1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
4  *
5  * Copyright (C) 2005-2007 AMD (http://www.amd.com)
6  * Author: Thomas Dahlmann
7  */
8 
9 /*
10  * This file does the core driver implementation for the UDC that is based
11  * on Synopsys device controller IP (different than HS OTG IP) that is either
12  * connected through PCI bus or integrated to SoC platforms.
13  */
14 
15 /* Driver strings */
16 #define UDC_MOD_DESCRIPTION		"Synopsys USB Device Controller"
17 #define UDC_DRIVER_VERSION_STRING	"01.00.0206"
18 
19 #include <linux/module.h>
20 #include <linux/pci.h>
21 #include <linux/kernel.h>
22 #include <linux/delay.h>
23 #include <linux/ioport.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/errno.h>
27 #include <linux/timer.h>
28 #include <linux/list.h>
29 #include <linux/interrupt.h>
30 #include <linux/ioctl.h>
31 #include <linux/fs.h>
32 #include <linux/dmapool.h>
33 #include <linux/prefetch.h>
34 #include <linux/moduleparam.h>
35 #include <asm/byteorder.h>
36 #include <asm/unaligned.h>
37 #include "amd5536udc.h"
38 
39 static void udc_tasklet_disconnect(unsigned long);
40 static void udc_setup_endpoints(struct udc *dev);
41 static void udc_soft_reset(struct udc *dev);
42 static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
43 static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
44 
45 /* description */
46 static const char mod_desc[] = UDC_MOD_DESCRIPTION;
47 static const char name[] = "udc";
48 
49 /* structure to hold endpoint function pointers */
50 static const struct usb_ep_ops udc_ep_ops;
51 
52 /* received setup data */
53 static union udc_setup_data setup_data;
54 
55 /* pointer to device object */
56 static struct udc *udc;
57 
58 /* irq spin lock for soft reset */
59 static DEFINE_SPINLOCK(udc_irq_spinlock);
60 /* stall spin lock */
61 static DEFINE_SPINLOCK(udc_stall_spinlock);
62 
63 /*
64 * slave mode: pending bytes in rx fifo after nyet,
65 * used if EPIN irq came but no req was available
66 */
67 static unsigned int udc_rxfifo_pending;
68 
69 /* count soft resets after suspend to avoid loop */
70 static int soft_reset_occured;
71 static int soft_reset_after_usbreset_occured;
72 
73 /* timer */
74 static struct timer_list udc_timer;
75 static int stop_timer;
76 
77 /* set_rde -- Is used to control enabling of RX DMA. Problem is
78  * that UDC has only one bit (RDE) to enable/disable RX DMA for
79  * all OUT endpoints. So we have to handle race conditions like
80  * when OUT data reaches the fifo but no request was queued yet.
81  * This cannot be solved by letting the RX DMA disabled until a
82  * request gets queued because there may be other OUT packets
83  * in the FIFO (important for not blocking control traffic).
84  * The value of set_rde controls the correspondig timer.
85  *
86  * set_rde -1 == not used, means it is alloed to be set to 0 or 1
87  * set_rde  0 == do not touch RDE, do no start the RDE timer
88  * set_rde  1 == timer function will look whether FIFO has data
89  * set_rde  2 == set by timer function to enable RX DMA on next call
90  */
91 static int set_rde = -1;
92 
93 static DECLARE_COMPLETION(on_exit);
94 static struct timer_list udc_pollstall_timer;
95 static int stop_pollstall_timer;
96 static DECLARE_COMPLETION(on_pollstall_exit);
97 
98 /* tasklet for usb disconnect */
99 static DECLARE_TASKLET(disconnect_tasklet, udc_tasklet_disconnect,
100 		(unsigned long) &udc);
101 
102 
103 /* endpoint names used for print */
104 static const char ep0_string[] = "ep0in";
105 static const struct {
106 	const char *name;
107 	const struct usb_ep_caps caps;
108 } ep_info[] = {
109 #define EP_INFO(_name, _caps) \
110 	{ \
111 		.name = _name, \
112 		.caps = _caps, \
113 	}
114 
115 	EP_INFO(ep0_string,
116 		USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL, USB_EP_CAPS_DIR_IN)),
117 	EP_INFO("ep1in-int",
118 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
119 	EP_INFO("ep2in-bulk",
120 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
121 	EP_INFO("ep3in-bulk",
122 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
123 	EP_INFO("ep4in-bulk",
124 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
125 	EP_INFO("ep5in-bulk",
126 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
127 	EP_INFO("ep6in-bulk",
128 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
129 	EP_INFO("ep7in-bulk",
130 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
131 	EP_INFO("ep8in-bulk",
132 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
133 	EP_INFO("ep9in-bulk",
134 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
135 	EP_INFO("ep10in-bulk",
136 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
137 	EP_INFO("ep11in-bulk",
138 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
139 	EP_INFO("ep12in-bulk",
140 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
141 	EP_INFO("ep13in-bulk",
142 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
143 	EP_INFO("ep14in-bulk",
144 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
145 	EP_INFO("ep15in-bulk",
146 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
147 	EP_INFO("ep0out",
148 		USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL, USB_EP_CAPS_DIR_OUT)),
149 	EP_INFO("ep1out-bulk",
150 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
151 	EP_INFO("ep2out-bulk",
152 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
153 	EP_INFO("ep3out-bulk",
154 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
155 	EP_INFO("ep4out-bulk",
156 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
157 	EP_INFO("ep5out-bulk",
158 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
159 	EP_INFO("ep6out-bulk",
160 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
161 	EP_INFO("ep7out-bulk",
162 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
163 	EP_INFO("ep8out-bulk",
164 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
165 	EP_INFO("ep9out-bulk",
166 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
167 	EP_INFO("ep10out-bulk",
168 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
169 	EP_INFO("ep11out-bulk",
170 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
171 	EP_INFO("ep12out-bulk",
172 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
173 	EP_INFO("ep13out-bulk",
174 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
175 	EP_INFO("ep14out-bulk",
176 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
177 	EP_INFO("ep15out-bulk",
178 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
179 
180 #undef EP_INFO
181 };
182 
183 /* buffer fill mode */
184 static int use_dma_bufferfill_mode;
185 /* tx buffer size for high speed */
186 static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
187 
188 /*---------------------------------------------------------------------------*/
189 /* Prints UDC device registers and endpoint irq registers */
print_regs(struct udc * dev)190 static void print_regs(struct udc *dev)
191 {
192 	DBG(dev, "------- Device registers -------\n");
193 	DBG(dev, "dev config     = %08x\n", readl(&dev->regs->cfg));
194 	DBG(dev, "dev control    = %08x\n", readl(&dev->regs->ctl));
195 	DBG(dev, "dev status     = %08x\n", readl(&dev->regs->sts));
196 	DBG(dev, "\n");
197 	DBG(dev, "dev int's      = %08x\n", readl(&dev->regs->irqsts));
198 	DBG(dev, "dev intmask    = %08x\n", readl(&dev->regs->irqmsk));
199 	DBG(dev, "\n");
200 	DBG(dev, "dev ep int's   = %08x\n", readl(&dev->regs->ep_irqsts));
201 	DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
202 	DBG(dev, "\n");
203 	DBG(dev, "USE DMA        = %d\n", use_dma);
204 	if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
205 		DBG(dev, "DMA mode       = PPBNDU (packet per buffer "
206 			"WITHOUT desc. update)\n");
207 		dev_info(dev->dev, "DMA mode (%s)\n", "PPBNDU");
208 	} else if (use_dma && use_dma_ppb && use_dma_ppb_du) {
209 		DBG(dev, "DMA mode       = PPBDU (packet per buffer "
210 			"WITH desc. update)\n");
211 		dev_info(dev->dev, "DMA mode (%s)\n", "PPBDU");
212 	}
213 	if (use_dma && use_dma_bufferfill_mode) {
