exit_cnt++;
3939 	}
3940 
3941 	return ret;
3942 }
3943 
ufshcd_auto_hibern8_enable(struct ufs_hba * hba)3944 static void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
3945 {
3946 	unsigned long flags;
3947 
3948 	if (!ufshcd_is_auto_hibern8_supported(hba) || !hba->ahit)
3949 		return;
3950 
3951 	spin_lock_irqsave(hba->host->host_lock, flags);
3952 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
3953 	spin_unlock_irqrestore(hba->host->host_lock, flags);
3954 }
3955 
3956  /**
3957  * ufshcd_init_pwr_info - setting the POR (power on reset)
3958  * values in hba power info
3959  * @hba: per-adapter instance
3960  */
ufshcd_init_pwr_info(struct ufs_hba * hba)3961 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
3962 {
3963 	hba->pwr_info.gear_rx = UFS_PWM_G1;
3964 	hba->pwr_info.gear_tx = UFS_PWM_G1;
3965 	hba->pwr_info.lane_rx = 1;
3966 	hba->pwr_info.lane_tx = 1;
3967 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
3968 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
3969 	hba->pwr_info.hs_rate = 0;
3970 }
3971 
3972 /**
3973  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
3974  * @hba: per-adapter instance
3975  */
ufshcd_get_max_pwr_mode(struct ufs_hba * hba)3976 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
3977 {
3978 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
3979 
3980 	if (hba->max_pwr_info.is_valid)
3981 		return 0;
3982 
3983 	pwr_info->pwr_tx = FAST_MODE;
3984 	pwr_info->pwr_rx = FAST_MODE;
3985 	pwr_info->hs_rate = PA_HS_MODE_B;
3986 
3987 	/* Get the connected lane count */
3988 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
3989 			&pwr_info->lane_rx);
3990 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
3991 			&pwr_info->lane_tx);
3992 
3993 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
3994 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
3995 				__func__,
3996 				pwr_info->lane_rx,
3997 				pwr_info->lane_tx);
3998 		return -EINVAL;
3999 	}
4000 
4001 	/*
4002 	 * First, get the maximum gears of HS speed.
4003 	 * If a zero value, it means there is no HSGEAR capability.
4004 	 * Then, get the maximum gears of PWM speed.
4005 	 */
4006 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4007 	if (!pwr_info->gear_rx) {
4008 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4009 				&pwr_info->gear_rx);
4010 		if (!pwr_info->gear_rx) {
4011 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4012 				__func__, pwr_info->gear_rx);
4013 			return -EINVAL;
4014 		}
4015 		pwr_info->pwr_rx = SLOW_MODE;
4016 	}
4017 
4018 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4019 			&pwr_info->gear_tx);
4020 	if (!pwr_info->gear_tx) {
4021 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4022 				&pwr_info->gear_tx);
4023 		if (!pwr_info->gear_tx) {
4024 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4025 				__func__, pwr_info->gear_tx);
4026 			return -EINVAL;
4027 		}
4028 		pwr_info->pwr_tx = SLOW_MODE;
4029 	}
4030 
4031 	hba->max_pwr_info.is_valid = true;
4032 	return 0;
4033 }
4034 
ufshcd_change_power_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * pwr_mode)4035 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4036 			     struct ufs_pa_layer_attr *pwr_mode)
4037 {
4038 	int ret;
4039 
4040 	/* if already configured to the requested pwr_mode */
4041 	if (pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4042 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4043 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4044 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4045 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4046 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4047 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4048 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4049 		return 0;
4050 	}
4051 
4052 	/*
4053 	 * Configure attributes for power mode change with below.
4054 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4055 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4056 	 * - PA_HSSERIES
4057 	 */
4058 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4059 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4060 			pwr_mode->lane_rx);
4061 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4062 			pwr_mode->pwr_rx == FAST_MODE)
4063 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), TRUE);
4064 	else
4065 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), FALSE);
4066 
4067 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4068 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4069 			pwr_mode->lane_tx);
4070 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4071 			pwr_mode->pwr_tx == FAST_MODE)
4072 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), TRUE);
4073 	else
4074 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), FALSE);
4075 
4076 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4077 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4078 	    pwr_mode->pwr_rx == FAST_MODE ||
4079 	    pwr_mode->pwr_tx == FAST_MODE)
4080 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4081 						pwr_mode->hs_rate);
4082 
4083 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4084 			| pwr_mode->pwr_tx);
4085 
4086 	if (ret) {
4087 		dev_err(hba->dev,
4088 			"%s: power mode change failed %d\n", __func__, ret);
4089 	} else {
4090 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4091 								pwr_mode);
4092 
4093 		memcpy(&hba->pwr_info, pwr_mode,
4094 			sizeof(struct ufs_pa_layer_attr));
4095 	}
4096 
4097 	return ret;
4098 }
4099 
4100 /**
4101  * ufshcd_config_pwr_mode - configure a new power mode
4102  * @hba: per-adapter instance
4103  * @desired_pwr_mode: desired power configuration
4104  */
ufshcd_config_pwr_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * desired_pwr_mode)4105 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4106 		struct ufs_pa_layer_attr *desired_pwr_mode)
4107 {
4108 	struct ufs_pa_layer_attr final_params = { 0 };
4109 	int ret;
4110 
4111 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4112 					desired_pwr_mode, &final_params);
4113 
4114 	if (ret)
4115 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4116 
4117 	ret = ufshcd_change_power_mode(hba, &final_params);
4118 	if (!ret)
4119 		ufshcd_print_pwr_info(hba);
4120 
4121 	return ret;
4122 }
4123 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4124 
4125 /**
4126  * ufshcd_complete_dev_init() - checks device readiness
4127  * @hba: per-adapter instance
4128  *
4129  * Set fDeviceInit flag and poll until device toggles it.
4130  */
ufshcd_complete_dev_init(struct ufs_hba * hba)4131 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4132 {
4133 	int i;
4134 	int err;
4135 	bool flag_res = 1;
4136 
4137 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4138 		QUERY_FLAG_IDN_FDEVICEINIT, NULL);
4139 	if (err) {
4140 		dev_err(hba->dev,
4141 			"%s setting fDeviceInit flag failed with error %d\n",
4142 			__func__, err);
4143 		goto out;
4144 	}
4145 
4146 	/* poll for max. 1000 iterations for fDeviceInit flag to clear */
4147 	for (i = 0; i < 1000 && !err && flag_res; i++)
4148 		err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4149 			QUERY_FLAG_IDN_FDEVICEINIT, &flag_res);
4150 
4151 	if (err)
4152 		dev_err(hba->dev,
4153 			"%s reading fDeviceInit flag failed with error %d\n",
4154 			__func__, err);
4155 	else if (flag_res)
4156 		dev_err(hba->dev,
4157 			"%s fDeviceInit was not cleared by the device\n",
4158 			__func__);
4159 
4160 out:
4161 	return err;
4162 }
4163 
4164 /**
4165  * ufshcd_make_hba_operational - Make UFS controller operational
4166  * @hba: per adapter instance
4167  *
4168  * To bring UFS host controller to operational state,
4169  * 1. Enable required interrupts
4170  * 2. Configure interrupt aggregation
4171  * 3. Program UTRL and UTMRL base address
4172  * 4. Configure run-stop-registers
4173  *
4174  * Returns 0 on success, non-zero value on failure
4175  */
ufshcd_make_hba_operational(struct ufs_hba * hba)4176 static int ufshcd_make_hba_operational(struct ufs_hba *hba)
4177 {
4178 	int err = 0;
4179 	u32 reg;
4180 
4181 	/* Enable required interrupts */
4182 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4183 
4184 	/* Configure interrupt aggregation */
4185 	if (ufshcd_is_intr_aggr_allowed(hba))
4186 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4187 	else
4188 		ufshcd_disable_intr_aggr(hba);
4189 
4190 	/* Configure UTRL and UTMRL base address registers */
4191 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4192 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4193 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4194 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4195 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4196 			REG_UTP_TASK_REQ_LIST_BASE_L);
4197 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4198 			REG_UTP_TASK_REQ_LIST_BASE_H);
4199 
4200 	/*
4201 	 * Make sure base address and interrupt setup are updated before
4202 	 * enabling the run/stop registers below.
4203 	 */
4204 	wmb();
4205 
4206 	/*
4207 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4208 	 */
4209 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4210 	if (!(ufshcd_get_lists_status(reg))) {
4211 		ufshcd_enable_run_stop_reg(hba);
4212 	} else {
4213 		dev_err(hba->dev,
4214 			"Host controller not ready to process requests");
4215 		err = -EIO;
4216 		goto out;
4217 	}
4218 
4219 out:
4220 	return err;
4221 }
4222 
4223 /**
4224  * ufshcd_hba_stop - Send controller to reset state
4225  * @hba: per adapter instance
4226  * @can_sleep: perform sleep or just spin
4227  */
ufshcd_hba_stop(struct ufs_hba * hba,bool can_sleep)4228 static inline void ufshcd_hba_stop(struct ufs_hba *hba, bool can_sleep)
4229 {
4230 	int err;
4231 
4232 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4233 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4234 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4235 					10, 1, can_sleep);
4236 	if (err)
4237 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4238 }
4239 
4240 /**
4241  * ufshcd_hba_execute_hce - initialize the controller
4242  * @hba: per adapter instance
4243  *
4244  * The controller resets itself and controller firmware initialization
4245  * sequence kicks off. When controller is ready it will set
4246  * the Host Controller Enable bit to 1.
4247  *
4248  * Returns 0 on success, non-zero value on failure
4249  */
ufshcd_hba_execute_hce(struct ufs_hba * hba)4250 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4251 {
4252 	int retry;
4253 
4254 	if (!ufshcd_is_hba_active(hba))
4255 		/* change controller state to "reset state" */
4256 		ufshcd_hba_stop(hba, true);
4257 
4258 	/* UniPro link is disabled at this point */
4259 	ufshcd_set_link_off(hba);
4260 
4261 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4262 
4263 	/* start controller initialization sequence */
4264 	ufshcd_hba_start(hba);
4265 
4266 	/*
4267 	 * To initialize a UFS host controller HCE bit must be set to 1.
4268 	 * During initialization the HCE bit value changes from 1->0->1.
4269 	 * When the host controller completes initialization sequence
4270 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4271 	 * to check if the controller has completed initialization sequence.
4272 	 * So without this delay the value HCE = 1, set in the previous
4273 	 * instruction might be read back.
4274 	 * This delay can be changed based on the controller.
4275 	 */
4276 	usleep_range(1000, 1100);
4277 
4278 	/* wait for the host controller to complete initialization */
4279 	retry = 10;
4280 	while (ufshcd_is_hba_active(hba)) {
4281 		if (retry) {
4282 			retry--;
4283 		} else {
4284 			dev_err(hba->dev,
4285 				"Controller enable failed\n");
4286 			return -EIO;
4287 		}
4288 		usleep_range(5000, 5100);
4289 	}
4290 
4291 	/* enable UIC related interrupts */
4292 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4293 
4294 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4295 
4296 	return 0;
4297 }
4298 
ufshcd_hba_enable(struct ufs_hba * hba)4299 static int ufshcd_hba_enable(struct ufs_hba *hba)
4300 {
4301 	int ret;
4302 
4303 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4304 		ufshcd_set_link_off(hba);
4305 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4306 
4307 		/* enable UIC related interrupts */
4308 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4309 		ret = ufshcd_dme_reset(hba);
4310 		if (!ret) {
4311 			ret = ufshcd_dme_enable(hba);
4312 			if (!ret)
4313 				ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4314 			if (ret)
4315 				dev_err(hba->dev,
4316 					"Host controller enable failed with non-hce\n");
4317 		}
4318 	} else {
4319 		ret = ufshcd_hba_execute_hce(hba);
4320 	}
4321 
4322 	return ret;
4323 }
ufshcd_disable_tx_lcc(struct ufs_hba * hba,bool peer)4324 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4325 {
4326 	int tx_lanes, i, err = 0;
4327 
4328 	if (!peer)
4329 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4330 			       &tx_lanes);
4331 	else
4332 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4333 				    &tx_lanes);
4334 	for (i = 0; i < tx_lanes; i++) {
4335 		if (!peer)
4336 			err = ufshcd_dme_set(hba,
4337 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4338 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4339 					0);
4340 		else
4341 			err = ufshcd_dme_peer_set(hba,
4342 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4343 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4344 					0);
4345 		if (err) {
4346 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4347 				__func__, peer, i, err);
4348 			break;
4349 		}
4350 	}
4351 
4352 	return err;
4353 }
4354 
ufshcd_disable_device_tx_lcc(struct ufs_hba * hba)4355 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4356 {
4357 	return ufshcd_disable_tx_lcc(hba, true);
4358 }
4359 
ufshcd_update_reg_hist(struct ufs_err_reg_hist * reg_hist,u32 reg)4360 static void ufshcd_update_reg_hist(struct ufs_err_reg_hist *reg_hist,
4361 				   u32 reg)
4362 {
4363 	reg_hist->reg[reg_hist->pos] = reg;
4364 	reg_hist->tstamp[reg_hist->pos] = ktime_get();
4365 	reg_hist->pos = (reg_hist->pos + 1) % UFS_ERR_REG_HIST_LENGTH;
4366 }
4367 
4368 /**
4369  * ufshcd_link_startup - Initialize unipro link startup
4370  * @hba: per adapter instance
4371  *
4372  * Returns 0 for success, non-zero in case of failure
4373  */
ufshcd_link_startup(struct ufs_hba * hba)4374 static int ufshcd_link_startup(struct ufs_hba *hba)
4375 {
4376 	int ret;
4377 	int retries = DME_LINKSTARTUP_RETRIES;
4378 	bool link_startup_again = false;
4379 
4380 	/*
4381 	 * If UFS device isn't active then we will have to issue link startup
4382 	 * 2 times to make sure the device state move to active.
4383 	 */
4384 	if (!ufshcd_is_ufs_dev_active(hba))
4385 		link_startup_again = true;
4386 
4387 link_startup:
4388 	do {
4389 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4390 
4391 		ret = ufshcd_dme_link_startup(hba);
4392 
4393 		/* check if device is detected by inter-connect layer */
4394 		if (!ret && !ufshcd_is_device_present(hba)) {
4395 			ufshcd_update_reg_hist(&hba->ufs_stats.link_startup_err,
4396 					       0);
4397 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4398 			ret = -ENXIO;
4399 			goto out;
4400 		}
4401 
4402 		/*
4403 		 * DME link lost indication is only received when link is up,
4404 		 * but we can't be sure if the link is up until link startup
4405 		 * succeeds. So reset the local Uni-Pro and try again.
4406 		 */
4407 		if (ret && ufshcd_hba_enable(hba)) {
4408 			ufshcd_update_reg_hist(&hba->ufs_stats.link_startup_err,
4409 					       (u32)ret);
4410 			goto out;
4411 		}
4412 	} while (ret && retries--);
4413 
4414 	if (ret) {
4415 		/* failed to get the link up... retire */
4416 		ufshcd_update_reg_hist(&hba->ufs_stats.link_startup_err,
4417 				       (u32)ret);
4418 		goto out;
4419 	}
4420 
4421 	if (link_startup_again) {
4422 		link_startup_again = false;
4423 		retries = DME_LINKSTARTUP_RETRIES;
4424 		goto link_startup;
4425 	}
4426 
4427 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4428 	ufshcd_init_pwr_info(hba);
4429 	ufshcd_print_pwr_info(hba);
4430 
4431 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4432 		ret = ufshcd_disable_device_tx_lcc(hba);
4433 		if (ret)
4434 			goto out;
4435 	}
4436 
4437 	/* Include any host controller configuration via UIC commands */
4438 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4439 	if (ret)
4440 		goto out;
4441 
4442 	ret = ufshcd_make_hba_operational(hba);
4443 out:
4444 	if (ret) {
4445 		dev_err(hba->dev, "link startup failed %d\n", ret);
4446 		ufshcd_print_host_state(hba);
4447 		ufshcd_print_pwr_info(hba);
4448 		ufshcd_print_host_regs(hba);
4449 	}
4450 	return ret;
4451 }
4452 
4453 /**
4454  * ufshcd_verify_dev_init() - Verify device initialization
4455  * @hba: per-adapter instance
4456  *
4457  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4458  * device Transport Protocol (UTP) layer is ready after a reset.
4459  * If the UTP layer at the device side is not initialized, it may
4460  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4461  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4462  */
ufshcd_verify_dev_init(struct ufs_hba * hba)4463 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4464 {
4465 	int err = 0;
4466 	int retries;
4467 
4468 	ufshcd_hold(hba, false);
4469 	mutex_lock(&hba->dev_cmd.lock);
4470 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4471 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4472 					       NOP_OUT_TIMEOUT);
4473 
4474 		if (!err || err == -ETIMEDOUT)
4475 			break;
4476 
4477 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
4478 	}
4479 	mutex_unlock(&hba->dev_cmd.lock);
4480 	ufshcd_release(hba);
4481 
4482 	if (err)
4483 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
4484 	return err;
4485 }
4486 
4487 /**
4488  * ufshcd_set_queue_depth - set lun queue depth
4489  * @sdev: pointer to SCSI device
4490  *
4491  * Read bLUQueueDepth value and activate scsi tagged command
4492  * queueing. For WLUN, queue depth is set to 1. For best-effort
4493  * cases (bLUQueueDepth = 0) the queue depth is set to a maximum
4494  * value that host can queue.
4495  */
ufshcd_set_queue_depth(struct scsi_device * sdev)4496 static void ufshcd_set_queue_depth(struct scsi_device *sdev)
4497 {
4498 	int ret = 0;
4499 	u8 lun_qdepth;
4500 	struct ufs_hba *hba;
4501 
4502 	hba = shost_priv(sdev->host);
4503 
4504 	lun_qdepth = hba->nutrs;
4505 	ret = ufshcd_read_unit_desc_param(hba,
4506 					  ufshcd_scsi_to_upiu_lun(sdev->lun),
4507 					  UNIT_DESC_PARAM_LU_Q_DEPTH,
4508 					  &lun_qdepth,
4509 					  sizeof(lun_qdepth));
4510 
4511 	/* Some WLUN doesn't support unit descriptor */
4512 	if (ret == -EOPNOTSUPP)
4513 		lun_qdepth = 1;
4514 	else if (!lun_qdepth)
4515 		/* eventually, we can figure out the real queue depth */
4516 		lun_qdepth = hba->nutrs;
4517 	else
4518 		lun_qdepth = min_t(int, lun_qdepth, hba->nutrs);
4519 
4520 	dev_dbg(hba->dev, "%s: activate tcq with queue depth %d\n",
4521 			__func__, lun_qdepth);
4522 	scsi_change_queue_depth(sdev, lun_qdepth);
4523 }
4524 
4525 /*
4526  * ufshcd_get_lu_wp - returns the "b_lu_write_protect" from UNIT DESCRIPTOR
4527  * @hba: per-adapter instance
4528  * @lun: UFS device lun id
4529  * @b_lu_write_protect: pointer to buffer to hold the LU's write protect info
4530  *
4531  * Returns 0 in case of success and b_lu_write_protect status would be returned
4532  * @b_lu_write_protect parameter.
4533  * Returns -ENOTSUPP if reading b_lu_write_protect is not supported.
4534  * Returns -EINVAL in case of invalid parameters passed to this function.
4535  */
ufshcd_get_lu_wp(struct ufs_hba * hba,u8 lun,u8 * b_lu_write_protect)4536 static int ufshcd_get_lu_wp(struct ufs_hba *hba,
4537 			    u8 lun,
4538 			    u8 *b_lu_write_protect)
4539 {
4540 	int ret;
4541 
4542 	if (!b_lu_write_protect)
4543 		ret = -EINVAL;
4544 	/*
4545 	 * According to UFS device spec, RPMB LU can't be write
4546 	 * protected so skip reading bLUWriteProtect parameter for
4547 	 * it. For other W-LUs, UNIT DESCRIPTOR is not available.
