1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * super.c
4 *
5 * PURPOSE
6 * Super block routines for the OSTA-UDF(tm) filesystem.
7 *
8 * DESCRIPTION
9 * OSTA-UDF(tm) = Optical Storage Technology Association
10 * Universal Disk Format.
11 *
12 * This code is based on version 2.00 of the UDF specification,
13 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
14 * http://www.osta.org/
15 * https://www.ecma.ch/
16 * https://www.iso.org/
17 *
18 * COPYRIGHT
19 * (C) 1998 Dave Boynton
20 * (C) 1998-2004 Ben Fennema
21 * (C) 2000 Stelias Computing Inc
22 *
23 * HISTORY
24 *
25 * 09/24/98 dgb changed to allow compiling outside of kernel, and
26 * added some debugging.
27 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
28 * 10/16/98 attempting some multi-session support
29 * 10/17/98 added freespace count for "df"
30 * 11/11/98 gr added novrs option
31 * 11/26/98 dgb added fileset,anchor mount options
32 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
33 * vol descs. rewrote option handling based on isofs
34 * 12/20/98 find the free space bitmap (if it exists)
35 */
36
37 #include "udfdecl.h"
38
39 #include <linux/blkdev.h>
40 #include <linux/slab.h>
41 #include <linux/kernel.h>
42 #include <linux/module.h>
43 #include <linux/parser.h>
44 #include <linux/stat.h>
45 #include <linux/cdrom.h>
46 #include <linux/nls.h>
47 #include <linux/vfs.h>
48 #include <linux/vmalloc.h>
49 #include <linux/errno.h>
50 #include <linux/mount.h>
51 #include <linux/seq_file.h>
52 #include <linux/bitmap.h>
53 #include <linux/crc-itu-t.h>
54 #include <linux/log2.h>
55 #include <asm/byteorder.h>
56 #include <linux/iversion.h>
57
58 #include "udf_sb.h"
59 #include "udf_i.h"
60
61 #include <linux/init.h>
62 #include <linux/uaccess.h>
63
64 enum {
65 VDS_POS_PRIMARY_VOL_DESC,
66 VDS_POS_UNALLOC_SPACE_DESC,
67 VDS_POS_LOGICAL_VOL_DESC,
68 VDS_POS_IMP_USE_VOL_DESC,
69 VDS_POS_LENGTH
70 };
71
72 #define VSD_FIRST_SECTOR_OFFSET 32768
73 #define VSD_MAX_SECTOR_OFFSET 0x800000
74
75 /*
76 * Maximum number of Terminating Descriptor / Logical Volume Integrity
77 * Descriptor redirections. The chosen numbers are arbitrary - just that we
78 * hopefully don't limit any real use of rewritten inode on write-once media
79 * but avoid looping for too long on corrupted media.
80 */
81 #define UDF_MAX_TD_NESTING 64
82 #define UDF_MAX_LVID_NESTING 1000
83
84 enum { UDF_MAX_LINKS = 0xffff };
85 /*
86 * We limit filesize to 4TB. This is arbitrary as the on-disk format supports
87 * more but because the file space is described by a linked list of extents,
88 * each of which can have at most 1GB, the creation and handling of extents
89 * gets unusably slow beyond certain point...
90 */
91 #define UDF_MAX_FILESIZE (1ULL << 42)
92
93 /* These are the "meat" - everything else is stuffing */
94 static int udf_fill_super(struct super_block *, void *, int);
95 static void udf_put_super(struct super_block *);
96 static int udf_sync_fs(struct super_block *, int);
97 static int udf_remount_fs(struct super_block *, int *, char *);
98 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
99 static void udf_open_lvid(struct super_block *);
100 static void udf_close_lvid(struct super_block *);
101 static unsigned int udf_count_free(struct super_block *);
102 static int udf_statfs(struct dentry *, struct kstatfs *);
103 static int udf_show_options(struct seq_file *, struct dentry *);
104
udf_sb_lvidiu(struct super_block * sb)105 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
106 {
107 struct logicalVolIntegrityDesc *lvid;
108 unsigned int partnum;
109 unsigned int offset;
110
111 if (!UDF_SB(sb)->s_lvid_bh)
112 return NULL;
113 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
114 partnum = le32_to_cpu(lvid->numOfPartitions);
115 /* The offset is to skip freeSpaceTable and sizeTable arrays */
116 offset = partnum * 2 * sizeof(uint32_t);
117 return (struct logicalVolIntegrityDescImpUse *)
118 (((uint8_t *)(lvid + 1)) + offset);
119 }
120
121 /* UDF filesystem type */
udf_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)122 static struct dentry *udf_mount(struct file_system_type *fs_type,
123 int flags, const char *dev_name, void *data)
124 {
125 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
126 }
127
128 static struct file_system_type udf_fstype = {
129 .owner = THIS_MODULE,
130 .name = "udf",
131 .mount = udf_mount,
132 .kill_sb = kill_block_super,
133 .fs_flags = FS_REQUIRES_DEV,
134 };
135 MODULE_ALIAS_FS("udf");
136
137 static struct kmem_cache *udf_inode_cachep;
138
udf_alloc_inode(struct super_block * sb)139 static struct inode *udf_alloc_inode(struct super_block *sb)
140 {
141 struct udf_inode_info *ei;
142 ei = alloc_inode_sb(sb, udf_inode_cachep, GFP_KERNEL);
143 if (!ei)
144 return NULL;
145
146 ei->i_unique = 0;
147 ei->i_lenExtents = 0;
148 ei->i_lenStreams = 0;
149 ei->i_next_alloc_block = 0;
150 ei->i_next_alloc_goal = 0;
151 ei->i_strat4096 = 0;
152 ei->i_streamdir = 0;
153 ei->i_hidden = 0;
154 init_rwsem(&ei->i_data_sem);
155 ei->cached_extent.lstart = -1;
156 spin_lock_init(&ei->i_extent_cache_lock);
157 inode_set_iversion(&ei->vfs_inode, 1);
158
159 return &ei->vfs_inode;
160 }
161
udf_free_in_core_inode(struct inode * inode)162 static void udf_free_in_core_inode(struct inode *inode)
163 {
164 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
165 }
166
init_once(void * foo)167 static void init_once(void *foo)
168 {
169 struct udf_inode_info *ei = foo;
170
171 ei->i_data = NULL;
172 inode_init_once(&ei->vfs_inode);
173 }
174
init_inodecache(void)175 static int __init init_inodecache(void)
176 {
177 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
178 sizeof(struct udf_inode_info),
179 0, (SLAB_RECLAIM_ACCOUNT |
180 SLAB_MEM_SPREAD |
181 SLAB_ACCOUNT),
182 init_once);
183 if (!udf_inode_cachep)
184 return -ENOMEM;
185 return 0;
186 }
187
destroy_inodecache(void)188 static void destroy_inodecache(void)
189 {
190 /*
191 * Make sure all delayed rcu free inodes are flushed before we
192 * destroy cache.
193 */
194 rcu_barrier();
195 kmem_cache_destroy(udf_inode_cachep);
196 }
197
198 /* Superblock operations */
199 static const struct super_operations udf_sb_ops = {
200 .alloc_inode = udf_alloc_inode,
201 .free_inode = udf_free_in_core_inode,
202 .write_inode = udf_write_inode,
203 .evict_inode = udf_evict_inode,
204 .put_super = udf_put_super,
205 .sync_fs = udf_sync_fs,
206 .statfs = udf_statfs,
207 .remount_fs = udf_remount_fs,
208 .show_options = udf_show_options,
209 };
210
211 struct udf_options {
212 unsigned char novrs;
213 unsigned int blocksize;
214 unsigned int session;
215 unsigned int lastblock;
216 unsigned int anchor;
217 unsigned int flags;
218 umode_t umask;
219 kgid_t gid;
220 kuid_t uid;
221 umode_t fmode;
222 umode_t dmode;
223 struct nls_table *nls_map;
224 };
225
init_udf_fs(void)226 static int __init init_udf_fs(void)
227 {
228 int err;
229
230 err = init_inodecache();
231 if (err)
232 goto out1;
233 err = register_filesystem(&udf_fstype);
234 if (err)
235 goto out;
236
237 return 0;
238
239 out:
240 destroy_inodecache();
241
242 out1:
243 return err;
244 }
245
exit_udf_fs(void)246 static void __exit exit_udf_fs(void)
247 {
248 unregister_filesystem(&udf_fstype);
249 destroy_inodecache();
250 }
251
udf_sb_alloc_partition_maps(struct super_block * sb,u32 count)252 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
253 {
254 struct udf_sb_info *sbi = UDF_SB(sb);
255
256 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
257 if (!sbi->s_partmaps) {
258 sbi->s_partitions = 0;
259 return -ENOMEM;
260 }
261
262 sbi->s_partitions = count;
263 return 0;
264 }
265
udf_sb_free_bitmap(struct udf_bitmap * bitmap)266 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
267 {
268 int i;
269 int nr_groups = bitmap->s_nr_groups;
270
271 for (i = 0; i < nr_groups; i++)
272 brelse(bitmap->s_block_bitmap[i]);
273
274 kvfree(bitmap);
275 }
276
udf_free_partition(struct udf_part_map * map)277 static void udf_free_partition(struct udf_part_map *map)
278 {
279 int i;
280 struct udf_meta_data *mdata;
281
282 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
283 iput(map->s_uspace.s_table);
284 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
285 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
286 if (map->s_partition_type == UDF_SPARABLE_MAP15)
287 for (i = 0; i < 4; i++)
288 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
289 else if (map->s_partition_type == UDF_METADATA_MAP25) {
290 mdata = &map->s_type_specific.s_metadata;
291 iput(mdata->s_metadata_fe);
292 mdata->s_metadata_fe = NULL;
293
294 iput(mdata->s_mirror_fe);
295 mdata->s_mirror_fe = NULL;
296
297 iput(mdata->s_bitmap_fe);
298 mdata->s_bitmap_fe = NULL;
299 }
300 }
301
udf_sb_free_partitions(struct super_block * sb)302 static void udf_sb_free_partitions(struct super_block *sb)
303 {
304 struct udf_sb_info *sbi = UDF_SB(sb);
305 int i;
306
307 if (!sbi->s_partmaps)
308 return;
309 for (i = 0; i < sbi->s_partitions; i++)
310 udf_free_partition(&sbi->s_partmaps[i]);
311 kfree(sbi->s_partmaps);
312 sbi->s_partmaps = NULL;
313 }
314
udf_show_options(struct seq_file * seq,struct dentry * root)315 static int udf_show_options(struct seq_file *seq, struct dentry *root)
316 {
317 struct super_block *sb = root->d_sb;
318 struct udf_sb_info *sbi = UDF_SB(sb);
319
320 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
321 seq_puts(seq, ",nostrict");
322 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
323 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
324 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
325 seq_puts(seq, ",unhide");
326 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
327 seq_puts(seq, ",undelete");
328 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
329 seq_puts(seq, ",noadinicb");
330 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
331 seq_puts(seq, ",shortad");
332 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
333 seq_puts(seq, ",uid=forget");
334 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
335 seq_puts(seq, ",gid=forget");
336 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
337 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
338 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
339 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
340 if (sbi->s_umask != 0)
341 seq_printf(seq, ",umask=%ho", sbi->s_umask);
342 if (sbi->s_fmode != UDF_INVALID_MODE)
343 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
344 if (sbi->s_dmode != UDF_INVALID_MODE)
345 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
346 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
347 seq_printf(seq, ",session=%d", sbi->s_session);
348 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
349 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
350 if (sbi->s_anchor != 0)
351 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
352 if (sbi->s_nls_map)
353 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
354 else
355 seq_puts(seq, ",iocharset=utf8");
356
357 return 0;
358 }
359
360 /*
361 * udf_parse_options
362 *
363 * PURPOSE
364 * Parse mount options.