214 		DBG(dev, "DMA mode       = BF (buffer fill mode)\n");
215 		dev_info(dev->dev, "DMA mode (%s)\n", "BF");
216 	}
217 	if (!use_dma)
218 		dev_info(dev->dev, "FIFO mode\n");
219 	DBG(dev, "-------------------------------------------------------\n");
220 }
221 
222 /* Masks unused interrupts */
udc_mask_unused_interrupts(struct udc * dev)223 int udc_mask_unused_interrupts(struct udc *dev)
224 {
225 	u32 tmp;
226 
227 	/* mask all dev interrupts */
228 	tmp =	AMD_BIT(UDC_DEVINT_SVC) |
229 		AMD_BIT(UDC_DEVINT_ENUM) |
230 		AMD_BIT(UDC_DEVINT_US) |
231 		AMD_BIT(UDC_DEVINT_UR) |
232 		AMD_BIT(UDC_DEVINT_ES) |
233 		AMD_BIT(UDC_DEVINT_SI) |
234 		AMD_BIT(UDC_DEVINT_SOF)|
235 		AMD_BIT(UDC_DEVINT_SC);
236 	writel(tmp, &dev->regs->irqmsk);
237 
238 	/* mask all ep interrupts */
239 	writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
240 
241 	return 0;
242 }
243 EXPORT_SYMBOL_GPL(udc_mask_unused_interrupts);
244 
245 /* Enables endpoint 0 interrupts */
udc_enable_ep0_interrupts(struct udc * dev)246 static int udc_enable_ep0_interrupts(struct udc *dev)
247 {
248 	u32 tmp;
249 
250 	DBG(dev, "udc_enable_ep0_interrupts()\n");
251 
252 	/* read irq mask */
253 	tmp = readl(&dev->regs->ep_irqmsk);
254 	/* enable ep0 irq's */
255 	tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0)
256 		& AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0);
257 	writel(tmp, &dev->regs->ep_irqmsk);
258 
259 	return 0;
260 }
261 
262 /* Enables device interrupts for SET_INTF and SET_CONFIG */
udc_enable_dev_setup_interrupts(struct udc * dev)263 int udc_enable_dev_setup_interrupts(struct udc *dev)
264 {
265 	u32 tmp;
266 
267 	DBG(dev, "enable device interrupts for setup data\n");
268 
269 	/* read irq mask */
270 	tmp = readl(&dev->regs->irqmsk);
271 
272 	/* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
273 	tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI)
274 		& AMD_UNMASK_BIT(UDC_DEVINT_SC)
275 		& AMD_UNMASK_BIT(UDC_DEVINT_UR)
276 		& AMD_UNMASK_BIT(UDC_DEVINT_SVC)
277 		& AMD_UNMASK_BIT(UDC_DEVINT_ENUM);
278 	writel(tmp, &dev->regs->irqmsk);
279 
280 	return 0;
281 }
282 EXPORT_SYMBOL_GPL(udc_enable_dev_setup_interrupts);
283 
284 /* Calculates fifo start of endpoint based on preceding endpoints */
udc_set_txfifo_addr(struct udc_ep * ep)285 static int udc_set_txfifo_addr(struct udc_ep *ep)
286 {
287 	struct udc	*dev;
288 	u32 tmp;
289 	int i;
290 
291 	if (!ep || !(ep->in))
292 		return -EINVAL;
293 
294 	dev = ep->dev;
295 	ep->txfifo = dev->txfifo;
296 
297 	/* traverse ep's */
298 	for (i = 0; i < ep->num; i++) {
299 		if (dev->ep[i].regs) {
300 			/* read fifo size */
301 			tmp = readl(&dev->ep[i].regs->bufin_framenum);
302 			tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
303 			ep->txfifo += tmp;
304 		}
305 	}
306 	return 0;
307 }
308 
309 /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
310 static u32 cnak_pending;
311 
UDC_QUEUE_CNAK(struct udc_ep * ep,unsigned num)312 static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
313 {
314 	if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
315 		DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
316 		cnak_pending |= 1 << (num);
317 		ep->naking = 1;
318 	} else
319 		cnak_pending = cnak_pending & (~(1 << (num)));
320 }
321 
322 
323 /* Enables endpoint, is called by gadget driver */
324 static int
udc_ep_enable(struct usb_ep * usbep,const struct usb_endpoint_descriptor * desc)325 udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
326 {
327 	struct udc_ep		*ep;
328 	struct udc		*dev;
329 	u32			tmp;
330 	unsigned long		iflags;
331 	u8 udc_csr_epix;
332 	unsigned		maxpacket;
333 
334 	if (!usbep
335 			|| usbep->name == ep0_string
336 			|| !desc
337 			|| desc->bDescriptorType != USB_DT_ENDPOINT)
338 		return -EINVAL;
339 
340 	ep = container_of(usbep, struct udc_ep, ep);
341 	dev = ep->dev;
342 
343 	DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
344 
345 	if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
346 		return -ESHUTDOWN;
347 
348 	spin_lock_irqsave(&dev->lock, iflags);
349 	ep->ep.desc = desc;
350 
351 	ep->halted = 0;
352 
353 	/* set traffic type */
354 	tmp = readl(&dev->ep[ep->num].regs->ctl);
355 	tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
356 	writel(tmp, &dev->ep[ep->num].regs->ctl);
357 
358 	/* set max packet size */
359 	maxpacket = usb_endpoint_maxp(desc);
360 	tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
361 	tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE);
362 	ep->ep.maxpacket = maxpacket;
363 	writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
364 
365 	/* IN ep */
366 	if (ep->in) {
367 
368 		/* ep ix in UDC CSR register space */
369 		udc_csr_epix = ep->num;
370 
371 		/* set buffer size (tx fifo entries) */
372 		tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
373 		/* double buffering: fifo size = 2 x max packet size */
374 		tmp = AMD_ADDBITS(
375 				tmp,
376 				maxpacket * UDC_EPIN_BUFF_SIZE_MULT
377 					  / UDC_DWORD_BYTES,
378 				UDC_EPIN_BUFF_SIZE);
379 		writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
380 
381 		/* calc. tx fifo base addr */
382 		udc_set_txfifo_addr(ep);
383 
384 		/* flush fifo */
385 		tmp = readl(&ep->regs->ctl);
386 		tmp |= AMD_BIT(UDC_EPCTL_F);
387 		writel(tmp, &ep->regs->ctl);
388 
389 	/* OUT ep */
390 	} else {
391 		/* ep ix in UDC CSR register space */
392 		udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
393 
394 		/* set max packet size UDC CSR	*/
395 		tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
396 		tmp = AMD_ADDBITS(tmp, maxpacket,
397 					UDC_CSR_NE_MAX_PKT);
398 		writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
399 
400 		if (use_dma && !ep->in) {
401 			/* alloc and init BNA dummy request */
402 			ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
403 			ep->bna_occurred = 0;
404 		}
405 
406 		if (ep->num != UDC_EP0OUT_IX)
407 			dev->data_ep_enabled = 1;
408 	}
409 
410 	/* set ep values */
411 	tmp = readl(&dev->csr->ne[udc_csr_epix]);
412 	/* max packet */
413 	tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT);
414 	/* ep number */
415 	tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
416 	/* ep direction */
417 	tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
418 	/* ep type */
419 	tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
420 	/* ep config */
421 	tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
422 	/* ep interface */
423 	tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
424 	/* ep alt */
425 	tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
426 	/* write reg */
427 	writel(tmp, &dev->csr->ne[udc_csr_epix]);
428 
429 	/* enable ep irq */
430 	tmp = readl(&dev->regs->ep_irqmsk);
431 	tmp &= AMD_UNMASK_BIT(ep->num);
432 	writel(tmp, &dev->regs->ep_irqmsk);
433 
434 	/*
435 	 * clear NAK by writing CNAK
436 	 * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
437 	 */
438 	if (!use_dma || ep->in) {
439 		tmp = readl(&ep->regs->ctl);
440 		tmp |= AMD_BIT(UDC_EPCTL_CNAK);
441 		writel(tmp, &ep->regs->ctl);
442 		ep->naking = 0;
443 		UDC_QUEUE_CNAK(ep, ep->num);
444 	}
445 	tmp = desc->bEndpointAddress;
446 	DBG(dev, "%s enabled\n", usbep->name);
447 
448 	spin_unlock_irqrestore(&dev->lock, iflags);
449 	return 0;
450 }
451 
452 /* Resets endpoint */
ep_init(struct udc_regs __iomem * regs,struct udc_ep * ep)453 static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
454 {
455 	u32		tmp;
456 
457 	VDBG(ep->dev, "ep-%d reset\n", ep->num);
458 	ep->ep.desc = NULL;
459 	ep->ep.ops = &udc_ep_ops;
460 	INIT_LIST_HEAD(&ep->queue);
461 
462 	usb_ep_set_maxpacket_limit(&ep->ep,(u16) ~0);
463 	/* set NAK */
464 	tmp = readl(&ep->regs->ctl);
465 	tmp |= AMD_BIT(UDC_EPCTL_SNAK);
466 	writel(tmp, &ep->regs->ctl);
467 	ep->naking = 1;
468 
469 	/* disable interrupt */
470 	tmp = readl(&regs->ep_irqmsk);
471 	tmp |= AMD_BIT(ep->num);
472 	writel(tmp, &regs->ep_irqmsk);
473 
474 	if (ep->in) {
475 		/* unset P and IN bit of potential former DMA */
476 		tmp = readl(&ep->regs->ctl);