4548 	 */
4549 	else if (lun >= UFS_UPIU_MAX_GENERAL_LUN)
4550 		ret = -ENOTSUPP;
4551 	else
4552 		ret = ufshcd_read_unit_desc_param(hba,
4553 					  lun,
4554 					  UNIT_DESC_PARAM_LU_WR_PROTECT,
4555 					  b_lu_write_protect,
4556 					  sizeof(*b_lu_write_protect));
4557 	return ret;
4558 }
4559 
4560 /**
4561  * ufshcd_get_lu_power_on_wp_status - get LU's power on write protect
4562  * status
4563  * @hba: per-adapter instance
4564  * @sdev: pointer to SCSI device
4565  *
4566  */
ufshcd_get_lu_power_on_wp_status(struct ufs_hba * hba,struct scsi_device * sdev)4567 static inline void ufshcd_get_lu_power_on_wp_status(struct ufs_hba *hba,
4568 						    struct scsi_device *sdev)
4569 {
4570 	if (hba->dev_info.f_power_on_wp_en &&
4571 	    !hba->dev_info.is_lu_power_on_wp) {
4572 		u8 b_lu_write_protect;
4573 
4574 		if (!ufshcd_get_lu_wp(hba, ufshcd_scsi_to_upiu_lun(sdev->lun),
4575 				      &b_lu_write_protect) &&
4576 		    (b_lu_write_protect == UFS_LU_POWER_ON_WP))
4577 			hba->dev_info.is_lu_power_on_wp = true;
4578 	}
4579 }
4580 
4581 /**
4582  * ufshcd_slave_alloc - handle initial SCSI device configurations
4583  * @sdev: pointer to SCSI device
4584  *
4585  * Returns success
4586  */
ufshcd_slave_alloc(struct scsi_device * sdev)4587 static int ufshcd_slave_alloc(struct scsi_device *sdev)
4588 {
4589 	struct ufs_hba *hba;
4590 
4591 	hba = shost_priv(sdev->host);
4592 
4593 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
4594 	sdev->use_10_for_ms = 1;
4595 
4596 	/* allow SCSI layer to restart the device in case of errors */
4597 	sdev->allow_restart = 1;
4598 
4599 	/* REPORT SUPPORTED OPERATION CODES is not supported */
4600 	sdev->no_report_opcodes = 1;
4601 
4602 	/* WRITE_SAME command is not supported */
4603 	sdev->no_write_same = 1;
4604 
4605 	ufshcd_set_queue_depth(sdev);
4606 
4607 	ufshcd_get_lu_power_on_wp_status(hba, sdev);
4608 
4609 	return 0;
4610 }
4611 
4612 /**
4613  * ufshcd_change_queue_depth - change queue depth
4614  * @sdev: pointer to SCSI device
4615  * @depth: required depth to set
4616  *
4617  * Change queue depth and make sure the max. limits are not crossed.
4618  */
ufshcd_change_queue_depth(struct scsi_device * sdev,int depth)4619 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
4620 {
4621 	struct ufs_hba *hba = shost_priv(sdev->host);
4622 
4623 	if (depth > hba->nutrs)
4624 		depth = hba->nutrs;
4625 	return scsi_change_queue_depth(sdev, depth);
4626 }
4627 
4628 /**
4629  * ufshcd_slave_configure - adjust SCSI device configurations
4630  * @sdev: pointer to SCSI device
4631  */
ufshcd_slave_configure(struct scsi_device * sdev)4632 static int ufshcd_slave_configure(struct scsi_device *sdev)
4633 {
4634 	struct request_queue *q = sdev->request_queue;
4635 
4636 	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
4637 	return 0;
4638 }
4639 
4640 /**
4641  * ufshcd_slave_destroy - remove SCSI device configurations
4642  * @sdev: pointer to SCSI device
4643  */
ufshcd_slave_destroy(struct scsi_device * sdev)4644 static void ufshcd_slave_destroy(struct scsi_device *sdev)
4645 {
4646 	struct ufs_hba *hba;
4647 
4648 	hba = shost_priv(sdev->host);
4649 	/* Drop the reference as it won't be needed anymore */
4650 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
4651 		unsigned long flags;
4652 
4653 		spin_lock_irqsave(hba->host->host_lock, flags);
4654 		hba->sdev_ufs_device = NULL;
4655 		spin_unlock_irqrestore(hba->host->host_lock, flags);
4656 	}
4657 }
4658 
4659 /**
4660  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
4661  * @lrbp: pointer to local reference block of completed command
4662  * @scsi_status: SCSI command status
4663  *
4664  * Returns value base on SCSI command status
4665  */
4666 static inline int
ufshcd_scsi_cmd_status(struct ufshcd_lrb * lrbp,int scsi_status)4667 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
4668 {
4669 	int result = 0;
4670 
4671 	switch (scsi_status) {
4672 	case SAM_STAT_CHECK_CONDITION:
4673 		ufshcd_copy_sense_data(lrbp);
4674 		/* fallthrough */
4675 	case SAM_STAT_GOOD:
4676 		result |= DID_OK << 16 |
4677 			  COMMAND_COMPLETE << 8 |
4678 			  scsi_status;
4679 		break;
4680 	case SAM_STAT_TASK_SET_FULL:
4681 	case SAM_STAT_BUSY:
4682 	case SAM_STAT_TASK_ABORTED:
4683 		ufshcd_copy_sense_data(lrbp);
4684 		result |= scsi_status;
4685 		break;
4686 	default:
4687 		result |= DID_ERROR << 16;
4688 		break;
4689 	} /* end of switch */
4690 
4691 	return result;
4692 }
4693 
4694 /**
4695  * ufshcd_transfer_rsp_status - Get overall status of the response
4696  * @hba: per adapter instance
4697  * @lrbp: pointer to local reference block of completed command
4698  *
4699  * Returns result of the command to notify SCSI midlayer
4700  */
4701 static inline int
ufshcd_transfer_rsp_status(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)4702 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
4703 {
4704 	int result = 0;
4705 	int scsi_status;
4706 	int ocs;
4707 
4708 	/* overall command status of utrd */
4709 	ocs = ufshcd_get_tr_ocs(lrbp);
4710 
4711 	switch (ocs) {
4712 	case OCS_SUCCESS:
4713 		result = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
4714 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
4715 		switch (result) {
4716 		case UPIU_TRANSACTION_RESPONSE:
4717 			/*
4718 			 * get the response UPIU result to extract
4719 			 * the SCSI command status
4720 			 */
4721 			result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr);
4722 
4723 			/*
4724 			 * get the result based on SCSI status response
4725 			 * to notify the SCSI midlayer of the command status
4726 			 */
4727 			scsi_status = result & MASK_SCSI_STATUS;
4728 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
4729 
4730 			/*
4731 			 * Currently we are only supporting BKOPs exception
4732 			 * events hence we can ignore BKOPs exception event
4733 			 * during power management callbacks. BKOPs exception
4734 			 * event is not expected to be raised in runtime suspend
4735 			 * callback as it allows the urgent bkops.
4736 			 * During system suspend, we are anyway forcefully
4737 			 * disabling the bkops and if urgent bkops is needed
4738 			 * it will be enabled on system resume. Long term
4739 			 * solution could be to abort the system suspend if
4740 			 * UFS device needs urgent BKOPs.
4741 			 */
4742 			if (!hba->pm_op_in_progress &&
4743 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
4744 				schedule_work(&hba->eeh_work);
4745 			break;
4746 		case UPIU_TRANSACTION_REJECT_UPIU:
4747 			/* TODO: handle Reject UPIU Response */
4748 			result = DID_ERROR << 16;
4749 			dev_err(hba->dev,
4750 				"Reject UPIU not fully implemented\n");
4751 			break;
4752 		default:
4753 			dev_err(hba->dev,
4754 				"Unexpected request response code = %x\n",
4755 				result);
4756 			result = DID_ERROR << 16;
4757 			break;
4758 		}
4759 		break;
4760 	case OCS_ABORTED:
4761 		result |= DID_ABORT << 16;
4762 		break;
4763 	case OCS_INVALID_COMMAND_STATUS:
4764 		result |= DID_REQUEUE << 16;
4765 		break;
4766 	case OCS_INVALID_CMD_TABLE_ATTR:
4767 	case OCS_INVALID_PRDT_ATTR:
4768 	case OCS_MISMATCH_DATA_BUF_SIZE:
4769 	case OCS_MISMATCH_RESP_UPIU_SIZE:
4770 	case OCS_PEER_COMM_FAILURE:
4771 	case OCS_FATAL_ERROR:
4772 	default:
4773 		result |= DID_ERROR << 16;
4774 		dev_err(hba->dev,
4775 				"OCS error from controller = %x for tag %d\n",
4776 				ocs, lrbp->task_tag);
4777 		ufshcd_print_host_regs(hba);
4778 		ufshcd_print_host_state(hba);
4779 		break;
4780 	} /* end of switch */
4781 
4782 	if (host_byte(result) != DID_OK)
4783 		ufshcd_print_trs(hba, 1 << lrbp->task_tag, true);
4784 	return result;
4785 }
4786 
4787 /**
4788  * ufshcd_uic_cmd_compl - handle completion of uic command
4789  * @hba: per adapter instance
4790  * @intr_status: interrupt status generated by the controller
4791  */
ufshcd_uic_cmd_compl(struct ufs_hba * hba,u32 intr_status)4792 static void ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
4793 {
4794 	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
4795 		hba->active_uic_cmd->argument2 |=
4796 			ufshcd_get_uic_cmd_result(hba);
4797 		hba->active_uic_cmd->argument3 =
4798 			ufshcd_get_dme_attr_val(hba);
4799 		complete(&hba->active_uic_cmd->done);
4800 	}
4801 
4802 	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done)
4803 		complete(hba->uic_async_done);
4804 }
4805 
4806 /**
4807  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
4808  * @hba: per adapter instance
4809  * @completed_reqs: requests to complete
4810  */
__ufshcd_transfer_req_compl(struct ufs_hba * hba,unsigned long completed_reqs)4811 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
4812 					unsigned long completed_reqs)
4813 {
4814 	struct ufshcd_lrb *lrbp;
4815 	struct scsi_cmnd *cmd;
4816 	int result;
4817 	int index;
4818 
4819 	for_each_set_bit(index, &completed_reqs, hba->nutrs) {
4820 		lrbp = &hba->lrb[index];
4821 		cmd = lrbp->cmd;
4822 		if (cmd) {
4823 			ufshcd_add_command_trace(hba, index, "complete");
4824 			result = ufshcd_transfer_rsp_status(hba, lrbp);
4825 			scsi_dma_unmap(cmd);
4826 			cmd->result = result;
4827 			/* Mark completed command as NULL in LRB */
4828 			lrbp->cmd = NULL;
4829 			clear_bit_unlock(index, &hba->lrb_in_use);
4830 			/* Do not touch lrbp after scsi done */
4831 			cmd->scsi_done(cmd);
4832 			__ufshcd_release(hba);
4833 		} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
4834 			lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
4835 			if (hba->dev_cmd.complete) {
4836 				ufshcd_add_command_trace(hba, index,
4837 						"dev_complete");
4838 				complete(hba->dev_cmd.complete);
4839 			}
4840 		}
4841 		if (ufshcd_is_clkscaling_supported(hba))
4842 			hba->clk_scaling.active_reqs--;
4843 
4844 		lrbp->compl_time_stamp = ktime_get();
4845 	}
4846 
4847 	/* clear corresponding bits of completed commands */
4848 	hba->outstanding_reqs ^= completed_reqs;
4849 
4850 	ufshcd_clk_scaling_update_busy(hba);
4851 
4852 	/* we might have free'd some tags above */
4853 	wake_up(&hba->dev_cmd.tag_wq);
4854 }
4855 
4856 /**
4857  * ufshcd_transfer_req_compl - handle SCSI and query command completion
4858  * @hba: per adapter instance
4859  */
ufshcd_transfer_req_compl(struct ufs_hba * hba)4860 static void ufshcd_transfer_req_compl(struct ufs_hba *hba)
4861 {
4862 	unsigned long completed_reqs;
4863 	u32 tr_doorbell;
4864 
4865 	/* Resetting interrupt aggregation counters first and reading the
4866 	 * DOOR_BELL afterward allows us to handle all the completed requests.
4867 	 * In order to prevent other interrupts starvation the DB is read once
4868 	 * after reset. The down side of this solution is the possibility of
4869 	 * false interrupt if device completes another request after resetting
4870 	 * aggregation and before reading the DB.
4871 	 */
4872 	if (ufshcd_is_intr_aggr_allowed(hba) &&
4873 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
4874 		ufshcd_reset_intr_aggr(hba);
4875 
4876 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
4877 	completed_reqs = tr_doorbell ^ hba->outstanding_reqs;
4878 
4879 	__ufshcd_transfer_req_compl(hba, completed_reqs);
4880 }
4881 
4882 /**
4883  * ufshcd_disable_ee - disable exception event
4884  * @hba: per-adapter instance
4885  * @mask: exception event to disable
4886  *
4887  * Disables exception event in the device so that the EVENT_ALERT
4888  * bit is not set.
4889  *
4890  * Returns zero on success, non-zero error value on failure.
4891  */
ufshcd_disable_ee(struct ufs_hba * hba,u16 mask)4892 static int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
4893 {
4894 	int err = 0;
4895 	u32 val;
4896 
4897 	if (!(hba->ee_ctrl_mask & mask))
4898 		goto out;
4899 
4900 	val = hba->ee_ctrl_mask & ~mask;
4901 	val &= MASK_EE_STATUS;
4902 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
4903 			QUERY_ATTR_IDN_EE_CONTROL, 0, 0, &val);
4904 	if (!err)
4905 		hba->ee_ctrl_mask &= ~mask;
4906 out:
4907 	return err;
4908 }
4909 
4910 /**
4911  * ufshcd_enable_ee - enable exception event
4912  * @hba: per-adapter instance
4913  * @mask: exception event to enable
4914  *
4915  * Enable corresponding exception event in the device to allow
4916  * device to alert host in critical scenarios.
4917  *
4918  * Returns zero on success, non-zero error value on failure.
4919  */
ufshcd_enable_ee(struct ufs_hba * hba,u16 mask)4920 static int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
4921 {
4922 	int err = 0;
4923 	u32 val;
4924 
4925 	if (hba->ee_ctrl_mask & mask)
4926 		goto out;
4927 
4928 	val = hba->ee_ctrl_mask | mask;
4929 	val &= MASK_EE_STATUS;
4930 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
4931 			QUERY_ATTR_IDN_EE_CONTROL, 0, 0, &val);
4932 	if (!err)
4933 		hba->ee_ctrl_mask |= mask;
4934 out:
4935 	return err;
4936 }
4937 
4938 /**
4939  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
4940  * @hba: per-adapter instance
4941  *
4942  * Allow device to manage background operations on its own. Enabling
4943  * this might lead to inconsistent latencies during normal data transfers
4944  * as the device is allowed to manage its own way of handling background
4945  * operations.
4946  *
4947  * Returns zero on success, non-zero on failure.
4948  */
ufshcd_enable_auto_bkops(struct ufs_hba * hba)4949 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
4950 {
4951 	int err = 0;
4952 
4953 	if (hba->auto_bkops_enabled)
4954 		goto out;
4955 
4956 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4957 			QUERY_FLAG_IDN_BKOPS_EN, NULL);
4958 	if (err) {
4959 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
4960 				__func__, err);
4961 		goto out;
4962 	}
4963 
4964 	hba->auto_bkops_enabled = true;
4965 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
4966 
4967 	/* No need of URGENT_BKOPS exception from the device */
4968 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
4969 	if (err)
4970 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
4971 				__func__, err);
4972 out:
4973 	return err;
4974 }
4975 
4976 /**
4977  * ufshcd_disable_auto_bkops - block device in doing background operations
4978  * @hba: per-adapter instance
4979  *
4980  * Disabling background operations improves command response latency but
4981  * has drawback of device moving into critical state where the device is
4982  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
4983  * host is idle so that BKOPS are managed effectively without any negative
4984  * impacts.
4985  *
4986  * Returns zero on success, non-zero on failure.
4987  */
ufshcd_disable_auto_bkops(struct ufs_hba * hba)4988 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
4989 {
4990 	int err = 0;
4991 
4992 	if (!hba->auto_bkops_enabled)
4993 		goto out;
4994 
4995 	/*
4996 	 * If host assisted BKOPs is to be enabled, make sure
4997 	 * urgent bkops exception is allowed.
4998 	 */
4999 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5000 	if (err) {
5001 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5002 				__func__, err);
5003 		goto out;
5004 	}
5005 
5006 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5007 			QUERY_FLAG_IDN_BKOPS_EN, NULL);
5008 	if (err) {
5009 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5010 				__func__, err);
5011 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5012 		goto out;
5013 	}
5014 
5015 	hba->auto_bkops_enabled = false;
5016 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5017 out:
5018 	return err;
5019 }
5020 
5021 /**
5022  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5023  * @hba: per adapter instance
5024  *
5025  * After a device reset the device may toggle the BKOPS_EN flag
5026  * to default value. The s/w tracking variables should be updated
5027  * as well. This function would change the auto-bkops state based on
5028  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5029  */
ufshcd_force_reset_auto_bkops(struct ufs_hba * hba)5030 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5031 {
5032 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5033 		hba->auto_bkops_enabled = false;
5034 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5035 		ufshcd_enable_auto_bkops(hba);
5036 	} else {
5037 		hba->auto_bkops_enabled = true;
5038 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5039 		ufshcd_disable_auto_bkops(hba);
5040 	}
5041 }
5042 
ufshcd_get_bkops_status(struct ufs_hba * hba,u32 * status)5043 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5044 {
5045 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5046 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5047 }
5048 
5049 /**
5050  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5051  * @hba: per-adapter instance
5052  * @status: bkops_status value
5053  *
5054  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5055  * flag in the device to permit background operations if the device
5056  * bkops_status is greater than or equal to "status" argument passed to
5057  * this function, disable otherwise.
5058  *
5059  * Returns 0 for success, non-zero in case of failure.
5060  *
5061  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5062  * to know whether auto bkops is enabled or disabled after this function
5063  * returns control to it.
5064  */
ufshcd_bkops_ctrl(struct ufs_hba * hba,enum bkops_status status)5065 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5066 			     enum bkops_status status)
5067 {
5068 	int err;
5069 	u32 curr_status = 0;
5070 
5071 	err = ufshcd_get_bkops_status(hba, &curr_status);
5072 	if (err) {
5073 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5074 				__func__, err);
5075 		goto out;
5076 	} else if (curr_status > BKOPS_STATUS_MAX) {
5077 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5078 				__func__, curr_status);
5079 		err = -EINVAL;
5080 		goto out;
5081 	}
5082 
5083 	if (curr_status >= status)
5084 		err = ufshcd_enable_auto_bkops(hba);
5085 	else
5086 		err = ufshcd_disable_auto_bkops(hba);
5087 out:
5088 	return err;
5089 }
5090 
5091 /**
5092  * ufshcd_urgent_bkops - handle urgent bkops exception event
5093  * @hba: per-adapter instance
5094  *
5095  * Enable fBackgroundOpsEn flag in the device to permit background
5096  * operations.
5097  *
5098  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5099  * and negative error value for any other failure.
