1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
4 *
5 * Copyright (C) 2005-2007 AMD (https://www.amd.com)
6 * Author: Thomas Dahlmann
7 */
8
9 /*
10 * This file does the core driver implementation for the UDC that is based
11 * on Synopsys device controller IP (different than HS OTG IP) that is either
12 * connected through PCI bus or integrated to SoC platforms.
13 */
14
15 /* Driver strings */
16 #define UDC_MOD_DESCRIPTION "Synopsys USB Device Controller"
17 #define UDC_DRIVER_VERSION_STRING "01.00.0206"
18
19 #include <linux/module.h>
20 #include <linux/pci.h>
21 #include <linux/kernel.h>
22 #include <linux/delay.h>
23 #include <linux/ioport.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/errno.h>
27 #include <linux/timer.h>
28 #include <linux/list.h>
29 #include <linux/interrupt.h>
30 #include <linux/ioctl.h>
31 #include <linux/fs.h>
32 #include <linux/dmapool.h>
33 #include <linux/prefetch.h>
34 #include <linux/moduleparam.h>
35 #include <asm/byteorder.h>
36 #include <asm/unaligned.h>
37 #include "amd5536udc.h"
38
39 static void udc_tasklet_disconnect(unsigned long);
40 static void udc_setup_endpoints(struct udc *dev);
41 static void udc_soft_reset(struct udc *dev);
42 static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
43 static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
44
45 /* description */
46 static const char mod_desc[] = UDC_MOD_DESCRIPTION;
47 static const char name[] = "udc";
48
49 /* structure to hold endpoint function pointers */
50 static const struct usb_ep_ops udc_ep_ops;
51
52 /* received setup data */
53 static union udc_setup_data setup_data;
54
55 /* pointer to device object */
56 static struct udc *udc;
57
58 /* irq spin lock for soft reset */
59 static DEFINE_SPINLOCK(udc_irq_spinlock);
60 /* stall spin lock */
61 static DEFINE_SPINLOCK(udc_stall_spinlock);
62
63 /*
64 * slave mode: pending bytes in rx fifo after nyet,
65 * used if EPIN irq came but no req was available
66 */
67 static unsigned int udc_rxfifo_pending;
68
69 /* count soft resets after suspend to avoid loop */
70 static int soft_reset_occured;
71 static int soft_reset_after_usbreset_occured;
72
73 /* timer */
74 static struct timer_list udc_timer;
75 static int stop_timer;
76
77 /* set_rde -- Is used to control enabling of RX DMA. Problem is
78 * that UDC has only one bit (RDE) to enable/disable RX DMA for
79 * all OUT endpoints. So we have to handle race conditions like
80 * when OUT data reaches the fifo but no request was queued yet.
81 * This cannot be solved by letting the RX DMA disabled until a
82 * request gets queued because there may be other OUT packets
83 * in the FIFO (important for not blocking control traffic).
84 * The value of set_rde controls the correspondig timer.
85 *
86 * set_rde -1 == not used, means it is alloed to be set to 0 or 1
87 * set_rde 0 == do not touch RDE, do no start the RDE timer
88 * set_rde 1 == timer function will look whether FIFO has data
89 * set_rde 2 == set by timer function to enable RX DMA on next call
90 */
91 static int set_rde = -1;
92
93 static DECLARE_COMPLETION(on_exit);
94 static struct timer_list udc_pollstall_timer;
95 static int stop_pollstall_timer;
96 static DECLARE_COMPLETION(on_pollstall_exit);
97
98 /* tasklet for usb disconnect */
99 static DECLARE_TASKLET_OLD(disconnect_tasklet, udc_tasklet_disconnect);
100
101 /* endpoint names used for print */
102 static const char ep0_string[] = "ep0in";
103 static const struct {
104 const char *name;
105 const struct usb_ep_caps caps;
106 } ep_info[] = {
107 #define EP_INFO(_name, _caps) \
108 { \
109 .name = _name, \
110 .caps = _caps, \
111 }
112
113 EP_INFO(ep0_string,
114 USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL, USB_EP_CAPS_DIR_IN)),
115 EP_INFO("ep1in-int",
116 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
117 EP_INFO("ep2in-bulk",
118 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
119 EP_INFO("ep3in-bulk",
120 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
121 EP_INFO("ep4in-bulk",
122 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
123 EP_INFO("ep5in-bulk",
124 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
125 EP_INFO("ep6in-bulk",
126 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
127 EP_INFO("ep7in-bulk",
128 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
129 EP_INFO("ep8in-bulk",
130 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
131 EP_INFO("ep9in-bulk",
132 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
133 EP_INFO("ep10in-bulk",
134 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
135 EP_INFO("ep11in-bulk",
136 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
137 EP_INFO("ep12in-bulk",
138 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
139 EP_INFO("ep13in-bulk",
140 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
141 EP_INFO("ep14in-bulk",
142 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
143 EP_INFO("ep15in-bulk",
144 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
145 EP_INFO("ep0out",
146 USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL, USB_EP_CAPS_DIR_OUT)),
147 EP_INFO("ep1out-bulk",
148 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
149 EP_INFO("ep2out-bulk",
150 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
151 EP_INFO("ep3out-bulk",
152 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
153 EP_INFO("ep4out-bulk",
154 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
155 EP_INFO("ep5out-bulk",
156 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
157 EP_INFO("ep6out-bulk",
158 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
159 EP_INFO("ep7out-bulk",
160 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
161 EP_INFO("ep8out-bulk",
162 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
163 EP_INFO("ep9out-bulk",
164 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
165 EP_INFO("ep10out-bulk",
166 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
167 EP_INFO("ep11out-bulk",
168 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
169 EP_INFO("ep12out-bulk",
170 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
171 EP_INFO("ep13out-bulk",
172 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
173 EP_INFO("ep14out-bulk",
174 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
175 EP_INFO("ep15out-bulk",
176 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
177
178 #undef EP_INFO
179 };
180
181 /* buffer fill mode */
182 static int use_dma_bufferfill_mode;
183 /* tx buffer size for high speed */
184 static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
185
186 /*---------------------------------------------------------------------------*/
187 /* Prints UDC device registers and endpoint irq registers */
print_regs(struct udc * dev)188 static void print_regs(struct udc *dev)
189 {
190 DBG(dev, "------- Device registers -------\n");
191 DBG(dev, "dev config = %08x\n", readl(&dev->regs->cfg));
192 DBG(dev, "dev control = %08x\n", readl(&dev->regs->ctl));
193 DBG(dev, "dev status = %08x\n", readl(&dev->regs->sts));
194 DBG(dev, "\n");
195 DBG(dev, "dev int's = %08x\n", readl(&dev->regs->irqsts));
196 DBG(dev, "dev intmask = %08x\n", readl(&dev->regs->irqmsk));
197 DBG(dev, "\n");
198 DBG(dev, "dev ep int's = %08x\n", readl(&dev->regs->ep_irqsts));
199 DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
200 DBG(dev, "\n");
201 DBG(dev, "USE DMA = %d\n", use_dma);
202 if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
203 DBG(dev, "DMA mode = PPBNDU (packet per buffer "
204 "WITHOUT desc. update)\n");
205 dev_info(dev->dev, "DMA mode (%s)\n", "PPBNDU");
206 } else if (use_dma && use_dma_ppb && use_dma_ppb_du) {
207 DBG(dev, "DMA mode = PPBDU (packet per buffer "
208 "WITH desc. update)\n");
209 dev_info(dev->dev, "DMA mode (%s)\n", "PPBDU");
210 }
211 if (use_dma && use_dma_bufferfill_mode) {
212 DBG(dev, "DMA mode = BF (buffer fill mode)\n");
213 dev_info(dev->dev, "DMA mode (%s)\n", "BF");
214 }
215 if (!use_dma)
216 dev_info(dev->dev, "FIFO mode\n");
217 DBG(dev, "-------------------------------------------------------\n");
218 }
219
220 /* Masks unused interrupts */
udc_mask_unused_interrupts(struct udc * dev)221 int udc_mask_unused_interrupts(struct udc *dev)
222 {
223 u32 tmp;
224
225 /* mask all dev interrupts */
226 tmp = AMD_BIT(UDC_DEVINT_SVC) |
227 AMD_BIT(UDC_DEVINT_ENUM) |
228 AMD_BIT(UDC_DEVINT_US) |
229 AMD_BIT(UDC_DEVINT_UR) |
230 AMD_BIT(UDC_DEVINT_ES) |
231 AMD_BIT(UDC_DEVINT_SI) |
232 AMD_BIT(UDC_DEVINT_SOF)|
233 AMD_BIT(UDC_DEVINT_SC);
234 writel(tmp, &dev->regs->irqmsk);
235
236 /* mask all ep interrupts */
237 writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
238
239 return 0;
240 }
241 EXPORT_SYMBOL_GPL(udc_mask_unused_interrupts);
242
243 /* Enables endpoint 0 interrupts */
udc_enable_ep0_interrupts(struct udc * dev)244 static int udc_enable_ep0_interrupts(struct udc *dev)
245 {
246 u32 tmp;
247
248 DBG(dev, "udc_enable_ep0_interrupts()\n");
249
250 /* read irq mask */
251 tmp = readl(&dev->regs->ep_irqmsk);
252 /* enable ep0 irq's */
253 tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0)
254 & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0);
255 writel(tmp, &dev->regs->ep_irqmsk);
256
257 return 0;
258 }
259
260 /* Enables device interrupts for SET_INTF and SET_CONFIG */
udc_enable_dev_setup_interrupts(struct udc * dev)261 int udc_enable_dev_setup_interrupts(struct udc *dev)
262 {
263 u32 tmp;
264
265 DBG(dev, "enable device interrupts for setup data\n");
266
267 /* read irq mask */
268 tmp = readl(&dev->regs->irqmsk);
269
270 /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
271 tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI)
272 & AMD_UNMASK_BIT(UDC_DEVINT_SC)
273 & AMD_UNMASK_BIT(UDC_DEVINT_UR)
274 & AMD_UNMASK_BIT(UDC_DEVINT_SVC)
275 & AMD_UNMASK_BIT(UDC_DEVINT_ENUM);
276 writel(tmp, &dev->regs->irqmsk);
277
278 return 0;
279 }
280 EXPORT_SYMBOL_GPL(udc_enable_dev_setup_interrupts);
281
282 /* Calculates fifo start of endpoint based on preceding endpoints */
udc_set_txfifo_addr(struct udc_ep * ep)283 static int udc_set_txfifo_addr(struct udc_ep *ep)
284 {
285 struct udc *dev;
286 u32 tmp;
287 int i;
288
289 if (!ep || !(ep->in))
290 return -EINVAL;
291
292 dev = ep->dev;
293 ep->txfifo = dev->txfifo;
294
295 /* traverse ep's */
296 for (i = 0; i < ep->num; i++) {
297 if (dev->ep[i].regs) {
298 /* read fifo size */
299 tmp = readl(&dev->ep[i].regs->bufin_framenum);
300 tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
301 ep->txfifo += tmp;
302 }
303 }
304 return 0;
305 }
306
307 /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
308 static u32 cnak_pending;
309
UDC_QUEUE_CNAK(struct udc_ep * ep,unsigned num)310 static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
311 {
312 if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
313 DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
314 cnak_pending |= 1 << (num);
315 ep->naking = 1;
316 } else
317 cnak_pending = cnak_pending & (~(1 << (num)));
318 }
319
320
321 /* Enables endpoint, is called by gadget driver */
322 static int
udc_ep_enable(struct usb_ep * usbep,const struct usb_endpoint_descriptor * desc)323 udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
324 {
325 struct udc_ep *ep;
326 struct udc *dev;
327 u32 tmp;
328 unsigned long iflags;
329 u8 udc_csr_epix;
330 unsigned maxpacket;
331
332 if (!usbep
333 || usbep->name == ep0_string
334 || !desc
335 || desc->bDescriptorType != USB_DT_ENDPOINT)
336 return -EINVAL;
337
338 ep = container_of(usbep, struct udc_ep, ep);
339 dev = ep->dev;
340
341 DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
342
343 if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
344 return -ESHUTDOWN;
345
346 spin_lock_irqsave(&dev->lock, iflags);
347 ep->ep.desc = desc;
348
349 ep->halted = 0;
350
351 /* set traffic type */
352 tmp = readl(&dev->ep[ep->num].regs->ctl);
353 tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
354 writel(tmp, &dev->ep[ep->num].regs->ctl);
355
356 /* set max packet size */
357 maxpacket = usb_endpoint_maxp(desc);
358 tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
359 tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE);
360 ep->ep.maxpacket = maxpacket;
361 writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
362
363 /* IN ep */
364 if (ep->in) {
365
366 /* ep ix in UDC CSR register space */
367 udc_csr_epix = ep->num;
368
369 /* set buffer size (tx fifo entries) */
370 tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
371 /* double buffering: fifo size = 2 x max packet size */
372 tmp = AMD_ADDBITS(
373 tmp,
374 maxpacket * UDC_EPIN_BUFF_SIZE_MULT
375 / UDC_DWORD_BYTES,
376 UDC_EPIN_BUFF_SIZE);
377 writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