365 *
366 * DESCRIPTION
367 * The following mount options are supported:
368 *
369 * gid= Set the default group.
370 * umask= Set the default umask.
371 * mode= Set the default file permissions.
372 * dmode= Set the default directory permissions.
373 * uid= Set the default user.
374 * bs= Set the block size.
375 * unhide Show otherwise hidden files.
376 * undelete Show deleted files in lists.
377 * adinicb Embed data in the inode (default)
378 * noadinicb Don't embed data in the inode
379 * shortad Use short ad's
380 * longad Use long ad's (default)
381 * nostrict Unset strict conformance
382 * iocharset= Set the NLS character set
383 *
384 * The remaining are for debugging and disaster recovery:
385 *
386 * novrs Skip volume sequence recognition
387 *
388 * The following expect a offset from 0.
389 *
390 * session= Set the CDROM session (default= last session)
391 * anchor= Override standard anchor location. (default= 256)
392 * volume= Override the VolumeDesc location. (unused)
393 * partition= Override the PartitionDesc location. (unused)
394 * lastblock= Set the last block of the filesystem/
395 *
396 * The following expect a offset from the partition root.
397 *
398 * fileset= Override the fileset block location. (unused)
399 * rootdir= Override the root directory location. (unused)
400 * WARNING: overriding the rootdir to a non-directory may
401 * yield highly unpredictable results.
402 *
403 * PRE-CONDITIONS
404 * options Pointer to mount options string.
405 * uopts Pointer to mount options variable.
406 *
407 * POST-CONDITIONS
408 * <return> 1 Mount options parsed okay.
409 * <return> 0 Error parsing mount options.
410 *
411 * HISTORY
412 * July 1, 1997 - Andrew E. Mileski
413 * Written, tested, and released.
414 */
415
416 enum {
417 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
418 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
419 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
420 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
421 Opt_rootdir, Opt_utf8, Opt_iocharset,
422 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
423 Opt_fmode, Opt_dmode
424 };
425
426 static const match_table_t tokens = {
427 {Opt_novrs, "novrs"},
428 {Opt_nostrict, "nostrict"},
429 {Opt_bs, "bs=%u"},
430 {Opt_unhide, "unhide"},
431 {Opt_undelete, "undelete"},
432 {Opt_noadinicb, "noadinicb"},
433 {Opt_adinicb, "adinicb"},
434 {Opt_shortad, "shortad"},
435 {Opt_longad, "longad"},
436 {Opt_uforget, "uid=forget"},
437 {Opt_uignore, "uid=ignore"},
438 {Opt_gforget, "gid=forget"},
439 {Opt_gignore, "gid=ignore"},
440 {Opt_gid, "gid=%u"},
441 {Opt_uid, "uid=%u"},
442 {Opt_umask, "umask=%o"},
443 {Opt_session, "session=%u"},
444 {Opt_lastblock, "lastblock=%u"},
445 {Opt_anchor, "anchor=%u"},
446 {Opt_volume, "volume=%u"},
447 {Opt_partition, "partition=%u"},
448 {Opt_fileset, "fileset=%u"},
449 {Opt_rootdir, "rootdir=%u"},
450 {Opt_utf8, "utf8"},
451 {Opt_iocharset, "iocharset=%s"},
452 {Opt_fmode, "mode=%o"},
453 {Opt_dmode, "dmode=%o"},
454 {Opt_err, NULL}
455 };
456
udf_parse_options(char * options,struct udf_options * uopt,bool remount)457 static int udf_parse_options(char *options, struct udf_options *uopt,
458 bool remount)
459 {
460 char *p;
461 int option;
462 unsigned int uv;
463
464 uopt->novrs = 0;
465 uopt->session = 0xFFFFFFFF;
466 uopt->lastblock = 0;
467 uopt->anchor = 0;
468
469 if (!options)
470 return 1;
471
472 while ((p = strsep(&options, ",")) != NULL) {
473 substring_t args[MAX_OPT_ARGS];
474 int token;
475 unsigned n;
476 if (!*p)
477 continue;
478
479 token = match_token(p, tokens, args);
480 switch (token) {
481 case Opt_novrs:
482 uopt->novrs = 1;
483 break;
484 case Opt_bs:
485 if (match_int(&args[0], &option))
486 return 0;
487 n = option;
488 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
489 return 0;
490 uopt->blocksize = n;
491 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
492 break;
493 case Opt_unhide:
494 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
495 break;
496 case Opt_undelete:
497 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
498 break;
499 case Opt_noadinicb:
500 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
501 break;
502 case Opt_adinicb:
503 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
504 break;
505 case Opt_shortad:
506 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
507 break;
508 case Opt_longad:
509 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
510 break;
511 case Opt_gid:
512 if (match_uint(args, &uv))
513 return 0;
514 uopt->gid = make_kgid(current_user_ns(), uv);
515 if (!gid_valid(uopt->gid))
516 return 0;
517 uopt->flags |= (1 << UDF_FLAG_GID_SET);
518 break;
519 case Opt_uid:
520 if (match_uint(args, &uv))
521 return 0;
522 uopt->uid = make_kuid(current_user_ns(), uv);
523 if (!uid_valid(uopt->uid))
524 return 0;
525 uopt->flags |= (1 << UDF_FLAG_UID_SET);
526 break;
527 case Opt_umask:
528 if (match_octal(args, &option))
529 return 0;
530 uopt->umask = option;
531 break;
532 case Opt_nostrict:
533 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
534 break;
535 case Opt_session:
536 if (match_int(args, &option))
537 return 0;
538 uopt->session = option;
539 if (!remount)
540 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
541 break;
542 case Opt_lastblock:
543 if (match_int(args, &option))
544 return 0;
545 uopt->lastblock = option;
546 if (!remount)
547 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
548 break;
549 case Opt_anchor:
550 if (match_int(args, &option))
551 return 0;
552 uopt->anchor = option;
553 break;
554 case Opt_volume:
555 case Opt_partition:
556 case Opt_fileset:
557 case Opt_rootdir:
558 /* Ignored (never implemented properly) */
559 break;
560 case Opt_utf8:
561 if (!remount) {
562 unload_nls(uopt->nls_map);
563 uopt->nls_map = NULL;
564 }
565 break;
566 case Opt_iocharset:
567 if (!remount) {
568 unload_nls(uopt->nls_map);
569 uopt->nls_map = NULL;
570 }
571 /* When nls_map is not loaded then UTF-8 is used */
572 if (!remount && strcmp(args[0].from, "utf8") != 0) {
573 uopt->nls_map = load_nls(args[0].from);
574 if (!uopt->nls_map) {
575 pr_err("iocharset %s not found\n",
576 args[0].from);
577 return 0;
578 }
579 }
580 break;
581 case Opt_uforget:
582 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
583 break;
584 case Opt_uignore:
585 case Opt_gignore:
586 /* These options are superseeded by uid=<number> */
587 break;
588 case Opt_gforget:
589 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
590 break;
591 case Opt_fmode:
592 if (match_octal(args, &option))
593 return 0;
594 uopt->fmode = option & 0777;
595 break;
596 case Opt_dmode:
597 if (match_octal(args, &option))
598 return 0;
599 uopt->dmode = option & 0777;
600 break;
601 default:
602 pr_err("bad mount option \"%s\" or missing value\n", p);
603 return 0;
604 }
605 }
606 return 1;
607 }
608
udf_remount_fs(struct super_block * sb,int * flags,char * options)609 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
610 {
611 struct udf_options uopt;
612 struct udf_sb_info *sbi = UDF_SB(sb);
613 int error = 0;
614
615 if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
616 return -EACCES;
617
618 sync_filesystem(sb);
619
620 uopt.flags = sbi->s_flags;
621 uopt.uid = sbi->s_uid;
622 uopt.gid = sbi->s_gid;
623 uopt.umask = sbi->s_umask;
624 uopt.fmode = sbi->s_fmode;
625 uopt.dmode = sbi->s_dmode;
626 uopt.nls_map = NULL;
627
628 if (!udf_parse_options(options, &uopt, true))
629 return -EINVAL;
630
631 write_lock(&sbi->s_cred_lock);
632 sbi->s_flags = uopt.flags;
633 sbi->s_uid = uopt.uid;
634 sbi->s_gid = uopt.gid;
635 sbi->s_umask = uopt.umask;
636 sbi->s_fmode = uopt.fmode;
637 sbi->s_dmode = uopt.dmode;
638 write_unlock(&sbi->s_cred_lock);
639
640 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
641 goto out_unlock;
642
643 if (*flags & SB_RDONLY)
644 udf_close_lvid(sb);
645 else
646 udf_open_lvid(sb);
647
648 out_unlock:
649 return error;
650 }
651
652 /*
653 * Check VSD descriptor. Returns -1 in case we are at the end of volume
654 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
655 * we found one of NSR descriptors we are looking for.
