1  /*
2   * Functions related to setting various queue properties from drivers
3   */
4  #include <linux/kernel.h>
5  #include <linux/module.h>
6  #include <linux/init.h>
7  #include <linux/bio.h>
8  #include <linux/blkdev.h>
9  #include <linux/bootmem.h>	/* for max_pfn/max_low_pfn */
10  #include <linux/gcd.h>
11  #include <linux/lcm.h>
12  #include <linux/jiffies.h>
13  #include <linux/gfp.h>
14  
15  #include "blk.h"
16  #include "blk-wbt.h"
17  
18  unsigned long blk_max_low_pfn;
19  EXPORT_SYMBOL(blk_max_low_pfn);
20  
21  unsigned long blk_max_pfn;
22  
23  /**
24   * blk_queue_prep_rq - set a prepare_request function for queue
25   * @q:		queue
26   * @pfn:	prepare_request function
27   *
28   * It's possible for a queue to register a prepare_request callback which
29   * is invoked before the request is handed to the request_fn. The goal of
30   * the function is to prepare a request for I/O, it can be used to build a
31   * cdb from the request data for instance.
32   *
33   */
blk_queue_prep_rq(struct request_queue * q,prep_rq_fn * pfn)34  void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
35  {
36  	q->prep_rq_fn = pfn;
37  }
38  EXPORT_SYMBOL(blk_queue_prep_rq);
39  
40  /**
41   * blk_queue_unprep_rq - set an unprepare_request function for queue
42   * @q:		queue
43   * @ufn:	unprepare_request function
44   *
45   * It's possible for a queue to register an unprepare_request callback
46   * which is invoked before the request is finally completed. The goal
47   * of the function is to deallocate any data that was allocated in the
48   * prepare_request callback.
49   *
50   */
blk_queue_unprep_rq(struct request_queue * q,unprep_rq_fn * ufn)51  void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
52  {
53  	q->unprep_rq_fn = ufn;
54  }
55  EXPORT_SYMBOL(blk_queue_unprep_rq);
56  
blk_queue_softirq_done(struct request_queue * q,softirq_done_fn * fn)57  void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
58  {
59  	q->softirq_done_fn = fn;
60  }
61  EXPORT_SYMBOL(blk_queue_softirq_done);
62  
blk_queue_rq_timeout(struct request_queue * q,unsigned int timeout)63  void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
64  {
65  	q->rq_timeout = timeout;
66  }
67  EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
68  
blk_queue_rq_timed_out(struct request_queue * q,rq_timed_out_fn * fn)69  void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
70  {
71  	WARN_ON_ONCE(q->mq_ops);
72  	q->rq_timed_out_fn = fn;
73  }
74  EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
75  
blk_queue_lld_busy(struct request_queue * q,lld_busy_fn * fn)76  void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
77  {
78  	q->lld_busy_fn = fn;
79  }
80  EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
81  
82  /**
83   * blk_set_default_limits - reset limits to default values
84   * @lim:  the queue_limits structure to reset
85   *
86   * Description:
87   *   Returns a queue_limit struct to its default state.
88   */
blk_set_default_limits(struct queue_limits * lim)89  void blk_set_default_limits(struct queue_limits *lim)
90  {
91  	lim->max_segments = BLK_MAX_SEGMENTS;
92  	lim->max_discard_segments = 1;
93  	lim->max_integrity_segments = 0;
94  	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
95  	lim->virt_boundary_mask = 0;
96  	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
97  	lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
98  	lim->max_dev_sectors = 0;
99  	lim->chunk_sectors = 0;
100  	lim->max_write_same_sectors = 0;
101  	lim->max_write_zeroes_sectors = 0;
102  	lim->max_discard_sectors = 0;
103  	lim->max_hw_discard_sectors = 0;
104  	lim->discard_granularity = 0;
105  	lim->discard_alignment = 0;
106  	lim->discard_misaligned = 0;
107  	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
108  	lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
109  	lim->alignment_offset = 0;
110  	lim->io_opt = 0;
111  	lim->misaligned = 0;
112  	lim->cluster = 1;
113  	lim->zoned = BLK_ZONED_NONE;
114  }
115  EXPORT_SYMBOL(blk_set_default_limits);
116  
117  /**
118   * blk_set_stacking_limits - set default limits for stacking devices
119   * @lim:  the queue_limits structure to reset
120   *
121   * Description:
122   *   Returns a queue_limit struct to its default state. Should be used
123   *   by stacking drivers like DM that have no internal limits.