378
379 /* calc. tx fifo base addr */
380 udc_set_txfifo_addr(ep);
381
382 /* flush fifo */
383 tmp = readl(&ep->regs->ctl);
384 tmp |= AMD_BIT(UDC_EPCTL_F);
385 writel(tmp, &ep->regs->ctl);
386
387 /* OUT ep */
388 } else {
389 /* ep ix in UDC CSR register space */
390 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
391
392 /* set max packet size UDC CSR */
393 tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
394 tmp = AMD_ADDBITS(tmp, maxpacket,
395 UDC_CSR_NE_MAX_PKT);
396 writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
397
398 if (use_dma && !ep->in) {
399 /* alloc and init BNA dummy request */
400 ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
401 ep->bna_occurred = 0;
402 }
403
404 if (ep->num != UDC_EP0OUT_IX)
405 dev->data_ep_enabled = 1;
406 }
407
408 /* set ep values */
409 tmp = readl(&dev->csr->ne[udc_csr_epix]);
410 /* max packet */
411 tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT);
412 /* ep number */
413 tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
414 /* ep direction */
415 tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
416 /* ep type */
417 tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
418 /* ep config */
419 tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
420 /* ep interface */
421 tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
422 /* ep alt */
423 tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
424 /* write reg */
425 writel(tmp, &dev->csr->ne[udc_csr_epix]);
426
427 /* enable ep irq */
428 tmp = readl(&dev->regs->ep_irqmsk);
429 tmp &= AMD_UNMASK_BIT(ep->num);
430 writel(tmp, &dev->regs->ep_irqmsk);
431
432 /*
433 * clear NAK by writing CNAK
434 * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
435 */
436 if (!use_dma || ep->in) {
437 tmp = readl(&ep->regs->ctl);
438 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
439 writel(tmp, &ep->regs->ctl);
440 ep->naking = 0;
441 UDC_QUEUE_CNAK(ep, ep->num);
442 }
443 tmp = desc->bEndpointAddress;
444 DBG(dev, "%s enabled\n", usbep->name);
445
446 spin_unlock_irqrestore(&dev->lock, iflags);
447 return 0;
448 }
449
450 /* Resets endpoint */
ep_init(struct udc_regs __iomem * regs,struct udc_ep * ep)451 static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
452 {
453 u32 tmp;
454
455 VDBG(ep->dev, "ep-%d reset\n", ep->num);
456 ep->ep.desc = NULL;
457 ep->ep.ops = &udc_ep_ops;
458 INIT_LIST_HEAD(&ep->queue);
459
460 usb_ep_set_maxpacket_limit(&ep->ep,(u16) ~0);
461 /* set NAK */
462 tmp = readl(&ep->regs->ctl);
463 tmp |= AMD_BIT(UDC_EPCTL_SNAK);
464 writel(tmp, &ep->regs->ctl);
465 ep->naking = 1;
466
467 /* disable interrupt */
468 tmp = readl(®s->ep_irqmsk);
469 tmp |= AMD_BIT(ep->num);
470 writel(tmp, ®s->ep_irqmsk);
471
472 if (ep->in) {
473 /* unset P and IN bit of potential former DMA */
474 tmp = readl(&ep->regs->ctl);
475 tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
476 writel(tmp, &ep->regs->ctl);
477
478 tmp = readl(&ep->regs->sts);
479 tmp |= AMD_BIT(UDC_EPSTS_IN);
480 writel(tmp, &ep->regs->sts);
481
482 /* flush the fifo */
483 tmp = readl(&ep->regs->ctl);
484 tmp |= AMD_BIT(UDC_EPCTL_F);
485 writel(tmp, &ep->regs->ctl);
486
487 }
488 /* reset desc pointer */
489 writel(0, &ep->regs->desptr);
490 }
491
492 /* Disables endpoint, is called by gadget driver */
udc_ep_disable(struct usb_ep * usbep)493 static int udc_ep_disable(struct usb_ep *usbep)
494 {
495 struct udc_ep *ep = NULL;
496 unsigned long iflags;
497
498 if (!usbep)
499 return -EINVAL;
500
501 ep = container_of(usbep, struct udc_ep, ep);
502 if (usbep->name == ep0_string || !ep->ep.desc)
503 return -EINVAL;
504
505 DBG(ep->dev, "Disable ep-%d\n", ep->num);
506
507 spin_lock_irqsave(&ep->dev->lock, iflags);
508 udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
509 empty_req_queue(ep);
510 ep_init(ep->dev->regs, ep);
511 spin_unlock_irqrestore(&ep->dev->lock, iflags);
512
513 return 0;
514 }
515
516 /* Allocates request packet, called by gadget driver */
517 static struct usb_request *
udc_alloc_request(struct usb_ep * usbep,gfp_t gfp)518 udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
519 {
520 struct udc_request *req;
521 struct udc_data_dma *dma_desc;
522 struct udc_ep *ep;
523
524 if (!usbep)
525 return NULL;
526
527 ep = container_of(usbep, struct udc_ep, ep);
528
529 VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
530 req = kzalloc(sizeof(struct udc_request), gfp);
531 if (!req)
532 return NULL;
533
534 req->req.dma = DMA_DONT_USE;
535 INIT_LIST_HEAD(&req->queue);
536
537 if (ep->dma) {
538 /* ep0 in requests are allocated from data pool here */
539 dma_desc = dma_pool_alloc(ep->dev->data_requests, gfp,
540 &req->td_phys);
541 if (!dma_desc) {
542 kfree(req);
543 return NULL;
544 }
545
546 VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, "
547 "td_phys = %lx\n",
548 req, dma_desc,
549 (unsigned long)req->td_phys);
550 /* prevent from using desc. - set HOST BUSY */
551 dma_desc->status = AMD_ADDBITS(dma_desc->status,
552 UDC_DMA_STP_STS_BS_HOST_BUSY,
553 UDC_DMA_STP_STS_BS);
554 dma_desc->bufptr = cpu_to_le32(DMA_DONT_USE);
555 req->td_data = dma_desc;
556 req->td_data_last = NULL;
557 req->chain_len = 1;
558 }
559
560 return &req->req;
561 }
562
563 /* frees pci pool descriptors of a DMA chain */
udc_free_dma_chain(struct udc * dev,struct udc_request * req)564 static void udc_free_dma_chain(struct udc *dev, struct udc_request *req)
565 {
566 struct udc_data_dma *td = req->td_data;
567 unsigned int i;
568
569 dma_addr_t addr_next = 0x00;
570 dma_addr_t addr = (dma_addr_t)td->next;
571
572 DBG(dev, "free chain req = %p\n", req);
573
574 /* do not free first desc., will be done by free for request */
575 for (i = 1; i < req->chain_len; i++) {
576 td = phys_to_virt(addr);
577 addr_next = (dma_addr_t)td->next;
578 dma_pool_free(dev->data_requests, td, addr);
579 addr = addr_next;
580 }
581 }
582
583 /* Frees request packet, called by gadget driver */
584 static void
udc_free_request(struct usb_ep * usbep,struct usb_request * usbreq)585 udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
586 {
587 struct udc_ep *ep;
588 struct udc_request *req;
589
590 if (!usbep || !usbreq)
591 return;
592
593 ep = container_of(usbep, struct udc_ep, ep);
594 req = container_of(usbreq, struct udc_request, req);
595 VDBG(ep->dev, "free_req req=%p\n", req);
596 BUG_ON(!list_empty(&req->queue));
597 if (req->td_data) {
598 VDBG(ep->dev, "req->td_data=%p\n", req->td_data);
599
600 /* free dma chain if created */
601 if (req->chain_len > 1)
602 udc_free_dma_chain(ep->dev, req);
603
604 dma_pool_free(ep->dev->data_requests, req->td_data,
605 req->td_phys);
606 }
607 kfree(req);
608 }
609
610 /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
udc_init_bna_dummy(struct udc_request * req)611 static void udc_init_bna_dummy(struct udc_request *req)
612 {
613 if (req) {
614 /* set last bit */
615 req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
616 /* set next pointer to itself */
617 req->td_data->next = req->td_phys;
618 /* set HOST BUSY */
619 req->td_data->status
620 = AMD_ADDBITS(req->td_data->status,
621 UDC_DMA_STP_STS_BS_DMA_DONE,
622 UDC_DMA_STP_STS_BS);
623 #ifdef UDC_VERBOSE
624 pr_debug("bna desc = %p, sts = %08x\n",
625 req->td_data, req->td_data->status);
626 #endif
627 }
628 }
629
630 /* Allocate BNA dummy descriptor */
udc_alloc_bna_dummy(struct udc_ep * ep)631 static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
632 {
633 struct udc_request *req = NULL;
634 struct usb_request *_req = NULL;
635
636 /* alloc the dummy request */
637 _req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
638 if (_req) {
639 req = container_of(_req, struct udc_request, req);
640 ep->bna_dummy_req = req;
641 udc_init_bna_dummy(req);
642 }
643 return req;
644 }
645
646 /* Write data to TX fifo for IN packets */
647 static void
udc_txfifo_write(struct udc_ep * ep,struct usb_request * req)648 udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
649 {
650 u8 *req_buf;
651 u32 *buf;
652 int i, j;
653 unsigned bytes = 0;
654 unsigned remaining = 0;
655
656 if (!req || !ep)
657 return;
658
659 req_buf = req->buf + req->actual;
660 prefetch(req_buf);
661 remaining = req->length - req->actual;
662
663 buf = (u32 *) req_buf;
664
665 bytes = ep->ep.maxpacket;
666 if (bytes > remaining)
667 bytes = remaining;
668
669 /* dwords first */
670 for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
671 writel(*(buf + i), ep->txfifo);
672
673 /* remaining bytes must be written by byte access */
674 for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
675 writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
676 ep->txfifo);
677 }
678
679 /* dummy write confirm */
680 writel(0, &ep->regs->confirm);
681 }
682
683 /* Read dwords from RX fifo for OUT transfers */
udc_rxfifo_read_dwords(struct udc * dev,u32 * buf,int dwords)684 static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
685 {
686 int i;
687
688 VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
689
690 for (i = 0; i < dwords; i++)
691 *(buf + i) = readl(dev->rxfifo);
692 return 0;
693 }
694
695 /* Read bytes from RX fifo for OUT transfers */
udc_rxfifo_read_bytes(struct udc * dev,u8 * buf,int bytes)696 static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
697 {
698 int i, j;
699 u32 tmp;
700
701 VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
702
703 /* dwords first */
704 for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
705 *((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
706
707 /* remaining bytes must be read by byte access */
708 if (bytes % UDC_DWORD_BYTES) {
709 tmp = readl(dev->rxfifo);
710 for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
711 *(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
712 tmp = tmp >> UDC_BITS_PER_BYTE;
713 }
714 }
715
716 return 0;
717 }
718
719 /* Read data from RX fifo for OUT transfers */
720 static int
udc_rxfifo_read(struct udc_ep * ep,struct udc_request * req)721 udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
722 {
723 u8 *buf;
724 unsigned buf_space;
725 unsigned bytes = 0;
726 unsigned finished = 0;
727
728 /* received number bytes */
729 bytes = readl(&ep->regs->sts);
730 bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
731
732 buf_space = req->req.length - req->req.actual;
733 buf = req->req.buf + req->req.actual;
734 if (bytes > buf_space) {
735 if ((buf_space % ep->ep.maxpacket) != 0) {
736 DBG(ep->dev,
737 "%s: rx %d bytes, rx-buf space = %d bytesn\n",
738 ep->ep.name, bytes, buf_space);
739 req->req.status = -EOVERFLOW;
740 }
741 bytes = buf_space;
742 }
743 req->req.actual += bytes;
744
745 /* last packet ? */
746 if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
747 || ((req->req.actual == req->req.length) && !req->req.zero))
748 finished = 1;
749
750 /* read rx fifo bytes */
751 VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
752 udc_rxfifo_read_bytes(ep->dev, buf, bytes);
753
754 return finished;
755 }
756
757 /* Creates or re-inits a DMA chain */
udc_create_dma_chain(struct udc_ep * ep,struct udc_request * req,unsigned long buf_len,gfp_t gfp_flags)758 static int udc_create_dma_chain(
759 struct udc_ep *ep,
760 struct udc_request *req,
761 unsigned long buf_len, gfp_t gfp_flags
762 )
763 {
764 unsigned long bytes = req->req.length;
765 unsigned int i;
766 dma_addr_t dma_addr;
767 struct udc_data_dma *td = NULL;
768 struct udc_data_dma *last = NULL;
769 unsigned long txbytes;
770 unsigned create_new_chain = 0;
771 unsigned len;
772
773 VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
774 bytes, buf_len);
775 dma_addr = DMA_DONT_USE;
776
777 /* unset L bit in first desc for OUT */
778 if (!ep->in)
779 req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
780
781 /* alloc only new desc's if not already available */
782 len = req->req.length / ep->ep.maxpacket;
783 if (req->req.length % ep->ep.maxpacket)
784 len++;
785
786 if (len > req->chain_len) {
787 /* shorter chain already allocated before */
788 if (req->chain_len > 1)
789 udc_free_dma_chain(ep->dev, req);
790 req->chain_len = len;
791 create_new_chain = 1;
792 }
793
794 td = req->td_data;
795 /* gen. required number of descriptors and buffers */
796 for (i = buf_len; i < bytes; i += buf_len) {
797 /* create or determine next desc. */
798 if (create_new_chain) {
799 td = dma_pool_alloc(ep->dev->data_requests,
800 gfp_flags, &dma_addr);
801 if (!td)
802 return -ENOMEM;
803
804 td->status = 0;
805 } else if (i == buf_len) {
806 /* first td */
807 td = (struct udc_data_dma *)phys_to_virt(
808 req->td_data->next);
809 td->status = 0;
810 } else {
811 td = (struct udc_data_dma *)phys_to_virt(last->next);
812 td->status = 0;
813 }
814
815 if (td)
816 td->bufptr = req->req.dma + i; /* assign buffer */