477 		tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
478 		writel(tmp, &ep->regs->ctl);
479 
480 		tmp = readl(&ep->regs->sts);
481 		tmp |= AMD_BIT(UDC_EPSTS_IN);
482 		writel(tmp, &ep->regs->sts);
483 
484 		/* flush the fifo */
485 		tmp = readl(&ep->regs->ctl);
486 		tmp |= AMD_BIT(UDC_EPCTL_F);
487 		writel(tmp, &ep->regs->ctl);
488 
489 	}
490 	/* reset desc pointer */
491 	writel(0, &ep->regs->desptr);
492 }
493 
494 /* Disables endpoint, is called by gadget driver */
udc_ep_disable(struct usb_ep * usbep)495 static int udc_ep_disable(struct usb_ep *usbep)
496 {
497 	struct udc_ep	*ep = NULL;
498 	unsigned long	iflags;
499 
500 	if (!usbep)
501 		return -EINVAL;
502 
503 	ep = container_of(usbep, struct udc_ep, ep);
504 	if (usbep->name == ep0_string || !ep->ep.desc)
505 		return -EINVAL;
506 
507 	DBG(ep->dev, "Disable ep-%d\n", ep->num);
508 
509 	spin_lock_irqsave(&ep->dev->lock, iflags);
510 	udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
511 	empty_req_queue(ep);
512 	ep_init(ep->dev->regs, ep);
513 	spin_unlock_irqrestore(&ep->dev->lock, iflags);
514 
515 	return 0;
516 }
517 
518 /* Allocates request packet, called by gadget driver */
519 static struct usb_request *
udc_alloc_request(struct usb_ep * usbep,gfp_t gfp)520 udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
521 {
522 	struct udc_request	*req;
523 	struct udc_data_dma	*dma_desc;
524 	struct udc_ep	*ep;
525 
526 	if (!usbep)
527 		return NULL;
528 
529 	ep = container_of(usbep, struct udc_ep, ep);
530 
531 	VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
532 	req = kzalloc(sizeof(struct udc_request), gfp);
533 	if (!req)
534 		return NULL;
535 
536 	req->req.dma = DMA_DONT_USE;
537 	INIT_LIST_HEAD(&req->queue);
538 
539 	if (ep->dma) {
540 		/* ep0 in requests are allocated from data pool here */
541 		dma_desc = dma_pool_alloc(ep->dev->data_requests, gfp,
542 						&req->td_phys);
543 		if (!dma_desc) {
544 			kfree(req);
545 			return NULL;
546 		}
547 
548 		VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, "
549 				"td_phys = %lx\n",
550 				req, dma_desc,
551 				(unsigned long)req->td_phys);
552 		/* prevent from using desc. - set HOST BUSY */
553 		dma_desc->status = AMD_ADDBITS(dma_desc->status,
554 						UDC_DMA_STP_STS_BS_HOST_BUSY,
555 						UDC_DMA_STP_STS_BS);
556 		dma_desc->bufptr = cpu_to_le32(DMA_DONT_USE);
557 		req->td_data = dma_desc;
558 		req->td_data_last = NULL;
559 		req->chain_len = 1;
560 	}
561 
562 	return &req->req;
563 }
564 
565 /* frees pci pool descriptors of a DMA chain */
udc_free_dma_chain(struct udc * dev,struct udc_request * req)566 static void udc_free_dma_chain(struct udc *dev, struct udc_request *req)
567 {
568 	struct udc_data_dma *td = req->td_data;
569 	unsigned int i;
570 
571 	dma_addr_t addr_next = 0x00;
572 	dma_addr_t addr = (dma_addr_t)td->next;
573 
574 	DBG(dev, "free chain req = %p\n", req);
575 
576 	/* do not free first desc., will be done by free for request */
577 	for (i = 1; i < req->chain_len; i++) {
578 		td = phys_to_virt(addr);
579 		addr_next = (dma_addr_t)td->next;
580 		dma_pool_free(dev->data_requests, td, addr);
581 		addr = addr_next;
582 	}
583 }
584 
585 /* Frees request packet, called by gadget driver */
586 static void
udc_free_request(struct usb_ep * usbep,struct usb_request * usbreq)587 udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
588 {
589 	struct udc_ep	*ep;
590 	struct udc_request	*req;
591 
592 	if (!usbep || !usbreq)
593 		return;
594 
595 	ep = container_of(usbep, struct udc_ep, ep);
596 	req = container_of(usbreq, struct udc_request, req);
597 	VDBG(ep->dev, "free_req req=%p\n", req);
598 	BUG_ON(!list_empty(&req->queue));
599 	if (req->td_data) {
600 		VDBG(ep->dev, "req->td_data=%p\n", req->td_data);
601 
602 		/* free dma chain if created */
603 		if (req->chain_len > 1)
604 			udc_free_dma_chain(ep->dev, req);
605 
606 		dma_pool_free(ep->dev->data_requests, req->td_data,
607 							req->td_phys);
608 	}
609 	kfree(req);
610 }
611 
612 /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
udc_init_bna_dummy(struct udc_request * req)613 static void udc_init_bna_dummy(struct udc_request *req)
614 {
615 	if (req) {
616 		/* set last bit */
617 		req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
618 		/* set next pointer to itself */
619 		req->td_data->next = req->td_phys;
620 		/* set HOST BUSY */
621 		req->td_data->status
622 			= AMD_ADDBITS(req->td_data->status,
623 					UDC_DMA_STP_STS_BS_DMA_DONE,
624 					UDC_DMA_STP_STS_BS);
625 #ifdef UDC_VERBOSE
626 		pr_debug("bna desc = %p, sts = %08x\n",
627 			req->td_data, req->td_data->status);
628 #endif
629 	}
630 }
631 
632 /* Allocate BNA dummy descriptor */
udc_alloc_bna_dummy(struct udc_ep * ep)633 static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
634 {
635 	struct udc_request *req = NULL;
636 	struct usb_request *_req = NULL;
637 
638 	/* alloc the dummy request */
639 	_req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
640 	if (_req) {
641 		req = container_of(_req, struct udc_request, req);
642 		ep->bna_dummy_req = req;
643 		udc_init_bna_dummy(req);
644 	}
645 	return req;
646 }
647 
648 /* Write data to TX fifo for IN packets */
649 static void
udc_txfifo_write(struct udc_ep * ep,struct usb_request * req)650 udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
651 {
652 	u8			*req_buf;
653 	u32			*buf;
654 	int			i, j;
655 	unsigned		bytes = 0;
656 	unsigned		remaining = 0;
657 
658 	if (!req || !ep)
659 		return;
660 
661 	req_buf = req->buf + req->actual;
662 	prefetch(req_buf);
663 	remaining = req->length - req->actual;
664 
665 	buf = (u32 *) req_buf;
666 
667 	bytes = ep->ep.maxpacket;
668 	if (bytes > remaining)
669 		bytes = remaining;
670 
671 	/* dwords first */
672 	for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
673 		writel(*(buf + i), ep->txfifo);
674 
675 	/* remaining bytes must be written by byte access */
676 	for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
677 		writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
678 							ep->txfifo);
679 	}
680 
681 	/* dummy write confirm */
682 	writel(0, &ep->regs->confirm);
683 }
684 
685 /* Read dwords from RX fifo for OUT transfers */
udc_rxfifo_read_dwords(struct udc * dev,u32 * buf,int dwords)686 static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
687 {
688 	int i;
689 
690 	VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
691 
692 	for (i = 0; i < dwords; i++)
693 		*(buf + i) = readl(dev->rxfifo);
694 	return 0;
695 }
696 
697 /* Read bytes from RX fifo for OUT transfers */
udc_rxfifo_read_bytes(struct udc * dev,u8 * buf,int bytes)698 static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
699 {
700 	int i, j;
701 	u32 tmp;
702 
703 	VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
704 
705 	/* dwords first */
706 	for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
707 		*((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
708 
709 	/* remaining bytes must be read by byte access */
710 	if (bytes % UDC_DWORD_BYTES) {
711 		tmp = readl(dev->rxfifo);
712 		for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
713 			*(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
714 			tmp = tmp >> UDC_BITS_PER_BYTE;
715 		}
716 	}
717 
718 	return 0;
719 }
720 
721 /* Read data from RX fifo for OUT transfers */
722 static int
udc_rxfifo_read(struct udc_ep * ep,struct udc_request * req)723 udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
724 {
725 	u8 *buf;
726 	unsigned buf_space;
727 	unsigned bytes = 0;
728 	unsigned finished = 0;
729 
730 	/* received number bytes */
731 	bytes = readl(&ep->regs->sts);
732 	bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
733 
734 	buf_space = req->req.length - req->req.actual;
735 	buf = req->req.buf + req->req.actual;
736 	if (bytes > buf_space) {
737 		if ((buf_space % ep->ep.maxpacket) != 0) {
738 			DBG(ep->dev,
739 				"%s: rx %d bytes, rx-buf space = %d bytesn\n",
740 				ep->ep.name, bytes, buf_space);
741 			req->req.status = -EOVERFLOW;
742 		}