124   */
blk_set_stacking_limits(struct queue_limits * lim)125  void blk_set_stacking_limits(struct queue_limits *lim)
126  {
127  	blk_set_default_limits(lim);
128  
129  	/* Inherit limits from component devices */
130  	lim->max_segments = USHRT_MAX;
131  	lim->max_discard_segments = USHRT_MAX;
132  	lim->max_hw_sectors = UINT_MAX;
133  	lim->max_segment_size = UINT_MAX;
134  	lim->max_sectors = UINT_MAX;
135  	lim->max_dev_sectors = UINT_MAX;
136  	lim->max_write_same_sectors = UINT_MAX;
137  	lim->max_write_zeroes_sectors = UINT_MAX;
138  }
139  EXPORT_SYMBOL(blk_set_stacking_limits);
140  
141  /**
142   * blk_queue_make_request - define an alternate make_request function for a device
143   * @q:  the request queue for the device to be affected
144   * @mfn: the alternate make_request function
145   *
146   * Description:
147   *    The normal way for &struct bios to be passed to a device
148   *    driver is for them to be collected into requests on a request
149   *    queue, and then to allow the device driver to select requests
150   *    off that queue when it is ready.  This works well for many block
151   *    devices. However some block devices (typically virtual devices
152   *    such as md or lvm) do not benefit from the processing on the
153   *    request queue, and are served best by having the requests passed
154   *    directly to them.  This can be achieved by providing a function
155   *    to blk_queue_make_request().
156   *
157   * Caveat:
158   *    The driver that does this *must* be able to deal appropriately
159   *    with buffers in "highmemory". This can be accomplished by either calling
160   *    kmap_atomic() to get a temporary kernel mapping, or by calling
161   *    blk_queue_bounce() to create a buffer in normal memory.
162   **/
blk_queue_make_request(struct request_queue * q,make_request_fn * mfn)163  void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
164  {
165  	/*
166  	 * set defaults
167  	 */
168  	q->nr_requests = BLKDEV_MAX_RQ;
169  
170  	q->make_request_fn = mfn;
171  	blk_queue_dma_alignment(q, 511);
172  	blk_queue_congestion_threshold(q);
173  	q->nr_batching = BLK_BATCH_REQ;
174  
175  	blk_set_default_limits(&q->limits);
176  }
177  EXPORT_SYMBOL(blk_queue_make_request);
178  
179  /**
180   * blk_queue_bounce_limit - set bounce buffer limit for queue
181   * @q: the request queue for the device
182   * @max_addr: the maximum address the device can handle
183   *
184   * Description:
185   *    Different hardware can have different requirements as to what pages
186   *    it can do I/O directly to. A low level driver can call
187   *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
188   *    buffers for doing I/O to pages residing above @max_addr.
189   **/
blk_queue_bounce_limit(struct request_queue * q,u64 max_addr)190  void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
191  {
192  	unsigned long b_pfn = max_addr >> PAGE_SHIFT;
193  	int dma = 0;
194  
195  	q->bounce_gfp = GFP_NOIO;
196  #if BITS_PER_LONG == 64
197  	/*
198  	 * Assume anything <= 4GB can be handled by IOMMU.  Actually
199  	 * some IOMMUs can handle everything, but I don't know of a
200  	 * way to test this here.
201  	 */
202  	if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
203  		dma = 1;
204  	q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
205  #else
206  	if (b_pfn < blk_max_low_pfn)
207  		dma = 1;
208  	q->limits.bounce_pfn = b_pfn;
209  #endif
210  	if (dma) {
211  		init_emergency_isa_pool();
212  		q->bounce_gfp = GFP_NOIO | GFP_DMA;
213  		q->limits.bounce_pfn = b_pfn;
214  	}
215  }
216  EXPORT_SYMBOL(blk_queue_bounce_limit);
217  
218  /**
219   * blk_queue_max_hw_sectors - set max sectors for a request for this queue
220   * @q:  the request queue for the device
221   * @max_hw_sectors:  max hardware sectors in the usual 512b unit
222   *
223   * Description:
224   *    Enables a low level driver to set a hard upper limit,
225   *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
226   *    the device driver based upon the capabilities of the I/O
227   *    controller.
228   *
229   *    max_dev_sectors is a hard limit imposed by the storage device for
230   *    READ/WRITE requests. It is set by the disk driver.