817 else
818 break;
819
820 /* short packet ? */
821 if ((bytes - i) >= buf_len) {
822 txbytes = buf_len;
823 } else {
824 /* short packet */
825 txbytes = bytes - i;
826 }
827
828 /* link td and assign tx bytes */
829 if (i == buf_len) {
830 if (create_new_chain)
831 req->td_data->next = dma_addr;
832 /*
833 * else
834 * req->td_data->next = virt_to_phys(td);
835 */
836 /* write tx bytes */
837 if (ep->in) {
838 /* first desc */
839 req->td_data->status =
840 AMD_ADDBITS(req->td_data->status,
841 ep->ep.maxpacket,
842 UDC_DMA_IN_STS_TXBYTES);
843 /* second desc */
844 td->status = AMD_ADDBITS(td->status,
845 txbytes,
846 UDC_DMA_IN_STS_TXBYTES);
847 }
848 } else {
849 if (create_new_chain)
850 last->next = dma_addr;
851 /*
852 * else
853 * last->next = virt_to_phys(td);
854 */
855 if (ep->in) {
856 /* write tx bytes */
857 td->status = AMD_ADDBITS(td->status,
858 txbytes,
859 UDC_DMA_IN_STS_TXBYTES);
860 }
861 }
862 last = td;
863 }
864 /* set last bit */
865 if (td) {
866 td->status |= AMD_BIT(UDC_DMA_IN_STS_L);
867 /* last desc. points to itself */
868 req->td_data_last = td;
869 }
870
871 return 0;
872 }
873
874 /* create/re-init a DMA descriptor or a DMA descriptor chain */
prep_dma(struct udc_ep * ep,struct udc_request * req,gfp_t gfp)875 static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
876 {
877 int retval = 0;
878 u32 tmp;
879
880 VDBG(ep->dev, "prep_dma\n");
881 VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n",
882 ep->num, req->td_data);
883
884 /* set buffer pointer */
885 req->td_data->bufptr = req->req.dma;
886
887 /* set last bit */
888 req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
889
890 /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
891 if (use_dma_ppb) {
892
893 retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
894 if (retval != 0) {
895 if (retval == -ENOMEM)
896 DBG(ep->dev, "Out of DMA memory\n");
897 return retval;
898 }
899 if (ep->in) {
900 if (req->req.length == ep->ep.maxpacket) {
901 /* write tx bytes */
902 req->td_data->status =
903 AMD_ADDBITS(req->td_data->status,
904 ep->ep.maxpacket,
905 UDC_DMA_IN_STS_TXBYTES);
906
907 }
908 }
909
910 }
911
912 if (ep->in) {
913 VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
914 "maxpacket=%d ep%d\n",
915 use_dma_ppb, req->req.length,
916 ep->ep.maxpacket, ep->num);
917 /*
918 * if bytes < max packet then tx bytes must
919 * be written in packet per buffer mode
920 */
921 if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
922 || ep->num == UDC_EP0OUT_IX
923 || ep->num == UDC_EP0IN_IX) {
924 /* write tx bytes */
925 req->td_data->status =
926 AMD_ADDBITS(req->td_data->status,
927 req->req.length,
928 UDC_DMA_IN_STS_TXBYTES);
929 /* reset frame num */
930 req->td_data->status =
931 AMD_ADDBITS(req->td_data->status,
932 0,
933 UDC_DMA_IN_STS_FRAMENUM);
934 }
935 /* set HOST BUSY */
936 req->td_data->status =
937 AMD_ADDBITS(req->td_data->status,
938 UDC_DMA_STP_STS_BS_HOST_BUSY,
939 UDC_DMA_STP_STS_BS);
940 } else {
941 VDBG(ep->dev, "OUT set host ready\n");
942 /* set HOST READY */
943 req->td_data->status =
944 AMD_ADDBITS(req->td_data->status,
945 UDC_DMA_STP_STS_BS_HOST_READY,
946 UDC_DMA_STP_STS_BS);
947
948 /* clear NAK by writing CNAK */
949 if (ep->naking) {
950 tmp = readl(&ep->regs->ctl);
951 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
952 writel(tmp, &ep->regs->ctl);
953 ep->naking = 0;
954 UDC_QUEUE_CNAK(ep, ep->num);
955 }
956
957 }
958
959 return retval;
960 }
961
962 /* Completes request packet ... caller MUST hold lock */
963 static void
complete_req(struct udc_ep * ep,struct udc_request * req,int sts)964 complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
965 __releases(ep->dev->lock)
966 __acquires(ep->dev->lock)
967 {
968 struct udc *dev;
969 unsigned halted;
970
971 VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
972
973 dev = ep->dev;
974 /* unmap DMA */
975 if (ep->dma)
976 usb_gadget_unmap_request(&dev->gadget, &req->req, ep->in);
977
978 halted = ep->halted;
979 ep->halted = 1;
980
981 /* set new status if pending */
982 if (req->req.status == -EINPROGRESS)
983 req->req.status = sts;
984
985 /* remove from ep queue */
986 list_del_init(&req->queue);
987
988 VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n",
989 &req->req, req->req.length, ep->ep.name, sts);
990
991 spin_unlock(&dev->lock);
992 usb_gadget_giveback_request(&ep->ep, &req->req);
993 spin_lock(&dev->lock);
994 ep->halted = halted;
995 }
996
997 /* Iterates to the end of a DMA chain and returns last descriptor */
udc_get_last_dma_desc(struct udc_request * req)998 static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
999 {
1000 struct udc_data_dma *td;
1001
1002 td = req->td_data;
1003 while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L)))
1004 td = phys_to_virt(td->next);
1005
1006 return td;
1007
1008 }
1009
1010 /* Iterates to the end of a DMA chain and counts bytes received */
udc_get_ppbdu_rxbytes(struct udc_request * req)1011 static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
1012 {
1013 struct udc_data_dma *td;
1014 u32 count;
1015
1016 td = req->td_data;
1017 /* received number bytes */
1018 count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
1019
1020 while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
1021 td = phys_to_virt(td->next);
1022 /* received number bytes */
1023 if (td) {
1024 count += AMD_GETBITS(td->status,
1025 UDC_DMA_OUT_STS_RXBYTES);
1026 }
1027 }
1028
1029 return count;
1030
1031 }
1032
1033 /* Enabling RX DMA */
udc_set_rde(struct udc * dev)1034 static void udc_set_rde(struct udc *dev)
1035 {
1036 u32 tmp;
1037
1038 VDBG(dev, "udc_set_rde()\n");
1039 /* stop RDE timer */
1040 if (timer_pending(&udc_timer)) {
1041 set_rde = 0;
1042 mod_timer(&udc_timer, jiffies - 1);
1043 }
1044 /* set RDE */
1045 tmp = readl(&dev->regs->ctl);
1046 tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1047 writel(tmp, &dev->regs->ctl);
1048 }
1049
1050 /* Queues a request packet, called by gadget driver */
1051 static int
udc_queue(struct usb_ep * usbep,struct usb_request * usbreq,gfp_t gfp)1052 udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
1053 {
1054 int retval = 0;
1055 u8 open_rxfifo = 0;
1056 unsigned long iflags;
1057 struct udc_ep *ep;
1058 struct udc_request *req;
1059 struct udc *dev;
1060 u32 tmp;
1061
1062 /* check the inputs */
1063 req = container_of(usbreq, struct udc_request, req);
1064
1065 if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
1066 || !list_empty(&req->queue))
1067 return -EINVAL;
1068
1069 ep = container_of(usbep, struct udc_ep, ep);
1070 if (!ep->ep.desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1071 return -EINVAL;
1072
1073 VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
1074 dev = ep->dev;
1075
1076 if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
1077 return -ESHUTDOWN;
1078
1079 /* map dma (usually done before) */
1080 if (ep->dma) {
1081 VDBG(dev, "DMA map req %p\n", req);
1082 retval = usb_gadget_map_request(&udc->gadget, usbreq, ep->in);
1083 if (retval)
1084 return retval;
1085 }
1086
1087 VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n",
1088 usbep->name, usbreq, usbreq->length,
1089 req->td_data, usbreq->buf);
1090
1091 spin_lock_irqsave(&dev->lock, iflags);
1092 usbreq->actual = 0;
1093 usbreq->status = -EINPROGRESS;
1094 req->dma_done = 0;
1095
1096 /* on empty queue just do first transfer */
1097 if (list_empty(&ep->queue)) {
1098 /* zlp */
1099 if (usbreq->length == 0) {
1100 /* IN zlp's are handled by hardware */
1101 complete_req(ep, req, 0);
1102 VDBG(dev, "%s: zlp\n", ep->ep.name);
1103 /*
1104 * if set_config or set_intf is waiting for ack by zlp
1105 * then set CSR_DONE
1106 */
1107 if (dev->set_cfg_not_acked) {
1108 tmp = readl(&dev->regs->ctl);
1109 tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
1110 writel(tmp, &dev->regs->ctl);
1111 dev->set_cfg_not_acked = 0;
1112 }
1113 /* setup command is ACK'ed now by zlp */
1114 if (dev->waiting_zlp_ack_ep0in) {
1115 /* clear NAK by writing CNAK in EP0_IN */
1116 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1117 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1118 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1119 dev->ep[UDC_EP0IN_IX].naking = 0;
1120 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
1121 UDC_EP0IN_IX);
1122 dev->waiting_zlp_ack_ep0in = 0;
1123 }
1124 goto finished;
1125 }
1126 if (ep->dma) {
1127 retval = prep_dma(ep, req, GFP_ATOMIC);
1128 if (retval != 0)
1129 goto finished;
1130 /* write desc pointer to enable DMA */
1131 if (ep->in) {
1132 /* set HOST READY */
1133 req->td_data->status =
1134 AMD_ADDBITS(req->td_data->status,
1135 UDC_DMA_IN_STS_BS_HOST_READY,
1136 UDC_DMA_IN_STS_BS);
1137 }
1138
1139 /* disabled rx dma while descriptor update */
1140 if (!ep->in) {
1141 /* stop RDE timer */
1142 if (timer_pending(&udc_timer)) {
1143 set_rde = 0;
1144 mod_timer(&udc_timer, jiffies - 1);
1145 }
1146 /* clear RDE */
1147 tmp = readl(&dev->regs->ctl);
1148 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
1149 writel(tmp, &dev->regs->ctl);
1150 open_rxfifo = 1;
1151
1152 /*
1153 * if BNA occurred then let BNA dummy desc.
1154 * point to current desc.
1155 */
1156 if (ep->bna_occurred) {
1157 VDBG(dev, "copy to BNA dummy desc.\n");
1158 memcpy(ep->bna_dummy_req->td_data,
1159 req->td_data,
1160 sizeof(struct udc_data_dma));
1161 }
1162 }
1163 /* write desc pointer */
1164 writel(req->td_phys, &ep->regs->desptr);
1165
1166 /* clear NAK by writing CNAK */
1167 if (ep->naking) {
1168 tmp = readl(&ep->regs->ctl);
1169 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1170 writel(tmp, &ep->regs->ctl);
1171 ep->naking = 0;
1172 UDC_QUEUE_CNAK(ep, ep->num);
1173 }
1174
1175 if (ep->in) {
1176 /* enable ep irq */
1177 tmp = readl(&dev->regs->ep_irqmsk);
1178 tmp &= AMD_UNMASK_BIT(ep->num);
1179 writel(tmp, &dev->regs->ep_irqmsk);
1180 }
1181 } else if (ep->in) {
1182 /* enable ep irq */
1183 tmp = readl(&dev->regs->ep_irqmsk);
1184 tmp &= AMD_UNMASK_BIT(ep->num);
1185 writel(tmp, &dev->regs->ep_irqmsk);
1186 }
1187
1188 } else if (ep->dma) {
1189
1190 /*
1191 * prep_dma not used for OUT ep's, this is not possible
1192 * for PPB modes, because of chain creation reasons
1193 */
1194 if (ep->in) {
1195 retval = prep_dma(ep, req, GFP_ATOMIC);
1196 if (retval != 0)
1197 goto finished;
1198 }
1199 }
1200 VDBG(dev, "list_add\n");
1201 /* add request to ep queue */
1202 if (req) {
1203
1204 list_add_tail(&req->queue, &ep->queue);
1205
1206 /* open rxfifo if out data queued */
1207 if (open_rxfifo) {
1208 /* enable DMA */
1209 req->dma_going = 1;
1210 udc_set_rde(dev);
1211 if (ep->num != UDC_EP0OUT_IX)
1212 dev->data_ep_queued = 1;
1213 }
1214 /* stop OUT naking */
1215 if (!ep->in) {
1216 if (!use_dma && udc_rxfifo_pending) {
1217 DBG(dev, "udc_queue(): pending bytes in "
1218 "rxfifo after nyet\n");
1219 /*
1220 * read pending bytes afer nyet:
1221 * referring to isr
1222 */
1223 if (udc_rxfifo_read(ep, req)) {
1224 /* finish */
1225 complete_req(ep, req, 0);
1226 }
1227 udc_rxfifo_pending = 0;
1228
1229 }
1230 }
1231 }
1232
1233 finished:
1234 spin_unlock_irqrestore(&dev->lock, iflags);
1235 return retval;
1236 }
1237
1238 /* Empty request queue of an endpoint; caller holds spinlock */
empty_req_queue(struct udc_ep * ep)1239 void empty_req_queue(struct udc_ep *ep)
1240 {
1241 struct udc_request *req;
1242
1243 ep->halted = 1;
1244 while (!list_empty(&ep->queue)) {
1245 req = list_entry(ep->queue.next,
1246 struct udc_request,
1247 queue);
1248 complete_req(ep, req, -ESHUTDOWN);
1249 }
1250 }
1251 EXPORT_SYMBOL_GPL(empty_req_queue);
1252
1253 /* Dequeues a request packet, called by gadget driver */
udc_dequeue(struct usb_ep * usbep,struct usb_request * usbreq)1254 static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
1255 {
1256 struct udc_ep *ep;
1257 struct udc_request *req;
1258 unsigned halted;
1259 unsigned long iflags;
1260
1261 ep = container_of(usbep, struct udc_ep, ep);
1262 if (!usbep || !usbreq || (!ep->ep.desc && (ep->num != 0
1263 && ep->num != UDC_EP0OUT_IX)))
1264 return -EINVAL;
1265
1266 req = container_of(usbreq, struct udc_request, req);
1267
1268 spin_lock_irqsave(&ep->dev->lock, iflags);
1269 halted = ep->halted;
1270 ep->halted = 1;
1271 /* request in processing or next one */
1272 if (ep->queue.next == &req->queue) {
1273 if (ep->dma && req->dma_going) {
1274 if (ep->in)
1275 ep->cancel_transfer = 1;
1276 else {
1277 u32 tmp;
1278 u32 dma_sts;
1279 /* stop potential receive DMA */
1280 tmp = readl(&udc->regs->ctl);
1281 writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE),
1282 &udc->regs->ctl);
1283 /*
1284 * Cancel transfer later in ISR
1285 * if descriptor was touched.