656 */
identify_vsd(const struct volStructDesc * vsd)657 static int identify_vsd(const struct volStructDesc *vsd)
658 {
659 int ret = 0;
660
661 if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
662 switch (vsd->structType) {
663 case 0:
664 udf_debug("ISO9660 Boot Record found\n");
665 break;
666 case 1:
667 udf_debug("ISO9660 Primary Volume Descriptor found\n");
668 break;
669 case 2:
670 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
671 break;
672 case 3:
673 udf_debug("ISO9660 Volume Partition Descriptor found\n");
674 break;
675 case 255:
676 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
677 break;
678 default:
679 udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
680 break;
681 }
682 } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
683 ; /* ret = 0 */
684 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
685 ret = 1;
686 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
687 ret = 1;
688 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
689 ; /* ret = 0 */
690 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
691 ; /* ret = 0 */
692 else {
693 /* TEA01 or invalid id : end of volume recognition area */
694 ret = -1;
695 }
696
697 return ret;
698 }
699
700 /*
701 * Check Volume Structure Descriptors (ECMA 167 2/9.1)
702 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
703 * @return 1 if NSR02 or NSR03 found,
704 * -1 if first sector read error, 0 otherwise
705 */
udf_check_vsd(struct super_block * sb)706 static int udf_check_vsd(struct super_block *sb)
707 {
708 struct volStructDesc *vsd = NULL;
709 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
710 int sectorsize;
711 struct buffer_head *bh = NULL;
712 int nsr = 0;
713 struct udf_sb_info *sbi;
714 loff_t session_offset;
715
716 sbi = UDF_SB(sb);
717 if (sb->s_blocksize < sizeof(struct volStructDesc))
718 sectorsize = sizeof(struct volStructDesc);
719 else
720 sectorsize = sb->s_blocksize;
721
722 session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
723 sector += session_offset;
724
725 udf_debug("Starting at sector %u (%lu byte sectors)\n",
726 (unsigned int)(sector >> sb->s_blocksize_bits),
727 sb->s_blocksize);
728 /* Process the sequence (if applicable). The hard limit on the sector
729 * offset is arbitrary, hopefully large enough so that all valid UDF
730 * filesystems will be recognised. There is no mention of an upper
731 * bound to the size of the volume recognition area in the standard.
732 * The limit will prevent the code to read all the sectors of a
733 * specially crafted image (like a bluray disc full of CD001 sectors),
734 * potentially causing minutes or even hours of uninterruptible I/O
735 * activity. This actually happened with uninitialised SSD partitions
736 * (all 0xFF) before the check for the limit and all valid IDs were
737 * added */
738 for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
739 /* Read a block */
740 bh = sb_bread(sb, sector >> sb->s_blocksize_bits);
741 if (!bh)
742 break;
743
744 vsd = (struct volStructDesc *)(bh->b_data +
745 (sector & (sb->s_blocksize - 1)));
746 nsr = identify_vsd(vsd);
747 /* Found NSR or end? */
748 if (nsr) {
749 brelse(bh);
750 break;
751 }
752 /*
753 * Special handling for improperly formatted VRS (e.g., Win10)
754 * where components are separated by 2048 bytes even though
755 * sectors are 4K
756 */
757 if (sb->s_blocksize == 4096) {
758 nsr = identify_vsd(vsd + 1);
759 /* Ignore unknown IDs... */
760 if (nsr < 0)
761 nsr = 0;
762 }
763 brelse(bh);
764 }
765
766 if (nsr > 0)
767 return 1;
768 else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
769 return -1;
770 else
771 return 0;
772 }
773
udf_verify_domain_identifier(struct super_block * sb,struct regid * ident,char * dname)774 static int udf_verify_domain_identifier(struct super_block *sb,
775 struct regid *ident, char *dname)
776 {
777 struct domainIdentSuffix *suffix;
778
779 if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
780 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
781 goto force_ro;
782 }
783 if (ident->flags & ENTITYID_FLAGS_DIRTY) {
784 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
785 dname);
786 goto force_ro;
787 }
788 suffix = (struct domainIdentSuffix *)ident->identSuffix;
789 if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
790 (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
791 if (!sb_rdonly(sb)) {
792 udf_warn(sb, "Descriptor for %s marked write protected."
793 " Forcing read only mount.\n", dname);
794 }
795 goto force_ro;
796 }
797 return 0;
798
799 force_ro:
800 if (!sb_rdonly(sb))
801 return -EACCES;
802 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
803 return 0;
804 }
805
udf_load_fileset(struct super_block * sb,struct fileSetDesc * fset,struct kernel_lb_addr * root)806 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
807 struct kernel_lb_addr *root)
808 {
809 int ret;
810
811 ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
812 if (ret < 0)
813 return ret;
814
815 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
816 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
817
818 udf_debug("Rootdir at block=%u, partition=%u\n",
819 root->logicalBlockNum, root->partitionReferenceNum);
820 return 0;
821 }
822
udf_find_fileset(struct super_block * sb,struct kernel_lb_addr * fileset,struct kernel_lb_addr * root)823 static int udf_find_fileset(struct super_block *sb,
824 struct kernel_lb_addr *fileset,
825 struct kernel_lb_addr *root)
826 {
827 struct buffer_head *bh;
828 uint16_t ident;
829 int ret;
830
831 if (fileset->logicalBlockNum == 0xFFFFFFFF &&
832 fileset->partitionReferenceNum == 0xFFFF)
833 return -EINVAL;
834
835 bh = udf_read_ptagged(sb, fileset, 0, &ident);
836 if (!bh)
837 return -EIO;
838 if (ident != TAG_IDENT_FSD) {
839 brelse(bh);
840 return -EINVAL;
841 }
842
843 udf_debug("Fileset at block=%u, partition=%u\n",
844 fileset->logicalBlockNum, fileset->partitionReferenceNum);
845
846 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
847 ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
848 brelse(bh);
849 return ret;
850 }
851
852 /*
853 * Load primary Volume Descriptor Sequence
854 *
855 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
856 * should be tried.
857 */
udf_load_pvoldesc(struct super_block * sb,sector_t block)858 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
859 {
860 struct primaryVolDesc *pvoldesc;
861 uint8_t *outstr;
862 struct buffer_head *bh;
863 uint16_t ident;
864 int ret;
865 struct timestamp *ts;
866
867 outstr = kmalloc(128, GFP_NOFS);
868 if (!outstr)
869 return -ENOMEM;
870
871 bh = udf_read_tagged(sb, block, block, &ident);
872 if (!bh) {
873 ret = -EAGAIN;
874 goto out2;
875 }
876
877 if (ident != TAG_IDENT_PVD) {
878 ret = -EIO;
879 goto out_bh;
880 }
881
882 pvoldesc = (struct primaryVolDesc *)bh->b_data;
883
884 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
885 pvoldesc->recordingDateAndTime);
886 ts = &pvoldesc->recordingDateAndTime;
887 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
888 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
889 ts->minute, le16_to_cpu(ts->typeAndTimezone));
890
891 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
892 if (ret < 0) {
893 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
894 pr_warn("incorrect volume identification, setting to "
895 "'InvalidName'\n");
896 } else {
897 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
898 }
899 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
900
901 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
902 if (ret < 0) {
903 ret = 0;
904 goto out_bh;
905 }
906 outstr[ret] = 0;
907 udf_debug("volSetIdent[] = '%s'\n", outstr);
908
909 ret = 0;
910 out_bh:
911 brelse(bh);
912 out2:
913 kfree(outstr);
914 return ret;
915 }
916
udf_find_metadata_inode_efe(struct super_block * sb,u32 meta_file_loc,u32 partition_ref)917 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
918 u32 meta_file_loc, u32 partition_ref)
919 {
920 struct kernel_lb_addr addr;
921 struct inode *metadata_fe;
922
923 addr.logicalBlockNum = meta_file_loc;
924 addr.partitionReferenceNum = partition_ref;
925
926 metadata_fe = udf_iget_special(sb, &addr);
927
928 if (IS_ERR(metadata_fe)) {
929 udf_warn(sb, "metadata inode efe not found\n");
930 return metadata_fe;
931 }
932 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
933 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
934 iput(metadata_fe);
935 return ERR_PTR(-EIO);
936 }
937
938 return metadata_fe;
939 }
940
udf_load_metadata_files(struct super_block * sb,int partition,int type1_index)941 static int udf_load_metadata_files(struct super_block *sb, int partition,
942 int type1_index)
943 {
944 struct udf_sb_info *sbi = UDF_SB(sb);
945 struct udf_part_map *map;
946 struct udf_meta_data *mdata;
947 struct kernel_lb_addr addr;
948 struct inode *fe;
949
950 map = &sbi->s_partmaps[partition];
951 mdata = &map->s_type_specific.s_metadata;
952 mdata->s_phys_partition_ref = type1_index;
953
954 /* metadata address */
955 udf_debug("Metadata file location: block = %u part = %u\n",
956 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
957
958 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
959 mdata->s_phys_partition_ref);
960 if (IS_ERR(fe)) {
961 /* mirror file entry */
962 udf_debug("Mirror metadata file location: block = %u part = %u\n",
963 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
964
965 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
966 mdata->s_phys_partition_ref);
967
968 if (IS_ERR(fe)) {
969 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
970 return PTR_ERR(fe);
971 }
972 mdata->s_mirror_fe = fe;
973 } else
974 mdata->s_metadata_fe = fe;
975
976
977 /*
978 * bitmap file entry
979 * Note:
980 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
981 */
982 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
983 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
984 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
985
986 udf_debug("Bitmap file location: block = %u part = %u\n",
987 addr.logicalBlockNum, addr.partitionReferenceNum);
988
989 fe = udf_iget_special(sb, &addr);
990 if (IS_ERR(fe)) {
991 if (sb_rdonly(sb))
992 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
993 else {