231   *
232   *    max_sectors is a soft limit imposed by the block layer for
233   *    filesystem type requests.  This value can be overridden on a
234   *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
235   *    The soft limit can not exceed max_hw_sectors.
236   **/
blk_queue_max_hw_sectors(struct request_queue * q,unsigned int max_hw_sectors)237  void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
238  {
239  	struct queue_limits *limits = &q->limits;
240  	unsigned int max_sectors;
241  
242  	if ((max_hw_sectors << 9) < PAGE_SIZE) {
243  		max_hw_sectors = 1 << (PAGE_SHIFT - 9);
244  		printk(KERN_INFO "%s: set to minimum %d\n",
245  		       __func__, max_hw_sectors);
246  	}
247  
248  	limits->max_hw_sectors = max_hw_sectors;
249  	max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
250  	max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
251  	limits->max_sectors = max_sectors;
252  	q->backing_dev_info->io_pages = max_sectors >> (PAGE_SHIFT - 9);
253  }
254  EXPORT_SYMBOL(blk_queue_max_hw_sectors);
255  
256  /**
257   * blk_queue_chunk_sectors - set size of the chunk for this queue
258   * @q:  the request queue for the device
259   * @chunk_sectors:  chunk sectors in the usual 512b unit
260   *
261   * Description:
262   *    If a driver doesn't want IOs to cross a given chunk size, it can set
263   *    this limit and prevent merging across chunks. Note that the chunk size
264   *    must currently be a power-of-2 in sectors. Also note that the block
265   *    layer must accept a page worth of data at any offset. So if the
266   *    crossing of chunks is a hard limitation in the driver, it must still be
267   *    prepared to split single page bios.
268   **/
blk_queue_chunk_sectors(struct request_queue * q,unsigned int chunk_sectors)269  void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
270  {
271  	BUG_ON(!is_power_of_2(chunk_sectors));
272  	q->limits.chunk_sectors = chunk_sectors;
273  }
274  EXPORT_SYMBOL(blk_queue_chunk_sectors);
275  
276  /**
277   * blk_queue_max_discard_sectors - set max sectors for a single discard
278   * @q:  the request queue for the device
279   * @max_discard_sectors: maximum number of sectors to discard
280   **/
blk_queue_max_discard_sectors(struct request_queue * q,unsigned int max_discard_sectors)281  void blk_queue_max_discard_sectors(struct request_queue *q,
282  		unsigned int max_discard_sectors)
283  {
284  	q->limits.max_hw_discard_sectors = max_discard_sectors;
285  	q->limits.max_discard_sectors = max_discard_sectors;
286  }
287  EXPORT_SYMBOL(blk_queue_max_discard_sectors);
288  
289  /**
290   * blk_queue_max_write_same_sectors - set max sectors for a single write same
291   * @q:  the request queue for the device
292   * @max_write_same_sectors: maximum number of sectors to write per command
293   **/
blk_queue_max_write_same_sectors(struct request_queue * q,unsigned int max_write_same_sectors)294  void blk_queue_max_write_same_sectors(struct request_queue *q,
295  				      unsigned int max_write_same_sectors)
296  {
297  	q->limits.max_write_same_sectors = max_write_same_sectors;
298  }
299  EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
300  
301  /**
302   * blk_queue_max_write_zeroes_sectors - set max sectors for a single
303   *                                      write zeroes
304   * @q:  the request queue for the device
305   * @max_write_zeroes_sectors: maximum number of sectors to write per command
306   **/
blk_queue_max_write_zeroes_sectors(struct request_queue * q,unsigned int max_write_zeroes_sectors)307  void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
308  		unsigned int max_write_zeroes_sectors)
309  {
310  	q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
311  }
312  EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
313  
314  /**
315   * blk_queue_max_segments - set max hw segments for a request for this queue
316   * @q:  the request queue for the device
317   * @max_segments:  max number of segments
318   *
319   * Description:
320   *    Enables a low level driver to set an upper limit on the number of
321   *    hw data segments in a request.
322   **/
blk_queue_max_segments(struct request_queue * q,unsigned short max_segments)323  void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
324  {
325  	if (!max_segments) {
326  		max_segments = 1;
327  		printk(KERN_INFO "%s: set to minimum %d\n",
328  		       __func__, max_segments);
329  	}
330  
331  	q->limits.max_segments = max_segments;
332  }
333  EXPORT_SYMBOL(blk_queue_max_segments);
334  
335  /**
336   * blk_queue_max_discard_segments - set max segments for discard requests
337   * @q:  the request queue for the device
338   * @max_segments:  max number of segments
339   *
340   * Description:
341   *    Enables a low level driver to set an upper limit on the number of
342   *    segments in a discard request.