1286 */
1287 dma_sts = AMD_GETBITS(req->td_data->status,
1288 UDC_DMA_OUT_STS_BS);
1289 if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
1290 ep->cancel_transfer = 1;
1291 else {
1292 udc_init_bna_dummy(ep->req);
1293 writel(ep->bna_dummy_req->td_phys,
1294 &ep->regs->desptr);
1295 }
1296 writel(tmp, &udc->regs->ctl);
1297 }
1298 }
1299 }
1300 complete_req(ep, req, -ECONNRESET);
1301 ep->halted = halted;
1302
1303 spin_unlock_irqrestore(&ep->dev->lock, iflags);
1304 return 0;
1305 }
1306
1307 /* Halt or clear halt of endpoint */
1308 static int
udc_set_halt(struct usb_ep * usbep,int halt)1309 udc_set_halt(struct usb_ep *usbep, int halt)
1310 {
1311 struct udc_ep *ep;
1312 u32 tmp;
1313 unsigned long iflags;
1314 int retval = 0;
1315
1316 if (!usbep)
1317 return -EINVAL;
1318
1319 pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
1320
1321 ep = container_of(usbep, struct udc_ep, ep);
1322 if (!ep->ep.desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1323 return -EINVAL;
1324 if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
1325 return -ESHUTDOWN;
1326
1327 spin_lock_irqsave(&udc_stall_spinlock, iflags);
1328 /* halt or clear halt */
1329 if (halt) {
1330 if (ep->num == 0)
1331 ep->dev->stall_ep0in = 1;
1332 else {
1333 /*
1334 * set STALL
1335 * rxfifo empty not taken into acount
1336 */
1337 tmp = readl(&ep->regs->ctl);
1338 tmp |= AMD_BIT(UDC_EPCTL_S);
1339 writel(tmp, &ep->regs->ctl);
1340 ep->halted = 1;
1341
1342 /* setup poll timer */
1343 if (!timer_pending(&udc_pollstall_timer)) {
1344 udc_pollstall_timer.expires = jiffies +
1345 HZ * UDC_POLLSTALL_TIMER_USECONDS
1346 / (1000 * 1000);
1347 if (!stop_pollstall_timer) {
1348 DBG(ep->dev, "start polltimer\n");
1349 add_timer(&udc_pollstall_timer);
1350 }
1351 }
1352 }
1353 } else {
1354 /* ep is halted by set_halt() before */
1355 if (ep->halted) {
1356 tmp = readl(&ep->regs->ctl);
1357 /* clear stall bit */
1358 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
1359 /* clear NAK by writing CNAK */
1360 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1361 writel(tmp, &ep->regs->ctl);
1362 ep->halted = 0;
1363 UDC_QUEUE_CNAK(ep, ep->num);
1364 }
1365 }
1366 spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
1367 return retval;
1368 }
1369
1370 /* gadget interface */
1371 static const struct usb_ep_ops udc_ep_ops = {
1372 .enable = udc_ep_enable,
1373 .disable = udc_ep_disable,
1374
1375 .alloc_request = udc_alloc_request,
1376 .free_request = udc_free_request,
1377
1378 .queue = udc_queue,
1379 .dequeue = udc_dequeue,
1380
1381 .set_halt = udc_set_halt,
1382 /* fifo ops not implemented */
1383 };
1384
1385 /*-------------------------------------------------------------------------*/
1386
1387 /* Get frame counter (not implemented) */
udc_get_frame(struct usb_gadget * gadget)1388 static int udc_get_frame(struct usb_gadget *gadget)
1389 {
1390 return -EOPNOTSUPP;
1391 }
1392
1393 /* Initiates a remote wakeup */
udc_remote_wakeup(struct udc * dev)1394 static int udc_remote_wakeup(struct udc *dev)
1395 {
1396 unsigned long flags;
1397 u32 tmp;
1398
1399 DBG(dev, "UDC initiates remote wakeup\n");
1400
1401 spin_lock_irqsave(&dev->lock, flags);
1402
1403 tmp = readl(&dev->regs->ctl);
1404 tmp |= AMD_BIT(UDC_DEVCTL_RES);
1405 writel(tmp, &dev->regs->ctl);
1406 tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
1407 writel(tmp, &dev->regs->ctl);
1408
1409 spin_unlock_irqrestore(&dev->lock, flags);
1410 return 0;
1411 }
1412
1413 /* Remote wakeup gadget interface */
udc_wakeup(struct usb_gadget * gadget)1414 static int udc_wakeup(struct usb_gadget *gadget)
1415 {
1416 struct udc *dev;
1417
1418 if (!gadget)
1419 return -EINVAL;
1420 dev = container_of(gadget, struct udc, gadget);
1421 udc_remote_wakeup(dev);
1422
1423 return 0;
1424 }
1425
1426 static int amd5536_udc_start(struct usb_gadget *g,
1427 struct usb_gadget_driver *driver);
1428 static int amd5536_udc_stop(struct usb_gadget *g);
1429
1430 static const struct usb_gadget_ops udc_ops = {
1431 .wakeup = udc_wakeup,
1432 .get_frame = udc_get_frame,
1433 .udc_start = amd5536_udc_start,
1434 .udc_stop = amd5536_udc_stop,
1435 };
1436
1437 /* Setups endpoint parameters, adds endpoints to linked list */
make_ep_lists(struct udc * dev)1438 static void make_ep_lists(struct udc *dev)
1439 {
1440 /* make gadget ep lists */
1441 INIT_LIST_HEAD(&dev->gadget.ep_list);
1442 list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
1443 &dev->gadget.ep_list);
1444 list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
1445 &dev->gadget.ep_list);
1446 list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
1447 &dev->gadget.ep_list);
1448
1449 /* fifo config */
1450 dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE;
1451 if (dev->gadget.speed == USB_SPEED_FULL)
1452 dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
1453 else if (dev->gadget.speed == USB_SPEED_HIGH)
1454 dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
1455 dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
1456 }
1457
1458 /* Inits UDC context */
udc_basic_init(struct udc * dev)1459 void udc_basic_init(struct udc *dev)
1460 {
1461 u32 tmp;
1462
1463 DBG(dev, "udc_basic_init()\n");
1464
1465 dev->gadget.speed = USB_SPEED_UNKNOWN;
1466
1467 /* stop RDE timer */
1468 if (timer_pending(&udc_timer)) {
1469 set_rde = 0;
1470 mod_timer(&udc_timer, jiffies - 1);
1471 }
1472 /* stop poll stall timer */
1473 if (timer_pending(&udc_pollstall_timer))
1474 mod_timer(&udc_pollstall_timer, jiffies - 1);
1475 /* disable DMA */
1476 tmp = readl(&dev->regs->ctl);
1477 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
1478 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE);
1479 writel(tmp, &dev->regs->ctl);
1480
1481 /* enable dynamic CSR programming */
1482 tmp = readl(&dev->regs->cfg);
1483 tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
1484 /* set self powered */
1485 tmp |= AMD_BIT(UDC_DEVCFG_SP);
1486 /* set remote wakeupable */
1487 tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
1488 writel(tmp, &dev->regs->cfg);
1489
1490 make_ep_lists(dev);
1491
1492 dev->data_ep_enabled = 0;
1493 dev->data_ep_queued = 0;
1494 }
1495 EXPORT_SYMBOL_GPL(udc_basic_init);
1496
1497 /* init registers at driver load time */
startup_registers(struct udc * dev)1498 static int startup_registers(struct udc *dev)
1499 {
1500 u32 tmp;
1501
1502 /* init controller by soft reset */
1503 udc_soft_reset(dev);
1504
1505 /* mask not needed interrupts */
1506 udc_mask_unused_interrupts(dev);
1507
1508 /* put into initial config */
1509 udc_basic_init(dev);
1510 /* link up all endpoints */
1511 udc_setup_endpoints(dev);
1512
1513 /* program speed */
1514 tmp = readl(&dev->regs->cfg);
1515 if (use_fullspeed)
1516 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1517 else
1518 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
1519 writel(tmp, &dev->regs->cfg);
1520
1521 return 0;
1522 }
1523
1524 /* Sets initial endpoint parameters */
udc_setup_endpoints(struct udc * dev)1525 static void udc_setup_endpoints(struct udc *dev)
1526 {
1527 struct udc_ep *ep;
1528 u32 tmp;
1529 u32 reg;
1530
1531 DBG(dev, "udc_setup_endpoints()\n");
1532
1533 /* read enum speed */
1534 tmp = readl(&dev->regs->sts);
1535 tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
1536 if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH)
1537 dev->gadget.speed = USB_SPEED_HIGH;
1538 else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL)
1539 dev->gadget.speed = USB_SPEED_FULL;
1540
1541 /* set basic ep parameters */
1542 for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
1543 ep = &dev->ep[tmp];
1544 ep->dev = dev;
1545 ep->ep.name = ep_info[tmp].name;
1546 ep->ep.caps = ep_info[tmp].caps;
1547 ep->num = tmp;
1548 /* txfifo size is calculated at enable time */
1549 ep->txfifo = dev->txfifo;
1550
1551 /* fifo size */
1552 if (tmp < UDC_EPIN_NUM) {
1553 ep->fifo_depth = UDC_TXFIFO_SIZE;
1554 ep->in = 1;
1555 } else {
1556 ep->fifo_depth = UDC_RXFIFO_SIZE;
1557 ep->in = 0;
1558
1559 }
1560 ep->regs = &dev->ep_regs[tmp];
1561 /*
1562 * ep will be reset only if ep was not enabled before to avoid
1563 * disabling ep interrupts when ENUM interrupt occurs but ep is
1564 * not enabled by gadget driver
1565 */
1566 if (!ep->ep.desc)
1567 ep_init(dev->regs, ep);
1568
1569 if (use_dma) {
1570 /*
1571 * ep->dma is not really used, just to indicate that
1572 * DMA is active: remove this
1573 * dma regs = dev control regs
1574 */
1575 ep->dma = &dev->regs->ctl;
1576
1577 /* nak OUT endpoints until enable - not for ep0 */
1578 if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
1579 && tmp > UDC_EPIN_NUM) {
1580 /* set NAK */
1581 reg = readl(&dev->ep[tmp].regs->ctl);
1582 reg |= AMD_BIT(UDC_EPCTL_SNAK);
1583 writel(reg, &dev->ep[tmp].regs->ctl);
1584 dev->ep[tmp].naking = 1;
1585
1586 }
1587 }
1588 }
1589 /* EP0 max packet */
1590 if (dev->gadget.speed == USB_SPEED_FULL) {
1591 usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IX].ep,
1592 UDC_FS_EP0IN_MAX_PKT_SIZE);
1593 usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IX].ep,
1594 UDC_FS_EP0OUT_MAX_PKT_SIZE);
1595 } else if (dev->gadget.speed == USB_SPEED_HIGH) {
1596 usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IX].ep,
1597 UDC_EP0IN_MAX_PKT_SIZE);
1598 usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IX].ep,
1599 UDC_EP0OUT_MAX_PKT_SIZE);
1600 }
1601
1602 /*
1603 * with suspend bug workaround, ep0 params for gadget driver
1604 * are set at gadget driver bind() call
1605 */
1606 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
1607 dev->ep[UDC_EP0IN_IX].halted = 0;
1608 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
1609
1610 /* init cfg/alt/int */
1611 dev->cur_config = 0;
1612 dev->cur_intf = 0;
1613 dev->cur_alt = 0;
1614 }
1615
1616 /* Bringup after Connect event, initial bringup to be ready for ep0 events */
usb_connect(struct udc * dev)1617 static void usb_connect(struct udc *dev)
1618 {
1619 /* Return if already connected */
1620 if (dev->connected)
1621 return;
1622
1623 dev_info(dev->dev, "USB Connect\n");
1624
1625 dev->connected = 1;
1626
1627 /* put into initial config */
1628 udc_basic_init(dev);
1629
1630 /* enable device setup interrupts */
1631 udc_enable_dev_setup_interrupts(dev);
1632 }
1633
1634 /*
1635 * Calls gadget with disconnect event and resets the UDC and makes
1636 * initial bringup to be ready for ep0 events
1637 */
usb_disconnect(struct udc * dev)1638 static void usb_disconnect(struct udc *dev)
1639 {
1640 /* Return if already disconnected */
1641 if (!dev->connected)
1642 return;
1643
1644 dev_info(dev->dev, "USB Disconnect\n");
1645
1646 dev->connected = 0;
1647
1648 /* mask interrupts */
1649 udc_mask_unused_interrupts(dev);
1650
1651 /* REVISIT there doesn't seem to be a point to having this
1652 * talk to a tasklet ... do it directly, we already hold
1653 * the spinlock needed to process the disconnect.