743 		bytes = buf_space;
744 	}
745 	req->req.actual += bytes;
746 
747 	/* last packet ? */
748 	if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
749 		|| ((req->req.actual == req->req.length) && !req->req.zero))
750 		finished = 1;
751 
752 	/* read rx fifo bytes */
753 	VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
754 	udc_rxfifo_read_bytes(ep->dev, buf, bytes);
755 
756 	return finished;
757 }
758 
759 /* Creates or re-inits a DMA chain */
udc_create_dma_chain(struct udc_ep * ep,struct udc_request * req,unsigned long buf_len,gfp_t gfp_flags)760 static int udc_create_dma_chain(
761 	struct udc_ep *ep,
762 	struct udc_request *req,
763 	unsigned long buf_len, gfp_t gfp_flags
764 )
765 {
766 	unsigned long bytes = req->req.length;
767 	unsigned int i;
768 	dma_addr_t dma_addr;
769 	struct udc_data_dma	*td = NULL;
770 	struct udc_data_dma	*last = NULL;
771 	unsigned long txbytes;
772 	unsigned create_new_chain = 0;
773 	unsigned len;
774 
775 	VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
776 	     bytes, buf_len);
777 	dma_addr = DMA_DONT_USE;
778 
779 	/* unset L bit in first desc for OUT */
780 	if (!ep->in)
781 		req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
782 
783 	/* alloc only new desc's if not already available */
784 	len = req->req.length / ep->ep.maxpacket;
785 	if (req->req.length % ep->ep.maxpacket)
786 		len++;
787 
788 	if (len > req->chain_len) {
789 		/* shorter chain already allocated before */
790 		if (req->chain_len > 1)
791 			udc_free_dma_chain(ep->dev, req);
792 		req->chain_len = len;
793 		create_new_chain = 1;
794 	}
795 
796 	td = req->td_data;
797 	/* gen. required number of descriptors and buffers */
798 	for (i = buf_len; i < bytes; i += buf_len) {
799 		/* create or determine next desc. */
800 		if (create_new_chain) {
801 			td = dma_pool_alloc(ep->dev->data_requests,
802 					    gfp_flags, &dma_addr);
803 			if (!td)
804 				return -ENOMEM;
805 
806 			td->status = 0;
807 		} else if (i == buf_len) {
808 			/* first td */
809 			td = (struct udc_data_dma *)phys_to_virt(
810 						req->td_data->next);
811 			td->status = 0;
812 		} else {
813 			td = (struct udc_data_dma *)phys_to_virt(last->next);
814 			td->status = 0;
815 		}
816 
817 		if (td)
818 			td->bufptr = req->req.dma + i; /* assign buffer */
819 		else
820 			break;
821 
822 		/* short packet ? */
823 		if ((bytes - i) >= buf_len) {
824 			txbytes = buf_len;
825 		} else {
826 			/* short packet */
827 			txbytes = bytes - i;
828 		}
829 
830 		/* link td and assign tx bytes */
831 		if (i == buf_len) {
832 			if (create_new_chain)
833 				req->td_data->next = dma_addr;
834 			/*
835 			 * else
836 			 *	req->td_data->next = virt_to_phys(td);
837 			 */
838 			/* write tx bytes */
839 			if (ep->in) {
840 				/* first desc */
841 				req->td_data->status =
842 					AMD_ADDBITS(req->td_data->status,
843 						    ep->ep.maxpacket,
844 						    UDC_DMA_IN_STS_TXBYTES);
845 				/* second desc */
846 				td->status = AMD_ADDBITS(td->status,
847 							txbytes,
848 							UDC_DMA_IN_STS_TXBYTES);
849 			}
850 		} else {
851 			if (create_new_chain)
852 				last->next = dma_addr;
853 			/*
854 			 * else
855 			 *	last->next = virt_to_phys(td);
856 			 */
857 			if (ep->in) {
858 				/* write tx bytes */
859 				td->status = AMD_ADDBITS(td->status,
860 							txbytes,
861 							UDC_DMA_IN_STS_TXBYTES);
862 			}
863 		}
864 		last = td;
865 	}
866 	/* set last bit */
867 	if (td) {
868 		td->status |= AMD_BIT(UDC_DMA_IN_STS_L);
869 		/* last desc. points to itself */
870 		req->td_data_last = td;
871 	}
872 
873 	return 0;
874 }
875 
876 /* create/re-init a DMA descriptor or a DMA descriptor chain */
prep_dma(struct udc_ep * ep,struct udc_request * req,gfp_t gfp)877 static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
878 {
879 	int	retval = 0;
880 	u32	tmp;
881 
882 	VDBG(ep->dev, "prep_dma\n");
883 	VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n",
884 			ep->num, req->td_data);
885 
886 	/* set buffer pointer */
887 	req->td_data->bufptr = req->req.dma;
888 
889 	/* set last bit */
890 	req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
891 
892 	/* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
893 	if (use_dma_ppb) {
894 
895 		retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
896 		if (retval != 0) {
897 			if (retval == -ENOMEM)
898 				DBG(ep->dev, "Out of DMA memory\n");
899 			return retval;
900 		}
901 		if (ep->in) {
902 			if (req->req.length == ep->ep.maxpacket) {
903 				/* write tx bytes */
904 				req->td_data->status =
905 					AMD_ADDBITS(req->td_data->status,
906 						ep->ep.maxpacket,
907 						UDC_DMA_IN_STS_TXBYTES);
908 
909 			}
910 		}
911 
912 	}
913 
914 	if (ep->in) {
915 		VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
916 				"maxpacket=%d ep%d\n",
917 				use_dma_ppb, req->req.length,
918 				ep->ep.maxpacket, ep->num);
919 		/*
920 		 * if bytes < max packet then tx bytes must
921 		 * be written in packet per buffer mode
922 		 */
923 		if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
924 				|| ep->num == UDC_EP0OUT_IX
925 				|| ep->num == UDC_EP0IN_IX) {
926 			/* write tx bytes */
927 			req->td_data->status =
928 				AMD_ADDBITS(req->td_data->status,
929 						req->req.length,
930 						UDC_DMA_IN_STS_TXBYTES);
931 			/* reset frame num */
932 			req->td_data->status =
933 				AMD_ADDBITS(req->td_data->status,
934 						0,
935 						UDC_DMA_IN_STS_FRAMENUM);
936 		}
937 		/* set HOST BUSY */
938 		req->td_data->status =
939 			AMD_ADDBITS(req->td_data->status,
940 				UDC_DMA_STP_STS_BS_HOST_BUSY,
941 				UDC_DMA_STP_STS_BS);
942 	} else {
943 		VDBG(ep->dev, "OUT set host ready\n");
944 		/* set HOST READY */
945 		req->td_data->status =
946 			AMD_ADDBITS(req->td_data->status,
947 				UDC_DMA_STP_STS_BS_HOST_READY,
948 				UDC_DMA_STP_STS_BS);
949 
950 
951 			/* clear NAK by writing CNAK */
952 			if (ep->naking) {
953 				tmp = readl(&ep->regs->ctl);
954 				tmp |= AMD_BIT(UDC_EPCTL_CNAK);
955 				writel(tmp, &ep->regs->ctl);
956 				ep->naking = 0;
957 				UDC_QUEUE_CNAK(ep, ep->num);
958 			}
959 
960 	}
961 
962 	return retval;
963 }
964 
965 /* Completes request packet ... caller MUST hold lock */
966 static void
complete_req(struct udc_ep * ep,struct udc_request * req,int sts)967 complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
968 __releases(ep->dev->lock)
969 __acquires(ep->dev->lock)
970 {
971 	struct udc		*dev;
972 	unsigned		halted;
973 
974 	VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
975 
976 	dev = ep->dev;
977 	/* unmap DMA */
978 	if (ep->dma)
979 		usb_gadget_unmap_request(&dev->gadget, &req->req, ep->in);
980 
981 	halted = ep->halted;
982 	ep->halted = 1;
983 
984 	/* set new status if pending */
985 	if (req->req.status == -EINPROGRESS)
986 		req->req.status = sts;
987 
988 	/* remove from ep queue */
989 	list_del_init(&req->queue);
990 
991 	VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n",
992 		&req->req, req->req.length, ep->ep.name, sts);
993 
994 	spin_unlock(&dev->lock);
995 	usb_gadget_giveback_request(&ep->ep, &req->req);
996 	spin_lock(&dev->lock);
997 	ep->halted = halted;
998 }
999 
1000 /* Iterates to the end of a DMA chain and returns last descriptor */
udc_get_last_dma_desc(struct udc_request * req)1001 static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
1002 {
1003 	struct udc_data_dma	*td;
1004 
1005 	td = req->td_data;
1006 	while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L)))
1007 		td = phys_to_virt(td->next);
1008 
1009 	return td;
1010 
1011 }
1012 
1013 /* Iterates to the end of a DMA chain and counts bytes received */
udc_get_ppbdu_rxbytes(struct udc_request * req)1014 static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
1015 {
1016 	struct udc_data_dma	*td;
1017 	u32 count;
1018 
1019 	td = req->td_data;
1020 	/* received number bytes */
1021 	count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
1022 
1023 	while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
1024 		td = phys_to_virt(td->next);