343   **/
blk_queue_max_discard_segments(struct request_queue * q,unsigned short max_segments)344  void blk_queue_max_discard_segments(struct request_queue *q,
345  		unsigned short max_segments)
346  {
347  	q->limits.max_discard_segments = max_segments;
348  }
349  EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
350  
351  /**
352   * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
353   * @q:  the request queue for the device
354   * @max_size:  max size of segment in bytes
355   *
356   * Description:
357   *    Enables a low level driver to set an upper limit on the size of a
358   *    coalesced segment
359   **/
blk_queue_max_segment_size(struct request_queue * q,unsigned int max_size)360  void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
361  {
362  	if (max_size < PAGE_SIZE) {
363  		max_size = PAGE_SIZE;
364  		printk(KERN_INFO "%s: set to minimum %d\n",
365  		       __func__, max_size);
366  	}
367  
368  	q->limits.max_segment_size = max_size;
369  }
370  EXPORT_SYMBOL(blk_queue_max_segment_size);
371  
372  /**
373   * blk_queue_logical_block_size - set logical block size for the queue
374   * @q:  the request queue for the device
375   * @size:  the logical block size, in bytes
376   *
377   * Description:
378   *   This should be set to the lowest possible block size that the
379   *   storage device can address.  The default of 512 covers most
380   *   hardware.
381   **/
blk_queue_logical_block_size(struct request_queue * q,unsigned short size)382  void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
383  {
384  	q->limits.logical_block_size = size;
385  
386  	if (q->limits.physical_block_size < size)
387  		q->limits.physical_block_size = size;
388  
389  	if (q->limits.io_min < q->limits.physical_block_size)
390  		q->limits.io_min = q->limits.physical_block_size;
391  }
392  EXPORT_SYMBOL(blk_queue_logical_block_size);
393  
394  /**
395   * blk_queue_physical_block_size - set physical block size for the queue
396   * @q:  the request queue for the device
397   * @size:  the physical block size, in bytes
398   *
399   * Description:
400   *   This should be set to the lowest possible sector size that the
401   *   hardware can operate on without reverting to read-modify-write
402   *   operations.
403   */
blk_queue_physical_block_size(struct request_queue * q,unsigned int size)404  void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
405  {
406  	q->limits.physical_block_size = size;
407  
408  	if (q->limits.physical_block_size < q->limits.logical_block_size)
409  		q->limits.physical_block_size = q->limits.logical_block_size;
410  
411  	if (q->limits.io_min < q->limits.physical_block_size)
412  		q->limits.io_min = q->limits.physical_block_size;
413  }
414  EXPORT_SYMBOL(blk_queue_physical_block_size);
415  
416  /**
417   * blk_queue_alignment_offset - set physical block alignment offset
418   * @q:	the request queue for the device
419   * @offset: alignment offset in bytes
420   *
421   * Description:
422   *   Some devices are naturally misaligned to compensate for things like
423   *   the legacy DOS partition table 63-sector offset.  Low-level drivers
424   *   should call this function for devices whose first sector is not
425   *   naturally aligned.
426   */
blk_queue_alignment_offset(struct request_queue * q,unsigned int offset)427  void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
428  {
429  	q->limits.alignment_offset =
430  		offset & (q->limits.physical_block_size - 1);
431  	q->limits.misaligned = 0;
432  }
433  EXPORT_SYMBOL(blk_queue_alignment_offset);
434  
435  /**
436   * blk_limits_io_min - set minimum request size for a device
437   * @limits: the queue limits
438   * @min:  smallest I/O size in bytes
439   *
440   * Description:
441   *   Some devices have an internal block size bigger than the reported
442   *   hardware sector size.  This function can be used to signal the
443   *   smallest I/O the device can perform without incurring a performance
444   *   penalty.