5100  */
ufshcd_urgent_bkops(struct ufs_hba * hba)5101 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5102 {
5103 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5104 }
5105 
ufshcd_get_ee_status(struct ufs_hba * hba,u32 * status)5106 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5107 {
5108 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5109 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5110 }
5111 
ufshcd_bkops_exception_event_handler(struct ufs_hba * hba)5112 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5113 {
5114 	int err;
5115 	u32 curr_status = 0;
5116 
5117 	if (hba->is_urgent_bkops_lvl_checked)
5118 		goto enable_auto_bkops;
5119 
5120 	err = ufshcd_get_bkops_status(hba, &curr_status);
5121 	if (err) {
5122 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5123 				__func__, err);
5124 		goto out;
5125 	}
5126 
5127 	/*
5128 	 * We are seeing that some devices are raising the urgent bkops
5129 	 * exception events even when BKOPS status doesn't indicate performace
5130 	 * impacted or critical. Handle these device by determining their urgent
5131 	 * bkops status at runtime.
5132 	 */
5133 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5134 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5135 				__func__, curr_status);
5136 		/* update the current status as the urgent bkops level */
5137 		hba->urgent_bkops_lvl = curr_status;
5138 		hba->is_urgent_bkops_lvl_checked = true;
5139 	}
5140 
5141 enable_auto_bkops:
5142 	err = ufshcd_enable_auto_bkops(hba);
5143 out:
5144 	if (err < 0)
5145 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5146 				__func__, err);
5147 }
5148 
5149 /**
5150  * ufshcd_exception_event_handler - handle exceptions raised by device
5151  * @work: pointer to work data
5152  *
5153  * Read bExceptionEventStatus attribute from the device and handle the
5154  * exception event accordingly.
5155  */
ufshcd_exception_event_handler(struct work_struct * work)5156 static void ufshcd_exception_event_handler(struct work_struct *work)
5157 {
5158 	struct ufs_hba *hba;
5159 	int err;
5160 	u32 status = 0;
5161 	hba = container_of(work, struct ufs_hba, eeh_work);
5162 
5163 	pm_runtime_get_sync(hba->dev);
5164 	scsi_block_requests(hba->host);
5165 	err = ufshcd_get_ee_status(hba, &status);
5166 	if (err) {
5167 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
5168 				__func__, err);
5169 		goto out;
5170 	}
5171 
5172 	status &= hba->ee_ctrl_mask;
5173 
5174 	if (status & MASK_EE_URGENT_BKOPS)
5175 		ufshcd_bkops_exception_event_handler(hba);
5176 
5177 out:
5178 	scsi_unblock_requests(hba->host);
5179 	pm_runtime_put_sync(hba->dev);
5180 	return;
5181 }
5182 
5183 /* Complete requests that have door-bell cleared */
ufshcd_complete_requests(struct ufs_hba * hba)5184 static void ufshcd_complete_requests(struct ufs_hba *hba)
5185 {
5186 	ufshcd_transfer_req_compl(hba);
5187 	ufshcd_tmc_handler(hba);
5188 }
5189 
5190 /**
5191  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
5192  *				to recover from the DL NAC errors or not.
5193  * @hba: per-adapter instance
5194  *
5195  * Returns true if error handling is required, false otherwise
5196  */
ufshcd_quirk_dl_nac_errors(struct ufs_hba * hba)5197 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
5198 {
5199 	unsigned long flags;
5200 	bool err_handling = true;
5201 
5202 	spin_lock_irqsave(hba->host->host_lock, flags);
5203 	/*
5204 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
5205 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
5206 	 */
5207 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
5208 		goto out;
5209 
5210 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
5211 	    ((hba->saved_err & UIC_ERROR) &&
5212 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
5213 		goto out;
5214 
5215 	if ((hba->saved_err & UIC_ERROR) &&
5216 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
5217 		int err;
5218 		/*
5219 		 * wait for 50ms to see if we can get any other errors or not.
5220 		 */
5221 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5222 		msleep(50);
5223 		spin_lock_irqsave(hba->host->host_lock, flags);
5224 
5225 		/*
5226 		 * now check if we have got any other severe errors other than
5227 		 * DL NAC error?
5228 		 */
5229 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
5230 		    ((hba->saved_err & UIC_ERROR) &&
5231 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
5232 			goto out;
5233 
5234 		/*
5235 		 * As DL NAC is the only error received so far, send out NOP
5236 		 * command to confirm if link is still active or not.
5237 		 *   - If we don't get any response then do error recovery.
5238 		 *   - If we get response then clear the DL NAC error bit.
5239 		 */
5240 
5241 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5242 		err = ufshcd_verify_dev_init(hba);
5243 		spin_lock_irqsave(hba->host->host_lock, flags);
5244 
5245 		if (err)
5246 			goto out;
5247 
5248 		/* Link seems to be alive hence ignore the DL NAC errors */
5249 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
5250 			hba->saved_err &= ~UIC_ERROR;
5251 		/* clear NAC error */
5252 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
5253 		if (!hba->saved_uic_err) {
5254 			err_handling = false;
5255 			goto out;
5256 		}
5257 	}
5258 out:
5259 	spin_unlock_irqrestore(hba->host->host_lock, flags);
5260 	return err_handling;
5261 }
5262 
5263 /**
5264  * ufshcd_err_handler - handle UFS errors that require s/w attention
5265  * @work: pointer to work structure
5266  */
ufshcd_err_handler(struct work_struct * work)5267 static void ufshcd_err_handler(struct work_struct *work)
5268 {
5269 	struct ufs_hba *hba;
5270 	unsigned long flags;
5271 	u32 err_xfer = 0;
5272 	u32 err_tm = 0;
5273 	int err = 0;
5274 	int tag;
5275 	bool needs_reset = false;
5276 
5277 	hba = container_of(work, struct ufs_hba, eh_work);
5278 
5279 	pm_runtime_get_sync(hba->dev);
5280 	ufshcd_hold(hba, false);
5281 
5282 	spin_lock_irqsave(hba->host->host_lock, flags);
5283 	if (hba->ufshcd_state == UFSHCD_STATE_RESET)
5284 		goto out;
5285 
5286 	hba->ufshcd_state = UFSHCD_STATE_RESET;
5287 	ufshcd_set_eh_in_progress(hba);
5288 
5289 	/* Complete requests that have door-bell cleared by h/w */
5290 	ufshcd_complete_requests(hba);
5291 
5292 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
5293 		bool ret;
5294 
5295 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5296 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
5297 		ret = ufshcd_quirk_dl_nac_errors(hba);
5298 		spin_lock_irqsave(hba->host->host_lock, flags);
5299 		if (!ret)
5300 			goto skip_err_handling;
5301 	}
5302 	if ((hba->saved_err & INT_FATAL_ERRORS) ||
5303 	    (hba->saved_err & UFSHCD_UIC_HIBERN8_MASK) ||
5304 	    ((hba->saved_err & UIC_ERROR) &&
5305 	    (hba->saved_uic_err & (UFSHCD_UIC_DL_PA_INIT_ERROR |
5306 				   UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
5307 				   UFSHCD_UIC_DL_TCx_REPLAY_ERROR))))
5308 		needs_reset = true;
5309 
5310 	/*
5311 	 * if host reset is required then skip clearing the pending
5312 	 * transfers forcefully because they will automatically get
5313 	 * cleared after link startup.
5314 	 */
5315 	if (needs_reset)
5316 		goto skip_pending_xfer_clear;
5317 
5318 	/* release lock as clear command might sleep */
5319 	spin_unlock_irqrestore(hba->host->host_lock, flags);
5320 	/* Clear pending transfer requests */
5321 	for_each_set_bit(tag, &hba->outstanding_reqs, hba->nutrs) {
5322 		if (ufshcd_clear_cmd(hba, tag)) {
5323 			err_xfer = true;
5324 			goto lock_skip_pending_xfer_clear;
5325 		}
5326 	}
5327 
5328 	/* Clear pending task management requests */
5329 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
5330 		if (ufshcd_clear_tm_cmd(hba, tag)) {
5331 			err_tm = true;
5332 			goto lock_skip_pending_xfer_clear;
5333 		}
5334 	}
5335 
5336 lock_skip_pending_xfer_clear:
5337 	spin_lock_irqsave(hba->host->host_lock, flags);
5338 
5339 	/* Complete the requests that are cleared by s/w */
5340 	ufshcd_complete_requests(hba);
5341 
5342 	if (err_xfer || err_tm)
5343 		needs_reset = true;
5344 
5345 skip_pending_xfer_clear:
5346 	/* Fatal errors need reset */
5347 	if (needs_reset) {
5348 		unsigned long max_doorbells = (1UL << hba->nutrs) - 1;
5349 
5350 		/*
5351 		 * ufshcd_reset_and_restore() does the link reinitialization
5352 		 * which will need atleast one empty doorbell slot to send the
5353 		 * device management commands (NOP and query commands).
5354 		 * If there is no slot empty at this moment then free up last
5355 		 * slot forcefully.
5356 		 */
5357 		if (hba->outstanding_reqs == max_doorbells)
5358 			__ufshcd_transfer_req_compl(hba,
5359 						    (1UL << (hba->nutrs - 1)));
5360 
5361 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5362 		err = ufshcd_reset_and_restore(hba);
5363 		spin_lock_irqsave(hba->host->host_lock, flags);
5364 		if (err) {
5365 			dev_err(hba->dev, "%s: reset and restore failed\n",
5366 					__func__);
5367 			hba->ufshcd_state = UFSHCD_STATE_ERROR;
5368 		}
5369 		/*
5370 		 * Inform scsi mid-layer that we did reset and allow to handle
5371 		 * Unit Attention properly.
5372 		 */
5373 		scsi_report_bus_reset(hba->host, 0);
5374 		hba->saved_err = 0;
5375 		hba->saved_uic_err = 0;
5376 	}
5377 
5378 skip_err_handling:
5379 	if (!needs_reset) {
5380 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
5381 		if (hba->saved_err || hba->saved_uic_err)
5382 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
5383 			    __func__, hba->saved_err, hba->saved_uic_err);
5384 	}
5385 
5386 	ufshcd_clear_eh_in_progress(hba);
5387 
5388 out:
5389 	spin_unlock_irqrestore(hba->host->host_lock, flags);
5390 	ufshcd_scsi_unblock_requests(hba);
5391 	ufshcd_release(hba);
5392 	pm_runtime_put_sync(hba->dev);
5393 }
5394 
5395 /**
5396  * ufshcd_update_uic_error - check and set fatal UIC error flags.
5397  * @hba: per-adapter instance
5398  */
ufshcd_update_uic_error(struct ufs_hba * hba)5399 static void ufshcd_update_uic_error(struct ufs_hba *hba)
5400 {
5401 	u32 reg;
5402 
5403 	/* PHY layer lane error */
5404 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5405 	/* Ignore LINERESET indication, as this is not an error */
5406 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
5407 			(reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)) {
5408 		/*
5409 		 * To know whether this error is fatal or not, DB timeout
5410 		 * must be checked but this error is handled separately.
5411 		 */
5412 		dev_dbg(hba->dev, "%s: UIC Lane error reported\n", __func__);
5413 		ufshcd_update_reg_hist(&hba->ufs_stats.pa_err, reg);
5414 	}
5415 
5416 	/* PA_INIT_ERROR is fatal and needs UIC reset */
5417 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
5418 	if (reg)
5419 		ufshcd_update_reg_hist(&hba->ufs_stats.dl_err, reg);
5420 
5421 	if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
5422 		hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
5423 	else if (hba->dev_quirks &
5424 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
5425 		if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
5426 			hba->uic_error |=
5427 				UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
5428 		else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
5429 			hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
5430 	}
5431 
5432 	/* UIC NL/TL/DME errors needs software retry */
5433 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
5434 	if (reg) {
5435 		ufshcd_update_reg_hist(&hba->ufs_stats.nl_err, reg);
5436 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
5437 	}
5438 
5439 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
5440 	if (reg) {
5441 		ufshcd_update_reg_hist(&hba->ufs_stats.tl_err, reg);
5442 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
5443 	}
5444 
5445 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
5446 	if (reg) {
5447 		ufshcd_update_reg_hist(&hba->ufs_stats.dme_err, reg);
5448 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
5449 	}
5450 
5451 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
5452 			__func__, hba->uic_error);
5453 }
5454 
ufshcd_is_auto_hibern8_error(struct ufs_hba * hba,u32 intr_mask)5455 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5456 					 u32 intr_mask)
5457 {
5458 	if (!ufshcd_is_auto_hibern8_supported(hba))
5459 		return false;
5460 
5461 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5462 		return false;
5463 
5464 	if (hba->active_uic_cmd &&
5465 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5466 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5467 		return false;
5468 
5469 	return true;
5470 }
5471 
5472 /**
5473  * ufshcd_check_errors - Check for errors that need s/w attention
5474  * @hba: per-adapter instance
5475  */
ufshcd_check_errors(struct ufs_hba * hba)5476 static void ufshcd_check_errors(struct ufs_hba *hba)
5477 {
5478 	bool queue_eh_work = false;
5479 
5480 	if (hba->errors & INT_FATAL_ERRORS) {
5481 		ufshcd_update_reg_hist(&hba->ufs_stats.fatal_err, hba->errors);
5482 		queue_eh_work = true;
5483 	}
5484 
5485 	if (hba->errors & UIC_ERROR) {
5486 		hba->uic_error = 0;
5487 		ufshcd_update_uic_error(hba);
5488 		if (hba->uic_error)
5489 			queue_eh_work = true;
5490 	}
5491 
5492 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
5493 		dev_err(hba->dev,
5494 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
5495 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
5496 			"Enter" : "Exit",
5497 			hba->errors, ufshcd_get_upmcrs(hba));
5498 		ufshcd_update_reg_hist(&hba->ufs_stats.auto_hibern8_err,
5499 				       hba->errors);
5500 		queue_eh_work = true;
5501 	}
5502 
5503 	if (queue_eh_work) {
5504 		/*
5505 		 * update the transfer error masks to sticky bits, let's do this
5506 		 * irrespective of current ufshcd_state.
5507 		 */
5508 		hba->saved_err |= hba->errors;
5509 		hba->saved_uic_err |= hba->uic_error;
5510 
5511 		/* handle fatal errors only when link is functional */
5512 		if (hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL) {
5513 			/* block commands from scsi mid-layer */
5514 			ufshcd_scsi_block_requests(hba);
5515 
5516 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED;
5517 
5518 			/* dump controller state before resetting */
5519 			if (hba->saved_err & (INT_FATAL_ERRORS | UIC_ERROR)) {
5520 				bool pr_prdt = !!(hba->saved_err &
5521 						SYSTEM_BUS_FATAL_ERROR);
5522 
5523 				dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
5524 					__func__, hba->saved_err,
5525 					hba->saved_uic_err);
5526 
5527 				ufshcd_print_host_regs(hba);
5528 				ufshcd_print_pwr_info(hba);
5529 				ufshcd_print_tmrs(hba, hba->outstanding_tasks);
5530 				ufshcd_print_trs(hba, hba->outstanding_reqs,
5531 							pr_prdt);
5532 			}
5533 			schedule_work(&hba->eh_work);
5534 		}
5535 	}
5536 	/*
5537 	 * if (!queue_eh_work) -
5538 	 * Other errors are either non-fatal where host recovers
5539 	 * itself without s/w intervention or errors that will be
5540 	 * handled by the SCSI core layer.
5541 	 */
5542 }
5543 
5544 /**
5545  * ufshcd_tmc_handler - handle task management function completion
5546  * @hba: per adapter instance
5547  */
ufshcd_tmc_handler(struct ufs_hba * hba)5548 static void ufshcd_tmc_handler(struct ufs_hba *hba)
5549 {
5550 	u32 tm_doorbell;
5551 
5552 	tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
5553 	hba->tm_condition = tm_doorbell ^ hba->outstanding_tasks;
5554 	wake_up(&hba->tm_wq);
5555 }
5556 
5557 /**
5558  * ufshcd_sl_intr - Interrupt service routine
5559  * @hba: per adapter instance
5560  * @intr_status: contains interrupts generated by the controller
5561  */
ufshcd_sl_intr(struct ufs_hba * hba,u32 intr_status)5562 static void ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
5563 {
5564 	hba->errors = UFSHCD_ERROR_MASK & intr_status;
5565 
5566 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5567 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5568 
5569 	if (hba->errors)
5570 		ufshcd_check_errors(hba);
5571 
5572 	if (intr_status & UFSHCD_UIC_MASK)
5573 		ufshcd_uic_cmd_compl(hba, intr_status);
5574 
5575 	if (intr_status & UTP_TASK_REQ_COMPL)
5576 		ufshcd_tmc_handler(hba);
5577 
5578 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
5579 		ufshcd_transfer_req_compl(hba);
5580 }
5581 
5582 /**
5583  * ufshcd_intr - Main interrupt service routine
5584  * @irq: irq number
5585  * @__hba: pointer to adapter instance
5586  *
5587  * Returns IRQ_HANDLED - If interrupt is valid
5588  *		IRQ_NONE - If invalid interrupt
5589  */
ufshcd_intr(int irq,void * __hba)5590 static irqreturn_t ufshcd_intr(int irq, void *__hba)
5591 {
5592 	u32 intr_status, enabled_intr_status;
5593 	irqreturn_t retval = IRQ_NONE;
5594 	struct ufs_hba *hba = __hba;
5595 	int retries = hba->nutrs;
5596 
5597 	spin_lock(hba->host->host_lock);
5598 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
5599 
5600 	/*
5601 	 * There could be max of hba->nutrs reqs in flight and in worst case
5602 	 * if the reqs get finished 1 by 1 after the interrupt status is
5603 	 * read, make sure we handle them by checking the interrupt status
5604 	 * again in a loop until we process all of the reqs before returning.
5605 	 */
5606 	do {
5607 		enabled_intr_status =
5608 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
5609 		if (intr_status)
5610 			ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
5611 		if (enabled_intr_status) {
5612 			ufshcd_sl_intr(hba, enabled_intr_status);
5613 			retval = IRQ_HANDLED;
5614 		}
5615 
5616 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
5617 	} while (intr_status && --retries);
5618 
5619 	spin_unlock(hba->host->host_lock);
5620 	return retval;
5621 }
5622 
ufshcd_clear_tm_cmd(struct ufs_hba * hba,int tag)5623 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
5624 {
5625 	int err = 0;
5626 	u32 mask = 1 << tag;
5627 	unsigned long flags;
5628 
5629 	if (!test_bit(tag, &hba->outstanding_tasks))
5630 		goto out;
5631 
5632 	spin_lock_irqsave(hba->host->host_lock, flags);
5633 	ufshcd_utmrl_clear(hba, tag);
5634 	spin_unlock_irqrestore(hba->host->host_lock, flags);
5635 
5636 	/* poll for max. 1 sec to clear door bell register by h/w */
5637 	err = ufshcd_wait_for_register(hba,
5638 			REG_UTP_TASK_REQ_DOOR_BELL,
5639 			mask, 0, 1000, 1000, true);
5640 out:
5641 	return err;
5642 }
5643 
__ufshcd_issue_tm_cmd(struct ufs_hba * hba,struct utp_task_req_desc * treq,u8 tm_function)5644 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
5645 		struct utp_task_req_desc *treq, u8 tm_function)
5646 {
5647 	struct Scsi_Host *host = hba->host;
5648 	unsigned long flags;
5649 	int free_slot, task_tag, err;
5650 
5651 	/*
5652 	 * Get free slot, sleep if slots are unavailable.
5653 	 * Even though we use wait_event() which sleeps indefinitely,
5654 	 * the maximum wait time is bounded by %TM_CMD_TIMEOUT.