1025 		/* received number bytes */
1026 		if (td) {
1027 			count += AMD_GETBITS(td->status,
1028 				UDC_DMA_OUT_STS_RXBYTES);
1029 		}
1030 	}
1031 
1032 	return count;
1033 
1034 }
1035 
1036 /* Enabling RX DMA */
udc_set_rde(struct udc * dev)1037 static void udc_set_rde(struct udc *dev)
1038 {
1039 	u32 tmp;
1040 
1041 	VDBG(dev, "udc_set_rde()\n");
1042 	/* stop RDE timer */
1043 	if (timer_pending(&udc_timer)) {
1044 		set_rde = 0;
1045 		mod_timer(&udc_timer, jiffies - 1);
1046 	}
1047 	/* set RDE */
1048 	tmp = readl(&dev->regs->ctl);
1049 	tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1050 	writel(tmp, &dev->regs->ctl);
1051 }
1052 
1053 /* Queues a request packet, called by gadget driver */
1054 static int
udc_queue(struct usb_ep * usbep,struct usb_request * usbreq,gfp_t gfp)1055 udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
1056 {
1057 	int			retval = 0;
1058 	u8			open_rxfifo = 0;
1059 	unsigned long		iflags;
1060 	struct udc_ep		*ep;
1061 	struct udc_request	*req;
1062 	struct udc		*dev;
1063 	u32			tmp;
1064 
1065 	/* check the inputs */
1066 	req = container_of(usbreq, struct udc_request, req);
1067 
1068 	if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
1069 			|| !list_empty(&req->queue))
1070 		return -EINVAL;
1071 
1072 	ep = container_of(usbep, struct udc_ep, ep);
1073 	if (!ep->ep.desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1074 		return -EINVAL;
1075 
1076 	VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
1077 	dev = ep->dev;
1078 
1079 	if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
1080 		return -ESHUTDOWN;
1081 
1082 	/* map dma (usually done before) */
1083 	if (ep->dma) {
1084 		VDBG(dev, "DMA map req %p\n", req);
1085 		retval = usb_gadget_map_request(&udc->gadget, usbreq, ep->in);
1086 		if (retval)
1087 			return retval;
1088 	}
1089 
1090 	VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n",
1091 			usbep->name, usbreq, usbreq->length,
1092 			req->td_data, usbreq->buf);
1093 
1094 	spin_lock_irqsave(&dev->lock, iflags);
1095 	usbreq->actual = 0;
1096 	usbreq->status = -EINPROGRESS;
1097 	req->dma_done = 0;
1098 
1099 	/* on empty queue just do first transfer */
1100 	if (list_empty(&ep->queue)) {
1101 		/* zlp */
1102 		if (usbreq->length == 0) {
1103 			/* IN zlp's are handled by hardware */
1104 			complete_req(ep, req, 0);
1105 			VDBG(dev, "%s: zlp\n", ep->ep.name);
1106 			/*
1107 			 * if set_config or set_intf is waiting for ack by zlp
1108 			 * then set CSR_DONE
1109 			 */
1110 			if (dev->set_cfg_not_acked) {
1111 				tmp = readl(&dev->regs->ctl);
1112 				tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
1113 				writel(tmp, &dev->regs->ctl);
1114 				dev->set_cfg_not_acked = 0;
1115 			}
1116 			/* setup command is ACK'ed now by zlp */
1117 			if (dev->waiting_zlp_ack_ep0in) {
1118 				/* clear NAK by writing CNAK in EP0_IN */
1119 				tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1120 				tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1121 				writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1122 				dev->ep[UDC_EP0IN_IX].naking = 0;
1123 				UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
1124 							UDC_EP0IN_IX);
1125 				dev->waiting_zlp_ack_ep0in = 0;
1126 			}
1127 			goto finished;
1128 		}
1129 		if (ep->dma) {
1130 			retval = prep_dma(ep, req, GFP_ATOMIC);
1131 			if (retval != 0)
1132 				goto finished;
1133 			/* write desc pointer to enable DMA */
1134 			if (ep->in) {
1135 				/* set HOST READY */
1136 				req->td_data->status =
1137 					AMD_ADDBITS(req->td_data->status,
1138 						UDC_DMA_IN_STS_BS_HOST_READY,
1139 						UDC_DMA_IN_STS_BS);
1140 			}
1141 
1142 			/* disabled rx dma while descriptor update */
1143 			if (!ep->in) {
1144 				/* stop RDE timer */
1145 				if (timer_pending(&udc_timer)) {
1146 					set_rde = 0;
1147 					mod_timer(&udc_timer, jiffies - 1);
1148 				}
1149 				/* clear RDE */
1150 				tmp = readl(&dev->regs->ctl);
1151 				tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
1152 				writel(tmp, &dev->regs->ctl);
1153 				open_rxfifo = 1;
1154 
1155 				/*
1156 				 * if BNA occurred then let BNA dummy desc.
1157 				 * point to current desc.
1158 				 */
1159 				if (ep->bna_occurred) {
1160 					VDBG(dev, "copy to BNA dummy desc.\n");
1161 					memcpy(ep->bna_dummy_req->td_data,
1162 						req->td_data,
1163 						sizeof(struct udc_data_dma));
1164 				}
1165 			}
1166 			/* write desc pointer */
1167 			writel(req->td_phys, &ep->regs->desptr);
1168 
1169 			/* clear NAK by writing CNAK */
1170 			if (ep->naking) {
1171 				tmp = readl(&ep->regs->ctl);
1172 				tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1173 				writel(tmp, &ep->regs->ctl);
1174 				ep->naking = 0;
1175 				UDC_QUEUE_CNAK(ep, ep->num);
1176 			}
1177 
1178 			if (ep->in) {
1179 				/* enable ep irq */
1180 				tmp = readl(&dev->regs->ep_irqmsk);
1181 				tmp &= AMD_UNMASK_BIT(ep->num);
1182 				writel(tmp, &dev->regs->ep_irqmsk);
1183 			}
1184 		} else if (ep->in) {
1185 				/* enable ep irq */
1186 				tmp = readl(&dev->regs->ep_irqmsk);
1187 				tmp &= AMD_UNMASK_BIT(ep->num);
1188 				writel(tmp, &dev->regs->ep_irqmsk);
1189 			}
1190 
1191 	} else if (ep->dma) {
1192 
1193 		/*
1194 		 * prep_dma not used for OUT ep's, this is not possible
1195 		 * for PPB modes, because of chain creation reasons
1196 		 */
1197 		if (ep->in) {
1198 			retval = prep_dma(ep, req, GFP_ATOMIC);
1199 			if (retval != 0)
1200 				goto finished;
1201 		}
1202 	}
1203 	VDBG(dev, "list_add\n");
1204 	/* add request to ep queue */
1205 	if (req) {
1206 
1207 		list_add_tail(&req->queue, &ep->queue);
1208 
1209 		/* open rxfifo if out data queued */
1210 		if (open_rxfifo) {
1211 			/* enable DMA */
1212 			req->dma_going = 1;
1213 			udc_set_rde(dev);
1214 			if (ep->num != UDC_EP0OUT_IX)
1215 				dev->data_ep_queued = 1;
1216 		}
1217 		/* stop OUT naking */
1218 		if (!ep->in) {
1219 			if (!use_dma && udc_rxfifo_pending) {
1220 				DBG(dev, "udc_queue(): pending bytes in "
1221 					"rxfifo after nyet\n");
1222 				/*
1223 				 * read pending bytes afer nyet:
1224 				 * referring to isr
1225 				 */
1226 				if (udc_rxfifo_read(ep, req)) {
1227 					/* finish */
1228 					complete_req(ep, req, 0);
1229 				}
1230 				udc_rxfifo_pending = 0;
1231 
1232 			}
1233 		}
1234 	}
1235 
1236 finished:
1237 	spin_unlock_irqrestore(&dev->lock, iflags);
1238 	return retval;
1239 }
1240 
1241 /* Empty request queue of an endpoint; caller holds spinlock */
empty_req_queue(struct udc_ep * ep)1242 void empty_req_queue(struct udc_ep *ep)
1243 {
1244 	struct udc_request	*req;
1245 
1246 	ep->halted = 1;
1247 	while (!list_empty(&ep->queue)) {
1248 		req = list_entry(ep->queue.next,
1249 			struct udc_request,
1250 			queue);
1251 		complete_req(ep, req, -ESHUTDOWN);
1252 	}
1253 }
1254 EXPORT_SYMBOL_GPL(empty_req_queue);
1255 
1256 /* Dequeues a request packet, called by gadget driver */
udc_dequeue(struct usb_ep * usbep,struct usb_request * usbreq)1257 static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
1258 {
1259 	struct udc_ep		*ep;
1260 	struct udc_request	*req;
1261 	unsigned		halted;
1262 	unsigned long		iflags;
1263 
1264 	ep = container_of(usbep, struct udc_ep, ep);
1265 	if (!usbep || !usbreq || (!ep->ep.desc && (ep->num != 0
1266 				&& ep->num != UDC_EP0OUT_IX)))
1267 		return -EINVAL;
1268 
1269 	req = container_of(usbreq, struct udc_request, req);
1270 
1271 	spin_lock_irqsave(&ep->dev->lock, iflags);
1272 	halted = ep->halted;
1273 	ep->halted = 1;
1274 	/* request in processing or next one */
1275 	if (ep->queue.next == &req->queue) {
1276 		if (ep->dma && req->dma_going) {
1277 			if (ep->in)
1278 				ep->cancel_transfer = 1;
1279 			else {
1280 				u32 tmp;
1281 				u32 dma_sts;
1282 				/* stop potential receive DMA */
1283 				tmp = readl(&udc->regs->ctl);
1284 				writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE),
1285 							&udc->regs->ctl);
1286 				/*
1287 				 * Cancel transfer later in ISR
1288 				 * if descriptor was touched.