445   */
blk_limits_io_min(struct queue_limits * limits,unsigned int min)446  void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
447  {
448  	limits->io_min = min;
449  
450  	if (limits->io_min < limits->logical_block_size)
451  		limits->io_min = limits->logical_block_size;
452  
453  	if (limits->io_min < limits->physical_block_size)
454  		limits->io_min = limits->physical_block_size;
455  }
456  EXPORT_SYMBOL(blk_limits_io_min);
457  
458  /**
459   * blk_queue_io_min - set minimum request size for the queue
460   * @q:	the request queue for the device
461   * @min:  smallest I/O size in bytes
462   *
463   * Description:
464   *   Storage devices may report a granularity or preferred minimum I/O
465   *   size which is the smallest request the device can perform without
466   *   incurring a performance penalty.  For disk drives this is often the
467   *   physical block size.  For RAID arrays it is often the stripe chunk
468   *   size.  A properly aligned multiple of minimum_io_size is the
469   *   preferred request size for workloads where a high number of I/O
470   *   operations is desired.
471   */
blk_queue_io_min(struct request_queue * q,unsigned int min)472  void blk_queue_io_min(struct request_queue *q, unsigned int min)
473  {
474  	blk_limits_io_min(&q->limits, min);
475  }
476  EXPORT_SYMBOL(blk_queue_io_min);
477  
478  /**
479   * blk_limits_io_opt - set optimal request size for a device
480   * @limits: the queue limits
481   * @opt:  smallest I/O size in bytes
482   *
483   * Description:
484   *   Storage devices may report an optimal I/O size, which is the
485   *   device's preferred unit for sustained I/O.  This is rarely reported
486   *   for disk drives.  For RAID arrays it is usually the stripe width or
487   *   the internal track size.  A properly aligned multiple of
488   *   optimal_io_size is the preferred request size for workloads where
489   *   sustained throughput is desired.
490   */
blk_limits_io_opt(struct queue_limits * limits,unsigned int opt)491  void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
492  {
493  	limits->io_opt = opt;
494  }
495  EXPORT_SYMBOL(blk_limits_io_opt);
496  
497  /**
498   * blk_queue_io_opt - set optimal request size for the queue
499   * @q:	the request queue for the device
500   * @opt:  optimal request size in bytes
501   *
502   * Description:
503   *   Storage devices may report an optimal I/O size, which is the
504   *   device's preferred unit for sustained I/O.  This is rarely reported
505   *   for disk drives.  For RAID arrays it is usually the stripe width or
506   *   the internal track size.  A properly aligned multiple of
507   *   optimal_io_size is the preferred request size for workloads where
508   *   sustained throughput is desired.
509   */
blk_queue_io_opt(struct request_queue * q,unsigned int opt)510  void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
511  {
512  	blk_limits_io_opt(&q->limits, opt);
513  }
514  EXPORT_SYMBOL(blk_queue_io_opt);
515  
516  /**
517   * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
518   * @t:	the stacking driver (top)
519   * @b:  the underlying device (bottom)
520   **/
blk_queue_stack_limits(struct request_queue * t,struct request_queue * b)521  void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
522  {
523  	blk_stack_limits(&t->limits, &b->limits, 0);
524  }
525  EXPORT_SYMBOL(blk_queue_stack_limits);
526  
527  /**
528   * blk_stack_limits - adjust queue_limits for stacked devices
529   * @t:	the stacking driver limits (top device)
530   * @b:  the underlying queue limits (bottom, component device)
531   * @start:  first data sector within component device
532   *
533   * Description:
534   *    This function is used by stacking drivers like MD and DM to ensure
535   *    that all component devices have compatible block sizes and
536   *    alignments.  The stacking driver must provide a queue_limits
537   *    struct (top) and then iteratively call the stacking function for
538   *    all component (bottom) devices.  The stacking function will
539   *    attempt to combine the values and ensure proper alignment.
540   *
541   *    Returns 0 if the top and bottom queue_limits are compatible.  The
542   *    top device's block sizes and alignment offsets may be adjusted to
543   *    ensure alignment with the bottom device. If no compatible sizes
544   *    and alignments exist, -1 is returned and the resulting top
545   *    queue_limits will have the misaligned flag set to indicate that
546   *    the alignment_offset is undefined.