1654 */
1655
1656 tasklet_schedule(&disconnect_tasklet);
1657 }
1658
1659 /* Tasklet for disconnect to be outside of interrupt context */
udc_tasklet_disconnect(unsigned long par)1660 static void udc_tasklet_disconnect(unsigned long par)
1661 {
1662 struct udc *dev = udc;
1663 u32 tmp;
1664
1665 DBG(dev, "Tasklet disconnect\n");
1666 spin_lock_irq(&dev->lock);
1667
1668 if (dev->driver) {
1669 spin_unlock(&dev->lock);
1670 dev->driver->disconnect(&dev->gadget);
1671 spin_lock(&dev->lock);
1672
1673 /* empty queues */
1674 for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
1675 empty_req_queue(&dev->ep[tmp]);
1676
1677 }
1678
1679 /* disable ep0 */
1680 ep_init(dev->regs,
1681 &dev->ep[UDC_EP0IN_IX]);
1682
1683
1684 if (!soft_reset_occured) {
1685 /* init controller by soft reset */
1686 udc_soft_reset(dev);
1687 soft_reset_occured++;
1688 }
1689
1690 /* re-enable dev interrupts */
1691 udc_enable_dev_setup_interrupts(dev);
1692 /* back to full speed ? */
1693 if (use_fullspeed) {
1694 tmp = readl(&dev->regs->cfg);
1695 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1696 writel(tmp, &dev->regs->cfg);
1697 }
1698
1699 spin_unlock_irq(&dev->lock);
1700 }
1701
1702 /* Reset the UDC core */
udc_soft_reset(struct udc * dev)1703 static void udc_soft_reset(struct udc *dev)
1704 {
1705 unsigned long flags;
1706
1707 DBG(dev, "Soft reset\n");
1708 /*
1709 * reset possible waiting interrupts, because int.
1710 * status is lost after soft reset,
1711 * ep int. status reset
1712 */
1713 writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
1714 /* device int. status reset */
1715 writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
1716
1717 /* Don't do this for Broadcom UDC since this is a reserved
1718 * bit.
1719 */
1720 if (dev->chiprev != UDC_BCM_REV) {
1721 spin_lock_irqsave(&udc_irq_spinlock, flags);
1722 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
1723 readl(&dev->regs->cfg);
1724 spin_unlock_irqrestore(&udc_irq_spinlock, flags);
1725 }
1726 }
1727
1728 /* RDE timer callback to set RDE bit */
udc_timer_function(struct timer_list * unused)1729 static void udc_timer_function(struct timer_list *unused)
1730 {
1731 u32 tmp;
1732
1733 spin_lock_irq(&udc_irq_spinlock);
1734
1735 if (set_rde > 0) {
1736 /*
1737 * open the fifo if fifo was filled on last timer call
1738 * conditionally
1739 */
1740 if (set_rde > 1) {
1741 /* set RDE to receive setup data */
1742 tmp = readl(&udc->regs->ctl);
1743 tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1744 writel(tmp, &udc->regs->ctl);
1745 set_rde = -1;
1746 } else if (readl(&udc->regs->sts)
1747 & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
1748 /*
1749 * if fifo empty setup polling, do not just
1750 * open the fifo
1751 */
1752 udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
1753 if (!stop_timer)
1754 add_timer(&udc_timer);
1755 } else {
1756 /*
1757 * fifo contains data now, setup timer for opening
1758 * the fifo when timer expires to be able to receive
1759 * setup packets, when data packets gets queued by
1760 * gadget layer then timer will forced to expire with
1761 * set_rde=0 (RDE is set in udc_queue())
1762 */
1763 set_rde++;
1764 /* debug: lhadmot_timer_start = 221070 */
1765 udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
1766 if (!stop_timer)
1767 add_timer(&udc_timer);
1768 }
1769
1770 } else
1771 set_rde = -1; /* RDE was set by udc_queue() */
1772 spin_unlock_irq(&udc_irq_spinlock);
1773 if (stop_timer)
1774 complete(&on_exit);
1775
1776 }
1777
1778 /* Handle halt state, used in stall poll timer */
udc_handle_halt_state(struct udc_ep * ep)1779 static void udc_handle_halt_state(struct udc_ep *ep)
1780 {
1781 u32 tmp;
1782 /* set stall as long not halted */
1783 if (ep->halted == 1) {
1784 tmp = readl(&ep->regs->ctl);
1785 /* STALL cleared ? */
1786 if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
1787 /*
1788 * FIXME: MSC spec requires that stall remains
1789 * even on receivng of CLEAR_FEATURE HALT. So
1790 * we would set STALL again here to be compliant.
1791 * But with current mass storage drivers this does
1792 * not work (would produce endless host retries).
1793 * So we clear halt on CLEAR_FEATURE.
1794 *
1795 DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
1796 tmp |= AMD_BIT(UDC_EPCTL_S);
1797 writel(tmp, &ep->regs->ctl);*/
1798
1799 /* clear NAK by writing CNAK */
1800 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1801 writel(tmp, &ep->regs->ctl);
1802 ep->halted = 0;
1803 UDC_QUEUE_CNAK(ep, ep->num);
1804 }
1805 }
1806 }
1807
1808 /* Stall timer callback to poll S bit and set it again after */
udc_pollstall_timer_function(struct timer_list * unused)1809 static void udc_pollstall_timer_function(struct timer_list *unused)
1810 {
1811 struct udc_ep *ep;
1812 int halted = 0;
1813
1814 spin_lock_irq(&udc_stall_spinlock);
1815 /*
1816 * only one IN and OUT endpoints are handled
1817 * IN poll stall
1818 */
1819 ep = &udc->ep[UDC_EPIN_IX];
1820 udc_handle_halt_state(ep);
1821 if (ep->halted)
1822 halted = 1;
1823 /* OUT poll stall */
1824 ep = &udc->ep[UDC_EPOUT_IX];
1825 udc_handle_halt_state(ep);
1826 if (ep->halted)
1827 halted = 1;
1828
1829 /* setup timer again when still halted */
1830 if (!stop_pollstall_timer && halted) {
1831 udc_pollstall_timer.expires = jiffies +
1832 HZ * UDC_POLLSTALL_TIMER_USECONDS
1833 / (1000 * 1000);
1834 add_timer(&udc_pollstall_timer);
1835 }
1836 spin_unlock_irq(&udc_stall_spinlock);
1837
1838 if (stop_pollstall_timer)
1839 complete(&on_pollstall_exit);
1840 }
1841
1842 /* Inits endpoint 0 so that SETUP packets are processed */
activate_control_endpoints(struct udc * dev)1843 static void activate_control_endpoints(struct udc *dev)
1844 {
1845 u32 tmp;
1846
1847 DBG(dev, "activate_control_endpoints\n");
1848
1849 /* flush fifo */
1850 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1851 tmp |= AMD_BIT(UDC_EPCTL_F);
1852 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1853
1854 /* set ep0 directions */
1855 dev->ep[UDC_EP0IN_IX].in = 1;
1856 dev->ep[UDC_EP0OUT_IX].in = 0;
1857
1858 /* set buffer size (tx fifo entries) of EP0_IN */
1859 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1860 if (dev->gadget.speed == USB_SPEED_FULL)
1861 tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE,
1862 UDC_EPIN_BUFF_SIZE);
1863 else if (dev->gadget.speed == USB_SPEED_HIGH)
1864 tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
1865 UDC_EPIN_BUFF_SIZE);
1866 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1867
1868 /* set max packet size of EP0_IN */
1869 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1870 if (dev->gadget.speed == USB_SPEED_FULL)
1871 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE,
1872 UDC_EP_MAX_PKT_SIZE);
1873 else if (dev->gadget.speed == USB_SPEED_HIGH)
1874 tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE,
1875 UDC_EP_MAX_PKT_SIZE);
1876 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1877
1878 /* set max packet size of EP0_OUT */
1879 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1880 if (dev->gadget.speed == USB_SPEED_FULL)
1881 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
1882 UDC_EP_MAX_PKT_SIZE);
1883 else if (dev->gadget.speed == USB_SPEED_HIGH)
1884 tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
1885 UDC_EP_MAX_PKT_SIZE);
1886 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1887
1888 /* set max packet size of EP0 in UDC CSR */
1889 tmp = readl(&dev->csr->ne[0]);
1890 if (dev->gadget.speed == USB_SPEED_FULL)
1891 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
1892 UDC_CSR_NE_MAX_PKT);
1893 else if (dev->gadget.speed == USB_SPEED_HIGH)
1894 tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
1895 UDC_CSR_NE_MAX_PKT);
1896 writel(tmp, &dev->csr->ne[0]);
1897
1898 if (use_dma) {
1899 dev->ep[UDC_EP0OUT_IX].td->status |=
1900 AMD_BIT(UDC_DMA_OUT_STS_L);
1901 /* write dma desc address */
1902 writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
1903 &dev->ep[UDC_EP0OUT_IX].regs->subptr);
1904 writel(dev->ep[UDC_EP0OUT_IX].td_phys,
1905 &dev->ep[UDC_EP0OUT_IX].regs->desptr);
1906 /* stop RDE timer */
1907 if (timer_pending(&udc_timer)) {
1908 set_rde = 0;
1909 mod_timer(&udc_timer, jiffies - 1);
1910 }
1911 /* stop pollstall timer */
1912 if (timer_pending(&udc_pollstall_timer))
1913 mod_timer(&udc_pollstall_timer, jiffies - 1);
1914 /* enable DMA */
1915 tmp = readl(&dev->regs->ctl);
1916 tmp |= AMD_BIT(UDC_DEVCTL_MODE)
1917 | AMD_BIT(UDC_DEVCTL_RDE)
1918 | AMD_BIT(UDC_DEVCTL_TDE);
1919 if (use_dma_bufferfill_mode)
1920 tmp |= AMD_BIT(UDC_DEVCTL_BF);
1921 else if (use_dma_ppb_du)
1922 tmp |= AMD_BIT(UDC_DEVCTL_DU);
1923 writel(tmp, &dev->regs->ctl);
1924 }
1925
1926 /* clear NAK by writing CNAK for EP0IN */
1927 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1928 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1929 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1930 dev->ep[UDC_EP0IN_IX].naking = 0;
1931 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
1932
1933 /* clear NAK by writing CNAK for EP0OUT */
1934 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
1935 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1936 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
1937 dev->ep[UDC_EP0OUT_IX].naking = 0;
1938 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
1939 }
1940
1941 /* Make endpoint 0 ready for control traffic */
setup_ep0(struct udc * dev)1942 static int setup_ep0(struct udc *dev)
1943 {
1944 activate_control_endpoints(dev);
1945 /* enable ep0 interrupts */
1946 udc_enable_ep0_interrupts(dev);
1947 /* enable device setup interrupts */
1948 udc_enable_dev_setup_interrupts(dev);
1949
1950 return 0;
1951 }
1952
1953 /* Called by gadget driver to register itself */
amd5536_udc_start(struct usb_gadget * g,struct usb_gadget_driver * driver)1954 static int amd5536_udc_start(struct usb_gadget *g,
1955 struct usb_gadget_driver *driver)
1956 {
1957 struct udc *dev = to_amd5536_udc(g);
1958 u32 tmp;
1959
1960 driver->driver.bus = NULL;
1961 dev->driver = driver;
1962
1963 /* Some gadget drivers use both ep0 directions.
1964 * NOTE: to gadget driver, ep0 is just one endpoint...