994 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
995 return PTR_ERR(fe);
996 }
997 } else
998 mdata->s_bitmap_fe = fe;
999 }
1000
1001 udf_debug("udf_load_metadata_files Ok\n");
1002 return 0;
1003 }
1004
udf_compute_nr_groups(struct super_block * sb,u32 partition)1005 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1006 {
1007 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1008 return DIV_ROUND_UP(map->s_partition_len +
1009 (sizeof(struct spaceBitmapDesc) << 3),
1010 sb->s_blocksize * 8);
1011 }
1012
udf_sb_alloc_bitmap(struct super_block * sb,u32 index)1013 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1014 {
1015 struct udf_bitmap *bitmap;
1016 int nr_groups = udf_compute_nr_groups(sb, index);
1017
1018 bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1019 GFP_KERNEL);
1020 if (!bitmap)
1021 return NULL;
1022
1023 bitmap->s_nr_groups = nr_groups;
1024 return bitmap;
1025 }
1026
check_partition_desc(struct super_block * sb,struct partitionDesc * p,struct udf_part_map * map)1027 static int check_partition_desc(struct super_block *sb,
1028 struct partitionDesc *p,
1029 struct udf_part_map *map)
1030 {
1031 bool umap, utable, fmap, ftable;
1032 struct partitionHeaderDesc *phd;
1033
1034 switch (le32_to_cpu(p->accessType)) {
1035 case PD_ACCESS_TYPE_READ_ONLY:
1036 case PD_ACCESS_TYPE_WRITE_ONCE:
1037 case PD_ACCESS_TYPE_NONE:
1038 goto force_ro;
1039 }
1040
1041 /* No Partition Header Descriptor? */
1042 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1043 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1044 goto force_ro;
1045
1046 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1047 utable = phd->unallocSpaceTable.extLength;
1048 umap = phd->unallocSpaceBitmap.extLength;
1049 ftable = phd->freedSpaceTable.extLength;
1050 fmap = phd->freedSpaceBitmap.extLength;
1051
1052 /* No allocation info? */
1053 if (!utable && !umap && !ftable && !fmap)
1054 goto force_ro;
1055
1056 /* We don't support blocks that require erasing before overwrite */
1057 if (ftable || fmap)
1058 goto force_ro;
1059 /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1060 if (utable && umap)
1061 goto force_ro;
1062
1063 if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1064 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1065 map->s_partition_type == UDF_METADATA_MAP25)
1066 goto force_ro;
1067
1068 return 0;
1069 force_ro:
1070 if (!sb_rdonly(sb))
1071 return -EACCES;
1072 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1073 return 0;
1074 }
1075
udf_fill_partdesc_info(struct super_block * sb,struct partitionDesc * p,int p_index)1076 static int udf_fill_partdesc_info(struct super_block *sb,
1077 struct partitionDesc *p, int p_index)
1078 {
1079 struct udf_part_map *map;
1080 struct udf_sb_info *sbi = UDF_SB(sb);
1081 struct partitionHeaderDesc *phd;
1082 int err;
1083
1084 map = &sbi->s_partmaps[p_index];
1085
1086 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1087 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1088
1089 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1090 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1091 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1092 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1093 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1094 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1095 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1096 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1097
1098 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1099 p_index, map->s_partition_type,
1100 map->s_partition_root, map->s_partition_len);
1101
1102 err = check_partition_desc(sb, p, map);
1103 if (err)
1104 return err;
1105
1106 /*
1107 * Skip loading allocation info it we cannot ever write to the fs.
1108 * This is a correctness thing as we may have decided to force ro mount
1109 * to avoid allocation info we don't support.
1110 */
1111 if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1112 return 0;
1113
1114 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1115 if (phd->unallocSpaceTable.extLength) {
1116 struct kernel_lb_addr loc = {
1117 .logicalBlockNum = le32_to_cpu(
1118 phd->unallocSpaceTable.extPosition),
1119 .partitionReferenceNum = p_index,
1120 };
1121 struct inode *inode;
1122
1123 inode = udf_iget_special(sb, &loc);
1124 if (IS_ERR(inode)) {
1125 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1126 p_index);
1127 return PTR_ERR(inode);
1128 }
1129 map->s_uspace.s_table = inode;
1130 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1131 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1132 p_index, map->s_uspace.s_table->i_ino);
1133 }
1134
1135 if (phd->unallocSpaceBitmap.extLength) {
1136 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1137 if (!bitmap)
1138 return -ENOMEM;
1139 map->s_uspace.s_bitmap = bitmap;
1140 bitmap->s_extPosition = le32_to_cpu(
1141 phd->unallocSpaceBitmap.extPosition);
1142 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1143 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1144 p_index, bitmap->s_extPosition);
1145 }
1146
1147 return 0;
1148 }
1149
udf_find_vat_block(struct super_block * sb,int p_index,int type1_index,sector_t start_block)1150 static void udf_find_vat_block(struct super_block *sb, int p_index,
1151 int type1_index, sector_t start_block)
1152 {
1153 struct udf_sb_info *sbi = UDF_SB(sb);
1154 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1155 sector_t vat_block;
1156 struct kernel_lb_addr ino;
1157 struct inode *inode;
1158
1159 /*
1160 * VAT file entry is in the last recorded block. Some broken disks have
1161 * it a few blocks before so try a bit harder...
1162 */
1163 ino.partitionReferenceNum = type1_index;
1164 for (vat_block = start_block;
1165 vat_block >= map->s_partition_root &&
1166 vat_block >= start_block - 3; vat_block--) {
1167 ino.logicalBlockNum = vat_block - map->s_partition_root;
1168 inode = udf_iget_special(sb, &ino);
1169 if (!IS_ERR(inode)) {
1170 sbi->s_vat_inode = inode;
1171 break;
1172 }
1173 }
1174 }
1175
udf_load_vat(struct super_block * sb,int p_index,int type1_index)1176 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1177 {
1178 struct udf_sb_info *sbi = UDF_SB(sb);
1179 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1180 struct buffer_head *bh = NULL;
1181 struct udf_inode_info *vati;
1182 struct virtualAllocationTable20 *vat20;
1183 sector_t blocks = sb_bdev_nr_blocks(sb);
1184
1185 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1186 if (!sbi->s_vat_inode &&
1187 sbi->s_last_block != blocks - 1) {
1188 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1189 (unsigned long)sbi->s_last_block,
1190 (unsigned long)blocks - 1);
1191 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1192 }
1193 if (!sbi->s_vat_inode)
1194 return -EIO;
1195
1196 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1197 map->s_type_specific.s_virtual.s_start_offset = 0;
1198 map->s_type_specific.s_virtual.s_num_entries =
1199 (sbi->s_vat_inode->i_size - 36) >> 2;
1200 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1201 vati = UDF_I(sbi->s_vat_inode);
1202 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1203 int err = 0;
1204
1205 bh = udf_bread(sbi->s_vat_inode, 0, 0, &err);
1206 if (!bh) {
1207 if (!err)
1208 err = -EFSCORRUPTED;
1209 return err;
1210 }
1211 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1212 } else {
1213 vat20 = (struct virtualAllocationTable20 *)
1214 vati->i_data;
1215 }
1216
1217 map->s_type_specific.s_virtual.s_start_offset =
1218 le16_to_cpu(vat20->lengthHeader);
1219 map->s_type_specific.s_virtual.s_num_entries =
1220 (sbi->s_vat_inode->i_size -
1221 map->s_type_specific.s_virtual.
1222 s_start_offset) >> 2;
1223 brelse(bh);
1224 }
1225 return 0;
1226 }
1227
1228 /*
1229 * Load partition descriptor block
1230 *
1231 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1232 * sequence.
1233 */
udf_load_partdesc(struct super_block * sb,sector_t block)1234 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1235 {
1236 struct buffer_head *bh;
1237 struct partitionDesc *p;
1238 struct udf_part_map *map;
1239 struct udf_sb_info *sbi = UDF_SB(sb);
1240 int i, type1_idx;
1241 uint16_t partitionNumber;
1242 uint16_t ident;
1243 int ret;
1244
1245 bh = udf_read_tagged(sb, block, block, &ident);
1246 if (!bh)
1247 return -EAGAIN;
1248 if (ident != TAG_IDENT_PD) {
1249 ret = 0;
1250 goto out_bh;
1251 }
1252
1253 p = (struct partitionDesc *)bh->b_data;
1254 partitionNumber = le16_to_cpu(p->partitionNumber);
1255
1256 /* First scan for TYPE1 and SPARABLE partitions */
1257 for (i = 0; i < sbi->s_partitions; i++) {
1258 map = &sbi->s_partmaps[i];
1259 udf_debug("Searching map: (%u == %u)\n",
1260 map->s_partition_num, partitionNumber);
1261 if (map->s_partition_num == partitionNumber &&
1262 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1263 map->s_partition_type == UDF_SPARABLE_MAP15))
1264 break;
1265 }
1266
1267 if (i >= sbi->s_partitions) {
1268 udf_debug("Partition (%u) not found in partition map\n",
1269 partitionNumber);
1270 ret = 0;
1271 goto out_bh;
1272 }
1273
1274 ret = udf_fill_partdesc_info(sb, p, i);
1275 if (ret < 0)
1276 goto out_bh;
1277
1278 /*
1279 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1280 * PHYSICAL partitions are already set up
1281 */
1282 type1_idx = i;
1283 map = NULL; /* supress 'maybe used uninitialized' warning */
1284 for (i = 0; i < sbi->s_partitions; i++) {
1285 map = &sbi->s_partmaps[i];
1286
1287 if (map->s_partition_num == partitionNumber &&
1288 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1289 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1290 map->s_partition_type == UDF_METADATA_MAP25))
1291 break;
1292 }
1293
1294 if (i >= sbi->s_partitions) {
1295 ret = 0;
1296 goto out_bh;
1297 }
1298
1299 ret = udf_fill_partdesc_info(sb, p, i);
1300 if (ret < 0)
1301 goto out_bh;
1302
1303 if (map->s_partition_type == UDF_METADATA_MAP25) {
1304 ret = udf_load_metadata_files(sb, i, type1_idx);
1305 if (ret < 0) {
1306 udf_err(sb, "error loading MetaData partition map %d\n",
1307 i);
1308 goto out_bh;
1309 }
1310 } else {
1311 /*
1312 * If we have a partition with virtual map, we don't handle
1313 * writing to it (we overwrite blocks instead of relocating
1314 * them).