547   */
blk_stack_limits(struct queue_limits * t,struct queue_limits * b,sector_t start)548  int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
549  		     sector_t start)
550  {
551  	unsigned int top, bottom, alignment, ret = 0;
552  
553  	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
554  	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
555  	t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
556  	t->max_write_same_sectors = min(t->max_write_same_sectors,
557  					b->max_write_same_sectors);
558  	t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
559  					b->max_write_zeroes_sectors);
560  	t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
561  
562  	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
563  					    b->seg_boundary_mask);
564  	t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
565  					    b->virt_boundary_mask);
566  
567  	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
568  	t->max_discard_segments = min_not_zero(t->max_discard_segments,
569  					       b->max_discard_segments);
570  	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
571  						 b->max_integrity_segments);
572  
573  	t->max_segment_size = min_not_zero(t->max_segment_size,
574  					   b->max_segment_size);
575  
576  	t->misaligned |= b->misaligned;
577  
578  	alignment = queue_limit_alignment_offset(b, start);
579  
580  	/* Bottom device has different alignment.  Check that it is
581  	 * compatible with the current top alignment.
582  	 */
583  	if (t->alignment_offset != alignment) {
584  
585  		top = max(t->physical_block_size, t->io_min)
586  			+ t->alignment_offset;
587  		bottom = max(b->physical_block_size, b->io_min) + alignment;
588  
589  		/* Verify that top and bottom intervals line up */
590  		if (max(top, bottom) % min(top, bottom)) {
591  			t->misaligned = 1;
592  			ret = -1;
593  		}
594  	}
595  
596  	t->logical_block_size = max(t->logical_block_size,
597  				    b->logical_block_size);
598  
599  	t->physical_block_size = max(t->physical_block_size,
600  				     b->physical_block_size);
601  
602  	t->io_min = max(t->io_min, b->io_min);
603  	t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
604  
605  	t->cluster &= b->cluster;
606  
607  	/* Physical block size a multiple of the logical block size? */
608  	if (t->physical_block_size & (t->logical_block_size - 1)) {
609  		t->physical_block_size = t->logical_block_size;
610  		t->misaligned = 1;
611  		ret = -1;
612  	}
613  
614  	/* Minimum I/O a multiple of the physical block size? */
615  	if (t->io_min & (t->physical_block_size - 1)) {
616  		t->io_min = t->physical_block_size;
617  		t->misaligned = 1;
618  		ret = -1;
619  	}
620  
621  	/* Optimal I/O a multiple of the physical block size? */
622  	if (t->io_opt & (t->physical_block_size - 1)) {
623  		t->io_opt = 0;
624  		t->misaligned = 1;
625  		ret = -1;
626  	}
627  
628  	t->raid_partial_stripes_expensive =
629  		max(t->raid_partial_stripes_expensive,
630  		    b->raid_partial_stripes_expensive);
631  
632  	/* Find lowest common alignment_offset */
633  	t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
634  		% max(t->physical_block_size, t->io_min);
635  
636  	/* Verify that new alignment_offset is on a logical block boundary */
637  	if (t->alignment_offset & (t->logical_block_size - 1)) {
638  		t->misaligned = 1;
639  		ret = -1;
640  	}
641  
642  	/* Discard alignment and granularity */
643  	if (b->discard_granularity) {
644  		alignment = queue_limit_discard_alignment(b, start);
645  
646  		if (t->discard_granularity != 0 &&
647  		    t->discard_alignment != alignment) {
648  			top = t->discard_granularity + t->discard_alignment;
649  			bottom = b->discard_granularity + alignment;
650  
651  			/* Verify that top and bottom intervals line up */
652  			if ((max(top, bottom) % min(top, bottom)) != 0)
653  				t->discard_misaligned = 1;
654  		}
655  
656  		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
657  						      b->max_discard_sectors);
658  		t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
659  							 b->max_hw_discard_sectors);
660  		t->discard_granularity = max(t->discard_granularity,
661  					     b->discard_granularity);
662  		t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
663  			t->discard_granularity;
664  	}
665  
666  	if (b->chunk_sectors)
667  		t->chunk_sectors = min_not_zero(t->chunk_sectors,
668  						b->chunk_sectors);
669  
670  	return ret;
671  }
672  EXPORT_SYMBOL(blk_stack_limits);
673  
674  /**
675   * bdev_stack_limits - adjust queue limits for stacked drivers
676   * @t:	the stacking driver limits (top device)
677   * @bdev:  the component block_device (bottom)
678   * @start:  first data sector within component device
679   *
680   * Description:
681   *    Merges queue limits for a top device and a block_device.  Returns
682   *    0 if alignment didn't change.  Returns -1 if adding the bottom
683   *    device caused misalignment.