1965 */
1966 dev->ep[UDC_EP0OUT_IX].ep.driver_data =
1967 dev->ep[UDC_EP0IN_IX].ep.driver_data;
1968
1969 /* get ready for ep0 traffic */
1970 setup_ep0(dev);
1971
1972 /* clear SD */
1973 tmp = readl(&dev->regs->ctl);
1974 tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
1975 writel(tmp, &dev->regs->ctl);
1976
1977 usb_connect(dev);
1978
1979 return 0;
1980 }
1981
1982 /* shutdown requests and disconnect from gadget */
1983 static void
shutdown(struct udc * dev,struct usb_gadget_driver * driver)1984 shutdown(struct udc *dev, struct usb_gadget_driver *driver)
1985 __releases(dev->lock)
1986 __acquires(dev->lock)
1987 {
1988 int tmp;
1989
1990 /* empty queues and init hardware */
1991 udc_basic_init(dev);
1992
1993 for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
1994 empty_req_queue(&dev->ep[tmp]);
1995
1996 udc_setup_endpoints(dev);
1997 }
1998
1999 /* Called by gadget driver to unregister itself */
amd5536_udc_stop(struct usb_gadget * g)2000 static int amd5536_udc_stop(struct usb_gadget *g)
2001 {
2002 struct udc *dev = to_amd5536_udc(g);
2003 unsigned long flags;
2004 u32 tmp;
2005
2006 spin_lock_irqsave(&dev->lock, flags);
2007 udc_mask_unused_interrupts(dev);
2008 shutdown(dev, NULL);
2009 spin_unlock_irqrestore(&dev->lock, flags);
2010
2011 dev->driver = NULL;
2012
2013 /* set SD */
2014 tmp = readl(&dev->regs->ctl);
2015 tmp |= AMD_BIT(UDC_DEVCTL_SD);
2016 writel(tmp, &dev->regs->ctl);
2017
2018 return 0;
2019 }
2020
2021 /* Clear pending NAK bits */
udc_process_cnak_queue(struct udc * dev)2022 static void udc_process_cnak_queue(struct udc *dev)
2023 {
2024 u32 tmp;
2025 u32 reg;
2026
2027 /* check epin's */
2028 DBG(dev, "CNAK pending queue processing\n");
2029 for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
2030 if (cnak_pending & (1 << tmp)) {
2031 DBG(dev, "CNAK pending for ep%d\n", tmp);
2032 /* clear NAK by writing CNAK */
2033 reg = readl(&dev->ep[tmp].regs->ctl);
2034 reg |= AMD_BIT(UDC_EPCTL_CNAK);
2035 writel(reg, &dev->ep[tmp].regs->ctl);
2036 dev->ep[tmp].naking = 0;
2037 UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
2038 }
2039 }
2040 /* ... and ep0out */
2041 if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
2042 DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
2043 /* clear NAK by writing CNAK */
2044 reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2045 reg |= AMD_BIT(UDC_EPCTL_CNAK);
2046 writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2047 dev->ep[UDC_EP0OUT_IX].naking = 0;
2048 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
2049 dev->ep[UDC_EP0OUT_IX].num);
2050 }
2051 }
2052
2053 /* Enabling RX DMA after setup packet */
udc_ep0_set_rde(struct udc * dev)2054 static void udc_ep0_set_rde(struct udc *dev)
2055 {
2056 if (use_dma) {
2057 /*
2058 * only enable RXDMA when no data endpoint enabled
2059 * or data is queued
2060 */
2061 if (!dev->data_ep_enabled || dev->data_ep_queued) {
2062 udc_set_rde(dev);
2063 } else {
2064 /*
2065 * setup timer for enabling RDE (to not enable
2066 * RXFIFO DMA for data endpoints to early)
2067 */
2068 if (set_rde != 0 && !timer_pending(&udc_timer)) {
2069 udc_timer.expires =
2070 jiffies + HZ/UDC_RDE_TIMER_DIV;
2071 set_rde = 1;
2072 if (!stop_timer)
2073 add_timer(&udc_timer);
2074 }
2075 }
2076 }
2077 }
2078
2079
2080 /* Interrupt handler for data OUT traffic */
udc_data_out_isr(struct udc * dev,int ep_ix)2081 static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
2082 {
2083 irqreturn_t ret_val = IRQ_NONE;
2084 u32 tmp;
2085 struct udc_ep *ep;
2086 struct udc_request *req;
2087 unsigned int count;
2088 struct udc_data_dma *td = NULL;
2089 unsigned dma_done;
2090
2091 VDBG(dev, "ep%d irq\n", ep_ix);
2092 ep = &dev->ep[ep_ix];
2093
2094 tmp = readl(&ep->regs->sts);
2095 if (use_dma) {
2096 /* BNA event ? */
2097 if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2098 DBG(dev, "BNA ep%dout occurred - DESPTR = %x\n",
2099 ep->num, readl(&ep->regs->desptr));
2100 /* clear BNA */
2101 writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
2102 if (!ep->cancel_transfer)
2103 ep->bna_occurred = 1;
2104 else
2105 ep->cancel_transfer = 0;
2106 ret_val = IRQ_HANDLED;
2107 goto finished;
2108 }
2109 }
2110 /* HE event ? */
2111 if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
2112 dev_err(dev->dev, "HE ep%dout occurred\n", ep->num);
2113
2114 /* clear HE */
2115 writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2116 ret_val = IRQ_HANDLED;
2117 goto finished;
2118 }
2119
2120 if (!list_empty(&ep->queue)) {
2121
2122 /* next request */
2123 req = list_entry(ep->queue.next,
2124 struct udc_request, queue);
2125 } else {
2126 req = NULL;
2127 udc_rxfifo_pending = 1;
2128 }
2129 VDBG(dev, "req = %p\n", req);
2130 /* fifo mode */
2131 if (!use_dma) {
2132
2133 /* read fifo */
2134 if (req && udc_rxfifo_read(ep, req)) {
2135 ret_val = IRQ_HANDLED;
2136
2137 /* finish */
2138 complete_req(ep, req, 0);
2139 /* next request */
2140 if (!list_empty(&ep->queue) && !ep->halted) {
2141 req = list_entry(ep->queue.next,
2142 struct udc_request, queue);
2143 } else
2144 req = NULL;
2145 }
2146
2147 /* DMA */
2148 } else if (!ep->cancel_transfer && req) {
2149 ret_val = IRQ_HANDLED;
2150
2151 /* check for DMA done */
2152 if (!use_dma_ppb) {
2153 dma_done = AMD_GETBITS(req->td_data->status,
2154 UDC_DMA_OUT_STS_BS);
2155 /* packet per buffer mode - rx bytes */
2156 } else {
2157 /*
2158 * if BNA occurred then recover desc. from
2159 * BNA dummy desc.
2160 */
2161 if (ep->bna_occurred) {
2162 VDBG(dev, "Recover desc. from BNA dummy\n");
2163 memcpy(req->td_data, ep->bna_dummy_req->td_data,
2164 sizeof(struct udc_data_dma));
2165 ep->bna_occurred = 0;
2166 udc_init_bna_dummy(ep->req);
2167 }
2168 td = udc_get_last_dma_desc(req);
2169 dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
2170 }
2171 if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
2172 /* buffer fill mode - rx bytes */
2173 if (!use_dma_ppb) {
2174 /* received number bytes */
2175 count = AMD_GETBITS(req->td_data->status,
2176 UDC_DMA_OUT_STS_RXBYTES);
2177 VDBG(dev, "rx bytes=%u\n", count);
2178 /* packet per buffer mode - rx bytes */
2179 } else {
2180 VDBG(dev, "req->td_data=%p\n", req->td_data);
2181 VDBG(dev, "last desc = %p\n", td);
2182 /* received number bytes */
2183 if (use_dma_ppb_du) {
2184 /* every desc. counts bytes */
2185 count = udc_get_ppbdu_rxbytes(req);
2186 } else {
2187 /* last desc. counts bytes */
2188 count = AMD_GETBITS(td->status,
2189 UDC_DMA_OUT_STS_RXBYTES);
2190 if (!count && req->req.length
2191 == UDC_DMA_MAXPACKET) {
2192 /*
2193 * on 64k packets the RXBYTES
2194 * field is zero
2195 */
2196 count = UDC_DMA_MAXPACKET;
2197 }
2198 }
2199 VDBG(dev, "last desc rx bytes=%u\n", count);
2200 }
2201
2202 tmp = req->req.length - req->req.actual;
2203 if (count > tmp) {
2204 if ((tmp % ep->ep.maxpacket) != 0) {
2205 DBG(dev, "%s: rx %db, space=%db\n",
2206 ep->ep.name, count, tmp);
2207 req->req.status = -EOVERFLOW;
2208 }
2209 count = tmp;
2210 }
2211 req->req.actual += count;
2212 req->dma_going = 0;
2213 /* complete request */
2214 complete_req(ep, req, 0);
2215
2216 /* next request */
2217 if (!list_empty(&ep->queue) && !ep->halted) {
2218 req = list_entry(ep->queue.next,
2219 struct udc_request,
2220 queue);
2221 /*
2222 * DMA may be already started by udc_queue()
2223 * called by gadget drivers completion
2224 * routine. This happens when queue
2225 * holds one request only.
2226 */
2227 if (req->dma_going == 0) {
2228 /* next dma */
2229 if (prep_dma(ep, req, GFP_ATOMIC) != 0)
2230 goto finished;
2231 /* write desc pointer */
2232 writel(req->td_phys,
2233 &ep->regs->desptr);
2234 req->dma_going = 1;
2235 /* enable DMA */
2236 udc_set_rde(dev);
2237 }
2238 } else {
2239 /*
2240 * implant BNA dummy descriptor to allow
2241 * RXFIFO opening by RDE
2242 */
2243 if (ep->bna_dummy_req) {
2244 /* write desc pointer */
2245 writel(ep->bna_dummy_req->td_phys,
2246 &ep->regs->desptr);
2247 ep->bna_occurred = 0;
2248 }
2249
2250 /*
2251 * schedule timer for setting RDE if queue
2252 * remains empty to allow ep0 packets pass
2253 * through
2254 */
2255 if (set_rde != 0
2256 && !timer_pending(&udc_timer)) {
2257 udc_timer.expires =
2258 jiffies
2259 + HZ*UDC_RDE_TIMER_SECONDS;
2260 set_rde = 1;
2261 if (!stop_timer)
2262 add_timer(&udc_timer);
2263 }
2264 if (ep->num != UDC_EP0OUT_IX)
2265 dev->data_ep_queued = 0;
2266 }
2267
2268 } else {
2269 /*
2270 * RX DMA must be reenabled for each desc in PPBDU mode
2271 * and must be enabled for PPBNDU mode in case of BNA
2272 */
2273 udc_set_rde(dev);
2274 }
2275
2276 } else if (ep->cancel_transfer) {
2277 ret_val = IRQ_HANDLED;
2278 ep->cancel_transfer = 0;
2279 }
2280
2281 /* check pending CNAKS */
2282 if (cnak_pending) {
2283 /* CNAk processing when rxfifo empty only */
2284 if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2285 udc_process_cnak_queue(dev);
2286 }
2287
2288 /* clear OUT bits in ep status */
2289 writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
2290 finished:
2291 return ret_val;
2292 }
2293
2294 /* Interrupt handler for data IN traffic */
udc_data_in_isr(struct udc * dev,int ep_ix)2295 static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
2296 {
2297 irqreturn_t ret_val = IRQ_NONE;
2298 u32 tmp;
2299 u32 epsts;
2300 struct udc_ep *ep;
2301 struct udc_request *req;
2302 struct udc_data_dma *td;
2303 unsigned len;
2304
2305 ep = &dev->ep[ep_ix];
2306
2307 epsts = readl(&ep->regs->sts);
2308 if (use_dma) {
2309 /* BNA ? */
2310 if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
2311 dev_err(dev->dev,
2312 "BNA ep%din occurred - DESPTR = %08lx\n",
2313 ep->num,
2314 (unsigned long) readl(&ep->regs->desptr));
2315
2316 /* clear BNA */
2317 writel(epsts, &ep->regs->sts);
2318 ret_val = IRQ_HANDLED;
2319 goto finished;
2320 }
2321 }
2322 /* HE event ? */
2323 if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
2324 dev_err(dev->dev,
2325 "HE ep%dn occurred - DESPTR = %08lx\n",
2326 ep->num, (unsigned long) readl(&ep->regs->desptr));
2327
2328 /* clear HE */
2329 writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2330 ret_val = IRQ_HANDLED;
2331 goto finished;
2332 }
2333
2334 /* DMA completion */
2335 if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
2336 VDBG(dev, "TDC set- completion\n");
2337 ret_val = IRQ_HANDLED;
2338 if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
2339 req = list_entry(ep->queue.next,
2340 struct udc_request, queue);
2341 /*
2342 * length bytes transferred
2343 * check dma done of last desc. in PPBDU mode
2344 */
2345 if (use_dma_ppb_du) {
2346 td = udc_get_last_dma_desc(req);
2347 if (td)
2348 req->req.actual = req->req.length;
2349 } else {
2350 /* assume all bytes transferred */
2351 req->req.actual = req->req.length;
2352 }
2353
2354 if (req->req.actual == req->req.length) {
2355 /* complete req */
2356 complete_req(ep, req, 0);
2357 req->dma_going = 0;
2358 /* further request available ? */
2359 if (list_empty(&ep->queue)) {
2360 /* disable interrupt */
2361 tmp = readl(&dev->regs->ep_irqmsk);
2362 tmp |= AMD_BIT(ep->num);
2363 writel(tmp, &dev->regs->ep_irqmsk);
2364 }
2365 }
2366 }
2367 ep->cancel_transfer = 0;
2368
2369 }
2370 /*
2371 * status reg has IN bit set and TDC not set (if TDC was handled,
2372 * IN must not be handled (UDC defect) ?
2373 */
2374 if ((epsts & AMD_BIT(UDC_EPSTS_IN))
2375 && !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
2376 ret_val = IRQ_HANDLED;
2377 if (!list_empty(&ep->queue)) {
2378 /* next request */
2379 req = list_entry(ep->queue.next,
2380 struct udc_request, queue);
2381 /* FIFO mode */
2382 if (!use_dma) {
2383 /* write fifo */
2384 udc_txfifo_write(ep, &req->req);
2385 len = req->req.length - req->req.actual;
2386 if (len > ep->ep.maxpacket)
2387 len = ep->ep.maxpacket;
2388 req->req.actual += len;
2389 if (req->req.actual == req->req.length
2390 || (len != ep->ep.maxpacket)) {
2391 /* complete req */
2392 complete_req(ep, req, 0);
2393 }
2394 /* DMA */
2395 } else if (req && !req->dma_going) {
2396 VDBG(dev, "IN DMA : req=%p req->td_data=%p\n",
2397 req, req->td_data);
2398 if (req->td_data) {
2399
2400 req->dma_going = 1;
2401
2402 /*
2403 * unset L bit of first desc.