5655 	 */
5656 	wait_event(hba->tm_tag_wq, ufshcd_get_tm_free_slot(hba, &free_slot));
5657 	ufshcd_hold(hba, false);
5658 
5659 	spin_lock_irqsave(host->host_lock, flags);
5660 	task_tag = hba->nutrs + free_slot;
5661 
5662 	treq->req_header.dword_0 |= cpu_to_be32(task_tag);
5663 
5664 	memcpy(hba->utmrdl_base_addr + free_slot, treq, sizeof(*treq));
5665 	ufshcd_vops_setup_task_mgmt(hba, free_slot, tm_function);
5666 
5667 	/* send command to the controller */
5668 	__set_bit(free_slot, &hba->outstanding_tasks);
5669 
5670 	/* Make sure descriptors are ready before ringing the task doorbell */
5671 	wmb();
5672 
5673 	ufshcd_writel(hba, 1 << free_slot, REG_UTP_TASK_REQ_DOOR_BELL);
5674 	/* Make sure that doorbell is committed immediately */
5675 	wmb();
5676 
5677 	spin_unlock_irqrestore(host->host_lock, flags);
5678 
5679 	ufshcd_add_tm_upiu_trace(hba, task_tag, "tm_send");
5680 
5681 	/* wait until the task management command is completed */
5682 	err = wait_event_timeout(hba->tm_wq,
5683 			test_bit(free_slot, &hba->tm_condition),
5684 			msecs_to_jiffies(TM_CMD_TIMEOUT));
5685 	if (!err) {
5686 		ufshcd_add_tm_upiu_trace(hba, task_tag, "tm_complete_err");
5687 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
5688 				__func__, tm_function);
5689 		if (ufshcd_clear_tm_cmd(hba, free_slot))
5690 			dev_WARN(hba->dev, "%s: unable clear tm cmd (slot %d) after timeout\n",
5691 					__func__, free_slot);
5692 		err = -ETIMEDOUT;
5693 	} else {
5694 		err = 0;
5695 		memcpy(treq, hba->utmrdl_base_addr + free_slot, sizeof(*treq));
5696 
5697 		ufshcd_add_tm_upiu_trace(hba, task_tag, "tm_complete");
5698 	}
5699 
5700 	spin_lock_irqsave(hba->host->host_lock, flags);
5701 	__clear_bit(free_slot, &hba->outstanding_tasks);
5702 	spin_unlock_irqrestore(hba->host->host_lock, flags);
5703 
5704 	clear_bit(free_slot, &hba->tm_condition);
5705 	ufshcd_put_tm_slot(hba, free_slot);
5706 	wake_up(&hba->tm_tag_wq);
5707 
5708 	ufshcd_release(hba);
5709 	return err;
5710 }
5711 
5712 /**
5713  * ufshcd_issue_tm_cmd - issues task management commands to controller
5714  * @hba: per adapter instance
5715  * @lun_id: LUN ID to which TM command is sent
5716  * @task_id: task ID to which the TM command is applicable
5717  * @tm_function: task management function opcode
5718  * @tm_response: task management service response return value
5719  *
5720  * Returns non-zero value on error, zero on success.
5721  */
ufshcd_issue_tm_cmd(struct ufs_hba * hba,int lun_id,int task_id,u8 tm_function,u8 * tm_response)5722 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
5723 		u8 tm_function, u8 *tm_response)
5724 {
5725 	struct utp_task_req_desc treq = { { 0 }, };
5726 	int ocs_value, err;
5727 
5728 	/* Configure task request descriptor */
5729 	treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
5730 	treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
5731 
5732 	/* Configure task request UPIU */
5733 	treq.req_header.dword_0 = cpu_to_be32(lun_id << 8) |
5734 				  cpu_to_be32(UPIU_TRANSACTION_TASK_REQ << 24);
5735 	treq.req_header.dword_1 = cpu_to_be32(tm_function << 16);
5736 
5737 	/*
5738 	 * The host shall provide the same value for LUN field in the basic
5739 	 * header and for Input Parameter.
5740 	 */
5741 	treq.input_param1 = cpu_to_be32(lun_id);
5742 	treq.input_param2 = cpu_to_be32(task_id);
5743 
5744 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
5745 	if (err == -ETIMEDOUT)
5746 		return err;
5747 
5748 	ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
5749 	if (ocs_value != OCS_SUCCESS)
5750 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
5751 				__func__, ocs_value);
5752 	else if (tm_response)
5753 		*tm_response = be32_to_cpu(treq.output_param1) &
5754 				MASK_TM_SERVICE_RESP;
5755 	return err;
5756 }
5757 
5758 /**
5759  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
5760  * @hba:	per-adapter instance
5761  * @req_upiu:	upiu request
5762  * @rsp_upiu:	upiu reply
5763  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
5764  * @desc_buff:	pointer to descriptor buffer, NULL if NA
5765  * @buff_len:	descriptor size, 0 if NA
5766  * @desc_op:	descriptor operation
5767  *
5768  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
5769  * Therefore, it "rides" the device management infrastructure: uses its tag and
5770  * tasks work queues.
5771  *
5772  * Since there is only one available tag for device management commands,
5773  * the caller is expected to hold the hba->dev_cmd.lock mutex.
5774  */
ufshcd_issue_devman_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,u8 * desc_buff,int * buff_len,int cmd_type,enum query_opcode desc_op)5775 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
5776 					struct utp_upiu_req *req_upiu,
5777 					struct utp_upiu_req *rsp_upiu,
5778 					u8 *desc_buff, int *buff_len,
5779 					int cmd_type,
5780 					enum query_opcode desc_op)
5781 {
5782 	struct ufshcd_lrb *lrbp;
5783 	int err = 0;
5784 	int tag;
5785 	struct completion wait;
5786 	unsigned long flags;
5787 	u32 upiu_flags;
5788 
5789 	down_read(&hba->clk_scaling_lock);
5790 
5791 	wait_event(hba->dev_cmd.tag_wq, ufshcd_get_dev_cmd_tag(hba, &tag));
5792 
5793 	init_completion(&wait);
5794 	lrbp = &hba->lrb[tag];
5795 	WARN_ON(lrbp->cmd);
5796 
5797 	lrbp->cmd = NULL;
5798 	lrbp->sense_bufflen = 0;
5799 	lrbp->sense_buffer = NULL;
5800 	lrbp->task_tag = tag;
5801 	lrbp->lun = 0;
5802 	lrbp->intr_cmd = true;
5803 	hba->dev_cmd.type = cmd_type;
5804 
5805 	switch (hba->ufs_version) {
5806 	case UFSHCI_VERSION_10:
5807 	case UFSHCI_VERSION_11:
5808 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
5809 		break;
5810 	default:
5811 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
5812 		break;
5813 	}
5814 
5815 	/* update the task tag in the request upiu */
5816 	req_upiu->header.dword_0 |= cpu_to_be32(tag);
5817 
5818 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE);
5819 
5820 	/* just copy the upiu request as it is */
5821 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
5822 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
5823 		/* The Data Segment Area is optional depending upon the query
5824 		 * function value. for WRITE DESCRIPTOR, the data segment
5825 		 * follows right after the tsf.
5826 		 */
5827 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
5828 		*buff_len = 0;
5829 	}
5830 
5831 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
5832 
5833 	hba->dev_cmd.complete = &wait;
5834 
5835 	/* Make sure descriptors are ready before ringing the doorbell */
5836 	wmb();
5837 	spin_lock_irqsave(hba->host->host_lock, flags);
5838 	ufshcd_send_command(hba, tag);
5839 	spin_unlock_irqrestore(hba->host->host_lock, flags);
5840 
5841 	/*
5842 	 * ignore the returning value here - ufshcd_check_query_response is
5843 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
5844 	 * read the response directly ignoring all errors.
5845 	 */
5846 	ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
5847 
5848 	/* just copy the upiu response as it is */
5849 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
5850 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
5851 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
5852 		u16 resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
5853 			       MASK_QUERY_DATA_SEG_LEN;
5854 
5855 		if (*buff_len >= resp_len) {
5856 			memcpy(desc_buff, descp, resp_len);
5857 			*buff_len = resp_len;
5858 		} else {
5859 			dev_warn(hba->dev, "rsp size is bigger than buffer");
5860 			*buff_len = 0;
5861 			err = -EINVAL;
5862 		}
5863 	}
5864 
5865 	ufshcd_put_dev_cmd_tag(hba, tag);
5866 	wake_up(&hba->dev_cmd.tag_wq);
5867 	up_read(&hba->clk_scaling_lock);
5868 	return err;
5869 }
5870 
5871 /**
5872  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
5873  * @hba:	per-adapter instance
5874  * @req_upiu:	upiu request
5875  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
5876  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
5877  * @desc_buff:	pointer to descriptor buffer, NULL if NA
5878  * @buff_len:	descriptor size, 0 if NA
5879  * @desc_op:	descriptor operation
5880  *
5881  * Supports UTP Transfer requests (nop and query), and UTP Task
5882  * Management requests.
5883  * It is up to the caller to fill the upiu conent properly, as it will
5884  * be copied without any further input validations.
5885  */
ufshcd_exec_raw_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,int msgcode,u8 * desc_buff,int * buff_len,enum query_opcode desc_op)5886 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
5887 			     struct utp_upiu_req *req_upiu,
5888 			     struct utp_upiu_req *rsp_upiu,
5889 			     int msgcode,
5890 			     u8 *desc_buff, int *buff_len,
5891 			     enum query_opcode desc_op)
5892 {
5893 	int err;
5894 	int cmd_type = DEV_CMD_TYPE_QUERY;
5895 	struct utp_task_req_desc treq = { { 0 }, };
5896 	int ocs_value;
5897 	u8 tm_f = be32_to_cpu(req_upiu->header.dword_1) >> 16 & MASK_TM_FUNC;
5898 
5899 	switch (msgcode) {
5900 	case UPIU_TRANSACTION_NOP_OUT:
5901 		cmd_type = DEV_CMD_TYPE_NOP;
5902 		/* fall through */
5903 	case UPIU_TRANSACTION_QUERY_REQ:
5904 		ufshcd_hold(hba, false);
5905 		mutex_lock(&hba->dev_cmd.lock);
5906 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
5907 						   desc_buff, buff_len,
5908 						   cmd_type, desc_op);
5909 		mutex_unlock(&hba->dev_cmd.lock);
5910 		ufshcd_release(hba);
5911 
5912 		break;
5913 	case UPIU_TRANSACTION_TASK_REQ:
5914 		treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
5915 		treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
5916 
5917 		memcpy(&treq.req_header, req_upiu, sizeof(*req_upiu));
5918 
5919 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
5920 		if (err == -ETIMEDOUT)
5921 			break;
5922 
5923 		ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
5924 		if (ocs_value != OCS_SUCCESS) {
5925 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
5926 				ocs_value);
5927 			break;
5928 		}
5929 
5930 		memcpy(rsp_upiu, &treq.rsp_header, sizeof(*rsp_upiu));
5931 
5932 		break;
5933 	default:
5934 		err = -EINVAL;
5935 
5936 		break;
5937 	}
5938 
5939 	return err;
5940 }
5941 
5942 /**
5943  * ufshcd_eh_device_reset_handler - device reset handler registered to
5944  *                                    scsi layer.
5945  * @cmd: SCSI command pointer
5946  *
5947  * Returns SUCCESS/FAILED
5948  */
ufshcd_eh_device_reset_handler(struct scsi_cmnd * cmd)5949 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
5950 {
5951 	struct Scsi_Host *host;
5952 	struct ufs_hba *hba;
5953 	unsigned int tag;
5954 	u32 pos;
5955 	int err;
5956 	u8 resp = 0xF;
5957 	struct ufshcd_lrb *lrbp;
5958 	unsigned long flags;
5959 
5960 	host = cmd->device->host;
5961 	hba = shost_priv(host);
5962 	tag = cmd->request->tag;
5963 
5964 	lrbp = &hba->lrb[tag];
5965 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, 0, UFS_LOGICAL_RESET, &resp);
5966 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
5967 		if (!err)
5968 			err = resp;
5969 		goto out;
5970 	}
5971 
5972 	/* clear the commands that were pending for corresponding LUN */
5973 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs) {
5974 		if (hba->lrb[pos].lun == lrbp->lun) {
5975 			err = ufshcd_clear_cmd(hba, pos);
5976 			if (err)
5977 				break;
5978 		}
5979 	}
5980 	spin_lock_irqsave(host->host_lock, flags);
5981 	ufshcd_transfer_req_compl(hba);
5982 	spin_unlock_irqrestore(host->host_lock, flags);
5983 
5984 out:
5985 	hba->req_abort_count = 0;
5986 	ufshcd_update_reg_hist(&hba->ufs_stats.dev_reset, (u32)err);
5987 	if (!err) {
5988 		err = SUCCESS;
5989 	} else {
5990 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
5991 		err = FAILED;
5992 	}
5993 	return err;
5994 }
5995 
ufshcd_set_req_abort_skip(struct ufs_hba * hba,unsigned long bitmap)5996 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
5997 {
5998 	struct ufshcd_lrb *lrbp;
5999 	int tag;
6000 
6001 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
6002 		lrbp = &hba->lrb[tag];
6003 		lrbp->req_abort_skip = true;
6004 	}
6005 }
6006 
6007 /**
6008  * ufshcd_abort - abort a specific command
6009  * @cmd: SCSI command pointer
6010  *
6011  * Abort the pending command in device by sending UFS_ABORT_TASK task management
6012  * command, and in host controller by clearing the door-bell register. There can
6013  * be race between controller sending the command to the device while abort is
6014  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
6015  * really issued and then try to abort it.
6016  *
6017  * Returns SUCCESS/FAILED
6018  */
ufshcd_abort(struct scsi_cmnd * cmd)6019 static int ufshcd_abort(struct scsi_cmnd *cmd)
6020 {
6021 	struct Scsi_Host *host;
6022 	struct ufs_hba *hba;
6023 	unsigned long flags;
6024 	unsigned int tag;
6025 	int err = 0;
6026 	int poll_cnt;
6027 	u8 resp = 0xF;
6028 	struct ufshcd_lrb *lrbp;
6029 	u32 reg;
6030 
6031 	host = cmd->device->host;
6032 	hba = shost_priv(host);
6033 	tag = cmd->request->tag;
6034 	lrbp = &hba->lrb[tag];
6035 	if (!ufshcd_valid_tag(hba, tag)) {
6036 		dev_err(hba->dev,
6037 			"%s: invalid command tag %d: cmd=0x%p, cmd->request=0x%p",
6038 			__func__, tag, cmd, cmd->request);
6039 		BUG();
6040 	}
6041 
6042 	/*
6043 	 * Task abort to the device W-LUN is illegal. When this command
6044 	 * will fail, due to spec violation, scsi err handling next step
6045 	 * will be to send LU reset which, again, is a spec violation.
6046 	 * To avoid these unnecessary/illegal step we skip to the last error
6047 	 * handling stage: reset and restore.
6048 	 */
6049 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN)
6050 		return ufshcd_eh_host_reset_handler(cmd);
6051 
6052 	ufshcd_hold(hba, false);
6053 	reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
6054 	/* If command is already aborted/completed, return SUCCESS */
6055 	if (!(test_bit(tag, &hba->outstanding_reqs))) {
6056 		dev_err(hba->dev,
6057 			"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
6058 			__func__, tag, hba->outstanding_reqs, reg);
6059 		goto out;
6060 	}
6061 
6062 	if (!(reg & (1 << tag))) {
6063 		dev_err(hba->dev,
6064 		"%s: cmd was completed, but without a notifying intr, tag = %d",
6065 		__func__, tag);
6066 	}
6067 
6068 	/* Print Transfer Request of aborted task */
6069 	dev_err(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
6070 
6071 	/*
6072 	 * Print detailed info about aborted request.
6073 	 * As more than one request might get aborted at the same time,
6074 	 * print full information only for the first aborted request in order
6075 	 * to reduce repeated printouts. For other aborted requests only print
6076 	 * basic details.
6077 	 */
6078 	scsi_print_command(hba->lrb[tag].cmd);
6079 	if (!hba->req_abort_count) {
6080 		ufshcd_update_reg_hist(&hba->ufs_stats.task_abort, 0);
6081 		ufshcd_print_host_regs(hba);
6082 		ufshcd_print_host_state(hba);
6083 		ufshcd_print_pwr_info(hba);
6084 		ufshcd_print_trs(hba, 1 << tag, true);
6085 	} else {
6086 		ufshcd_print_trs(hba, 1 << tag, false);
6087 	}
6088 	hba->req_abort_count++;
6089 
6090 	/* Skip task abort in case previous aborts failed and report failure */
6091 	if (lrbp->req_abort_skip) {
6092 		err = -EIO;
6093 		goto out;
6094 	}
6095 
6096 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
6097 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
6098 				UFS_QUERY_TASK, &resp);
6099 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
6100 			/* cmd pending in the device */
6101 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
6102 				__func__, tag);
6103 			break;
6104 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
6105 			/*
6106 			 * cmd not pending in the device, check if it is
6107 			 * in transition.
6108 			 */
6109 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
6110 				__func__, tag);
6111 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
6112 			if (reg & (1 << tag)) {
6113 				/* sleep for max. 200us to stabilize */
6114 				usleep_range(100, 200);
6115 				continue;
6116 			}
6117 			/* command completed already */
6118 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
6119 				__func__, tag);
6120 			goto out;
6121 		} else {
6122 			dev_err(hba->dev,
6123 				"%s: no response from device. tag = %d, err %d\n",
6124 				__func__, tag, err);
6125 			if (!err)
6126 				err = resp; /* service response error */
6127 			goto out;
6128 		}
6129 	}
6130 
6131 	if (!poll_cnt) {
6132 		err = -EBUSY;
6133 		goto out;
6134 	}
6135 
6136 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
6137 			UFS_ABORT_TASK, &resp);
6138 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
6139 		if (!err) {
6140 			err = resp; /* service response error */
6141 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
6142 				__func__, tag, err);
6143 		}
6144 		goto out;
6145 	}
6146 
6147 	err = ufshcd_clear_cmd(hba, tag);
6148 	if (err) {
6149 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
6150 			__func__, tag, err);
6151 		goto out;
6152 	}
6153 
6154 	scsi_dma_unmap(cmd);
6155 
6156 	spin_lock_irqsave(host->host_lock, flags);
6157 	ufshcd_outstanding_req_clear(hba, tag);
6158 	hba->lrb[tag].cmd = NULL;
6159 	spin_unlock_irqrestore(host->host_lock, flags);
6160 
6161 	clear_bit_unlock(tag, &hba->lrb_in_use);
6162 	wake_up(&hba->dev_cmd.tag_wq);
6163 
6164 out:
6165 	if (!err) {
6166 		err = SUCCESS;
6167 	} else {
6168 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
6169 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
6170 		err = FAILED;
6171 	}
6172 
6173 	/*
6174 	 * This ufshcd_release() corresponds to the original scsi cmd that got
6175 	 * aborted here (as we won't get any IRQ for it).
6176 	 */
6177 	ufshcd_release(hba);
6178 	return err;
6179 }
6180 
6181 /**
6182  * ufshcd_host_reset_and_restore - reset and restore host controller
6183  * @hba: per-adapter instance
6184  *
6185  * Note that host controller reset may issue DME_RESET to
6186  * local and remote (device) Uni-Pro stack and the attributes
6187  * are reset to default state.
6188  *
6189  * Returns zero on success, non-zero on failure
6190  */
ufshcd_host_reset_and_restore(struct ufs_hba * hba)6191 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
6192 {
6193 	int err;
6194 	unsigned long flags;
6195 
6196 	/* Reset the host controller */
6197 	spin_lock_irqsave(hba->host->host_lock, flags);
6198 	ufshcd_hba_stop(hba, false);
6199 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6200 
6201 	/* scale up clocks to max frequency before full reinitialization */
6202 	ufshcd_scale_clks(hba, true);
6203 
6204 	err = ufshcd_hba_enable(hba);
6205 	if (err)
6206 		goto out;
6207 
6208 	/* Establish the link again and restore the device */
6209 	err = ufshcd_probe_hba(hba);
6210 
6211 	if (!err && (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL))
6212 		err = -EIO;
6213 out:
6214 	if (err)
6215 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
6216 	ufshcd_update_reg_hist(&hba->ufs_stats.host_reset, (u32)err);
6217 	return err;
6218 }
6219 
6220 /**
6221  * ufshcd_reset_and_restore - reset and re-initialize host/device
6222  * @hba: per-adapter instance
6223  *
6224  * Reset and recover device, host and re-establish link. This
6225  * is helpful to recover the communication in fatal error conditions.