1315 */
1316 if (!sb_rdonly(sb)) {
1317 ret = -EACCES;
1318 goto out_bh;
1319 }
1320 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1321 ret = udf_load_vat(sb, i, type1_idx);
1322 if (ret < 0)
1323 goto out_bh;
1324 }
1325 ret = 0;
1326 out_bh:
1327 /* In case loading failed, we handle cleanup in udf_fill_super */
1328 brelse(bh);
1329 return ret;
1330 }
1331
udf_load_sparable_map(struct super_block * sb,struct udf_part_map * map,struct sparablePartitionMap * spm)1332 static int udf_load_sparable_map(struct super_block *sb,
1333 struct udf_part_map *map,
1334 struct sparablePartitionMap *spm)
1335 {
1336 uint32_t loc;
1337 uint16_t ident;
1338 struct sparingTable *st;
1339 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1340 int i;
1341 struct buffer_head *bh;
1342
1343 map->s_partition_type = UDF_SPARABLE_MAP15;
1344 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1345 if (!is_power_of_2(sdata->s_packet_len)) {
1346 udf_err(sb, "error loading logical volume descriptor: "
1347 "Invalid packet length %u\n",
1348 (unsigned)sdata->s_packet_len);
1349 return -EIO;
1350 }
1351 if (spm->numSparingTables > 4) {
1352 udf_err(sb, "error loading logical volume descriptor: "
1353 "Too many sparing tables (%d)\n",
1354 (int)spm->numSparingTables);
1355 return -EIO;
1356 }
1357 if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1358 udf_err(sb, "error loading logical volume descriptor: "
1359 "Too big sparing table size (%u)\n",
1360 le32_to_cpu(spm->sizeSparingTable));
1361 return -EIO;
1362 }
1363
1364 for (i = 0; i < spm->numSparingTables; i++) {
1365 loc = le32_to_cpu(spm->locSparingTable[i]);
1366 bh = udf_read_tagged(sb, loc, loc, &ident);
1367 if (!bh)
1368 continue;
1369
1370 st = (struct sparingTable *)bh->b_data;
1371 if (ident != 0 ||
1372 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1373 strlen(UDF_ID_SPARING)) ||
1374 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1375 sb->s_blocksize) {
1376 brelse(bh);
1377 continue;
1378 }
1379
1380 sdata->s_spar_map[i] = bh;
1381 }
1382 map->s_partition_func = udf_get_pblock_spar15;
1383 return 0;
1384 }
1385
udf_load_logicalvol(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1386 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1387 struct kernel_lb_addr *fileset)
1388 {
1389 struct logicalVolDesc *lvd;
1390 int i, offset;
1391 uint8_t type;
1392 struct udf_sb_info *sbi = UDF_SB(sb);
1393 struct genericPartitionMap *gpm;
1394 uint16_t ident;
1395 struct buffer_head *bh;
1396 unsigned int table_len;
1397 int ret;
1398
1399 bh = udf_read_tagged(sb, block, block, &ident);
1400 if (!bh)
1401 return -EAGAIN;
1402 BUG_ON(ident != TAG_IDENT_LVD);
1403 lvd = (struct logicalVolDesc *)bh->b_data;
1404 table_len = le32_to_cpu(lvd->mapTableLength);
1405 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1406 udf_err(sb, "error loading logical volume descriptor: "
1407 "Partition table too long (%u > %lu)\n", table_len,
1408 sb->s_blocksize - sizeof(*lvd));
1409 ret = -EIO;
1410 goto out_bh;
1411 }
1412
1413 ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1414 "logical volume");
1415 if (ret)
1416 goto out_bh;
1417 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1418 if (ret)
1419 goto out_bh;
1420
1421 for (i = 0, offset = 0;
1422 i < sbi->s_partitions && offset < table_len;
1423 i++, offset += gpm->partitionMapLength) {
1424 struct udf_part_map *map = &sbi->s_partmaps[i];
1425 gpm = (struct genericPartitionMap *)
1426 &(lvd->partitionMaps[offset]);
1427 type = gpm->partitionMapType;
1428 if (type == 1) {
1429 struct genericPartitionMap1 *gpm1 =
1430 (struct genericPartitionMap1 *)gpm;
1431 map->s_partition_type = UDF_TYPE1_MAP15;
1432 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1433 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1434 map->s_partition_func = NULL;
1435 } else if (type == 2) {
1436 struct udfPartitionMap2 *upm2 =
1437 (struct udfPartitionMap2 *)gpm;
1438 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1439 strlen(UDF_ID_VIRTUAL))) {
1440 u16 suf =
1441 le16_to_cpu(((__le16 *)upm2->partIdent.
1442 identSuffix)[0]);
1443 if (suf < 0x0200) {
1444 map->s_partition_type =
1445 UDF_VIRTUAL_MAP15;
1446 map->s_partition_func =
1447 udf_get_pblock_virt15;
1448 } else {
1449 map->s_partition_type =
1450 UDF_VIRTUAL_MAP20;
1451 map->s_partition_func =
1452 udf_get_pblock_virt20;
1453 }
1454 } else if (!strncmp(upm2->partIdent.ident,
1455 UDF_ID_SPARABLE,
1456 strlen(UDF_ID_SPARABLE))) {
1457 ret = udf_load_sparable_map(sb, map,
1458 (struct sparablePartitionMap *)gpm);
1459 if (ret < 0)
1460 goto out_bh;
1461 } else if (!strncmp(upm2->partIdent.ident,
1462 UDF_ID_METADATA,
1463 strlen(UDF_ID_METADATA))) {
1464 struct udf_meta_data *mdata =
1465 &map->s_type_specific.s_metadata;
1466 struct metadataPartitionMap *mdm =
1467 (struct metadataPartitionMap *)
1468 &(lvd->partitionMaps[offset]);
1469 udf_debug("Parsing Logical vol part %d type %u id=%s\n",
1470 i, type, UDF_ID_METADATA);
1471
1472 map->s_partition_type = UDF_METADATA_MAP25;
1473 map->s_partition_func = udf_get_pblock_meta25;
1474
1475 mdata->s_meta_file_loc =
1476 le32_to_cpu(mdm->metadataFileLoc);
1477 mdata->s_mirror_file_loc =
1478 le32_to_cpu(mdm->metadataMirrorFileLoc);
1479 mdata->s_bitmap_file_loc =
1480 le32_to_cpu(mdm->metadataBitmapFileLoc);
1481 mdata->s_alloc_unit_size =
1482 le32_to_cpu(mdm->allocUnitSize);
1483 mdata->s_align_unit_size =
1484 le16_to_cpu(mdm->alignUnitSize);
1485 if (mdm->flags & 0x01)
1486 mdata->s_flags |= MF_DUPLICATE_MD;
1487
1488 udf_debug("Metadata Ident suffix=0x%x\n",
1489 le16_to_cpu(*(__le16 *)
1490 mdm->partIdent.identSuffix));
1491 udf_debug("Metadata part num=%u\n",
1492 le16_to_cpu(mdm->partitionNum));
1493 udf_debug("Metadata part alloc unit size=%u\n",
1494 le32_to_cpu(mdm->allocUnitSize));
1495 udf_debug("Metadata file loc=%u\n",
1496 le32_to_cpu(mdm->metadataFileLoc));
1497 udf_debug("Mirror file loc=%u\n",
1498 le32_to_cpu(mdm->metadataMirrorFileLoc));
1499 udf_debug("Bitmap file loc=%u\n",
1500 le32_to_cpu(mdm->metadataBitmapFileLoc));
1501 udf_debug("Flags: %d %u\n",
1502 mdata->s_flags, mdm->flags);
1503 } else {
1504 udf_debug("Unknown ident: %s\n",
1505 upm2->partIdent.ident);
1506 continue;
1507 }
1508 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1509 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1510 }
1511 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1512 i, map->s_partition_num, type, map->s_volumeseqnum);
1513 }
1514
1515 if (fileset) {
1516 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1517
1518 *fileset = lelb_to_cpu(la->extLocation);
1519 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1520 fileset->logicalBlockNum,
1521 fileset->partitionReferenceNum);
1522 }
1523 if (lvd->integritySeqExt.extLength)
1524 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1525 ret = 0;
1526
1527 if (!sbi->s_lvid_bh) {
1528 /* We can't generate unique IDs without a valid LVID */
1529 if (sb_rdonly(sb)) {
1530 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1531 } else {
1532 udf_warn(sb, "Damaged or missing LVID, forcing "
1533 "readonly mount\n");
1534 ret = -EACCES;
1535 }
1536 }
1537 out_bh:
1538 brelse(bh);
1539 return ret;
1540 }
1541
1542 /*
1543 * Find the prevailing Logical Volume Integrity Descriptor.
1544 */
udf_load_logicalvolint(struct super_block * sb,struct kernel_extent_ad loc)1545 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1546 {
1547 struct buffer_head *bh, *final_bh;
1548 uint16_t ident;
1549 struct udf_sb_info *sbi = UDF_SB(sb);
1550 struct logicalVolIntegrityDesc *lvid;
1551 int indirections = 0;
1552 u32 parts, impuselen;
1553
1554 while (++indirections <= UDF_MAX_LVID_NESTING) {
1555 final_bh = NULL;
1556 while (loc.extLength > 0 &&
1557 (bh = udf_read_tagged(sb, loc.extLocation,
1558 loc.extLocation, &ident))) {
1559 if (ident != TAG_IDENT_LVID) {
1560 brelse(bh);
1561 break;
1562 }
1563
1564 brelse(final_bh);
1565 final_bh = bh;
1566
1567 loc.extLength -= sb->s_blocksize;
1568 loc.extLocation++;
1569 }
1570
1571 if (!final_bh)
1572 return;
1573
1574 brelse(sbi->s_lvid_bh);
1575 sbi->s_lvid_bh = final_bh;
1576
1577 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1578 if (lvid->nextIntegrityExt.extLength == 0)
1579 goto check;
1580
1581 loc = leea_to_cpu(lvid->nextIntegrityExt);
1582 }
1583
1584 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1585 UDF_MAX_LVID_NESTING);
1586 out_err:
1587 brelse(sbi->s_lvid_bh);
1588 sbi->s_lvid_bh = NULL;
1589 return;
1590 check:
1591 parts = le32_to_cpu(lvid->numOfPartitions);
1592 impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1593 if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1594 sizeof(struct logicalVolIntegrityDesc) + impuselen +
1595 2 * parts * sizeof(u32) > sb->s_blocksize) {
1596 udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1597 "ignoring.\n", parts, impuselen);
1598 goto out_err;
1599 }
1600 }
1601
1602 /*
1603 * Step for reallocation of table of partition descriptor sequence numbers.