2404 * for chain
2405 */
2406 if (use_dma_ppb && req->req.length >
2407 ep->ep.maxpacket) {
2408 req->td_data->status &=
2409 AMD_CLEAR_BIT(
2410 UDC_DMA_IN_STS_L);
2411 }
2412
2413 /* write desc pointer */
2414 writel(req->td_phys, &ep->regs->desptr);
2415
2416 /* set HOST READY */
2417 req->td_data->status =
2418 AMD_ADDBITS(
2419 req->td_data->status,
2420 UDC_DMA_IN_STS_BS_HOST_READY,
2421 UDC_DMA_IN_STS_BS);
2422
2423 /* set poll demand bit */
2424 tmp = readl(&ep->regs->ctl);
2425 tmp |= AMD_BIT(UDC_EPCTL_P);
2426 writel(tmp, &ep->regs->ctl);
2427 }
2428 }
2429
2430 } else if (!use_dma && ep->in) {
2431 /* disable interrupt */
2432 tmp = readl(
2433 &dev->regs->ep_irqmsk);
2434 tmp |= AMD_BIT(ep->num);
2435 writel(tmp,
2436 &dev->regs->ep_irqmsk);
2437 }
2438 }
2439 /* clear status bits */
2440 writel(epsts, &ep->regs->sts);
2441
2442 finished:
2443 return ret_val;
2444
2445 }
2446
2447 /* Interrupt handler for Control OUT traffic */
udc_control_out_isr(struct udc * dev)2448 static irqreturn_t udc_control_out_isr(struct udc *dev)
2449 __releases(dev->lock)
2450 __acquires(dev->lock)
2451 {
2452 irqreturn_t ret_val = IRQ_NONE;
2453 u32 tmp;
2454 int setup_supported;
2455 u32 count;
2456 int set = 0;
2457 struct udc_ep *ep;
2458 struct udc_ep *ep_tmp;
2459
2460 ep = &dev->ep[UDC_EP0OUT_IX];
2461
2462 /* clear irq */
2463 writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
2464
2465 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2466 /* check BNA and clear if set */
2467 if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2468 VDBG(dev, "ep0: BNA set\n");
2469 writel(AMD_BIT(UDC_EPSTS_BNA),
2470 &dev->ep[UDC_EP0OUT_IX].regs->sts);
2471 ep->bna_occurred = 1;
2472 ret_val = IRQ_HANDLED;
2473 goto finished;
2474 }
2475
2476 /* type of data: SETUP or DATA 0 bytes */
2477 tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
2478 VDBG(dev, "data_typ = %x\n", tmp);
2479
2480 /* setup data */
2481 if (tmp == UDC_EPSTS_OUT_SETUP) {
2482 ret_val = IRQ_HANDLED;
2483
2484 ep->dev->stall_ep0in = 0;
2485 dev->waiting_zlp_ack_ep0in = 0;
2486
2487 /* set NAK for EP0_IN */
2488 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2489 tmp |= AMD_BIT(UDC_EPCTL_SNAK);
2490 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2491 dev->ep[UDC_EP0IN_IX].naking = 1;
2492 /* get setup data */
2493 if (use_dma) {
2494
2495 /* clear OUT bits in ep status */
2496 writel(UDC_EPSTS_OUT_CLEAR,
2497 &dev->ep[UDC_EP0OUT_IX].regs->sts);
2498
2499 setup_data.data[0] =
2500 dev->ep[UDC_EP0OUT_IX].td_stp->data12;
2501 setup_data.data[1] =
2502 dev->ep[UDC_EP0OUT_IX].td_stp->data34;
2503 /* set HOST READY */
2504 dev->ep[UDC_EP0OUT_IX].td_stp->status =
2505 UDC_DMA_STP_STS_BS_HOST_READY;
2506 } else {
2507 /* read fifo */
2508 udc_rxfifo_read_dwords(dev, setup_data.data, 2);
2509 }
2510
2511 /* determine direction of control data */
2512 if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
2513 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
2514 /* enable RDE */
2515 udc_ep0_set_rde(dev);
2516 set = 0;
2517 } else {
2518 dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
2519 /*
2520 * implant BNA dummy descriptor to allow RXFIFO opening
2521 * by RDE
2522 */
2523 if (ep->bna_dummy_req) {
2524 /* write desc pointer */
2525 writel(ep->bna_dummy_req->td_phys,
2526 &dev->ep[UDC_EP0OUT_IX].regs->desptr);
2527 ep->bna_occurred = 0;
2528 }
2529
2530 set = 1;
2531 dev->ep[UDC_EP0OUT_IX].naking = 1;
2532 /*
2533 * setup timer for enabling RDE (to not enable
2534 * RXFIFO DMA for data to early)
2535 */
2536 set_rde = 1;
2537 if (!timer_pending(&udc_timer)) {
2538 udc_timer.expires = jiffies +
2539 HZ/UDC_RDE_TIMER_DIV;
2540 if (!stop_timer)
2541 add_timer(&udc_timer);
2542 }
2543 }
2544
2545 /*
2546 * mass storage reset must be processed here because
2547 * next packet may be a CLEAR_FEATURE HALT which would not
2548 * clear the stall bit when no STALL handshake was received
2549 * before (autostall can cause this)
2550 */
2551 if (setup_data.data[0] == UDC_MSCRES_DWORD0
2552 && setup_data.data[1] == UDC_MSCRES_DWORD1) {
2553 DBG(dev, "MSC Reset\n");
2554 /*
2555 * clear stall bits
2556 * only one IN and OUT endpoints are handled
2557 */
2558 ep_tmp = &udc->ep[UDC_EPIN_IX];
2559 udc_set_halt(&ep_tmp->ep, 0);
2560 ep_tmp = &udc->ep[UDC_EPOUT_IX];
2561 udc_set_halt(&ep_tmp->ep, 0);
2562 }
2563
2564 /* call gadget with setup data received */
2565 spin_unlock(&dev->lock);
2566 setup_supported = dev->driver->setup(&dev->gadget,
2567 &setup_data.request);
2568 spin_lock(&dev->lock);
2569
2570 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2571 /* ep0 in returns data (not zlp) on IN phase */
2572 if (setup_supported >= 0 && setup_supported <
2573 UDC_EP0IN_MAXPACKET) {
2574 /* clear NAK by writing CNAK in EP0_IN */
2575 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2576 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2577 dev->ep[UDC_EP0IN_IX].naking = 0;
2578 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
2579
2580 /* if unsupported request then stall */
2581 } else if (setup_supported < 0) {
2582 tmp |= AMD_BIT(UDC_EPCTL_S);
2583 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2584 } else
2585 dev->waiting_zlp_ack_ep0in = 1;
2586
2587
2588 /* clear NAK by writing CNAK in EP0_OUT */
2589 if (!set) {
2590 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2591 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2592 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2593 dev->ep[UDC_EP0OUT_IX].naking = 0;
2594 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
2595 }
2596
2597 if (!use_dma) {
2598 /* clear OUT bits in ep status */
2599 writel(UDC_EPSTS_OUT_CLEAR,
2600 &dev->ep[UDC_EP0OUT_IX].regs->sts);
2601 }
2602
2603 /* data packet 0 bytes */
2604 } else if (tmp == UDC_EPSTS_OUT_DATA) {
2605 /* clear OUT bits in ep status */
2606 writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
2607
2608 /* get setup data: only 0 packet */
2609 if (use_dma) {
2610 /* no req if 0 packet, just reactivate */
2611 if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
2612 VDBG(dev, "ZLP\n");
2613
2614 /* set HOST READY */
2615 dev->ep[UDC_EP0OUT_IX].td->status =
2616 AMD_ADDBITS(
2617 dev->ep[UDC_EP0OUT_IX].td->status,
2618 UDC_DMA_OUT_STS_BS_HOST_READY,
2619 UDC_DMA_OUT_STS_BS);
2620 /* enable RDE */
2621 udc_ep0_set_rde(dev);
2622 ret_val = IRQ_HANDLED;
2623
2624 } else {
2625 /* control write */
2626 ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2627 /* re-program desc. pointer for possible ZLPs */
2628 writel(dev->ep[UDC_EP0OUT_IX].td_phys,
2629 &dev->ep[UDC_EP0OUT_IX].regs->desptr);
2630 /* enable RDE */
2631 udc_ep0_set_rde(dev);
2632 }
2633 } else {
2634
2635 /* received number bytes */
2636 count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2637 count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
2638 /* out data for fifo mode not working */
2639 count = 0;
2640
2641 /* 0 packet or real data ? */
2642 if (count != 0) {
2643 ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2644 } else {
2645 /* dummy read confirm */
2646 readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
2647 ret_val = IRQ_HANDLED;
2648 }
2649 }
2650 }
2651
2652 /* check pending CNAKS */
2653 if (cnak_pending) {
2654 /* CNAk processing when rxfifo empty only */
2655 if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2656 udc_process_cnak_queue(dev);
2657 }
2658
2659 finished:
2660 return ret_val;
2661 }
2662
2663 /* Interrupt handler for Control IN traffic */
udc_control_in_isr(struct udc * dev)2664 static irqreturn_t udc_control_in_isr(struct udc *dev)
2665 {
2666 irqreturn_t ret_val = IRQ_NONE;
2667 u32 tmp;
2668 struct udc_ep *ep;
2669 struct udc_request *req;
2670 unsigned len;
2671
2672 ep = &dev->ep[UDC_EP0IN_IX];
2673
2674 /* clear irq */
2675 writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
2676
2677 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
2678 /* DMA completion */
2679 if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
2680 VDBG(dev, "isr: TDC clear\n");
2681 ret_val = IRQ_HANDLED;
2682
2683 /* clear TDC bit */
2684 writel(AMD_BIT(UDC_EPSTS_TDC),
2685 &dev->ep[UDC_EP0IN_IX].regs->sts);
2686
2687 /* status reg has IN bit set ? */
2688 } else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
2689 ret_val = IRQ_HANDLED;
2690
2691 if (ep->dma) {
2692 /* clear IN bit */
2693 writel(AMD_BIT(UDC_EPSTS_IN),
2694 &dev->ep[UDC_EP0IN_IX].regs->sts);
2695 }
2696 if (dev->stall_ep0in) {
2697 DBG(dev, "stall ep0in\n");
2698 /* halt ep0in */
2699 tmp = readl(&ep->regs->ctl);
2700 tmp |= AMD_BIT(UDC_EPCTL_S);
2701 writel(tmp, &ep->regs->ctl);
2702 } else {
2703 if (!list_empty(&ep->queue)) {
2704 /* next request */
2705 req = list_entry(ep->queue.next,
2706 struct udc_request, queue);
2707
2708 if (ep->dma) {
2709 /* write desc pointer */
2710 writel(req->td_phys, &ep->regs->desptr);
2711 /* set HOST READY */
2712 req->td_data->status =
2713 AMD_ADDBITS(
2714 req->td_data->status,
2715 UDC_DMA_STP_STS_BS_HOST_READY,
2716 UDC_DMA_STP_STS_BS);
2717
2718 /* set poll demand bit */
2719 tmp =
2720 readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2721 tmp |= AMD_BIT(UDC_EPCTL_P);
2722 writel(tmp,
2723 &dev->ep[UDC_EP0IN_IX].regs->ctl);
2724
2725 /* all bytes will be transferred */
2726 req->req.actual = req->req.length;
2727
2728 /* complete req */
2729 complete_req(ep, req, 0);
2730
2731 } else {
2732 /* write fifo */
2733 udc_txfifo_write(ep, &req->req);
2734
2735 /* lengh bytes transferred */
2736 len = req->req.length - req->req.actual;
2737 if (len > ep->ep.maxpacket)
2738 len = ep->ep.maxpacket;
2739
2740 req->req.actual += len;
2741 if (req->req.actual == req->req.length
2742 || (len != ep->ep.maxpacket)) {
2743 /* complete req */
2744 complete_req(ep, req, 0);
2745 }
2746 }
2747
2748 }
2749 }
2750 ep->halted = 0;
2751 dev->stall_ep0in = 0;
2752 if (!ep->dma) {
2753 /* clear IN bit */
2754 writel(AMD_BIT(UDC_EPSTS_IN),
2755 &dev->ep[UDC_EP0IN_IX].regs->sts);
2756 }
2757 }
2758
2759 return ret_val;
2760 }
2761
2762
2763 /* Interrupt handler for global device events */
udc_dev_isr(struct udc * dev,u32 dev_irq)2764 static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
2765 __releases(dev->lock)
2766 __acquires(dev->lock)
2767 {
2768 irqreturn_t ret_val = IRQ_NONE;
2769 u32 tmp;
2770 u32 cfg;
2771 struct udc_ep *ep;
2772 u16 i;
2773 u8 udc_csr_epix;
2774
2775 /* SET_CONFIG irq ? */
2776 if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
2777 ret_val = IRQ_HANDLED;
2778
2779 /* read config value */
2780 tmp = readl(&dev->regs->sts);
2781 cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
2782 DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
2783 dev->cur_config = cfg;
2784 dev->set_cfg_not_acked = 1;
2785
2786 /* make usb request for gadget driver */
2787 memset(&setup_data, 0 , sizeof(union udc_setup_data));
2788 setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
2789 setup_data.request.wValue = cpu_to_le16(dev->cur_config);
2790
2791 /* programm the NE registers */
2792 for (i = 0; i < UDC_EP_NUM; i++) {
2793 ep = &dev->ep[i];
2794 if (ep->in) {
2795
2796 /* ep ix in UDC CSR register space */
2797 udc_csr_epix = ep->num;
2798
2799
2800 /* OUT ep */
2801 } else {
2802 /* ep ix in UDC CSR register space */
2803 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2804 }
2805
2806 tmp = readl(&dev->csr->ne[udc_csr_epix]);
2807 /* ep cfg */
2808 tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
2809 UDC_CSR_NE_CFG);
2810 /* write reg */
2811 writel(tmp, &dev->csr->ne[udc_csr_epix]);
2812
2813 /* clear stall bits */
2814 ep->halted = 0;
2815 tmp = readl(&ep->regs->ctl);
2816 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2817 writel(tmp, &ep->regs->ctl);
2818 }
2819 /* call gadget zero with setup data received */
2820 spin_unlock(&dev->lock);