6226  *
6227  * Returns zero on success, non-zero on failure
6228  */
ufshcd_reset_and_restore(struct ufs_hba * hba)6229 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
6230 {
6231 	int err = 0;
6232 	unsigned long flags;
6233 	int retries = MAX_HOST_RESET_RETRIES;
6234 
6235 	do {
6236 		/* Reset the attached device */
6237 		ufshcd_vops_device_reset(hba);
6238 
6239 		err = ufshcd_host_reset_and_restore(hba);
6240 	} while (err && --retries);
6241 
6242 	/*
6243 	 * After reset the door-bell might be cleared, complete
6244 	 * outstanding requests in s/w here.
6245 	 */
6246 	spin_lock_irqsave(hba->host->host_lock, flags);
6247 	ufshcd_transfer_req_compl(hba);
6248 	ufshcd_tmc_handler(hba);
6249 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6250 
6251 	return err;
6252 }
6253 
6254 /**
6255  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
6256  * @cmd: SCSI command pointer
6257  *
6258  * Returns SUCCESS/FAILED
6259  */
ufshcd_eh_host_reset_handler(struct scsi_cmnd * cmd)6260 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
6261 {
6262 	int err;
6263 	unsigned long flags;
6264 	struct ufs_hba *hba;
6265 
6266 	hba = shost_priv(cmd->device->host);
6267 
6268 	ufshcd_hold(hba, false);
6269 	/*
6270 	 * Check if there is any race with fatal error handling.
6271 	 * If so, wait for it to complete. Even though fatal error
6272 	 * handling does reset and restore in some cases, don't assume
6273 	 * anything out of it. We are just avoiding race here.
6274 	 */
6275 	do {
6276 		spin_lock_irqsave(hba->host->host_lock, flags);
6277 		if (!(work_pending(&hba->eh_work) ||
6278 			    hba->ufshcd_state == UFSHCD_STATE_RESET ||
6279 			    hba->ufshcd_state == UFSHCD_STATE_EH_SCHEDULED))
6280 			break;
6281 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6282 		dev_dbg(hba->dev, "%s: reset in progress\n", __func__);
6283 		flush_work(&hba->eh_work);
6284 	} while (1);
6285 
6286 	hba->ufshcd_state = UFSHCD_STATE_RESET;
6287 	ufshcd_set_eh_in_progress(hba);
6288 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6289 
6290 	err = ufshcd_reset_and_restore(hba);
6291 
6292 	spin_lock_irqsave(hba->host->host_lock, flags);
6293 	if (!err) {
6294 		err = SUCCESS;
6295 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6296 	} else {
6297 		err = FAILED;
6298 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6299 	}
6300 	ufshcd_clear_eh_in_progress(hba);
6301 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6302 
6303 	ufshcd_release(hba);
6304 	return err;
6305 }
6306 
6307 /**
6308  * ufshcd_get_max_icc_level - calculate the ICC level
6309  * @sup_curr_uA: max. current supported by the regulator
6310  * @start_scan: row at the desc table to start scan from
6311  * @buff: power descriptor buffer
6312  *
6313  * Returns calculated max ICC level for specific regulator
6314  */
ufshcd_get_max_icc_level(int sup_curr_uA,u32 start_scan,char * buff)6315 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan, char *buff)
6316 {
6317 	int i;
6318 	int curr_uA;
6319 	u16 data;
6320 	u16 unit;
6321 
6322 	for (i = start_scan; i >= 0; i--) {
6323 		data = be16_to_cpup((__be16 *)&buff[2 * i]);
6324 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
6325 						ATTR_ICC_LVL_UNIT_OFFSET;
6326 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
6327 		switch (unit) {
6328 		case UFSHCD_NANO_AMP:
6329 			curr_uA = curr_uA / 1000;
6330 			break;
6331 		case UFSHCD_MILI_AMP:
6332 			curr_uA = curr_uA * 1000;
6333 			break;
6334 		case UFSHCD_AMP:
6335 			curr_uA = curr_uA * 1000 * 1000;
6336 			break;
6337 		case UFSHCD_MICRO_AMP:
6338 		default:
6339 			break;
6340 		}
6341 		if (sup_curr_uA >= curr_uA)
6342 			break;
6343 	}
6344 	if (i < 0) {
6345 		i = 0;
6346 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
6347 	}
6348 
6349 	return (u32)i;
6350 }
6351 
6352 /**
6353  * ufshcd_calc_icc_level - calculate the max ICC level
6354  * In case regulators are not initialized we'll return 0
6355  * @hba: per-adapter instance
6356  * @desc_buf: power descriptor buffer to extract ICC levels from.
6357  * @len: length of desc_buff
6358  *
6359  * Returns calculated ICC level
6360  */
ufshcd_find_max_sup_active_icc_level(struct ufs_hba * hba,u8 * desc_buf,int len)6361 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
6362 							u8 *desc_buf, int len)
6363 {
6364 	u32 icc_level = 0;
6365 
6366 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
6367 						!hba->vreg_info.vccq2) {
6368 		dev_err(hba->dev,
6369 			"%s: Regulator capability was not set, actvIccLevel=%d",
6370 							__func__, icc_level);
6371 		goto out;
6372 	}
6373 
6374 	if (hba->vreg_info.vcc && hba->vreg_info.vcc->max_uA)
6375 		icc_level = ufshcd_get_max_icc_level(
6376 				hba->vreg_info.vcc->max_uA,
6377 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
6378 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
6379 
6380 	if (hba->vreg_info.vccq && hba->vreg_info.vccq->max_uA)
6381 		icc_level = ufshcd_get_max_icc_level(
6382 				hba->vreg_info.vccq->max_uA,
6383 				icc_level,
6384 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
6385 
6386 	if (hba->vreg_info.vccq2 && hba->vreg_info.vccq2->max_uA)
6387 		icc_level = ufshcd_get_max_icc_level(
6388 				hba->vreg_info.vccq2->max_uA,
6389 				icc_level,
6390 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
6391 out:
6392 	return icc_level;
6393 }
6394 
ufshcd_init_icc_levels(struct ufs_hba * hba)6395 static void ufshcd_init_icc_levels(struct ufs_hba *hba)
6396 {
6397 	int ret;
6398 	int buff_len = hba->desc_size.pwr_desc;
6399 	u8 *desc_buf;
6400 
6401 	desc_buf = kmalloc(buff_len, GFP_KERNEL);
6402 	if (!desc_buf)
6403 		return;
6404 
6405 	ret = ufshcd_read_power_desc(hba, desc_buf, buff_len);
6406 	if (ret) {
6407 		dev_err(hba->dev,
6408 			"%s: Failed reading power descriptor.len = %d ret = %d",
6409 			__func__, buff_len, ret);
6410 		goto out;
6411 	}
6412 
6413 	hba->init_prefetch_data.icc_level =
6414 			ufshcd_find_max_sup_active_icc_level(hba,
6415 			desc_buf, buff_len);
6416 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x",
6417 			__func__, hba->init_prefetch_data.icc_level);
6418 
6419 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
6420 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0,
6421 		&hba->init_prefetch_data.icc_level);
6422 
6423 	if (ret)
6424 		dev_err(hba->dev,
6425 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
6426 			__func__, hba->init_prefetch_data.icc_level , ret);
6427 
6428 out:
6429 	kfree(desc_buf);
6430 }
6431 
6432 /**
6433  * ufshcd_scsi_add_wlus - Adds required W-LUs
6434  * @hba: per-adapter instance
6435  *
6436  * UFS device specification requires the UFS devices to support 4 well known
6437  * logical units:
6438  *	"REPORT_LUNS" (address: 01h)
6439  *	"UFS Device" (address: 50h)
6440  *	"RPMB" (address: 44h)
6441  *	"BOOT" (address: 30h)
6442  * UFS device's power management needs to be controlled by "POWER CONDITION"
6443  * field of SSU (START STOP UNIT) command. But this "power condition" field
6444  * will take effect only when its sent to "UFS device" well known logical unit
6445  * hence we require the scsi_device instance to represent this logical unit in
6446  * order for the UFS host driver to send the SSU command for power management.
6447  *
6448  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
6449  * Block) LU so user space process can control this LU. User space may also
6450  * want to have access to BOOT LU.
6451  *
6452  * This function adds scsi device instances for each of all well known LUs
6453  * (except "REPORT LUNS" LU).
6454  *
6455  * Returns zero on success (all required W-LUs are added successfully),
6456  * non-zero error value on failure (if failed to add any of the required W-LU).
6457  */
ufshcd_scsi_add_wlus(struct ufs_hba * hba)6458 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
6459 {
6460 	int ret = 0;
6461 	struct scsi_device *sdev_rpmb;
6462 	struct scsi_device *sdev_boot;
6463 
6464 	hba->sdev_ufs_device = __scsi_add_device(hba->host, 0, 0,
6465 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
6466 	if (IS_ERR(hba->sdev_ufs_device)) {
6467 		ret = PTR_ERR(hba->sdev_ufs_device);
6468 		hba->sdev_ufs_device = NULL;
6469 		goto out;
6470 	}
6471 	scsi_device_put(hba->sdev_ufs_device);
6472 
6473 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
6474 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
6475 	if (IS_ERR(sdev_rpmb)) {
6476 		ret = PTR_ERR(sdev_rpmb);
6477 		goto remove_sdev_ufs_device;
6478 	}
6479 	scsi_device_put(sdev_rpmb);
6480 
6481 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
6482 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
6483 	if (IS_ERR(sdev_boot))
6484 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
6485 	else
6486 		scsi_device_put(sdev_boot);
6487 	goto out;
6488 
6489 remove_sdev_ufs_device:
6490 	scsi_remove_device(hba->sdev_ufs_device);
6491 out:
6492 	return ret;
6493 }
6494 
ufs_get_device_desc(struct ufs_hba * hba,struct ufs_dev_desc * dev_desc)6495 static int ufs_get_device_desc(struct ufs_hba *hba,
6496 			       struct ufs_dev_desc *dev_desc)
6497 {
6498 	int err;
6499 	size_t buff_len;
6500 	u8 model_index;
6501 	u8 *desc_buf;
6502 
6503 	if (!dev_desc)
6504 		return -EINVAL;
6505 
6506 	buff_len = max_t(size_t, hba->desc_size.dev_desc,
6507 			 QUERY_DESC_MAX_SIZE + 1);
6508 	desc_buf = kmalloc(buff_len, GFP_KERNEL);
6509 	if (!desc_buf) {
6510 		err = -ENOMEM;
6511 		goto out;
6512 	}
6513 
6514 	err = ufshcd_read_device_desc(hba, desc_buf, hba->desc_size.dev_desc);
6515 	if (err) {
6516 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
6517 			__func__, err);
6518 		goto out;
6519 	}
6520 
6521 	/*
6522 	 * getting vendor (manufacturerID) and Bank Index in big endian
6523 	 * format
6524 	 */
6525 	dev_desc->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
6526 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
6527 
6528 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
6529 	err = ufshcd_read_string_desc(hba, model_index,
6530 				      &dev_desc->model, SD_ASCII_STD);
6531 	if (err < 0) {
6532 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
6533 			__func__, err);
6534 		goto out;
6535 	}
6536 
6537 	/*
6538 	 * ufshcd_read_string_desc returns size of the string
6539 	 * reset the error value
6540 	 */
6541 	err = 0;
6542 
6543 out:
6544 	kfree(desc_buf);
6545 	return err;
6546 }
6547 
ufs_put_device_desc(struct ufs_dev_desc * dev_desc)6548 static void ufs_put_device_desc(struct ufs_dev_desc *dev_desc)
6549 {
6550 	kfree(dev_desc->model);
6551 	dev_desc->model = NULL;
6552 }
6553 
ufs_fixup_device_setup(struct ufs_hba * hba,struct ufs_dev_desc * dev_desc)6554 static void ufs_fixup_device_setup(struct ufs_hba *hba,
6555 				   struct ufs_dev_desc *dev_desc)
6556 {
6557 	struct ufs_dev_fix *f;
6558 
6559 	for (f = ufs_fixups; f->quirk; f++) {
6560 		if ((f->card.wmanufacturerid == dev_desc->wmanufacturerid ||
6561 		     f->card.wmanufacturerid == UFS_ANY_VENDOR) &&
6562 		     ((dev_desc->model &&
6563 		       STR_PRFX_EQUAL(f->card.model, dev_desc->model)) ||
6564 		      !strcmp(f->card.model, UFS_ANY_MODEL)))
6565 			hba->dev_quirks |= f->quirk;
6566 	}
6567 }
6568 
6569 /**
6570  * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
6571  * @hba: per-adapter instance
6572  *
6573  * PA_TActivate parameter can be tuned manually if UniPro version is less than
6574  * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
6575  * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
6576  * the hibern8 exit latency.
6577  *
6578  * Returns zero on success, non-zero error value on failure.
6579  */
ufshcd_tune_pa_tactivate(struct ufs_hba * hba)6580 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
6581 {
6582 	int ret = 0;
6583 	u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
6584 
6585 	ret = ufshcd_dme_peer_get(hba,
6586 				  UIC_ARG_MIB_SEL(
6587 					RX_MIN_ACTIVATETIME_CAPABILITY,
6588 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
6589 				  &peer_rx_min_activatetime);
6590 	if (ret)
6591 		goto out;
6592 
6593 	/* make sure proper unit conversion is applied */
6594 	tuned_pa_tactivate =
6595 		((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
6596 		 / PA_TACTIVATE_TIME_UNIT_US);
6597 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
6598 			     tuned_pa_tactivate);
6599 
6600 out:
6601 	return ret;
6602 }
6603 
6604 /**
6605  * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
6606  * @hba: per-adapter instance
6607  *
6608  * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
6609  * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
6610  * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
6611  * This optimal value can help reduce the hibern8 exit latency.
6612  *
6613  * Returns zero on success, non-zero error value on failure.
6614  */
ufshcd_tune_pa_hibern8time(struct ufs_hba * hba)6615 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
6616 {
6617 	int ret = 0;
6618 	u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
6619 	u32 max_hibern8_time, tuned_pa_hibern8time;
6620 
6621 	ret = ufshcd_dme_get(hba,
6622 			     UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
6623 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
6624 				  &local_tx_hibern8_time_cap);
6625 	if (ret)
6626 		goto out;
6627 
6628 	ret = ufshcd_dme_peer_get(hba,
6629 				  UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
6630 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
6631 				  &peer_rx_hibern8_time_cap);
6632 	if (ret)
6633 		goto out;
6634 
6635 	max_hibern8_time = max(local_tx_hibern8_time_cap,
6636 			       peer_rx_hibern8_time_cap);
6637 	/* make sure proper unit conversion is applied */
6638 	tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
6639 				/ PA_HIBERN8_TIME_UNIT_US);
6640 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
6641 			     tuned_pa_hibern8time);
6642 out:
6643 	return ret;
6644 }
6645 
6646 /**
6647  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
6648  * less than device PA_TACTIVATE time.
6649  * @hba: per-adapter instance
6650  *
6651  * Some UFS devices require host PA_TACTIVATE to be lower than device
6652  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
6653  * for such devices.
6654  *
6655  * Returns zero on success, non-zero error value on failure.