1604 * Must be power of 2.
1605 */
1606 #define PART_DESC_ALLOC_STEP 32
1607
1608 struct part_desc_seq_scan_data {
1609 struct udf_vds_record rec;
1610 u32 partnum;
1611 };
1612
1613 struct desc_seq_scan_data {
1614 struct udf_vds_record vds[VDS_POS_LENGTH];
1615 unsigned int size_part_descs;
1616 unsigned int num_part_descs;
1617 struct part_desc_seq_scan_data *part_descs_loc;
1618 };
1619
handle_partition_descriptor(struct buffer_head * bh,struct desc_seq_scan_data * data)1620 static struct udf_vds_record *handle_partition_descriptor(
1621 struct buffer_head *bh,
1622 struct desc_seq_scan_data *data)
1623 {
1624 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1625 int partnum;
1626 int i;
1627
1628 partnum = le16_to_cpu(desc->partitionNumber);
1629 for (i = 0; i < data->num_part_descs; i++)
1630 if (partnum == data->part_descs_loc[i].partnum)
1631 return &(data->part_descs_loc[i].rec);
1632 if (data->num_part_descs >= data->size_part_descs) {
1633 struct part_desc_seq_scan_data *new_loc;
1634 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1635
1636 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1637 if (!new_loc)
1638 return ERR_PTR(-ENOMEM);
1639 memcpy(new_loc, data->part_descs_loc,
1640 data->size_part_descs * sizeof(*new_loc));
1641 kfree(data->part_descs_loc);
1642 data->part_descs_loc = new_loc;
1643 data->size_part_descs = new_size;
1644 }
1645 return &(data->part_descs_loc[data->num_part_descs++].rec);
1646 }
1647
1648
get_volume_descriptor_record(uint16_t ident,struct buffer_head * bh,struct desc_seq_scan_data * data)1649 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1650 struct buffer_head *bh, struct desc_seq_scan_data *data)
1651 {
1652 switch (ident) {
1653 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1654 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1655 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1656 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1657 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1658 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1659 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1660 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1661 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1662 return handle_partition_descriptor(bh, data);
1663 }
1664 return NULL;
1665 }
1666
1667 /*
1668 * Process a main/reserve volume descriptor sequence.
1669 * @block First block of first extent of the sequence.
1670 * @lastblock Lastblock of first extent of the sequence.
1671 * @fileset There we store extent containing root fileset
1672 *
1673 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1674 * sequence
1675 */
udf_process_sequence(struct super_block * sb,sector_t block,sector_t lastblock,struct kernel_lb_addr * fileset)1676 static noinline int udf_process_sequence(
1677 struct super_block *sb,
1678 sector_t block, sector_t lastblock,
1679 struct kernel_lb_addr *fileset)
1680 {
1681 struct buffer_head *bh = NULL;
1682 struct udf_vds_record *curr;
1683 struct generic_desc *gd;
1684 struct volDescPtr *vdp;
1685 bool done = false;
1686 uint32_t vdsn;
1687 uint16_t ident;
1688 int ret;
1689 unsigned int indirections = 0;
1690 struct desc_seq_scan_data data;
1691 unsigned int i;
1692
1693 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1694 data.size_part_descs = PART_DESC_ALLOC_STEP;
1695 data.num_part_descs = 0;
1696 data.part_descs_loc = kcalloc(data.size_part_descs,
1697 sizeof(*data.part_descs_loc),
1698 GFP_KERNEL);
1699 if (!data.part_descs_loc)
1700 return -ENOMEM;
1701
1702 /*
1703 * Read the main descriptor sequence and find which descriptors
1704 * are in it.
1705 */
1706 for (; (!done && block <= lastblock); block++) {
1707 bh = udf_read_tagged(sb, block, block, &ident);
1708 if (!bh)
1709 break;
1710
1711 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1712 gd = (struct generic_desc *)bh->b_data;
1713 vdsn = le32_to_cpu(gd->volDescSeqNum);
1714 switch (ident) {
1715 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1716 if (++indirections > UDF_MAX_TD_NESTING) {
1717 udf_err(sb, "too many Volume Descriptor "
1718 "Pointers (max %u supported)\n",
1719 UDF_MAX_TD_NESTING);
1720 brelse(bh);
1721 ret = -EIO;
1722 goto out;
1723 }
1724
1725 vdp = (struct volDescPtr *)bh->b_data;
1726 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1727 lastblock = le32_to_cpu(
1728 vdp->nextVolDescSeqExt.extLength) >>
1729 sb->s_blocksize_bits;
1730 lastblock += block - 1;
1731 /* For loop is going to increment 'block' again */
1732 block--;
1733 break;
1734 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1735 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1736 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1737 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1738 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1739 curr = get_volume_descriptor_record(ident, bh, &data);
1740 if (IS_ERR(curr)) {
1741 brelse(bh);
1742 ret = PTR_ERR(curr);
1743 goto out;
1744 }
1745 /* Descriptor we don't care about? */
1746 if (!curr)
1747 break;
1748 if (vdsn >= curr->volDescSeqNum) {
1749 curr->volDescSeqNum = vdsn;
1750 curr->block = block;
1751 }
1752 break;
1753 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1754 done = true;
1755 break;
1756 }
1757 brelse(bh);
1758 }
1759 /*
1760 * Now read interesting descriptors again and process them
1761 * in a suitable order
1762 */
1763 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1764 udf_err(sb, "Primary Volume Descriptor not found!\n");
1765 ret = -EAGAIN;
1766 goto out;
1767 }
1768 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1769 if (ret < 0)
1770 goto out;
1771
1772 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1773 ret = udf_load_logicalvol(sb,
1774 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1775 fileset);
1776 if (ret < 0)
1777 goto out;
1778 }
1779
1780 /* Now handle prevailing Partition Descriptors */
1781 for (i = 0; i < data.num_part_descs; i++) {
1782 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1783 if (ret < 0)
1784 goto out;
1785 }
1786 ret = 0;
1787 out:
1788 kfree(data.part_descs_loc);
1789 return ret;
1790 }
1791
1792 /*
1793 * Load Volume Descriptor Sequence described by anchor in bh
1794 *
1795 * Returns <0 on error, 0 on success
1796 */
udf_load_sequence(struct super_block * sb,struct buffer_head * bh,struct kernel_lb_addr * fileset)1797 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1798 struct kernel_lb_addr *fileset)
1799 {
1800 struct anchorVolDescPtr *anchor;
1801 sector_t main_s, main_e, reserve_s, reserve_e;
1802 int ret;
1803
1804 anchor = (struct anchorVolDescPtr *)bh->b_data;
1805
1806 /* Locate the main sequence */
1807 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1808 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1809 main_e = main_e >> sb->s_blocksize_bits;
1810 main_e += main_s - 1;
1811
1812 /* Locate the reserve sequence */
1813 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1814 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1815 reserve_e = reserve_e >> sb->s_blocksize_bits;
1816 reserve_e += reserve_s - 1;
1817
1818 /* Process the main & reserve sequences */
1819 /* responsible for finding the PartitionDesc(s) */
1820 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1821 if (ret != -EAGAIN)
1822 return ret;
1823 udf_sb_free_partitions(sb);
1824 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1825 if (ret < 0) {
1826 udf_sb_free_partitions(sb);
1827 /* No sequence was OK, return -EIO */
1828 if (ret == -EAGAIN)
1829 ret = -EIO;
1830 }
1831 return ret;
1832 }
1833
1834 /*
1835 * Check whether there is an anchor block in the given block and
1836 * load Volume Descriptor Sequence if so.
1837 *
1838 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1839 * block
1840 */
udf_check_anchor_block(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1841 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1842 struct kernel_lb_addr *fileset)
1843 {
1844 struct buffer_head *bh;
1845 uint16_t ident;
1846 int ret;
1847
1848 bh = udf_read_tagged(sb, block, block, &ident);
1849 if (!bh)
1850 return -EAGAIN;
1851 if (ident != TAG_IDENT_AVDP) {
1852 brelse(bh);
1853 return -EAGAIN;
1854 }
1855 ret = udf_load_sequence(sb, bh, fileset);
1856 brelse(bh);
1857 return ret;
1858 }
1859
1860 /*
1861 * Search for an anchor volume descriptor pointer.
1862 *
1863 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1864 * of anchors.
1865 */
udf_scan_anchors(struct super_block * sb,udf_pblk_t * lastblock,struct kernel_lb_addr * fileset)1866 static int udf_scan_anchors(struct super_block *sb, udf_pblk_t *lastblock,
1867 struct kernel_lb_addr *fileset)
1868 {
1869 udf_pblk_t last[6];
1870 int i;
1871 struct udf_sb_info *sbi = UDF_SB(sb);
1872 int last_count = 0;
1873 int ret;
1874
1875 /* First try user provided anchor */
1876 if (sbi->s_anchor) {
1877 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1878 if (ret != -EAGAIN)
1879 return ret;
1880 }
1881 /*
1882 * according to spec, anchor is in either:
1883 * block 256
1884 * lastblock-256
1885 * lastblock
1886 * however, if the disc isn't closed, it could be 512.
1887 */
1888 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1889 if (ret != -EAGAIN)
1890 return ret;
1891 /*
1892 * The trouble is which block is the last one. Drives often misreport
1893 * this so we try various possibilities.