684   */
bdev_stack_limits(struct queue_limits * t,struct block_device * bdev,sector_t start)685  int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
686  		      sector_t start)
687  {
688  	struct request_queue *bq = bdev_get_queue(bdev);
689  
690  	start += get_start_sect(bdev);
691  
692  	return blk_stack_limits(t, &bq->limits, start);
693  }
694  EXPORT_SYMBOL(bdev_stack_limits);
695  
696  /**
697   * disk_stack_limits - adjust queue limits for stacked drivers
698   * @disk:  MD/DM gendisk (top)
699   * @bdev:  the underlying block device (bottom)
700   * @offset:  offset to beginning of data within component device
701   *
702   * Description:
703   *    Merges the limits for a top level gendisk and a bottom level
704   *    block_device.
705   */
disk_stack_limits(struct gendisk * disk,struct block_device * bdev,sector_t offset)706  void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
707  		       sector_t offset)
708  {
709  	struct request_queue *t = disk->queue;
710  
711  	if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
712  		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
713  
714  		disk_name(disk, 0, top);
715  		bdevname(bdev, bottom);
716  
717  		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
718  		       top, bottom);
719  	}
720  }
721  EXPORT_SYMBOL(disk_stack_limits);
722  
723  /**
724   * blk_queue_dma_pad - set pad mask
725   * @q:     the request queue for the device
726   * @mask:  pad mask
727   *
728   * Set dma pad mask.
729   *
730   * Appending pad buffer to a request modifies the last entry of a
731   * scatter list such that it includes the pad buffer.
732   **/
blk_queue_dma_pad(struct request_queue * q,unsigned int mask)733  void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
734  {
735  	q->dma_pad_mask = mask;
736  }
737  EXPORT_SYMBOL(blk_queue_dma_pad);
738  
739  /**
740   * blk_queue_update_dma_pad - update pad mask
741   * @q:     the request queue for the device
742   * @mask:  pad mask
743   *
744   * Update dma pad mask.
745   *
746   * Appending pad buffer to a request modifies the last entry of a
747   * scatter list such that it includes the pad buffer.
748   **/
blk_queue_update_dma_pad(struct request_queue * q,unsigned int mask)749  void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
750  {
751  	if (mask > q->dma_pad_mask)
752  		q->dma_pad_mask = mask;
753  }
754  EXPORT_SYMBOL(blk_queue_update_dma_pad);
755  
756  /**
757   * blk_queue_dma_drain - Set up a drain buffer for excess dma.
758   * @q:  the request queue for the device
759   * @dma_drain_needed: fn which returns non-zero if drain is necessary
760   * @buf:	physically contiguous buffer
761   * @size:	size of the buffer in bytes
762   *
763   * Some devices have excess DMA problems and can't simply discard (or
764   * zero fill) the unwanted piece of the transfer.  They have to have a
765   * real area of memory to transfer it into.  The use case for this is
766   * ATAPI devices in DMA mode.  If the packet command causes a transfer
767   * bigger than the transfer size some HBAs will lock up if there
768   * aren't DMA elements to contain the excess transfer.  What this API
769   * does is adjust the queue so that the buf is always appended
770   * silently to the scatterlist.
771   *
772   * Note: This routine adjusts max_hw_segments to make room for appending
773   * the drain buffer.  If you call blk_queue_max_segments() after calling
774   * this routine, you must set the limit to one fewer than your device
775   * can support otherwise there won't be room for the drain buffer.
776   */
blk_queue_dma_drain(struct request_queue * q,dma_drain_needed_fn * dma_drain_needed,void * buf,unsigned int size)777  int blk_queue_dma_drain(struct request_queue *q,
778  			       dma_drain_needed_fn *dma_drain_needed,
779  			       void *buf, unsigned int size)
780  {
781  	if (queue_max_segments(q) < 2)
782  		return -EINVAL;
783  	/* make room for appending the drain */
784  	blk_queue_max_segments(q, queue_max_segments(q) - 1);
785  	q->dma_drain_needed = dma_drain_needed;
786  	q->dma_drain_buffer = buf;
787  	q->dma_drain_size = size;
788  
789  	return 0;
790  }
791  EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
792  
793  /**
794   * blk_queue_segment_boundary - set boundary rules for segment merging
795   * @q:  the request queue for the device
796   * @mask:  the memory boundary mask
797   **/
blk_queue_segment_boundary(struct request_queue * q,unsigned long mask)798  void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
799  {
800  	if (mask < PAGE_SIZE - 1) {
801  		mask = PAGE_SIZE - 1;
802  		printk(KERN_INFO "%s: set to minimum %lx\n",
803  		       __func__, mask);
804  	}
805  
806  	q->limits.seg_boundary_mask = mask;
807  }
808  EXPORT_SYMBOL(blk_queue_segment_boundary);
809  
810  /**
811   * blk_queue_virt_boundary - set boundary rules for bio merging
812   * @q:  the request queue for the device
813   * @mask:  the memory boundary mask
814   **/
blk_queue_virt_boundary(struct request_queue * q,unsigned long mask)815  void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
816  {
817  	q->limits.virt_boundary_mask = mask;
818  }
819  EXPORT_SYMBOL(blk_queue_virt_boundary);
820  
821  /**
822   * blk_queue_dma_alignment - set dma length and memory alignment
823   * @q:     the request queue for the device
824   * @mask:  alignment mask
825   *
826   * description:
827   *    set required memory and length alignment for direct dma transactions.