6656  */
ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba * hba)6657 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
6658 {
6659 	int ret = 0;
6660 	u32 granularity, peer_granularity;
6661 	u32 pa_tactivate, peer_pa_tactivate;
6662 	u32 pa_tactivate_us, peer_pa_tactivate_us;
6663 	u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
6664 
6665 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
6666 				  &granularity);
6667 	if (ret)
6668 		goto out;
6669 
6670 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
6671 				  &peer_granularity);
6672 	if (ret)
6673 		goto out;
6674 
6675 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
6676 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
6677 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
6678 			__func__, granularity);
6679 		return -EINVAL;
6680 	}
6681 
6682 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
6683 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
6684 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
6685 			__func__, peer_granularity);
6686 		return -EINVAL;
6687 	}
6688 
6689 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
6690 	if (ret)
6691 		goto out;
6692 
6693 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
6694 				  &peer_pa_tactivate);
6695 	if (ret)
6696 		goto out;
6697 
6698 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
6699 	peer_pa_tactivate_us = peer_pa_tactivate *
6700 			     gran_to_us_table[peer_granularity - 1];
6701 
6702 	if (pa_tactivate_us > peer_pa_tactivate_us) {
6703 		u32 new_peer_pa_tactivate;
6704 
6705 		new_peer_pa_tactivate = pa_tactivate_us /
6706 				      gran_to_us_table[peer_granularity - 1];
6707 		new_peer_pa_tactivate++;
6708 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
6709 					  new_peer_pa_tactivate);
6710 	}
6711 
6712 out:
6713 	return ret;
6714 }
6715 
ufshcd_tune_unipro_params(struct ufs_hba * hba)6716 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
6717 {
6718 	if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
6719 		ufshcd_tune_pa_tactivate(hba);
6720 		ufshcd_tune_pa_hibern8time(hba);
6721 	}
6722 
6723 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
6724 		/* set 1ms timeout for PA_TACTIVATE */
6725 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
6726 
6727 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
6728 		ufshcd_quirk_tune_host_pa_tactivate(hba);
6729 
6730 	ufshcd_vops_apply_dev_quirks(hba);
6731 }
6732 
ufshcd_clear_dbg_ufs_stats(struct ufs_hba * hba)6733 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
6734 {
6735 	hba->ufs_stats.hibern8_exit_cnt = 0;
6736 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
6737 	hba->req_abort_count = 0;
6738 }
6739 
ufshcd_init_desc_sizes(struct ufs_hba * hba)6740 static void ufshcd_init_desc_sizes(struct ufs_hba *hba)
6741 {
6742 	int err;
6743 
6744 	err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_DEVICE, 0,
6745 		&hba->desc_size.dev_desc);
6746 	if (err)
6747 		hba->desc_size.dev_desc = QUERY_DESC_DEVICE_DEF_SIZE;
6748 
6749 	err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_POWER, 0,
6750 		&hba->desc_size.pwr_desc);
6751 	if (err)
6752 		hba->desc_size.pwr_desc = QUERY_DESC_POWER_DEF_SIZE;
6753 
6754 	err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_INTERCONNECT, 0,
6755 		&hba->desc_size.interc_desc);
6756 	if (err)
6757 		hba->desc_size.interc_desc = QUERY_DESC_INTERCONNECT_DEF_SIZE;
6758 
6759 	err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_CONFIGURATION, 0,
6760 		&hba->desc_size.conf_desc);
6761 	if (err)
6762 		hba->desc_size.conf_desc = QUERY_DESC_CONFIGURATION_DEF_SIZE;
6763 
6764 	err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_UNIT, 0,
6765 		&hba->desc_size.unit_desc);
6766 	if (err)
6767 		hba->desc_size.unit_desc = QUERY_DESC_UNIT_DEF_SIZE;
6768 
6769 	err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_GEOMETRY, 0,
6770 		&hba->desc_size.geom_desc);
6771 	if (err)
6772 		hba->desc_size.geom_desc = QUERY_DESC_GEOMETRY_DEF_SIZE;
6773 	err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_HEALTH, 0,
6774 		&hba->desc_size.hlth_desc);
6775 	if (err)
6776 		hba->desc_size.hlth_desc = QUERY_DESC_HEALTH_DEF_SIZE;
6777 }
6778 
ufshcd_def_desc_sizes(struct ufs_hba * hba)6779 static void ufshcd_def_desc_sizes(struct ufs_hba *hba)
6780 {
6781 	hba->desc_size.dev_desc = QUERY_DESC_DEVICE_DEF_SIZE;
6782 	hba->desc_size.pwr_desc = QUERY_DESC_POWER_DEF_SIZE;
6783 	hba->desc_size.interc_desc = QUERY_DESC_INTERCONNECT_DEF_SIZE;
6784 	hba->desc_size.conf_desc = QUERY_DESC_CONFIGURATION_DEF_SIZE;
6785 	hba->desc_size.unit_desc = QUERY_DESC_UNIT_DEF_SIZE;
6786 	hba->desc_size.geom_desc = QUERY_DESC_GEOMETRY_DEF_SIZE;
6787 	hba->desc_size.hlth_desc = QUERY_DESC_HEALTH_DEF_SIZE;
6788 }
6789 
6790 static struct ufs_ref_clk ufs_ref_clk_freqs[] = {
6791 	{19200000, REF_CLK_FREQ_19_2_MHZ},
6792 	{26000000, REF_CLK_FREQ_26_MHZ},
6793 	{38400000, REF_CLK_FREQ_38_4_MHZ},
6794 	{52000000, REF_CLK_FREQ_52_MHZ},
6795 	{0, REF_CLK_FREQ_INVAL},
6796 };
6797 
6798 static enum ufs_ref_clk_freq
ufs_get_bref_clk_from_hz(unsigned long freq)6799 ufs_get_bref_clk_from_hz(unsigned long freq)
6800 {
6801 	int i;
6802 
6803 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
6804 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
6805 			return ufs_ref_clk_freqs[i].val;
6806 
6807 	return REF_CLK_FREQ_INVAL;
6808 }
6809 
ufshcd_parse_dev_ref_clk_freq(struct ufs_hba * hba,struct clk * refclk)6810 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
6811 {
6812 	unsigned long freq;
6813 
6814 	freq = clk_get_rate(refclk);
6815 
6816 	hba->dev_ref_clk_freq =
6817 		ufs_get_bref_clk_from_hz(freq);
6818 
6819 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
6820 		dev_err(hba->dev,
6821 		"invalid ref_clk setting = %ld\n", freq);
6822 }
6823 
ufshcd_set_dev_ref_clk(struct ufs_hba * hba)6824 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
6825 {
6826 	int err;
6827 	u32 ref_clk;
6828 	u32 freq = hba->dev_ref_clk_freq;
6829 
6830 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6831 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
6832 
6833 	if (err) {
6834 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
6835 			err);
6836 		goto out;
6837 	}
6838 
6839 	if (ref_clk == freq)
6840 		goto out; /* nothing to update */
6841 
6842 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
6843 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
6844 
6845 	if (err) {
6846 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
6847 			ufs_ref_clk_freqs[freq].freq_hz);
6848 		goto out;
6849 	}
6850 
6851 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
6852 			ufs_ref_clk_freqs[freq].freq_hz);
6853 
6854 out:
6855 	return err;
6856 }
6857 
6858 /**
6859  * ufshcd_probe_hba - probe hba to detect device and initialize
6860  * @hba: per-adapter instance
6861  *
6862  * Execute link-startup and verify device initialization
6863  */
ufshcd_probe_hba(struct ufs_hba * hba)6864 static int ufshcd_probe_hba(struct ufs_hba *hba)
6865 {
6866 	struct ufs_dev_desc card = {0};
6867 	int ret;
6868 	ktime_t start = ktime_get();
6869 
6870 	ret = ufshcd_link_startup(hba);
6871 	if (ret)
6872 		goto out;
6873 
6874 	/* set the default level for urgent bkops */
6875 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
6876 	hba->is_urgent_bkops_lvl_checked = false;
6877 
6878 	/* Debug counters initialization */
6879 	ufshcd_clear_dbg_ufs_stats(hba);
6880 
6881 	/* UniPro link is active now */
6882 	ufshcd_set_link_active(hba);
6883 
6884 	/* Enable Auto-Hibernate if configured */
6885 	ufshcd_auto_hibern8_enable(hba);
6886 
6887 	ret = ufshcd_verify_dev_init(hba);
6888 	if (ret)
6889 		goto out;
6890 
6891 	ret = ufshcd_complete_dev_init(hba);
6892 	if (ret)
6893 		goto out;
6894 
6895 	/* Init check for device descriptor sizes */
6896 	ufshcd_init_desc_sizes(hba);
6897 
6898 	ret = ufs_get_device_desc(hba, &card);
6899 	if (ret) {
6900 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
6901 			__func__, ret);
6902 		goto out;
6903 	}
6904 
6905 	ufs_fixup_device_setup(hba, &card);
6906 	ufs_put_device_desc(&card);
6907 
6908 	ufshcd_tune_unipro_params(hba);
6909 
6910 	/* UFS device is also active now */
6911 	ufshcd_set_ufs_dev_active(hba);
6912 	ufshcd_force_reset_auto_bkops(hba);
6913 	hba->wlun_dev_clr_ua = true;
6914 
6915 	if (ufshcd_get_max_pwr_mode(hba)) {
6916 		dev_err(hba->dev,
6917 			"%s: Failed getting max supported power mode\n",
6918 			__func__);
6919 	} else {
6920 		/*
6921 		 * Set the right value to bRefClkFreq before attempting to
6922 		 * switch to HS gears.
6923 		 */
6924 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
6925 			ufshcd_set_dev_ref_clk(hba);
6926 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
6927 		if (ret) {
6928 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
6929 					__func__, ret);
6930 			goto out;
6931 		}
6932 	}
6933 
6934 	/* set the state as operational after switching to desired gear */
6935 	hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6936 
6937 	/*
6938 	 * If we are in error handling context or in power management callbacks
6939 	 * context, no need to scan the host
6940 	 */
6941 	if (!ufshcd_eh_in_progress(hba) && !hba->pm_op_in_progress) {
6942 		bool flag;
6943 
6944 		/* clear any previous UFS device information */
6945 		memset(&hba->dev_info, 0, sizeof(hba->dev_info));
6946 		if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
6947 				QUERY_FLAG_IDN_PWR_ON_WPE, &flag))
6948 			hba->dev_info.f_power_on_wp_en = flag;
6949 
6950 		if (!hba->is_init_prefetch)
6951 			ufshcd_init_icc_levels(hba);
6952 
6953 		/* Add required well known logical units to scsi mid layer */
6954 		if (ufshcd_scsi_add_wlus(hba))
6955 			goto out;
6956 
6957 		/* Initialize devfreq after UFS device is detected */
6958 		if (ufshcd_is_clkscaling_supported(hba)) {
6959 			memcpy(&hba->clk_scaling.saved_pwr_info.info,
6960 				&hba->pwr_info,
6961 				sizeof(struct ufs_pa_layer_attr));
6962 			hba->clk_scaling.saved_pwr_info.is_valid = true;
6963 			if (!hba->devfreq) {
6964 				ret = ufshcd_devfreq_init(hba);
6965 				if (ret)
6966 					goto out;
6967 			}
6968 			hba->clk_scaling.is_allowed = true;
6969 		}
6970 
6971 		ufs_bsg_probe(hba);
6972 
6973 		scsi_scan_host(hba->host);
6974 		pm_runtime_put_sync(hba->dev);
6975 	}
6976 
6977 	if (!hba->is_init_prefetch)
6978 		hba->is_init_prefetch = true;
6979 
6980 out:
6981 	/*
6982 	 * If we failed to initialize the device or the device is not
6983 	 * present, turn off the power/clocks etc.
6984 	 */
6985 	if (ret && !ufshcd_eh_in_progress(hba) && !hba->pm_op_in_progress) {
6986 		pm_runtime_put_sync(hba->dev);
6987 		ufshcd_exit_clk_scaling(hba);
6988 		ufshcd_hba_exit(hba);
6989 	}
6990 
6991 	trace_ufshcd_init(dev_name(hba->dev), ret,
6992 		ktime_to_us(ktime_sub(ktime_get(), start)),
6993 		hba->curr_dev_pwr_mode, hba->uic_link_state);
6994 	return ret;
6995 }
6996 
6997 /**
6998  * ufshcd_async_scan - asynchronous execution for probing hba
6999  * @data: data pointer to pass to this function
7000  * @cookie: cookie data
7001  */
ufshcd_async_scan(void * data,async_cookie_t cookie)7002 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
7003 {
7004 	struct ufs_hba *hba = (struct ufs_hba *)data;
7005 
7006 	ufshcd_probe_hba(hba);
7007 }
7008 
ufshcd_eh_timed_out(struct scsi_cmnd * scmd)7009 static enum blk_eh_timer_return ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
7010 {
7011 	unsigned long flags;
7012 	struct Scsi_Host *host;
7013 	struct ufs_hba *hba;
7014 	int index;
7015 	bool found = false;
7016 
7017 	if (!scmd || !scmd->device || !scmd->device->host)
7018 		return BLK_EH_DONE;
7019 
7020 	host = scmd->device->host;
7021 	hba = shost_priv(host);
7022 	if (!hba)
7023 		return BLK_EH_DONE;
7024 
7025 	spin_lock_irqsave(host->host_lock, flags);
7026 
7027 	for_each_set_bit(index, &hba->outstanding_reqs, hba->nutrs) {
7028 		if (hba->lrb[index].cmd == scmd) {
7029 			found = true;
7030 			break;
7031 		}
7032 	}
7033 
7034 	spin_unlock_irqrestore(host->host_lock, flags);
7035 
7036 	/*
7037 	 * Bypass SCSI error handling and reset the block layer timer if this
7038 	 * SCSI command was not actually dispatched to UFS driver, otherwise
7039 	 * let SCSI layer handle the error as usual.
7040 	 */
7041 	return found ? BLK_EH_DONE : BLK_EH_RESET_TIMER;
7042 }
7043 
7044 static const struct attribute_group *ufshcd_driver_groups[] = {
7045 	&ufs_sysfs_unit_descriptor_group,
7046 	&ufs_sysfs_lun_attributes_group,
7047 	NULL,
7048 };
7049 
7050 static struct scsi_host_template ufshcd_driver_template = {
7051 	.module			= THIS_MODULE,
7052 	.name			= UFSHCD,
7053 	.proc_name		= UFSHCD,
7054 	.queuecommand		= ufshcd_queuecommand,
7055 	.slave_alloc		= ufshcd_slave_alloc,
7056 	.slave_configure	= ufshcd_slave_configure,
7057 	.slave_destroy		= ufshcd_slave_destroy,
7058 	.change_queue_depth	= ufshcd_change_queue_depth,
7059 	.eh_abort_handler	= ufshcd_abort,
7060 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
7061 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
7062 	.eh_timed_out		= ufshcd_eh_timed_out,
7063 	.this_id		= -1,
7064 	.sg_tablesize		= SG_ALL,
7065 	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
7066 	.can_queue		= UFSHCD_CAN_QUEUE,
7067 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
7068 	.max_host_blocked	= 1,
7069 	.track_queue_depth	= 1,
7070 	.sdev_groups		= ufshcd_driver_groups,
7071 	.dma_boundary		= PAGE_SIZE - 1,
7072 };
7073 
ufshcd_config_vreg_load(struct device * dev,struct ufs_vreg * vreg,int ua)7074 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
7075 				   int ua)
7076 {
7077 	int ret;
7078 
7079 	if (!vreg)
7080 		return 0;
7081 
7082 	/*
7083 	 * "set_load" operation shall be required on those regulators
7084 	 * which specifically configured current limitation. Otherwise
7085 	 * zero max_uA may cause unexpected behavior when regulator is
7086 	 * enabled or set as high power mode.
7087 	 */
7088 	if (!vreg->max_uA)
7089 		return 0;
7090 
7091 	ret = regulator_set_load(vreg->reg, ua);
7092 	if (ret < 0) {
7093 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
7094 				__func__, vreg->name, ua, ret);
7095 	}
7096 
7097 	return ret;
7098 }
7099 
ufshcd_config_vreg_lpm(struct ufs_hba * hba,struct ufs_vreg * vreg)7100 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
7101 					 struct ufs_vreg *vreg)
7102 {
7103 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
7104 }
7105 
ufshcd_config_vreg_hpm(struct ufs_hba * hba,struct ufs_vreg * vreg)7106 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
7107 					 struct ufs_vreg *vreg)
7108 {
7109 	if (!vreg)
7110 		return 0;
7111 
7112 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
7113 }
7114 
ufshcd_config_vreg(struct device * dev,struct ufs_vreg * vreg,bool on)7115 static int ufshcd_config_vreg(struct device *dev,
7116 		struct ufs_vreg *vreg, bool on)
7117 {
7118 	int ret = 0;
7119 	struct regulator *reg;
7120 	const char *name;
7121 	int min_uV, uA_load;
7122 
7123 	BUG_ON(!vreg);
7124 
7125 	reg = vreg->reg;
7126 	name = vreg->name;
7127 
7128 	if (regulator_count_voltages(reg) > 0) {
7129 		if (vreg->min_uV && vreg->max_uV) {
7130 			min_uV = on ? vreg->min_uV : 0;
7131 			ret = regulator_set_voltage(reg, min_uV, vreg->max_uV);
7132 			if (ret) {
7133 				dev_err(dev,
7134 					"%s: %s set voltage failed, err=%d\n",
7135 					__func__, name, ret);
7136 				goto out;
7137 			}
7138 		}
7139 
7140 		uA_load = on ? vreg->max_uA : 0;
7141 		ret = ufshcd_config_vreg_load(dev, vreg, uA_load);
7142 		if (ret)
7143 			goto out;
7144 	}
7145 out:
7146 	return ret;
7147 }
7148 
ufshcd_enable_vreg(struct device * dev,struct ufs_vreg * vreg)7149 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
7150 {
7151 	int ret = 0;
7152 
7153 	if (!vreg || vreg->enabled)
7154 		goto out;
7155 
7156 	ret = ufshcd_config_vreg(dev, vreg, true);
7157 	if (!ret)
7158 		ret = regulator_enable(vreg->reg);
7159 
7160 	if (!ret)
7161 		vreg->enabled = true;
7162 	else
7163 		dev_err(dev, "%s: %s enable failed, err=%d\n",
7164 				__func__, vreg->name, ret);
7165 out:
7166 	return ret;
7167 }
7168 
ufshcd_disable_vreg(struct device * dev,struct ufs_vreg * vreg)7169 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
7170 {
7171 	int ret = 0;
7172 
7173 	if (!vreg || !vreg->enabled)
7174 		goto out;
7175 
7176 	ret = regulator_disable(vreg->reg);
7177 
7178 	if (!ret) {
7179 		/* ignore errors on applying disable config */
7180 		ufshcd_config_vreg(dev, vreg, false);
7181 		vreg->enabled = false;
7182 	} else {
7183 		dev_err(dev, "%s: %s disable failed, err=%d\n",
7184 				__func__, vreg->name, ret);
7185 	}
7186 out:
7187 	return ret;
7188 }
7189 
ufshcd_setup_vreg(struct ufs_hba * hba,bool on)7190 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
7191 {
7192 	int ret = 0;
7193 	struct device *dev = hba->dev;
7194 	struct ufs_vreg_info *info = &hba->vreg_info;
7195 
7196 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
7197 	if (ret)
7198 		goto out;
7199 
7200 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
7201 	if (ret)
7202 		goto out;
7203 
7204 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
7205 	if (ret)
7206 		goto out;
7207 
7208 out:
7209 	if (ret) {
7210 		ufshcd_toggle_vreg(dev, info->vccq2, false);
7211 		ufshcd_toggle_vreg(dev, info->vccq, false);
7212 		ufshcd_toggle_vreg(dev, info->vcc, false);
7213 	}
7214 	return ret;
7215 }
7216 
ufshcd_setup_hba_vreg(struct ufs_hba * hba,bool on)7217 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
7218 {
7219 	struct ufs_vreg_info *info = &hba->vreg_info;
7220 
7221 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
7222 }
7223 
ufshcd_get_vreg(struct device * dev,struct ufs_vreg * vreg)7224 static int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
7225 {
7226 	int ret = 0;
7227 
7228 	if (!vreg)
7229 		goto out;
7230 
7231 	vreg->reg = devm_regulator_get(dev, vreg->name);
7232 	if (IS_ERR(vreg->reg)) {
7233 		ret = PTR_ERR(vreg->reg);
7234 		dev_err(dev, "%s: %s get failed, err=%d\n",
7235 				__func__, vreg->name, ret);
7236 	}
7237 out:
7238 	return ret;
7239 }
7240 
ufshcd_init_vreg(struct ufs_hba * hba)7241 static int ufshcd_init_vreg(struct ufs_hba *hba)
7242 {
7243 	int ret = 0;
7244 	struct device *dev = hba->dev;
7245 	struct ufs_vreg_info *info = &hba->vreg_info;
7246 
7247 	ret = ufshcd_get_vreg(dev, info->vcc);
7248 	if (ret)
7249 		goto out;
7250 
7251 	ret = ufshcd_get_vreg(dev, info->vccq);
7252 	if (ret)
7253 		goto out;
7254 
7255 	ret = ufshcd_get_vreg(dev, info->vccq2);
7256 out:
7257 	return ret;
7258 }
7259 
ufshcd_init_hba_vreg(struct ufs_hba * hba)7260 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
7261 {
7262 	struct ufs_vreg_info *info = &hba->vreg_info;
7263 
7264 	if (info)
7265 		return ufshcd_get_vreg(hba->dev, info->vdd_hba);
7266 
7267 	return 0;
7268 }
7269 
__ufshcd_setup_clocks(struct ufs_hba * hba,bool on,bool skip_ref_clk)7270 static int __ufshcd_setup_clocks(struct ufs_hba *hba, bool on,
7271 					bool skip_ref_clk)
7272 {
7273 	int ret = 0;
7274 	struct ufs_clk_info *clki;
7275 	struct list_head *head = &hba->clk_list_head;
7276 	unsigned long flags;
7277 	ktime_t start = ktime_get();
7278 	bool clk_state_changed = false;
7279 
7280 	if (list_empty(head))
7281 		goto out;
7282 
7283 	/*
7284 	 * vendor specific setup_clocks ops may depend on clocks managed by
7285 	 * this standard driver hence call the vendor specific setup_clocks
7286 	 * before disabling the clocks managed here.
7287 	 */
7288 	if (!on) {
7289 		ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
7290 		if (ret)
7291 			return ret;
7292 	}
7293 
7294 	list_for_each_entry(clki, head, list) {
7295 		if (!IS_ERR_OR_NULL(clki->clk)) {
7296 			if (skip_ref_clk && !strcmp(clki->name, "ref_clk"))
7297 				continue;
7298 
7299 			clk_state_changed = on ^ clki->enabled;
7300 			if (on && !clki->enabled) {
7301 				ret = clk_prepare_enable(clki->clk);
7302 				if (ret) {
7303 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
7304 						__func__, clki->name, ret);
7305 					goto out;
7306 				}
7307 			} else if (!on && clki->enabled) {
7308 				clk_disable_unprepare(clki->clk);
7309 			}
7310 			clki->enabled = on;
7311 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
7312 					clki->name, on ? "en" : "dis");
7313 		}
7314 	}
7315 
7316 	/*
7317 	 * vendor specific setup_clocks ops may depend on clocks managed by
7318 	 * this standard driver hence call the vendor specific setup_clocks
7319 	 * after enabling the clocks managed here.