1894 */
1895 last[last_count++] = *lastblock;
1896 if (*lastblock >= 1)
1897 last[last_count++] = *lastblock - 1;
1898 last[last_count++] = *lastblock + 1;
1899 if (*lastblock >= 2)
1900 last[last_count++] = *lastblock - 2;
1901 if (*lastblock >= 150)
1902 last[last_count++] = *lastblock - 150;
1903 if (*lastblock >= 152)
1904 last[last_count++] = *lastblock - 152;
1905
1906 for (i = 0; i < last_count; i++) {
1907 if (last[i] >= sb_bdev_nr_blocks(sb))
1908 continue;
1909 ret = udf_check_anchor_block(sb, last[i], fileset);
1910 if (ret != -EAGAIN) {
1911 if (!ret)
1912 *lastblock = last[i];
1913 return ret;
1914 }
1915 if (last[i] < 256)
1916 continue;
1917 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1918 if (ret != -EAGAIN) {
1919 if (!ret)
1920 *lastblock = last[i];
1921 return ret;
1922 }
1923 }
1924
1925 /* Finally try block 512 in case media is open */
1926 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1927 }
1928
1929 /*
1930 * Check Volume Structure Descriptor, find Anchor block and load Volume
1931 * Descriptor Sequence.
1932 *
1933 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1934 * block was not found.
1935 */
udf_load_vrs(struct super_block * sb,struct udf_options * uopt,int silent,struct kernel_lb_addr * fileset)1936 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1937 int silent, struct kernel_lb_addr *fileset)
1938 {
1939 struct udf_sb_info *sbi = UDF_SB(sb);
1940 int nsr = 0;
1941 int ret;
1942
1943 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1944 if (!silent)
1945 udf_warn(sb, "Bad block size\n");
1946 return -EINVAL;
1947 }
1948 sbi->s_last_block = uopt->lastblock;
1949 if (!uopt->novrs) {
1950 /* Check that it is NSR02 compliant */
1951 nsr = udf_check_vsd(sb);
1952 if (!nsr) {
1953 if (!silent)
1954 udf_warn(sb, "No VRS found\n");
1955 return -EINVAL;
1956 }
1957 if (nsr == -1)
1958 udf_debug("Failed to read sector at offset %d. "
1959 "Assuming open disc. Skipping validity "
1960 "check\n", VSD_FIRST_SECTOR_OFFSET);
1961 if (!sbi->s_last_block)
1962 sbi->s_last_block = udf_get_last_block(sb);
1963 } else {
1964 udf_debug("Validity check skipped because of novrs option\n");
1965 }
1966
1967 /* Look for anchor block and load Volume Descriptor Sequence */
1968 sbi->s_anchor = uopt->anchor;
1969 ret = udf_scan_anchors(sb, &sbi->s_last_block, fileset);
1970 if (ret < 0) {
1971 if (!silent && ret == -EAGAIN)
1972 udf_warn(sb, "No anchor found\n");
1973 return ret;
1974 }
1975 return 0;
1976 }
1977
udf_finalize_lvid(struct logicalVolIntegrityDesc * lvid)1978 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
1979 {
1980 struct timespec64 ts;
1981
1982 ktime_get_real_ts64(&ts);
1983 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1984 lvid->descTag.descCRC = cpu_to_le16(
1985 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1986 le16_to_cpu(lvid->descTag.descCRCLength)));
1987 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1988 }
1989
udf_open_lvid(struct super_block * sb)1990 static void udf_open_lvid(struct super_block *sb)
1991 {
1992 struct udf_sb_info *sbi = UDF_SB(sb);
1993 struct buffer_head *bh = sbi->s_lvid_bh;
1994 struct logicalVolIntegrityDesc *lvid;
1995 struct logicalVolIntegrityDescImpUse *lvidiu;
1996
1997 if (!bh)
1998 return;
1999 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2000 lvidiu = udf_sb_lvidiu(sb);
2001 if (!lvidiu)
2002 return;
2003
2004 mutex_lock(&sbi->s_alloc_mutex);
2005 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2006 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2007 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2008 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2009 else
2010 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2011
2012 udf_finalize_lvid(lvid);
2013 mark_buffer_dirty(bh);
2014 sbi->s_lvid_dirty = 0;
2015 mutex_unlock(&sbi->s_alloc_mutex);
2016 /* Make opening of filesystem visible on the media immediately */
2017 sync_dirty_buffer(bh);
2018 }
2019
udf_close_lvid(struct super_block * sb)2020 static void udf_close_lvid(struct super_block *sb)
2021 {
2022 struct udf_sb_info *sbi = UDF_SB(sb);
2023 struct buffer_head *bh = sbi->s_lvid_bh;
2024 struct logicalVolIntegrityDesc *lvid;
2025 struct logicalVolIntegrityDescImpUse *lvidiu;
2026
2027 if (!bh)
2028 return;
2029 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2030 lvidiu = udf_sb_lvidiu(sb);
2031 if (!lvidiu)
2032 return;
2033
2034 mutex_lock(&sbi->s_alloc_mutex);
2035 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2036 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2037 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2038 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2039 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2040 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2041 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2042 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2043 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2044 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2045
2046 /*
2047 * We set buffer uptodate unconditionally here to avoid spurious
2048 * warnings from mark_buffer_dirty() when previous EIO has marked
2049 * the buffer as !uptodate
2050 */
2051 set_buffer_uptodate(bh);
2052 udf_finalize_lvid(lvid);
2053 mark_buffer_dirty(bh);
2054 sbi->s_lvid_dirty = 0;
2055 mutex_unlock(&sbi->s_alloc_mutex);
2056 /* Make closing of filesystem visible on the media immediately */
2057 sync_dirty_buffer(bh);
2058 }
2059
lvid_get_unique_id(struct super_block * sb)2060 u64 lvid_get_unique_id(struct super_block *sb)
2061 {
2062 struct buffer_head *bh;
2063 struct udf_sb_info *sbi = UDF_SB(sb);
2064 struct logicalVolIntegrityDesc *lvid;
2065 struct logicalVolHeaderDesc *lvhd;
2066 u64 uniqueID;
2067 u64 ret;
2068
2069 bh = sbi->s_lvid_bh;
2070 if (!bh)
2071 return 0;
2072
2073 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2074 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2075
2076 mutex_lock(&sbi->s_alloc_mutex);
2077 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2078 if (!(++uniqueID & 0xFFFFFFFF))
2079 uniqueID += 16;
2080 lvhd->uniqueID = cpu_to_le64(uniqueID);
2081 udf_updated_lvid(sb);
2082 mutex_unlock(&sbi->s_alloc_mutex);
2083
2084 return ret;
2085 }
2086
udf_fill_super(struct super_block * sb,void * options,int silent)2087 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2088 {
2089 int ret = -EINVAL;
2090 struct inode *inode = NULL;
2091 struct udf_options uopt;
2092 struct kernel_lb_addr rootdir, fileset;
2093 struct udf_sb_info *sbi;
2094 bool lvid_open = false;
2095
2096 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2097 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2098 uopt.uid = make_kuid(current_user_ns(), overflowuid);
2099 uopt.gid = make_kgid(current_user_ns(), overflowgid);
2100 uopt.umask = 0;
2101 uopt.fmode = UDF_INVALID_MODE;
2102 uopt.dmode = UDF_INVALID_MODE;
2103 uopt.nls_map = NULL;
2104
2105 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2106 if (!sbi)
2107 return -ENOMEM;
2108
2109 sb->s_fs_info = sbi;
2110
2111 mutex_init(&sbi->s_alloc_mutex);
2112
2113 if (!udf_parse_options((char *)options, &uopt, false))
2114 goto parse_options_failure;
2115
2116 fileset.logicalBlockNum = 0xFFFFFFFF;
2117 fileset.partitionReferenceNum = 0xFFFF;
2118
2119 sbi->s_flags = uopt.flags;
2120 sbi->s_uid = uopt.uid;
2121 sbi->s_gid = uopt.gid;
2122 sbi->s_umask = uopt.umask;
2123 sbi->s_fmode = uopt.fmode;
2124 sbi->s_dmode = uopt.dmode;
2125 sbi->s_nls_map = uopt.nls_map;
2126 rwlock_init(&sbi->s_cred_lock);
2127
2128 if (uopt.session == 0xFFFFFFFF)
2129 sbi->s_session = udf_get_last_session(sb);
2130 else
2131 sbi->s_session = uopt.session;
2132
2133 udf_debug("Multi-session=%d\n", sbi->s_session);
2134
2135 /* Fill in the rest of the superblock */
2136 sb->s_op = &udf_sb_ops;
2137 sb->s_export_op = &udf_export_ops;
2138
2139 sb->s_magic = UDF_SUPER_MAGIC;
2140 sb->s_time_gran = 1000;
2141
2142 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2143 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2144 } else {
2145 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2146 while (uopt.blocksize <= 4096) {
2147 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2148 if (ret < 0) {
2149 if (!silent && ret != -EACCES) {
2150 pr_notice("Scanning with blocksize %u failed\n",
2151 uopt.blocksize);
2152 }
2153 brelse(sbi->s_lvid_bh);
2154 sbi->s_lvid_bh = NULL;
2155 /*
2156 * EACCES is special - we want to propagate to
2157 * upper layers that we cannot handle RW mount.