1289 				 */
1290 				dma_sts = AMD_GETBITS(req->td_data->status,
1291 							UDC_DMA_OUT_STS_BS);
1292 				if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
1293 					ep->cancel_transfer = 1;
1294 				else {
1295 					udc_init_bna_dummy(ep->req);
1296 					writel(ep->bna_dummy_req->td_phys,
1297 						&ep->regs->desptr);
1298 				}
1299 				writel(tmp, &udc->regs->ctl);
1300 			}
1301 		}
1302 	}
1303 	complete_req(ep, req, -ECONNRESET);
1304 	ep->halted = halted;
1305 
1306 	spin_unlock_irqrestore(&ep->dev->lock, iflags);
1307 	return 0;
1308 }
1309 
1310 /* Halt or clear halt of endpoint */
1311 static int
udc_set_halt(struct usb_ep * usbep,int halt)1312 udc_set_halt(struct usb_ep *usbep, int halt)
1313 {
1314 	struct udc_ep	*ep;
1315 	u32 tmp;
1316 	unsigned long iflags;
1317 	int retval = 0;
1318 
1319 	if (!usbep)
1320 		return -EINVAL;
1321 
1322 	pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
1323 
1324 	ep = container_of(usbep, struct udc_ep, ep);
1325 	if (!ep->ep.desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1326 		return -EINVAL;
1327 	if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
1328 		return -ESHUTDOWN;
1329 
1330 	spin_lock_irqsave(&udc_stall_spinlock, iflags);
1331 	/* halt or clear halt */
1332 	if (halt) {
1333 		if (ep->num == 0)
1334 			ep->dev->stall_ep0in = 1;
1335 		else {
1336 			/*
1337 			 * set STALL
1338 			 * rxfifo empty not taken into acount
1339 			 */
1340 			tmp = readl(&ep->regs->ctl);
1341 			tmp |= AMD_BIT(UDC_EPCTL_S);
1342 			writel(tmp, &ep->regs->ctl);
1343 			ep->halted = 1;
1344 
1345 			/* setup poll timer */
1346 			if (!timer_pending(&udc_pollstall_timer)) {
1347 				udc_pollstall_timer.expires = jiffies +
1348 					HZ * UDC_POLLSTALL_TIMER_USECONDS
1349 					/ (1000 * 1000);
1350 				if (!stop_pollstall_timer) {
1351 					DBG(ep->dev, "start polltimer\n");
1352 					add_timer(&udc_pollstall_timer);
1353 				}
1354 			}
1355 		}
1356 	} else {
1357 		/* ep is halted by set_halt() before */
1358 		if (ep->halted) {
1359 			tmp = readl(&ep->regs->ctl);
1360 			/* clear stall bit */
1361 			tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
1362 			/* clear NAK by writing CNAK */
1363 			tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1364 			writel(tmp, &ep->regs->ctl);
1365 			ep->halted = 0;
1366 			UDC_QUEUE_CNAK(ep, ep->num);
1367 		}
1368 	}
1369 	spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
1370 	return retval;
1371 }
1372 
1373 /* gadget interface */
1374 static const struct usb_ep_ops udc_ep_ops = {
1375 	.enable		= udc_ep_enable,
1376 	.disable	= udc_ep_disable,
1377 
1378 	.alloc_request	= udc_alloc_request,
1379 	.free_request	= udc_free_request,
1380 
1381 	.queue		= udc_queue,
1382 	.dequeue	= udc_dequeue,
1383 
1384 	.set_halt	= udc_set_halt,
1385 	/* fifo ops not implemented */
1386 };
1387 
1388 /*-------------------------------------------------------------------------*/
1389 
1390 /* Get frame counter (not implemented) */
udc_get_frame(struct usb_gadget * gadget)1391 static int udc_get_frame(struct usb_gadget *gadget)
1392 {
1393 	return -EOPNOTSUPP;
1394 }
1395 
1396 /* Initiates a remote wakeup */
udc_remote_wakeup(struct udc * dev)1397 static int udc_remote_wakeup(struct udc *dev)
1398 {
1399 	unsigned long flags;
1400 	u32 tmp;
1401 
1402 	DBG(dev, "UDC initiates remote wakeup\n");
1403 
1404 	spin_lock_irqsave(&dev->lock, flags);
1405 
1406 	tmp = readl(&dev->regs->ctl);
1407 	tmp |= AMD_BIT(UDC_DEVCTL_RES);
1408 	writel(tmp, &dev->regs->ctl);
1409 	tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
1410 	writel(tmp, &dev->regs->ctl);
1411 
1412 	spin_unlock_irqrestore(&dev->lock, flags);
1413 	return 0;
1414 }
1415 
1416 /* Remote wakeup gadget interface */
udc_wakeup(struct usb_gadget * gadget)1417 static int udc_wakeup(struct usb_gadget *gadget)
1418 {
1419 	struct udc		*dev;
1420 
1421 	if (!gadget)
1422 		return -EINVAL;
1423 	dev = container_of(gadget, struct udc, gadget);
1424 	udc_remote_wakeup(dev);
1425 
1426 	return 0;
1427 }
1428 
1429 static int amd5536_udc_start(struct usb_gadget *g,
1430 		struct usb_gadget_driver *driver);
1431 static int amd5536_udc_stop(struct usb_gadget *g);
1432 
1433 static const struct usb_gadget_ops udc_ops = {
1434 	.wakeup		= udc_wakeup,
1435 	.get_frame	= udc_get_frame,
1436 	.udc_start	= amd5536_udc_start,
1437 	.udc_stop	= amd5536_udc_stop,
1438 };
1439 
1440 /* Setups endpoint parameters, adds endpoints to linked list */
make_ep_lists(struct udc * dev)1441 static void make_ep_lists(struct udc *dev)
1442 {
1443 	/* make gadget ep lists */
1444 	INIT_LIST_HEAD(&dev->gadget.ep_list);
1445 	list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
1446 						&dev->gadget.ep_list);
1447 	list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
1448 						&dev->gadget.ep_list);
1449 	list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
1450 						&dev->gadget.ep_list);
1451 
1452 	/* fifo config */
1453 	dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE;
1454 	if (dev->gadget.speed == USB_SPEED_FULL)
1455 		dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
1456 	else if (dev->gadget.speed == USB_SPEED_HIGH)
1457 		dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
1458 	dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
1459 }
1460 
1461 /* Inits UDC context */
udc_basic_init(struct udc * dev)1462 void udc_basic_init(struct udc *dev)
1463 {
1464 	u32	tmp;
1465 
1466 	DBG(dev, "udc_basic_init()\n");
1467 
1468 	dev->gadget.speed = USB_SPEED_UNKNOWN;
1469 
1470 	/* stop RDE timer */
1471 	if (timer_pending(&udc_timer)) {
1472 		set_rde = 0;
1473 		mod_timer(&udc_timer, jiffies - 1);
1474 	}
1475 	/* stop poll stall timer */
1476 	if (timer_pending(&udc_pollstall_timer))
1477 		mod_timer(&udc_pollstall_timer, jiffies - 1);
1478 	/* disable DMA */
1479 	tmp = readl(&dev->regs->ctl);
1480 	tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
1481 	tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE);
1482 	writel(tmp, &dev->regs->ctl);
1483 
1484 	/* enable dynamic CSR programming */
1485 	tmp = readl(&dev->regs->cfg);
1486 	tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
1487 	/* set self powered */
1488 	tmp |= AMD_BIT(UDC_DEVCFG_SP);
1489 	/* set remote wakeupable */
1490 	tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
1491 	writel(tmp, &dev->regs->cfg);
1492 
1493 	make_ep_lists(dev);
1494 
1495 	dev->data_ep_enabled = 0;
1496 	dev->data_ep_queued = 0;
1497 }
1498 EXPORT_SYMBOL_GPL(udc_basic_init);
1499 
1500 /* init registers at driver load time */
startup_registers(struct udc * dev)1501 static int startup_registers(struct udc *dev)
1502 {
1503 	u32 tmp;
1504 
1505 	/* init controller by soft reset */
1506 	udc_soft_reset(dev);
1507 
1508 	/* mask not needed interrupts */
1509 	udc_mask_unused_interrupts(dev);
1510 
1511 	/* put into initial config */
1512 	udc_basic_init(dev);
1513 	/* link up all endpoints */
1514 	udc_setup_endpoints(dev);
1515 
1516 	/* program speed */
1517 	tmp = readl(&dev->regs->cfg);
1518 	if (use_fullspeed)
1519 		tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1520 	else
1521 		tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
1522 	writel(tmp, &dev->regs->cfg);
1523 
1524 	return 0;
1525 }
1526 
1527 /* Sets initial endpoint parameters */
udc_setup_endpoints(struct udc * dev)1528 static void udc_setup_endpoints(struct udc *dev)
1529 {
1530 	struct udc_ep	*ep;
1531 	u32	tmp;
1532 	u32	reg;
1533 
1534 	DBG(dev, "udc_setup_endpoints()\n");
1535 
1536 	/* read enum speed */
1537 	tmp = readl(&dev->regs->sts);
1538 	tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
1539 	if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH)
1540 		dev->gadget.speed = USB_SPEED_HIGH;
1541 	else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL)
1542 		dev->gadget.speed = USB_SPEED_FULL;
1543 
1544 	/* set basic ep parameters */