7320 	 */
7321 	if (on) {
7322 		ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
7323 		if (ret)
7324 			return ret;
7325 	}
7326 
7327 out:
7328 	if (ret) {
7329 		list_for_each_entry(clki, head, list) {
7330 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
7331 				clk_disable_unprepare(clki->clk);
7332 		}
7333 	} else if (!ret && on) {
7334 		spin_lock_irqsave(hba->host->host_lock, flags);
7335 		hba->clk_gating.state = CLKS_ON;
7336 		trace_ufshcd_clk_gating(dev_name(hba->dev),
7337 					hba->clk_gating.state);
7338 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7339 	}
7340 
7341 	if (clk_state_changed)
7342 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
7343 			(on ? "on" : "off"),
7344 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
7345 	return ret;
7346 }
7347 
ufshcd_setup_clocks(struct ufs_hba * hba,bool on)7348 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
7349 {
7350 	return  __ufshcd_setup_clocks(hba, on, false);
7351 }
7352 
ufshcd_init_clocks(struct ufs_hba * hba)7353 static int ufshcd_init_clocks(struct ufs_hba *hba)
7354 {
7355 	int ret = 0;
7356 	struct ufs_clk_info *clki;
7357 	struct device *dev = hba->dev;
7358 	struct list_head *head = &hba->clk_list_head;
7359 
7360 	if (list_empty(head))
7361 		goto out;
7362 
7363 	list_for_each_entry(clki, head, list) {
7364 		if (!clki->name)
7365 			continue;
7366 
7367 		clki->clk = devm_clk_get(dev, clki->name);
7368 		if (IS_ERR(clki->clk)) {
7369 			ret = PTR_ERR(clki->clk);
7370 			dev_err(dev, "%s: %s clk get failed, %d\n",
7371 					__func__, clki->name, ret);
7372 			goto out;
7373 		}
7374 
7375 		/*
7376 		 * Parse device ref clk freq as per device tree "ref_clk".
7377 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
7378 		 * in ufshcd_alloc_host().
7379 		 */
7380 		if (!strcmp(clki->name, "ref_clk"))
7381 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
7382 
7383 		if (clki->max_freq) {
7384 			ret = clk_set_rate(clki->clk, clki->max_freq);
7385 			if (ret) {
7386 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
7387 					__func__, clki->name,
7388 					clki->max_freq, ret);
7389 				goto out;
7390 			}
7391 			clki->curr_freq = clki->max_freq;
7392 		}
7393 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
7394 				clki->name, clk_get_rate(clki->clk));
7395 	}
7396 out:
7397 	return ret;
7398 }
7399 
ufshcd_variant_hba_init(struct ufs_hba * hba)7400 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
7401 {
7402 	int err = 0;
7403 
7404 	if (!hba->vops)
7405 		goto out;
7406 
7407 	err = ufshcd_vops_init(hba);
7408 	if (err)
7409 		goto out;
7410 
7411 	err = ufshcd_vops_setup_regulators(hba, true);
7412 	if (err)
7413 		goto out_exit;
7414 
7415 	goto out;
7416 
7417 out_exit:
7418 	ufshcd_vops_exit(hba);
7419 out:
7420 	if (err)
7421 		dev_err(hba->dev, "%s: variant %s init failed err %d\n",
7422 			__func__, ufshcd_get_var_name(hba), err);
7423 	return err;
7424 }
7425 
ufshcd_variant_hba_exit(struct ufs_hba * hba)7426 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
7427 {
7428 	if (!hba->vops)
7429 		return;
7430 
7431 	ufshcd_vops_setup_regulators(hba, false);
7432 
7433 	ufshcd_vops_exit(hba);
7434 }
7435 
ufshcd_hba_init(struct ufs_hba * hba)7436 static int ufshcd_hba_init(struct ufs_hba *hba)
7437 {
7438 	int err;
7439 
7440 	/*
7441 	 * Handle host controller power separately from the UFS device power
7442 	 * rails as it will help controlling the UFS host controller power
7443 	 * collapse easily which is different than UFS device power collapse.
7444 	 * Also, enable the host controller power before we go ahead with rest
7445 	 * of the initialization here.
7446 	 */
7447 	err = ufshcd_init_hba_vreg(hba);
7448 	if (err)
7449 		goto out;
7450 
7451 	err = ufshcd_setup_hba_vreg(hba, true);
7452 	if (err)
7453 		goto out;
7454 
7455 	err = ufshcd_init_clocks(hba);
7456 	if (err)
7457 		goto out_disable_hba_vreg;
7458 
7459 	err = ufshcd_setup_clocks(hba, true);
7460 	if (err)
7461 		goto out_disable_hba_vreg;
7462 
7463 	err = ufshcd_init_vreg(hba);
7464 	if (err)
7465 		goto out_disable_clks;
7466 
7467 	err = ufshcd_setup_vreg(hba, true);
7468 	if (err)
7469 		goto out_disable_clks;
7470 
7471 	err = ufshcd_variant_hba_init(hba);
7472 	if (err)
7473 		goto out_disable_vreg;
7474 
7475 	hba->is_powered = true;
7476 	goto out;
7477 
7478 out_disable_vreg:
7479 	ufshcd_setup_vreg(hba, false);
7480 out_disable_clks:
7481 	ufshcd_setup_clocks(hba, false);
7482 out_disable_hba_vreg:
7483 	ufshcd_setup_hba_vreg(hba, false);
7484 out:
7485 	return err;
7486 }
7487 
ufshcd_hba_exit(struct ufs_hba * hba)7488 static void ufshcd_hba_exit(struct ufs_hba *hba)
7489 {
7490 	if (hba->is_powered) {
7491 		ufshcd_variant_hba_exit(hba);
7492 		ufshcd_setup_vreg(hba, false);
7493 		ufshcd_suspend_clkscaling(hba);
7494 		if (ufshcd_is_clkscaling_supported(hba))
7495 			if (hba->devfreq)
7496 				ufshcd_suspend_clkscaling(hba);
7497 		ufshcd_setup_clocks(hba, false);
7498 		ufshcd_setup_hba_vreg(hba, false);
7499 		hba->is_powered = false;
7500 	}
7501 }
7502 
7503 static int
ufshcd_send_request_sense(struct ufs_hba * hba,struct scsi_device * sdp)7504 ufshcd_send_request_sense(struct ufs_hba *hba, struct scsi_device *sdp)
7505 {
7506 	unsigned char cmd[6] = {REQUEST_SENSE,
7507 				0,
7508 				0,
7509 				0,
7510 				UFS_SENSE_SIZE,
7511 				0};
7512 	char *buffer;
7513 	int ret;
7514 
7515 	buffer = kzalloc(UFS_SENSE_SIZE, GFP_KERNEL);
7516 	if (!buffer) {
7517 		ret = -ENOMEM;
7518 		goto out;
7519 	}
7520 
7521 	ret = scsi_execute(sdp, cmd, DMA_FROM_DEVICE, buffer,
7522 			UFS_SENSE_SIZE, NULL, NULL,
7523 			msecs_to_jiffies(1000), 3, 0, RQF_PM, NULL);
7524 	if (ret)
7525 		pr_err("%s: failed with err %d\n", __func__, ret);
7526 
7527 	kfree(buffer);
7528 out:
7529 	return ret;
7530 }
7531 
7532 /**
7533  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
7534  *			     power mode
7535  * @hba: per adapter instance
7536  * @pwr_mode: device power mode to set
7537  *
7538  * Returns 0 if requested power mode is set successfully
7539  * Returns non-zero if failed to set the requested power mode
7540  */
ufshcd_set_dev_pwr_mode(struct ufs_hba * hba,enum ufs_dev_pwr_mode pwr_mode)7541 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
7542 				     enum ufs_dev_pwr_mode pwr_mode)
7543 {
7544 	unsigned char cmd[6] = { START_STOP };
7545 	struct scsi_sense_hdr sshdr;
7546 	struct scsi_device *sdp;
7547 	unsigned long flags;
7548 	int ret;
7549 
7550 	spin_lock_irqsave(hba->host->host_lock, flags);
7551 	sdp = hba->sdev_ufs_device;
7552 	if (sdp) {
7553 		ret = scsi_device_get(sdp);
7554 		if (!ret && !scsi_device_online(sdp)) {
7555 			ret = -ENODEV;
7556 			scsi_device_put(sdp);
7557 		}
7558 	} else {
7559 		ret = -ENODEV;
7560 	}
7561 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7562 
7563 	if (ret)
7564 		return ret;
7565 
7566 	/*
7567 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
7568 	 * handling, which would wait for host to be resumed. Since we know
7569 	 * we are functional while we are here, skip host resume in error
7570 	 * handling context.
7571 	 */
7572 	hba->host->eh_noresume = 1;
7573 	if (hba->wlun_dev_clr_ua) {
7574 		ret = ufshcd_send_request_sense(hba, sdp);
7575 		if (ret)
7576 			goto out;
7577 		/* Unit attention condition is cleared now */
7578 		hba->wlun_dev_clr_ua = false;
7579 	}
7580 
7581 	cmd[4] = pwr_mode << 4;
7582 
7583 	/*
7584 	 * Current function would be generally called from the power management
7585 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
7586 	 * already suspended childs.
7587 	 */
7588 	ret = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
7589 			START_STOP_TIMEOUT, 0, 0, RQF_PM, NULL);
7590 	if (ret) {
7591 		sdev_printk(KERN_WARNING, sdp,
7592 			    "START_STOP failed for power mode: %d, result %x\n",
7593 			    pwr_mode, ret);
7594 		if (driver_byte(ret) == DRIVER_SENSE)
7595 			scsi_print_sense_hdr(sdp, NULL, &sshdr);
7596 	}
7597 
7598 	if (!ret)
7599 		hba->curr_dev_pwr_mode = pwr_mode;
7600 out:
7601 	scsi_device_put(sdp);
7602 	hba->host->eh_noresume = 0;
7603 	return ret;
7604 }
7605 
ufshcd_link_state_transition(struct ufs_hba * hba,enum uic_link_state req_link_state,int check_for_bkops)7606 static int ufshcd_link_state_transition(struct ufs_hba *hba,
7607 					enum uic_link_state req_link_state,
7608 					int check_for_bkops)
7609 {
7610 	int ret = 0;
7611 
7612 	if (req_link_state == hba->uic_link_state)
7613 		return 0;
7614 
7615 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
7616 		ret = ufshcd_uic_hibern8_enter(hba);
7617 		if (!ret)
7618 			ufshcd_set_link_hibern8(hba);
7619 		else
7620 			goto out;
7621 	}
7622 	/*
7623 	 * If autobkops is enabled, link can't be turned off because
7624 	 * turning off the link would also turn off the device.
7625 	 */
7626 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
7627 		   (!check_for_bkops || (check_for_bkops &&
7628 		    !hba->auto_bkops_enabled))) {
7629 		/*
7630 		 * Let's make sure that link is in low power mode, we are doing
7631 		 * this currently by putting the link in Hibern8. Otherway to
7632 		 * put the link in low power mode is to send the DME end point
7633 		 * to device and then send the DME reset command to local
7634 		 * unipro. But putting the link in hibern8 is much faster.
7635 		 */
7636 		ret = ufshcd_uic_hibern8_enter(hba);
7637 		if (ret)
7638 			goto out;
7639 		/*
7640 		 * Change controller state to "reset state" which
7641 		 * should also put the link in off/reset state
7642 		 */
7643 		ufshcd_hba_stop(hba, true);
7644 		/*
7645 		 * TODO: Check if we need any delay to make sure that
7646 		 * controller is reset
7647 		 */
7648 		ufshcd_set_link_off(hba);
7649 	}
7650 
7651 out:
7652 	return ret;
7653 }
7654 
ufshcd_vreg_set_lpm(struct ufs_hba * hba)7655 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
7656 {
7657 	/*
7658 	 * It seems some UFS devices may keep drawing more than sleep current
7659 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
7660 	 * To avoid this situation, add 2ms delay before putting these UFS
7661 	 * rails in LPM mode.
7662 	 */
7663 	if (!ufshcd_is_link_active(hba) &&
7664 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
7665 		usleep_range(2000, 2100);
7666 
7667 	/*
7668 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
7669 	 * power.
7670 	 *
7671 	 * If UFS device and link is in OFF state, all power supplies (VCC,
7672 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
7673 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
7674 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
7675 	 *
7676 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
7677 	 * in low power state which would save some power.
7678 	 */
7679 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
7680 	    !hba->dev_info.is_lu_power_on_wp) {
7681 		ufshcd_setup_vreg(hba, false);
7682 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
7683 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
7684 		if (!ufshcd_is_link_active(hba)) {
7685 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
7686 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
7687 		}
7688 	}
7689 }
7690 
ufshcd_vreg_set_hpm(struct ufs_hba * hba)7691 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
7692 {
7693 	int ret = 0;
7694 
7695 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
7696 	    !hba->dev_info.is_lu_power_on_wp) {
7697 		ret = ufshcd_setup_vreg(hba, true);
7698 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
7699 		if (!ret && !ufshcd_is_link_active(hba)) {
7700 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
7701 			if (ret)
7702 				goto vcc_disable;
7703 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
7704 			if (ret)
7705 				goto vccq_lpm;
7706 		}
7707 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
7708 	}
7709 	goto out;
7710 
7711 vccq_lpm:
7712 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
7713 vcc_disable:
7714 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
7715 out:
7716 	return ret;
7717 }
7718 
ufshcd_hba_vreg_set_lpm(struct ufs_hba * hba)7719 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
7720 {
7721 	if (ufshcd_is_link_off(hba))
7722 		ufshcd_setup_hba_vreg(hba, false);
7723 }
7724 
ufshcd_hba_vreg_set_hpm(struct ufs_hba * hba)7725 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
7726 {
7727 	if (ufshcd_is_link_off(hba))
7728 		ufshcd_setup_hba_vreg(hba, true);
7729 }
7730 
7731 /**
7732  * ufshcd_suspend - helper function for suspend operations
7733  * @hba: per adapter instance
7734  * @pm_op: desired low power operation type
7735  *
7736  * This function will try to put the UFS device and link into low power
7737  * mode based on the "rpm_lvl" (Runtime PM level) or "spm_lvl"
7738  * (System PM level).
7739  *
7740  * If this function is called during shutdown, it will make sure that
7741  * both UFS device and UFS link is powered off.
7742  *
7743  * NOTE: UFS device & link must be active before we enter in this function.
7744  *
7745  * Returns 0 for success and non-zero for failure
7746  */
ufshcd_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op)7747 static int ufshcd_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
7748 {
7749 	int ret = 0;
7750 	enum ufs_pm_level pm_lvl;
7751 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
7752 	enum uic_link_state req_link_state;
7753 
7754 	hba->pm_op_in_progress = 1;
7755 	if (!ufshcd_is_shutdown_pm(pm_op)) {
7756 		pm_lvl = ufshcd_is_runtime_pm(pm_op) ?
7757 			 hba->rpm_lvl : hba->spm_lvl;
7758 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
7759 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
7760 	} else {
7761 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
7762 		req_link_state = UIC_LINK_OFF_STATE;
7763 	}
7764 
7765 	/*
7766 	 * If we can't transition into any of the low power modes
7767 	 * just gate the clocks.
7768 	 */
7769 	ufshcd_hold(hba, false);
7770 	hba->clk_gating.is_suspended = true;
7771 
7772 	if (hba->clk_scaling.is_allowed) {
7773 		cancel_work_sync(&hba->clk_scaling.suspend_work);
7774 		cancel_work_sync(&hba->clk_scaling.resume_work);
7775 		ufshcd_suspend_clkscaling(hba);
7776 	}
7777 
7778 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
7779 			req_link_state == UIC_LINK_ACTIVE_STATE) {
7780 		goto disable_clks;
7781 	}
7782 
7783 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
7784 	    (req_link_state == hba->uic_link_state))
7785 		goto enable_gating;
7786 
7787 	/* UFS device & link must be active before we enter in this function */
7788 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
7789 		ret = -EINVAL;
7790 		goto enable_gating;
7791 	}
7792 
7793 	if (ufshcd_is_runtime_pm(pm_op)) {
7794 		if (ufshcd_can_autobkops_during_suspend(hba)) {
7795 			/*
7796 			 * The device is idle with no requests in the queue,
7797 			 * allow background operations if bkops status shows
7798 			 * that performance might be impacted.
7799 			 */
7800 			ret = ufshcd_urgent_bkops(hba);
7801 			if (ret)
7802 				goto enable_gating;
7803 		} else {
7804 			/* make sure that auto bkops is disabled */
7805 			ufshcd_disable_auto_bkops(hba);
7806 		}
7807 	}
7808 
7809 	if ((req_dev_pwr_mode != hba->curr_dev_pwr_mode) &&
7810 	     ((ufshcd_is_runtime_pm(pm_op) && !hba->auto_bkops_enabled) ||
7811 	       !ufshcd_is_runtime_pm(pm_op))) {
7812 		/* ensure that bkops is disabled */
7813 		ufshcd_disable_auto_bkops(hba);
7814 		ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
7815 		if (ret)
7816 			goto enable_gating;
7817 	}
7818 
7819 	ret = ufshcd_link_state_transition(hba, req_link_state, 1);
7820 	if (ret)
7821 		goto set_dev_active;
7822 
7823 	ufshcd_vreg_set_lpm(hba);
7824 
7825 disable_clks:
7826 	/*
7827 	 * Call vendor specific suspend callback. As these callbacks may access
7828 	 * vendor specific host controller register space call them before the
7829 	 * host clocks are ON.
7830 	 */
7831 	ret = ufshcd_vops_suspend(hba, pm_op);
7832 	if (ret)
7833 		goto set_link_active;
7834 
7835 	if (!ufshcd_is_link_active(hba))
7836 		ufshcd_setup_clocks(hba, false);
7837 	else
7838 		/* If link is active, device ref_clk can't be switched off */
7839 		__ufshcd_setup_clocks(hba, false, true);
7840 
7841 	hba->clk_gating.state = CLKS_OFF;
7842 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
7843 	/*
7844 	 * Disable the host irq as host controller as there won't be any
7845 	 * host controller transaction expected till resume.
7846 	 */
7847 	ufshcd_disable_irq(hba);
7848 	/* Put the host controller in low power mode if possible */
7849 	ufshcd_hba_vreg_set_lpm(hba);
7850 	goto out;
7851 
7852 set_link_active:
7853 	if (hba->clk_scaling.is_allowed)
7854 		ufshcd_resume_clkscaling(hba);
7855 	ufshcd_vreg_set_hpm(hba);
7856 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
7857 		ufshcd_set_link_active(hba);
7858 	else if (ufshcd_is_link_off(hba))
7859 		ufshcd_host_reset_and_restore(hba);
7860 set_dev_active:
7861 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
7862 		ufshcd_disable_auto_bkops(hba);
7863 enable_gating:
7864 	if (hba->clk_scaling.is_allowed)
7865 		ufshcd_resume_clkscaling(hba);
7866 	hba->clk_gating.is_suspended = false;
7867 	ufshcd_release(hba);
7868 out:
7869 	hba->pm_op_in_progress = 0;
7870 	if (ret)
7871 		ufshcd_update_reg_hist(&hba->ufs_stats.suspend_err, (u32)ret);
7872 	return ret;
7873 }
7874 
7875 /**
7876  * ufshcd_resume - helper function for resume operations
7877  * @hba: per adapter instance
7878  * @pm_op: runtime PM or system PM
7879  *
7880  * This function basically brings the UFS device, UniPro link and controller
7881  * to active state.