2158 */
2159 if (ret == -EACCES)
2160 break;
2161 } else
2162 break;
2163
2164 uopt.blocksize <<= 1;
2165 }
2166 }
2167 if (ret < 0) {
2168 if (ret == -EAGAIN) {
2169 udf_warn(sb, "No partition found (1)\n");
2170 ret = -EINVAL;
2171 }
2172 goto error_out;
2173 }
2174
2175 udf_debug("Lastblock=%u\n", sbi->s_last_block);
2176
2177 if (sbi->s_lvid_bh) {
2178 struct logicalVolIntegrityDescImpUse *lvidiu =
2179 udf_sb_lvidiu(sb);
2180 uint16_t minUDFReadRev;
2181 uint16_t minUDFWriteRev;
2182
2183 if (!lvidiu) {
2184 ret = -EINVAL;
2185 goto error_out;
2186 }
2187 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2188 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2189 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2190 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2191 minUDFReadRev,
2192 UDF_MAX_READ_VERSION);
2193 ret = -EINVAL;
2194 goto error_out;
2195 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2196 if (!sb_rdonly(sb)) {
2197 ret = -EACCES;
2198 goto error_out;
2199 }
2200 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2201 }
2202
2203 sbi->s_udfrev = minUDFWriteRev;
2204
2205 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2206 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2207 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2208 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2209 }
2210
2211 if (!sbi->s_partitions) {
2212 udf_warn(sb, "No partition found (2)\n");
2213 ret = -EINVAL;
2214 goto error_out;
2215 }
2216
2217 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2218 UDF_PART_FLAG_READ_ONLY) {
2219 if (!sb_rdonly(sb)) {
2220 ret = -EACCES;
2221 goto error_out;
2222 }
2223 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2224 }
2225
2226 ret = udf_find_fileset(sb, &fileset, &rootdir);
2227 if (ret < 0) {
2228 udf_warn(sb, "No fileset found\n");
2229 goto error_out;
2230 }
2231
2232 if (!silent) {
2233 struct timestamp ts;
2234 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2235 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2236 sbi->s_volume_ident,
2237 le16_to_cpu(ts.year), ts.month, ts.day,
2238 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2239 }
2240 if (!sb_rdonly(sb)) {
2241 udf_open_lvid(sb);
2242 lvid_open = true;
2243 }
2244
2245 /* Assign the root inode */
2246 /* assign inodes by physical block number */
2247 /* perhaps it's not extensible enough, but for now ... */
2248 inode = udf_iget(sb, &rootdir);
2249 if (IS_ERR(inode)) {
2250 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2251 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2252 ret = PTR_ERR(inode);
2253 goto error_out;
2254 }
2255
2256 /* Allocate a dentry for the root inode */
2257 sb->s_root = d_make_root(inode);
2258 if (!sb->s_root) {
2259 udf_err(sb, "Couldn't allocate root dentry\n");
2260 ret = -ENOMEM;
2261 goto error_out;
2262 }
2263 sb->s_maxbytes = UDF_MAX_FILESIZE;
2264 sb->s_max_links = UDF_MAX_LINKS;
2265 return 0;
2266
2267 error_out:
2268 iput(sbi->s_vat_inode);
2269 parse_options_failure:
2270 unload_nls(uopt.nls_map);
2271 if (lvid_open)
2272 udf_close_lvid(sb);
2273 brelse(sbi->s_lvid_bh);
2274 udf_sb_free_partitions(sb);
2275 kfree(sbi);
2276 sb->s_fs_info = NULL;
2277
2278 return ret;
2279 }
2280
_udf_err(struct super_block * sb,const char * function,const char * fmt,...)2281 void _udf_err(struct super_block *sb, const char *function,
2282 const char *fmt, ...)
2283 {
2284 struct va_format vaf;
2285 va_list args;
2286
2287 va_start(args, fmt);
2288
2289 vaf.fmt = fmt;
2290 vaf.va = &args;
2291
2292 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2293
2294 va_end(args);
2295 }
2296
_udf_warn(struct super_block * sb,const char * function,const char * fmt,...)2297 void _udf_warn(struct super_block *sb, const char *function,
2298 const char *fmt, ...)
2299 {
2300 struct va_format vaf;
2301 va_list args;
2302
2303 va_start(args, fmt);
2304
2305 vaf.fmt = fmt;
2306 vaf.va = &args;
2307
2308 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2309
2310 va_end(args);
2311 }
2312
udf_put_super(struct super_block * sb)2313 static void udf_put_super(struct super_block *sb)
2314 {
2315 struct udf_sb_info *sbi;
2316
2317 sbi = UDF_SB(sb);
2318
2319 iput(sbi->s_vat_inode);
2320 unload_nls(sbi->s_nls_map);
2321 if (!sb_rdonly(sb))
2322 udf_close_lvid(sb);
2323 brelse(sbi->s_lvid_bh);
2324 udf_sb_free_partitions(sb);
2325 mutex_destroy(&sbi->s_alloc_mutex);
2326 kfree(sb->s_fs_info);
2327 sb->s_fs_info = NULL;
2328 }
2329
udf_sync_fs(struct super_block * sb,int wait)2330 static int udf_sync_fs(struct super_block *sb, int wait)
2331 {
2332 struct udf_sb_info *sbi = UDF_SB(sb);
2333
2334 mutex_lock(&sbi->s_alloc_mutex);
2335 if (sbi->s_lvid_dirty) {
2336 struct buffer_head *bh = sbi->s_lvid_bh;
2337 struct logicalVolIntegrityDesc *lvid;
2338
2339 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2340 udf_finalize_lvid(lvid);
2341
2342 /*
2343 * Blockdevice will be synced later so we don't have to submit
2344 * the buffer for IO
2345 */
2346 mark_buffer_dirty(bh);
2347 sbi->s_lvid_dirty = 0;
2348 }
2349 mutex_unlock(&sbi->s_alloc_mutex);
2350
2351 return 0;
2352 }
2353
udf_statfs(struct dentry * dentry,struct kstatfs * buf)2354 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2355 {
2356 struct super_block *sb = dentry->d_sb;
2357 struct udf_sb_info *sbi = UDF_SB(sb);
2358 struct logicalVolIntegrityDescImpUse *lvidiu;
2359 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2360
2361 lvidiu = udf_sb_lvidiu(sb);
2362 buf->f_type = UDF_SUPER_MAGIC;
2363 buf->f_bsize = sb->s_blocksize;
2364 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2365 buf->f_bfree = udf_count_free(sb);
2366 buf->f_bavail = buf->f_bfree;
2367 /*
2368 * Let's pretend each free block is also a free 'inode' since UDF does
2369 * not have separate preallocated table of inodes.
2370 */
2371 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2372 le32_to_cpu(lvidiu->numDirs)) : 0)
2373 + buf->f_bfree;
2374 buf->f_ffree = buf->f_bfree;
2375 buf->f_namelen = UDF_NAME_LEN;
2376 buf->f_fsid = u64_to_fsid(id);
2377
2378 return 0;
2379 }
2380
udf_count_free_bitmap(struct super_block * sb,struct udf_bitmap * bitmap)2381 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2382 struct udf_bitmap *bitmap)
2383 {
2384 struct buffer_head *bh = NULL;
2385 unsigned int accum = 0;
2386 int index;
2387 udf_pblk_t block = 0, newblock;
2388 struct kernel_lb_addr loc;
2389 uint32_t bytes;
2390 uint8_t *ptr;
2391 uint16_t ident;
2392 struct spaceBitmapDesc *bm;
2393
2394 loc.logicalBlockNum = bitmap->s_extPosition;
2395 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2396 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2397
2398 if (!bh) {
2399 udf_err(sb, "udf_count_free failed\n");
2400 goto out;
2401 } else if (ident != TAG_IDENT_SBD) {
2402 brelse(bh);
2403 udf_err(sb, "udf_count_free failed\n");
2404 goto out;
2405 }
2406
2407 bm = (struct spaceBitmapDesc *)bh->b_data;
2408 bytes = le32_to_cpu(bm->numOfBytes);
2409 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2410 ptr = (uint8_t *)bh->b_data;
2411
2412 while (bytes > 0) {
2413 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2414 accum += bitmap_weight((const unsigned long *)(ptr + index),
2415 cur_bytes * 8);
2416 bytes -= cur_bytes;
2417 if (bytes) {
2418 brelse(bh);
2419 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2420 bh = sb_bread(sb, newblock);
2421 if (!bh) {
2422 udf_debug("read failed\n");
2423 goto out;
2424 }
2425 index = 0;
2426 ptr = (uint8_t *)bh->b_data;
2427 }
2428 }
2429 brelse(bh);
2430 out:
2431 return accum;
2432 }
2433
udf_count_free_table(struct super_block * sb,struct inode * table)2434 static unsigned int udf_count_free_table(struct super_block *sb,
2435 struct inode *table)
2436 {
2437 unsigned int accum = 0;
2438 uint32_t elen;
2439 struct kernel_lb_addr eloc;
2440 struct extent_position epos;
2441
2442 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2443 epos.block = UDF_I(table)->i_location;
2444 epos.offset = sizeof(struct unallocSpaceEntry);
2445 epos.bh = NULL;
2446
2447 while (udf_next_aext(table, &epos, &eloc, &elen, 1) != -1)
2448 accum += (elen >> table->i_sb->s_blocksize_bits);
2449
2450 brelse(epos.bh);
2451 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2452
2453 return accum;
2454 }
2455
udf_count_free(struct super_block * sb)2456 static unsigned int udf_count_free(struct super_block *sb)
2457 {
2458 unsigned int accum = 0;
2459 struct udf_sb_info *sbi = UDF_SB(sb);
2460 struct udf_part_map *map;
2461 unsigned int part = sbi->s_partition;
2462 int ptype = sbi->s_partmaps[part].s_partition_type;
2463
2464 if (ptype == UDF_METADATA_MAP25) {
2465 part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2466 s_phys_partition_ref;
2467 } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2468 /*
2469 * Filesystems with VAT are append-only and we cannot write to
2470 * them. Let's just report 0 here.
2471 */
2472 return 0;
2473 }
2474
2475 if (sbi->s_lvid_bh) {
2476 struct logicalVolIntegrityDesc *lvid =
2477 (struct logicalVolIntegrityDesc *)
2478 sbi->s_lvid_bh->b_data;
2479 if (le32_to_cpu(lvid->numOfPartitions) > part) {
2480 accum = le32_to_cpu(
2481 lvid->freeSpaceTable[part]);
2482 if (accum == 0xFFFFFFFF)
2483 accum = 0;
2484 }
2485 }
2486
2487 if (accum)
2488 return accum;
2489
2490 map = &sbi->s_partmaps[part];
2491 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2492 accum += udf_count_free_bitmap(sb,
2493 map->s_uspace.s_bitmap);
2494 }
2495 if (accum)
2496 return accum;
2497
2498 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2499 accum += udf_count_free_table(sb,
2500 map->s_uspace.s_table);
2501 }
2502 return accum;
2503 }
2504
2505 MODULE_AUTHOR("Ben Fennema");
2506 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2507 MODULE_LICENSE("GPL");
2508 module_init(init_udf_fs)
2509 module_exit(exit_udf_fs)
2510