1545 	for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
1546 		ep = &dev->ep[tmp];
1547 		ep->dev = dev;
1548 		ep->ep.name = ep_info[tmp].name;
1549 		ep->ep.caps = ep_info[tmp].caps;
1550 		ep->num = tmp;
1551 		/* txfifo size is calculated at enable time */
1552 		ep->txfifo = dev->txfifo;
1553 
1554 		/* fifo size */
1555 		if (tmp < UDC_EPIN_NUM) {
1556 			ep->fifo_depth = UDC_TXFIFO_SIZE;
1557 			ep->in = 1;
1558 		} else {
1559 			ep->fifo_depth = UDC_RXFIFO_SIZE;
1560 			ep->in = 0;
1561 
1562 		}
1563 		ep->regs = &dev->ep_regs[tmp];
1564 		/*
1565 		 * ep will be reset only if ep was not enabled before to avoid
1566 		 * disabling ep interrupts when ENUM interrupt occurs but ep is
1567 		 * not enabled by gadget driver
1568 		 */
1569 		if (!ep->ep.desc)
1570 			ep_init(dev->regs, ep);
1571 
1572 		if (use_dma) {
1573 			/*
1574 			 * ep->dma is not really used, just to indicate that
1575 			 * DMA is active: remove this
1576 			 * dma regs = dev control regs
1577 			 */
1578 			ep->dma = &dev->regs->ctl;
1579 
1580 			/* nak OUT endpoints until enable - not for ep0 */
1581 			if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
1582 						&& tmp > UDC_EPIN_NUM) {
1583 				/* set NAK */
1584 				reg = readl(&dev->ep[tmp].regs->ctl);
1585 				reg |= AMD_BIT(UDC_EPCTL_SNAK);
1586 				writel(reg, &dev->ep[tmp].regs->ctl);
1587 				dev->ep[tmp].naking = 1;
1588 
1589 			}
1590 		}
1591 	}
1592 	/* EP0 max packet */
1593 	if (dev->gadget.speed == USB_SPEED_FULL) {
1594 		usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IX].ep,
1595 					   UDC_FS_EP0IN_MAX_PKT_SIZE);
1596 		usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IX].ep,
1597 					   UDC_FS_EP0OUT_MAX_PKT_SIZE);
1598 	} else if (dev->gadget.speed == USB_SPEED_HIGH) {
1599 		usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IX].ep,
1600 					   UDC_EP0IN_MAX_PKT_SIZE);
1601 		usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IX].ep,
1602 					   UDC_EP0OUT_MAX_PKT_SIZE);
1603 	}
1604 
1605 	/*
1606 	 * with suspend bug workaround, ep0 params for gadget driver
1607 	 * are set at gadget driver bind() call
1608 	 */
1609 	dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
1610 	dev->ep[UDC_EP0IN_IX].halted = 0;
1611 	INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
1612 
1613 	/* init cfg/alt/int */
1614 	dev->cur_config = 0;
1615 	dev->cur_intf = 0;
1616 	dev->cur_alt = 0;
1617 }
1618 
1619 /* Bringup after Connect event, initial bringup to be ready for ep0 events */
usb_connect(struct udc * dev)1620 static void usb_connect(struct udc *dev)
1621 {
1622 	/* Return if already connected */
1623 	if (dev->connected)
1624 		return;
1625 
1626 	dev_info(dev->dev, "USB Connect\n");
1627 
1628 	dev->connected = 1;
1629 
1630 	/* put into initial config */
1631 	udc_basic_init(dev);
1632 
1633 	/* enable device setup interrupts */
1634 	udc_enable_dev_setup_interrupts(dev);
1635 }
1636 
1637 /*
1638  * Calls gadget with disconnect event and resets the UDC and makes
1639  * initial bringup to be ready for ep0 events
1640  */
usb_disconnect(struct udc * dev)1641 static void usb_disconnect(struct udc *dev)
1642 {
1643 	/* Return if already disconnected */
1644 	if (!dev->connected)
1645 		return;
1646 
1647 	dev_info(dev->dev, "USB Disconnect\n");
1648 
1649 	dev->connected = 0;
1650 
1651 	/* mask interrupts */
1652 	udc_mask_unused_interrupts(dev);
1653 
1654 	/* REVISIT there doesn't seem to be a point to having this
1655 	 * talk to a tasklet ... do it directly, we already hold
1656 	 * the spinlock needed to process the disconnect.
1657 	 */
1658 
1659 	tasklet_schedule(&disconnect_tasklet);
1660 }
1661 
1662 /* Tasklet for disconnect to be outside of interrupt context */
udc_tasklet_disconnect(unsigned long par)1663 static void udc_tasklet_disconnect(unsigned long par)
1664 {
1665 	struct udc *dev = (struct udc *)(*((struct udc **) par));
1666 	u32 tmp;
1667 
1668 	DBG(dev, "Tasklet disconnect\n");
1669 	spin_lock_irq(&dev->lock);
1670 
1671 	if (dev->driver) {
1672 		spin_unlock(&dev->lock);
1673 		dev->driver->disconnect(&dev->gadget);
1674 		spin_lock(&dev->lock);
1675 
1676 		/* empty queues */
1677 		for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
1678 			empty_req_queue(&dev->ep[tmp]);
1679 
1680 	}
1681 
1682 	/* disable ep0 */
1683 	ep_init(dev->regs,
1684 			&dev->ep[UDC_EP0IN_IX]);
1685 
1686 
1687 	if (!soft_reset_occured) {
1688 		/* init controller by soft reset */
1689 		udc_soft_reset(dev);
1690 		soft_reset_occured++;
1691 	}
1692 
1693 	/* re-enable dev interrupts */
1694 	udc_enable_dev_setup_interrupts(dev);
1695 	/* back to full speed ? */
1696 	if (use_fullspeed) {
1697 		tmp = readl(&dev->regs->cfg);
1698 		tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1699 		writel(tmp, &dev->regs->cfg);
1700 	}
1701 
1702 	spin_unlock_irq(&dev->lock);
1703 }
1704 
1705 /* Reset the UDC core */
udc_soft_reset(struct udc * dev)1706 static void udc_soft_reset(struct udc *dev)
1707 {
1708 	unsigned long	flags;
1709 
1710 	DBG(dev, "Soft reset\n");
1711 	/*
1712 	 * reset possible waiting interrupts, because int.
1713 	 * status is lost after soft reset,
1714 	 * ep int. status reset
1715 	 */
1716 	writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
1717 	/* device int. status reset */
1718 	writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
1719 
1720 	/* Don't do this for Broadcom UDC since this is a reserved
1721 	 * bit.
1722 	 */
1723 	if (dev->chiprev != UDC_BCM_REV) {
1724 		spin_lock_irqsave(&udc_irq_spinlock, flags);
1725 		writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
1726 		readl(&dev->regs->cfg);
1727 		spin_unlock_irqrestore(&udc_irq_spinlock, flags);
1728 	}
1729 }
1730 
1731 /* RDE timer callback to set RDE bit */
udc_timer_function(struct timer_list * unused)1732 static void udc_timer_function(struct timer_list *unused)
1733 {
1734 	u32 tmp;
1735 
1736 	spin_lock_irq(&udc_irq_spinlock);
1737 
1738 	if (set_rde > 0) {
1739 		/*
1740 		 * open the fifo if fifo was filled on last timer call
1741 		 * conditionally
1742 		 */
1743 		if (set_rde > 1) {
1744 			/* set RDE to receive setup data */
1745 			tmp = readl(&udc->regs->ctl);
1746 			tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1747 			writel(tmp, &udc->regs->ctl);
1748 			set_rde = -1;
1749 		} else if (readl(&udc->regs->sts)
1750 				& AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
1751 			/*
1752 			 * if fifo empty setup polling, do not just
1753 			 * open the fifo
1754 			 */
1755 			udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
1756 			if (!stop_timer)
1757 				add_timer(&udc_timer);
1758 		} else {
1759 			/*
1760 			 * fifo contains data now, setup timer for opening
1761 			 * the fifo when timer expires to be able to receive
1762 			 * setup packets, when data packets gets queued by
1763 			 * gadget layer then timer will forced to expire with
1764 			 * set_rde=0 (RDE is set in udc_queue())
1765 			 */
1766 			set_rde++;
1767 			/* debug: lhadmot_timer_start = 221070 */
1768 			udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
1769 			if (!stop_timer)
1770 				add_timer(&udc_timer);
1771 		}
1772 
1773 	} else
1774 		set_rde = -1; /* RDE was set by udc_queue() */
1775 	spin_unlock_irq(&udc_irq_spinlock);
1776 	if (stop_timer)
1777 		complete(&on_exit);
1778 
1779 }
1780 
1781 /* Handle halt state, used in stall poll timer */
udc_handle_halt_state(struct udc_ep * ep)1782 static void udc_handle_halt_state(struct udc_ep *ep)
1783 {
1784 	u32 tmp;
1785 	/* set stall as long not halted */
1786 	if (ep->halted == 1) {
1787 		tmp = readl(&ep->regs->ctl);
1788 		/* STALL cleared ? */
1789 		if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
1790 			/*
1791 			 * FIXME: MSC spec requires that stall remains
1792 			 * even on receivng of CLEAR_FEATURE HALT. So
1793 			 * we would set STALL again here to be compliant.