828   *    this is used when building direct io requests for the queue.
829   *
830   **/
blk_queue_dma_alignment(struct request_queue * q,int mask)831  void blk_queue_dma_alignment(struct request_queue *q, int mask)
832  {
833  	q->dma_alignment = mask;
834  }
835  EXPORT_SYMBOL(blk_queue_dma_alignment);
836  
837  /**
838   * blk_queue_update_dma_alignment - update dma length and memory alignment
839   * @q:     the request queue for the device
840   * @mask:  alignment mask
841   *
842   * description:
843   *    update required memory and length alignment for direct dma transactions.
844   *    If the requested alignment is larger than the current alignment, then
845   *    the current queue alignment is updated to the new value, otherwise it
846   *    is left alone.  The design of this is to allow multiple objects
847   *    (driver, device, transport etc) to set their respective
848   *    alignments without having them interfere.
849   *
850   **/
blk_queue_update_dma_alignment(struct request_queue * q,int mask)851  void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
852  {
853  	BUG_ON(mask > PAGE_SIZE);
854  
855  	if (mask > q->dma_alignment)
856  		q->dma_alignment = mask;
857  }
858  EXPORT_SYMBOL(blk_queue_update_dma_alignment);
859  
blk_queue_flush_queueable(struct request_queue * q,bool queueable)860  void blk_queue_flush_queueable(struct request_queue *q, bool queueable)
861  {
862  	if (queueable)
863  		blk_queue_flag_clear(QUEUE_FLAG_FLUSH_NQ, q);
864  	else
865  		blk_queue_flag_set(QUEUE_FLAG_FLUSH_NQ, q);
866  }
867  EXPORT_SYMBOL_GPL(blk_queue_flush_queueable);
868  
869  /**
870   * blk_set_queue_depth - tell the block layer about the device queue depth
871   * @q:		the request queue for the device
872   * @depth:		queue depth
873   *
874   */
blk_set_queue_depth(struct request_queue * q,unsigned int depth)875  void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
876  {
877  	q->queue_depth = depth;
878  	wbt_set_queue_depth(q, depth);
879  }
880  EXPORT_SYMBOL(blk_set_queue_depth);
881  
882  /**
883   * blk_queue_write_cache - configure queue's write cache
884   * @q:		the request queue for the device
885   * @wc:		write back cache on or off
886   * @fua:	device supports FUA writes, if true
887   *
888   * Tell the block layer about the write cache of @q.
889   */
blk_queue_write_cache(struct request_queue * q,bool wc,bool fua)890  void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
891  {
892  	spin_lock_irq(q->queue_lock);
893  	if (wc)
894  		queue_flag_set(QUEUE_FLAG_WC, q);
895  	else
896  		queue_flag_clear(QUEUE_FLAG_WC, q);
897  	if (fua)
898  		queue_flag_set(QUEUE_FLAG_FUA, q);
899  	else
900  		queue_flag_clear(QUEUE_FLAG_FUA, q);
901  	spin_unlock_irq(q->queue_lock);
902  
903  	wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
904  }
905  EXPORT_SYMBOL_GPL(blk_queue_write_cache);
906  
blk_settings_init(void)907  static int __init blk_settings_init(void)
908  {
909  	blk_max_low_pfn = max_low_pfn - 1;
910  	blk_max_pfn = max_pfn - 1;
911  	return 0;
912  }
913  subsys_initcall(blk_settings_init);
914