2821 tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2822 spin_lock(&dev->lock);
2823
2824 } /* SET_INTERFACE ? */
2825 if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
2826 ret_val = IRQ_HANDLED;
2827
2828 dev->set_cfg_not_acked = 1;
2829 /* read interface and alt setting values */
2830 tmp = readl(&dev->regs->sts);
2831 dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
2832 dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
2833
2834 /* make usb request for gadget driver */
2835 memset(&setup_data, 0 , sizeof(union udc_setup_data));
2836 setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
2837 setup_data.request.bRequestType = USB_RECIP_INTERFACE;
2838 setup_data.request.wValue = cpu_to_le16(dev->cur_alt);
2839 setup_data.request.wIndex = cpu_to_le16(dev->cur_intf);
2840
2841 DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
2842 dev->cur_alt, dev->cur_intf);
2843
2844 /* programm the NE registers */
2845 for (i = 0; i < UDC_EP_NUM; i++) {
2846 ep = &dev->ep[i];
2847 if (ep->in) {
2848
2849 /* ep ix in UDC CSR register space */
2850 udc_csr_epix = ep->num;
2851
2852
2853 /* OUT ep */
2854 } else {
2855 /* ep ix in UDC CSR register space */
2856 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2857 }
2858
2859 /* UDC CSR reg */
2860 /* set ep values */
2861 tmp = readl(&dev->csr->ne[udc_csr_epix]);
2862 /* ep interface */
2863 tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
2864 UDC_CSR_NE_INTF);
2865 /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
2866 /* ep alt */
2867 tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
2868 UDC_CSR_NE_ALT);
2869 /* write reg */
2870 writel(tmp, &dev->csr->ne[udc_csr_epix]);
2871
2872 /* clear stall bits */
2873 ep->halted = 0;
2874 tmp = readl(&ep->regs->ctl);
2875 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2876 writel(tmp, &ep->regs->ctl);
2877 }
2878
2879 /* call gadget zero with setup data received */
2880 spin_unlock(&dev->lock);
2881 tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2882 spin_lock(&dev->lock);
2883
2884 } /* USB reset */
2885 if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
2886 DBG(dev, "USB Reset interrupt\n");
2887 ret_val = IRQ_HANDLED;
2888
2889 /* allow soft reset when suspend occurs */
2890 soft_reset_occured = 0;
2891
2892 dev->waiting_zlp_ack_ep0in = 0;
2893 dev->set_cfg_not_acked = 0;
2894
2895 /* mask not needed interrupts */
2896 udc_mask_unused_interrupts(dev);
2897
2898 /* call gadget to resume and reset configs etc. */
2899 spin_unlock(&dev->lock);
2900 if (dev->sys_suspended && dev->driver->resume) {
2901 dev->driver->resume(&dev->gadget);
2902 dev->sys_suspended = 0;
2903 }
2904 usb_gadget_udc_reset(&dev->gadget, dev->driver);
2905 spin_lock(&dev->lock);
2906
2907 /* disable ep0 to empty req queue */
2908 empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
2909 ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
2910
2911 /* soft reset when rxfifo not empty */
2912 tmp = readl(&dev->regs->sts);
2913 if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2914 && !soft_reset_after_usbreset_occured) {
2915 udc_soft_reset(dev);
2916 soft_reset_after_usbreset_occured++;
2917 }
2918
2919 /*
2920 * DMA reset to kill potential old DMA hw hang,
2921 * POLL bit is already reset by ep_init() through
2922 * disconnect()
2923 */
2924 DBG(dev, "DMA machine reset\n");
2925 tmp = readl(&dev->regs->cfg);
2926 writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
2927 writel(tmp, &dev->regs->cfg);
2928
2929 /* put into initial config */
2930 udc_basic_init(dev);
2931
2932 /* enable device setup interrupts */
2933 udc_enable_dev_setup_interrupts(dev);
2934
2935 /* enable suspend interrupt */
2936 tmp = readl(&dev->regs->irqmsk);
2937 tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
2938 writel(tmp, &dev->regs->irqmsk);
2939
2940 } /* USB suspend */
2941 if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
2942 DBG(dev, "USB Suspend interrupt\n");
2943 ret_val = IRQ_HANDLED;
2944 if (dev->driver->suspend) {
2945 spin_unlock(&dev->lock);
2946 dev->sys_suspended = 1;
2947 dev->driver->suspend(&dev->gadget);
2948 spin_lock(&dev->lock);
2949 }
2950 } /* new speed ? */
2951 if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
2952 DBG(dev, "ENUM interrupt\n");
2953 ret_val = IRQ_HANDLED;
2954 soft_reset_after_usbreset_occured = 0;
2955
2956 /* disable ep0 to empty req queue */
2957 empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
2958 ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
2959
2960 /* link up all endpoints */
2961 udc_setup_endpoints(dev);
2962 dev_info(dev->dev, "Connect: %s\n",
2963 usb_speed_string(dev->gadget.speed));
2964
2965 /* init ep 0 */
2966 activate_control_endpoints(dev);
2967
2968 /* enable ep0 interrupts */
2969 udc_enable_ep0_interrupts(dev);
2970 }
2971 /* session valid change interrupt */
2972 if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
2973 DBG(dev, "USB SVC interrupt\n");
2974 ret_val = IRQ_HANDLED;
2975
2976 /* check that session is not valid to detect disconnect */
2977 tmp = readl(&dev->regs->sts);
2978 if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
2979 /* disable suspend interrupt */
2980 tmp = readl(&dev->regs->irqmsk);
2981 tmp |= AMD_BIT(UDC_DEVINT_US);
2982 writel(tmp, &dev->regs->irqmsk);
2983 DBG(dev, "USB Disconnect (session valid low)\n");
2984 /* cleanup on disconnect */
2985 usb_disconnect(udc);
2986 }
2987
2988 }
2989
2990 return ret_val;
2991 }
2992
2993 /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
udc_irq(int irq,void * pdev)2994 irqreturn_t udc_irq(int irq, void *pdev)
2995 {
2996 struct udc *dev = pdev;
2997 u32 reg;
2998 u16 i;
2999 u32 ep_irq;
3000 irqreturn_t ret_val = IRQ_NONE;
3001
3002 spin_lock(&dev->lock);
3003
3004 /* check for ep irq */
3005 reg = readl(&dev->regs->ep_irqsts);
3006 if (reg) {
3007 if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
3008 ret_val |= udc_control_out_isr(dev);
3009 if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
3010 ret_val |= udc_control_in_isr(dev);
3011
3012 /*
3013 * data endpoint
3014 * iterate ep's
3015 */
3016 for (i = 1; i < UDC_EP_NUM; i++) {
3017 ep_irq = 1 << i;
3018 if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
3019 continue;
3020
3021 /* clear irq status */
3022 writel(ep_irq, &dev->regs->ep_irqsts);
3023
3024 /* irq for out ep ? */
3025 if (i > UDC_EPIN_NUM)
3026 ret_val |= udc_data_out_isr(dev, i);
3027 else
3028 ret_val |= udc_data_in_isr(dev, i);
3029 }
3030
3031 }
3032
3033
3034 /* check for dev irq */
3035 reg = readl(&dev->regs->irqsts);
3036 if (reg) {
3037 /* clear irq */
3038 writel(reg, &dev->regs->irqsts);
3039 ret_val |= udc_dev_isr(dev, reg);
3040 }
3041
3042
3043 spin_unlock(&dev->lock);
3044 return ret_val;
3045 }
3046 EXPORT_SYMBOL_GPL(udc_irq);
3047
3048 /* Tears down device */
gadget_release(struct device * pdev)3049 void gadget_release(struct device *pdev)
3050 {
3051 struct amd5536udc *dev = dev_get_drvdata(pdev);
3052 kfree(dev);
3053 }
3054 EXPORT_SYMBOL_GPL(gadget_release);
3055
3056 /* Cleanup on device remove */
udc_remove(struct udc * dev)3057 void udc_remove(struct udc *dev)
3058 {
3059 /* remove timer */
3060 stop_timer++;
3061 if (timer_pending(&udc_timer))
3062 wait_for_completion(&on_exit);
3063 del_timer_sync(&udc_timer);
3064 /* remove pollstall timer */
3065 stop_pollstall_timer++;
3066 if (timer_pending(&udc_pollstall_timer))
3067 wait_for_completion(&on_pollstall_exit);
3068 del_timer_sync(&udc_pollstall_timer);
3069 udc = NULL;
3070 }
3071 EXPORT_SYMBOL_GPL(udc_remove);
3072
3073 /* free all the dma pools */
free_dma_pools(struct udc * dev)3074 void free_dma_pools(struct udc *dev)
3075 {
3076 dma_pool_free(dev->stp_requests, dev->ep[UDC_EP0OUT_IX].td,
3077 dev->ep[UDC_EP0OUT_IX].td_phys);
3078 dma_pool_free(dev->stp_requests, dev->ep[UDC_EP0OUT_IX].td_stp,
3079 dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3080 dma_pool_destroy(dev->stp_requests);
3081 dma_pool_destroy(dev->data_requests);
3082 }
3083 EXPORT_SYMBOL_GPL(free_dma_pools);
3084
3085 /* create dma pools on init */
init_dma_pools(struct udc * dev)3086 int init_dma_pools(struct udc *dev)
3087 {
3088 struct udc_stp_dma *td_stp;
3089 struct udc_data_dma *td_data;
3090 int retval;
3091
3092 /* consistent DMA mode setting ? */
3093 if (use_dma_ppb) {
3094 use_dma_bufferfill_mode = 0;
3095 } else {
3096 use_dma_ppb_du = 0;
3097 use_dma_bufferfill_mode = 1;
3098 }
3099
3100 /* DMA setup */
3101 dev->data_requests = dma_pool_create("data_requests", dev->dev,
3102 sizeof(struct udc_data_dma), 0, 0);
3103 if (!dev->data_requests) {
3104 DBG(dev, "can't get request data pool\n");
3105 return -ENOMEM;
3106 }
3107
3108 /* EP0 in dma regs = dev control regs */
3109 dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
3110
3111 /* dma desc for setup data */
3112 dev->stp_requests = dma_pool_create("setup requests", dev->dev,
3113 sizeof(struct udc_stp_dma), 0, 0);
3114 if (!dev->stp_requests) {
3115 DBG(dev, "can't get stp request pool\n");
3116 retval = -ENOMEM;
3117 goto err_create_dma_pool;
3118 }
3119 /* setup */
3120 td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3121 &dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3122 if (!td_stp) {
3123 retval = -ENOMEM;
3124 goto err_alloc_dma;
3125 }
3126 dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
3127
3128 /* data: 0 packets !? */
3129 td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3130 &dev->ep[UDC_EP0OUT_IX].td_phys);
3131 if (!td_data) {
3132 retval = -ENOMEM;
3133 goto err_alloc_phys;
3134 }
3135 dev->ep[UDC_EP0OUT_IX].td = td_data;
3136 return 0;
3137
3138 err_alloc_phys:
3139 dma_pool_free(dev->stp_requests, dev->ep[UDC_EP0OUT_IX].td_stp,
3140 dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3141 err_alloc_dma:
3142 dma_pool_destroy(dev->stp_requests);
3143 dev->stp_requests = NULL;
3144 err_create_dma_pool:
3145 dma_pool_destroy(dev->data_requests);
3146 dev->data_requests = NULL;
3147 return retval;
3148 }
3149 EXPORT_SYMBOL_GPL(init_dma_pools);
3150
3151 /* general probe */
udc_probe(struct udc * dev)3152 int udc_probe(struct udc *dev)
3153 {
3154 char tmp[128];
3155 u32 reg;
3156 int retval;
3157
3158 /* device struct setup */
3159 dev->gadget.ops = &udc_ops;
3160
3161 dev_set_name(&dev->gadget.dev, "gadget");
3162 dev->gadget.name = name;
3163 dev->gadget.max_speed = USB_SPEED_HIGH;
3164
3165 /* init registers, interrupts, ... */
3166 startup_registers(dev);
3167
3168 dev_info(dev->dev, "%s\n", mod_desc);
3169
3170 snprintf(tmp, sizeof(tmp), "%d", dev->irq);
3171
3172 /* Print this device info for AMD chips only*/
3173 if (dev->chiprev == UDC_HSA0_REV ||
3174 dev->chiprev == UDC_HSB1_REV) {
3175 dev_info(dev->dev, "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
3176 tmp, dev->phys_addr, dev->chiprev,
3177 (dev->chiprev == UDC_HSA0_REV) ?
3178 "A0" : "B1");
3179 strcpy(tmp, UDC_DRIVER_VERSION_STRING);
3180 if (dev->chiprev == UDC_HSA0_REV) {
3181 dev_err(dev->dev, "chip revision is A0; too old\n");
3182 retval = -ENODEV;
3183 goto finished;
3184 }
3185 dev_info(dev->dev,
3186 "driver version: %s(for Geode5536 B1)\n", tmp);
3187 }
3188
3189 udc = dev;
3190
3191 retval = usb_add_gadget_udc_release(udc->dev, &dev->gadget,
3192 gadget_release);
3193 if (retval)
3194 goto finished;
3195
3196 /* timer init */
3197 timer_setup(&udc_timer, udc_timer_function, 0);
3198 timer_setup(&udc_pollstall_timer, udc_pollstall_timer_function, 0);
3199
3200 /* set SD */
3201 reg = readl(&dev->regs->ctl);
3202 reg |= AMD_BIT(UDC_DEVCTL_SD);
3203 writel(reg, &dev->regs->ctl);
3204
3205 /* print dev register info */
3206 print_regs(dev);
3207
3208 return 0;
3209
3210 finished:
3211 return retval;
3212 }
3213 EXPORT_SYMBOL_GPL(udc_probe);
3214
3215 MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION);
3216 MODULE_AUTHOR("Thomas Dahlmann");
3217 MODULE_LICENSE("GPL");
3218