7882  *
7883  * Returns 0 for success and non-zero for failure
7884  */
ufshcd_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)7885 static int ufshcd_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
7886 {
7887 	int ret;
7888 	enum uic_link_state old_link_state;
7889 
7890 	hba->pm_op_in_progress = 1;
7891 	old_link_state = hba->uic_link_state;
7892 
7893 	ufshcd_hba_vreg_set_hpm(hba);
7894 	/* Make sure clocks are enabled before accessing controller */
7895 	ret = ufshcd_setup_clocks(hba, true);
7896 	if (ret)
7897 		goto out;
7898 
7899 	/* enable the host irq as host controller would be active soon */
7900 	ret = ufshcd_enable_irq(hba);
7901 	if (ret)
7902 		goto disable_irq_and_vops_clks;
7903 
7904 	ret = ufshcd_vreg_set_hpm(hba);
7905 	if (ret)
7906 		goto disable_irq_and_vops_clks;
7907 
7908 	/*
7909 	 * Call vendor specific resume callback. As these callbacks may access
7910 	 * vendor specific host controller register space call them when the
7911 	 * host clocks are ON.
7912 	 */
7913 	ret = ufshcd_vops_resume(hba, pm_op);
7914 	if (ret)
7915 		goto disable_vreg;
7916 
7917 	if (ufshcd_is_link_hibern8(hba)) {
7918 		ret = ufshcd_uic_hibern8_exit(hba);
7919 		if (!ret)
7920 			ufshcd_set_link_active(hba);
7921 		else
7922 			goto vendor_suspend;
7923 	} else if (ufshcd_is_link_off(hba)) {
7924 		ret = ufshcd_host_reset_and_restore(hba);
7925 		/*
7926 		 * ufshcd_host_reset_and_restore() should have already
7927 		 * set the link state as active
7928 		 */
7929 		if (ret || !ufshcd_is_link_active(hba))
7930 			goto vendor_suspend;
7931 	}
7932 
7933 	if (!ufshcd_is_ufs_dev_active(hba)) {
7934 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
7935 		if (ret)
7936 			goto set_old_link_state;
7937 	}
7938 
7939 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
7940 		ufshcd_enable_auto_bkops(hba);
7941 	else
7942 		/*
7943 		 * If BKOPs operations are urgently needed at this moment then
7944 		 * keep auto-bkops enabled or else disable it.
7945 		 */
7946 		ufshcd_urgent_bkops(hba);
7947 
7948 	hba->clk_gating.is_suspended = false;
7949 
7950 	if (hba->clk_scaling.is_allowed)
7951 		ufshcd_resume_clkscaling(hba);
7952 
7953 	/* Schedule clock gating in case of no access to UFS device yet */
7954 	ufshcd_release(hba);
7955 
7956 	/* Enable Auto-Hibernate if configured */
7957 	ufshcd_auto_hibern8_enable(hba);
7958 
7959 	goto out;
7960 
7961 set_old_link_state:
7962 	ufshcd_link_state_transition(hba, old_link_state, 0);
7963 vendor_suspend:
7964 	ufshcd_vops_suspend(hba, pm_op);
7965 disable_vreg:
7966 	ufshcd_vreg_set_lpm(hba);
7967 disable_irq_and_vops_clks:
7968 	ufshcd_disable_irq(hba);
7969 	if (hba->clk_scaling.is_allowed)
7970 		ufshcd_suspend_clkscaling(hba);
7971 	ufshcd_setup_clocks(hba, false);
7972 out:
7973 	hba->pm_op_in_progress = 0;
7974 	if (ret)
7975 		ufshcd_update_reg_hist(&hba->ufs_stats.resume_err, (u32)ret);
7976 	return ret;
7977 }
7978 
7979 /**
7980  * ufshcd_system_suspend - system suspend routine
7981  * @hba: per adapter instance
7982  *
7983  * Check the description of ufshcd_suspend() function for more details.
7984  *
7985  * Returns 0 for success and non-zero for failure
7986  */
ufshcd_system_suspend(struct ufs_hba * hba)7987 int ufshcd_system_suspend(struct ufs_hba *hba)
7988 {
7989 	int ret = 0;
7990 	ktime_t start = ktime_get();
7991 
7992 	if (!hba || !hba->is_powered)
7993 		return 0;
7994 
7995 	if ((ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl) ==
7996 	     hba->curr_dev_pwr_mode) &&
7997 	    (ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl) ==
7998 	     hba->uic_link_state))
7999 		goto out;
8000 
8001 	if (pm_runtime_suspended(hba->dev)) {
8002 		/*
8003 		 * UFS device and/or UFS link low power states during runtime
8004 		 * suspend seems to be different than what is expected during
8005 		 * system suspend. Hence runtime resume the devic & link and
8006 		 * let the system suspend low power states to take effect.
8007 		 * TODO: If resume takes longer time, we might have optimize
8008 		 * it in future by not resuming everything if possible.
8009 		 */
8010 		ret = ufshcd_runtime_resume(hba);
8011 		if (ret)
8012 			goto out;
8013 	}
8014 
8015 	ret = ufshcd_suspend(hba, UFS_SYSTEM_PM);
8016 out:
8017 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
8018 		ktime_to_us(ktime_sub(ktime_get(), start)),
8019 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8020 	if (!ret)
8021 		hba->is_sys_suspended = true;
8022 	return ret;
8023 }
8024 EXPORT_SYMBOL(ufshcd_system_suspend);
8025 
8026 /**
8027  * ufshcd_system_resume - system resume routine
8028  * @hba: per adapter instance
8029  *
8030  * Returns 0 for success and non-zero for failure
8031  */
8032 
ufshcd_system_resume(struct ufs_hba * hba)8033 int ufshcd_system_resume(struct ufs_hba *hba)
8034 {
8035 	int ret = 0;
8036 	ktime_t start = ktime_get();
8037 
8038 	if (!hba)
8039 		return -EINVAL;
8040 
8041 	if (!hba->is_powered || pm_runtime_suspended(hba->dev))
8042 		/*
8043 		 * Let the runtime resume take care of resuming
8044 		 * if runtime suspended.
8045 		 */
8046 		goto out;
8047 	else
8048 		ret = ufshcd_resume(hba, UFS_SYSTEM_PM);
8049 out:
8050 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
8051 		ktime_to_us(ktime_sub(ktime_get(), start)),
8052 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8053 	if (!ret)
8054 		hba->is_sys_suspended = false;
8055 	return ret;
8056 }
8057 EXPORT_SYMBOL(ufshcd_system_resume);
8058 
8059 /**
8060  * ufshcd_runtime_suspend - runtime suspend routine
8061  * @hba: per adapter instance
8062  *
8063  * Check the description of ufshcd_suspend() function for more details.
8064  *
8065  * Returns 0 for success and non-zero for failure
8066  */
ufshcd_runtime_suspend(struct ufs_hba * hba)8067 int ufshcd_runtime_suspend(struct ufs_hba *hba)
8068 {
8069 	int ret = 0;
8070 	ktime_t start = ktime_get();
8071 
8072 	if (!hba)
8073 		return -EINVAL;
8074 
8075 	if (!hba->is_powered)
8076 		goto out;
8077 	else
8078 		ret = ufshcd_suspend(hba, UFS_RUNTIME_PM);
8079 out:
8080 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
8081 		ktime_to_us(ktime_sub(ktime_get(), start)),
8082 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8083 	return ret;
8084 }
8085 EXPORT_SYMBOL(ufshcd_runtime_suspend);
8086 
8087 /**
8088  * ufshcd_runtime_resume - runtime resume routine
8089  * @hba: per adapter instance
8090  *
8091  * This function basically brings the UFS device, UniPro link and controller
8092  * to active state. Following operations are done in this function:
8093  *
8094  * 1. Turn on all the controller related clocks
8095  * 2. Bring the UniPro link out of Hibernate state
8096  * 3. If UFS device is in sleep state, turn ON VCC rail and bring the UFS device
8097  *    to active state.
8098  * 4. If auto-bkops is enabled on the device, disable it.
8099  *
8100  * So following would be the possible power state after this function return
8101  * successfully:
8102  *	S1: UFS device in Active state with VCC rail ON
8103  *	    UniPro link in Active state
8104  *	    All the UFS/UniPro controller clocks are ON
8105  *
8106  * Returns 0 for success and non-zero for failure
8107  */
ufshcd_runtime_resume(struct ufs_hba * hba)8108 int ufshcd_runtime_resume(struct ufs_hba *hba)
8109 {
8110 	int ret = 0;
8111 	ktime_t start = ktime_get();
8112 
8113 	if (!hba)
8114 		return -EINVAL;
8115 
8116 	if (!hba->is_powered)
8117 		goto out;
8118 	else
8119 		ret = ufshcd_resume(hba, UFS_RUNTIME_PM);
8120 out:
8121 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
8122 		ktime_to_us(ktime_sub(ktime_get(), start)),
8123 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8124 	return ret;
8125 }
8126 EXPORT_SYMBOL(ufshcd_runtime_resume);
8127 
ufshcd_runtime_idle(struct ufs_hba * hba)8128 int ufshcd_runtime_idle(struct ufs_hba *hba)
8129 {
8130 	return 0;
8131 }
8132 EXPORT_SYMBOL(ufshcd_runtime_idle);
8133 
8134 /**
8135  * ufshcd_shutdown - shutdown routine
8136  * @hba: per adapter instance
8137  *
8138  * This function would power off both UFS device and UFS link.
8139  *
8140  * Returns 0 always to allow force shutdown even in case of errors.
8141  */
ufshcd_shutdown(struct ufs_hba * hba)8142 int ufshcd_shutdown(struct ufs_hba *hba)
8143 {
8144 	int ret = 0;
8145 
8146 	if (!hba->is_powered)
8147 		goto out;
8148 
8149 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
8150 		goto out;
8151 
8152 	if (pm_runtime_suspended(hba->dev)) {
8153 		ret = ufshcd_runtime_resume(hba);
8154 		if (ret)
8155 			goto out;
8156 	}
8157 
8158 	ret = ufshcd_suspend(hba, UFS_SHUTDOWN_PM);
8159 out:
8160 	if (ret)
8161 		dev_err(hba->dev, "%s failed, err %d\n", __func__, ret);
8162 	/* allow force shutdown even in case of errors */
8163 	return 0;
8164 }
8165 EXPORT_SYMBOL(ufshcd_shutdown);
8166 
8167 /**
8168  * ufshcd_remove - de-allocate SCSI host and host memory space
8169  *		data structure memory
8170  * @hba: per adapter instance
8171  */
ufshcd_remove(struct ufs_hba * hba)8172 void ufshcd_remove(struct ufs_hba *hba)
8173 {
8174 	ufs_bsg_remove(hba);
8175 	ufs_sysfs_remove_nodes(hba->dev);
8176 	scsi_remove_host(hba->host);
8177 	/* disable interrupts */
8178 	ufshcd_disable_intr(hba, hba->intr_mask);
8179 	ufshcd_hba_stop(hba, true);
8180 
8181 	ufshcd_exit_clk_scaling(hba);
8182 	ufshcd_exit_clk_gating(hba);
8183 	if (ufshcd_is_clkscaling_supported(hba))
8184 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
8185 	ufshcd_hba_exit(hba);
8186 }
8187 EXPORT_SYMBOL_GPL(ufshcd_remove);
8188 
8189 /**
8190  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
8191  * @hba: pointer to Host Bus Adapter (HBA)
8192  */
ufshcd_dealloc_host(struct ufs_hba * hba)8193 void ufshcd_dealloc_host(struct ufs_hba *hba)
8194 {
8195 	scsi_host_put(hba->host);
8196 }
8197 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
8198 
8199 /**
8200  * ufshcd_set_dma_mask - Set dma mask based on the controller
8201  *			 addressing capability
8202  * @hba: per adapter instance
8203  *
8204  * Returns 0 for success, non-zero for failure
8205  */
ufshcd_set_dma_mask(struct ufs_hba * hba)8206 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
8207 {
8208 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
8209 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
8210 			return 0;
8211 	}
8212 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
8213 }
8214 
8215 /**
8216  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
8217  * @dev: pointer to device handle
8218  * @hba_handle: driver private handle
8219  * Returns 0 on success, non-zero value on failure
8220  */
ufshcd_alloc_host(struct device * dev,struct ufs_hba ** hba_handle)8221 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
8222 {
8223 	struct Scsi_Host *host;
8224 	struct ufs_hba *hba;
8225 	int err = 0;
8226 
8227 	if (!dev) {
8228 		dev_err(dev,
8229 		"Invalid memory reference for dev is NULL\n");
8230 		err = -ENODEV;
8231 		goto out_error;
8232 	}
8233 
8234 	host = scsi_host_alloc(&ufshcd_driver_template,
8235 				sizeof(struct ufs_hba));
8236 	if (!host) {
8237 		dev_err(dev, "scsi_host_alloc failed\n");
8238 		err = -ENOMEM;
8239 		goto out_error;
8240 	}
8241 	hba = shost_priv(host);
8242 	hba->host = host;
8243 	hba->dev = dev;
8244 	*hba_handle = hba;
8245 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
8246 
8247 	INIT_LIST_HEAD(&hba->clk_list_head);
8248 
8249 out_error:
8250 	return err;
8251 }
8252 EXPORT_SYMBOL(ufshcd_alloc_host);
8253 
8254 /**
8255  * ufshcd_init - Driver initialization routine
8256  * @hba: per-adapter instance
8257  * @mmio_base: base register address
8258  * @irq: Interrupt line of device
8259  * Returns 0 on success, non-zero value on failure
8260  */
ufshcd_init(struct ufs_hba * hba,void __iomem * mmio_base,unsigned int irq)8261 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
8262 {
8263 	int err;
8264 	struct Scsi_Host *host = hba->host;
8265 	struct device *dev = hba->dev;
8266 
8267 	if (!mmio_base) {
8268 		dev_err(hba->dev,
8269 		"Invalid memory reference for mmio_base is NULL\n");
8270 		err = -ENODEV;
8271 		goto out_error;
8272 	}
8273 
8274 	hba->mmio_base = mmio_base;
8275 	hba->irq = irq;
8276 
8277 	/* Set descriptor lengths to specification defaults */
8278 	ufshcd_def_desc_sizes(hba);
8279 
8280 	err = ufshcd_hba_init(hba);
8281 	if (err)
8282 		goto out_error;
8283 
8284 	/* Read capabilities registers */
8285 	ufshcd_hba_capabilities(hba);
8286 
8287 	/* Get UFS version supported by the controller */
8288 	hba->ufs_version = ufshcd_get_ufs_version(hba);
8289 
8290 	if ((hba->ufs_version != UFSHCI_VERSION_10) &&
8291 	    (hba->ufs_version != UFSHCI_VERSION_11) &&
8292 	    (hba->ufs_version != UFSHCI_VERSION_20) &&
8293 	    (hba->ufs_version != UFSHCI_VERSION_21))
8294 		dev_err(hba->dev, "invalid UFS version 0x%x\n",
8295 			hba->ufs_version);
8296 
8297 	/* Get Interrupt bit mask per version */
8298 	hba->intr_mask = ufshcd_get_intr_mask(hba);
8299 
8300 	err = ufshcd_set_dma_mask(hba);
8301 	if (err) {
8302 		dev_err(hba->dev, "set dma mask failed\n");
8303 		goto out_disable;
8304 	}
8305 
8306 	/* Allocate memory for host memory space */
8307 	err = ufshcd_memory_alloc(hba);
8308 	if (err) {
8309 		dev_err(hba->dev, "Memory allocation failed\n");
8310 		goto out_disable;
8311 	}
8312 
8313 	/* Configure LRB */
8314 	ufshcd_host_memory_configure(hba);
8315 
8316 	host->can_queue = hba->nutrs;
8317 	host->cmd_per_lun = hba->nutrs;
8318 	host->max_id = UFSHCD_MAX_ID;
8319 	host->max_lun = UFS_MAX_LUNS;
8320 	host->max_channel = UFSHCD_MAX_CHANNEL;
8321 	host->unique_id = host->host_no;
8322 	host->max_cmd_len = UFS_CDB_SIZE;
8323 
8324 	hba->max_pwr_info.is_valid = false;
8325 
8326 	/* Initailize wait queue for task management */
8327 	init_waitqueue_head(&hba->tm_wq);
8328 	init_waitqueue_head(&hba->tm_tag_wq);
8329 
8330 	/* Initialize work queues */
8331 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
8332 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
8333 
8334 	/* Initialize UIC command mutex */
8335 	mutex_init(&hba->uic_cmd_mutex);
8336 
8337 	/* Initialize mutex for device management commands */
8338 	mutex_init(&hba->dev_cmd.lock);
8339 
8340 	init_rwsem(&hba->clk_scaling_lock);
8341 
8342 	/* Initialize device management tag acquire wait queue */
8343 	init_waitqueue_head(&hba->dev_cmd.tag_wq);
8344 
8345 	ufshcd_init_clk_gating(hba);
8346 
8347 	ufshcd_init_clk_scaling(hba);
8348 
8349 	/*
8350 	 * In order to avoid any spurious interrupt immediately after
8351 	 * registering UFS controller interrupt handler, clear any pending UFS
8352 	 * interrupt status and disable all the UFS interrupts.
8353 	 */
8354 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
8355 		      REG_INTERRUPT_STATUS);
8356 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
8357 	/*
8358 	 * Make sure that UFS interrupts are disabled and any pending interrupt
8359 	 * status is cleared before registering UFS interrupt handler.
8360 	 */
8361 	mb();
8362 
8363 	/* IRQ registration */
8364 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
8365 	if (err) {
8366 		dev_err(hba->dev, "request irq failed\n");
8367 		goto exit_gating;
8368 	} else {
8369 		hba->is_irq_enabled = true;
8370 	}
8371 
8372 	err = scsi_add_host(host, hba->dev);
8373 	if (err) {
8374 		dev_err(hba->dev, "scsi_add_host failed\n");
8375 		goto exit_gating;
8376 	}
8377 
8378 	/* Reset the attached device */
8379 	ufshcd_vops_device_reset(hba);
8380 
8381 	/* Host controller enable */
8382 	err = ufshcd_hba_enable(hba);
8383 	if (err) {
8384 		dev_err(hba->dev, "Host controller enable failed\n");
8385 		ufshcd_print_host_regs(hba);
8386 		ufshcd_print_host_state(hba);
8387 		goto out_remove_scsi_host;
8388 	}
8389 
8390 	/*
8391 	 * Set the default power management level for runtime and system PM.
8392 	 * Default power saving mode is to keep UFS link in Hibern8 state
8393 	 * and UFS device in sleep state.
8394 	 */
8395 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
8396 						UFS_SLEEP_PWR_MODE,
8397 						UIC_LINK_HIBERN8_STATE);
8398 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
8399 						UFS_SLEEP_PWR_MODE,
8400 						UIC_LINK_HIBERN8_STATE);
8401 
8402 	/* Set the default auto-hiberate idle timer value to 150 ms */
8403 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
8404 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
8405 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
8406 	}
8407 
8408 	/* Hold auto suspend until async scan completes */
8409 	pm_runtime_get_sync(dev);
8410 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
8411 	/*
8412 	 * We are assuming that device wasn't put in sleep/power-down
8413 	 * state exclusively during the boot stage before kernel.
8414 	 * This assumption helps avoid doing link startup twice during
8415 	 * ufshcd_probe_hba().
8416 	 */
8417 	ufshcd_set_ufs_dev_active(hba);
8418 
8419 	async_schedule(ufshcd_async_scan, hba);
8420 	ufs_sysfs_add_nodes(hba->dev);
8421 
8422 	return 0;
8423 
8424 out_remove_scsi_host:
8425 	scsi_remove_host(hba->host);
8426 exit_gating:
8427 	ufshcd_exit_clk_scaling(hba);
8428 	ufshcd_exit_clk_gating(hba);
8429 out_disable:
8430 	hba->is_irq_enabled = false;
8431 	ufshcd_hba_exit(hba);
8432 out_error:
8433 	return err;
8434 }
8435 EXPORT_SYMBOL_GPL(ufshcd_init);
8436 
8437 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
8438 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
8439 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
8440 MODULE_LICENSE("GPL");
8441 MODULE_VERSION(UFSHCD_DRIVER_VERSION);
8442