1794 			 * But with current mass storage drivers this does
1795 			 * not work (would produce endless host retries).
1796 			 * So we clear halt on CLEAR_FEATURE.
1797 			 *
1798 			DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
1799 			tmp |= AMD_BIT(UDC_EPCTL_S);
1800 			writel(tmp, &ep->regs->ctl);*/
1801 
1802 			/* clear NAK by writing CNAK */
1803 			tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1804 			writel(tmp, &ep->regs->ctl);
1805 			ep->halted = 0;
1806 			UDC_QUEUE_CNAK(ep, ep->num);
1807 		}
1808 	}
1809 }
1810 
1811 /* Stall timer callback to poll S bit and set it again after */
udc_pollstall_timer_function(struct timer_list * unused)1812 static void udc_pollstall_timer_function(struct timer_list *unused)
1813 {
1814 	struct udc_ep *ep;
1815 	int halted = 0;
1816 
1817 	spin_lock_irq(&udc_stall_spinlock);
1818 	/*
1819 	 * only one IN and OUT endpoints are handled
1820 	 * IN poll stall
1821 	 */
1822 	ep = &udc->ep[UDC_EPIN_IX];
1823 	udc_handle_halt_state(ep);
1824 	if (ep->halted)
1825 		halted = 1;
1826 	/* OUT poll stall */
1827 	ep = &udc->ep[UDC_EPOUT_IX];
1828 	udc_handle_halt_state(ep);
1829 	if (ep->halted)
1830 		halted = 1;
1831 
1832 	/* setup timer again when still halted */
1833 	if (!stop_pollstall_timer && halted) {
1834 		udc_pollstall_timer.expires = jiffies +
1835 					HZ * UDC_POLLSTALL_TIMER_USECONDS
1836 					/ (1000 * 1000);
1837 		add_timer(&udc_pollstall_timer);
1838 	}
1839 	spin_unlock_irq(&udc_stall_spinlock);
1840 
1841 	if (stop_pollstall_timer)
1842 		complete(&on_pollstall_exit);
1843 }
1844 
1845 /* Inits endpoint 0 so that SETUP packets are processed */
activate_control_endpoints(struct udc * dev)1846 static void activate_control_endpoints(struct udc *dev)
1847 {
1848 	u32 tmp;
1849 
1850 	DBG(dev, "activate_control_endpoints\n");
1851 
1852 	/* flush fifo */
1853 	tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1854 	tmp |= AMD_BIT(UDC_EPCTL_F);
1855 	writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1856 
1857 	/* set ep0 directions */
1858 	dev->ep[UDC_EP0IN_IX].in = 1;
1859 	dev->ep[UDC_EP0OUT_IX].in = 0;
1860 
1861 	/* set buffer size (tx fifo entries) of EP0_IN */
1862 	tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1863 	if (dev->gadget.speed == USB_SPEED_FULL)
1864 		tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE,
1865 					UDC_EPIN_BUFF_SIZE);
1866 	else if (dev->gadget.speed == USB_SPEED_HIGH)
1867 		tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
1868 					UDC_EPIN_BUFF_SIZE);
1869 	writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1870 
1871 	/* set max packet size of EP0_IN */
1872 	tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1873 	if (dev->gadget.speed == USB_SPEED_FULL)
1874 		tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE,
1875 					UDC_EP_MAX_PKT_SIZE);
1876 	else if (dev->gadget.speed == USB_SPEED_HIGH)
1877 		tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE,
1878 				UDC_EP_MAX_PKT_SIZE);
1879 	writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1880 
1881 	/* set max packet size of EP0_OUT */
1882 	tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1883 	if (dev->gadget.speed == USB_SPEED_FULL)
1884 		tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
1885 					UDC_EP_MAX_PKT_SIZE);
1886 	else if (dev->gadget.speed == USB_SPEED_HIGH)
1887 		tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
1888 					UDC_EP_MAX_PKT_SIZE);
1889 	writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1890 
1891 	/* set max packet size of EP0 in UDC CSR */
1892 	tmp = readl(&dev->csr->ne[0]);
1893 	if (dev->gadget.speed == USB_SPEED_FULL)
1894 		tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
1895 					UDC_CSR_NE_MAX_PKT);
1896 	else if (dev->gadget.speed == USB_SPEED_HIGH)
1897 		tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
1898 					UDC_CSR_NE_MAX_PKT);
1899 	writel(tmp, &dev->csr->ne[0]);
1900 
1901 	if (use_dma) {
1902 		dev->ep[UDC_EP0OUT_IX].td->status |=
1903 			AMD_BIT(UDC_DMA_OUT_STS_L);
1904 		/* write dma desc address */
1905 		writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
1906 			&dev->ep[UDC_EP0OUT_IX].regs->subptr);
1907 		writel(dev->ep[UDC_EP0OUT_IX].td_phys,
1908 			&dev->ep[UDC_EP0OUT_IX].regs->desptr);
1909 		/* stop RDE timer */
1910 		if (timer_pending(&udc_timer)) {
1911 			set_rde = 0;
1912 			mod_timer(&udc_timer, jiffies - 1);
1913 		}
1914 		/* stop pollstall timer */
1915 		if (timer_pending(&udc_pollstall_timer))
1916 			mod_timer(&udc_pollstall_timer, jiffies - 1);
1917 		/* enable DMA */
1918 		tmp = readl(&dev->regs->ctl);
1919 		tmp |= AMD_BIT(UDC_DEVCTL_MODE)
1920 				| AMD_BIT(UDC_DEVCTL_RDE)
1921 				| AMD_BIT(UDC_DEVCTL_TDE);
1922 		if (use_dma_bufferfill_mode)
1923 			tmp |= AMD_BIT(UDC_DEVCTL_BF);
1924 		else if (use_dma_ppb_du)
1925 			tmp |= AMD_BIT(UDC_DEVCTL_DU);
1926 		writel(tmp, &dev->regs->ctl);
1927 	}
1928 
1929 	/* clear NAK by writing CNAK for EP0IN */
1930 	tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1931 	tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1932 	writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1933 	dev->ep[UDC_EP0IN_IX].naking = 0;
1934 	UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
1935 
1936 	/* clear NAK by writing CNAK for EP0OUT */
1937 	tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
1938 	tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1939 	writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
1940 	dev->ep[UDC_EP0OUT_IX].naking = 0;
1941 	UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
1942 }
1943 
1944 /* Make endpoint 0 ready for control traffic */
setup_ep0(struct udc * dev)1945 static int setup_ep0(struct udc *dev)
1946 {
1947 	activate_control_endpoints(dev);
1948 	/* enable ep0 interrupts */
1949 	udc_enable_ep0_interrupts(dev);
1950 	/* enable device setup interrupts */
1951 	udc_enable_dev_setup_interrupts(dev);
1952 
1953 	return 0;
1954 }
1955 
1956 /* Called by gadget driver to register itself */
amd5536_udc_start(struct usb_gadget * g,struct usb_gadget_driver * driver)1957 static int amd5536_udc_start(struct usb_gadget *g,
1958 		struct usb_gadget_driver *driver)
1959 {
1960 	struct udc *dev = to_amd5536_udc(g);
1961 	u32 tmp;
1962 
1963 	driver->driver.bus = NULL;
1964 	dev->driver = driver;
1965 
1966 	/* Some gadget drivers use both ep0 directions.
1967 	 * NOTE: to gadget driver, ep0 is just one endpoint...
1968 	 */
1969 	dev->ep[UDC_EP0OUT_IX].ep.driver_data =
1970 		dev->ep[UDC_EP0IN_IX].ep.driver_data;
1971 
1972 	/* get ready for ep0 traffic */
1973 	setup_ep0(dev);
1974 
1975 	/* clear SD */
1976 	tmp = readl(&dev->regs->ctl);
1977 	tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
1978 	writel(tmp, &dev->regs->ctl);
1979 
1980 	usb_connect(dev);
1981 
1982 	return 0;
1983 }
1984 
1985 /* shutdown requests and disconnect from gadget */
1986 static void
shutdown(struct udc * dev,struct usb_gadget_driver * driver)1987 shutdown(struct udc *dev, struct usb_gadget_driver *driver)
1988 __releases(dev->lock)
1989 __acquires(dev->lock)
1990 {
1991 	int tmp;
1992 
1993 	/* empty queues and init hardware */
1994 	udc_basic_init(dev);
1995 
1996 	for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
1997 		empty_req_queue(&dev->ep[tmp]);
1998 
1999 	udc_setup_endpoints(dev);
2000 }
2001 
2002 /* Called by gadget driver to unregister itself */
amd5536_udc_stop(struct usb_gadget * g)2003 static int amd5536_udc_stop(struct usb_gadget *g)
2004 {
2005 	struct udc *dev = to_amd5536_udc(g);
2006 	unsigned long flags;
2007 	u32 tmp;
2008 
2009 	spin_lock_irqsave(&dev->lock, flags);
2010 	udc_mask_unused_interrupts(dev);
2011 	shutdown(dev, NULL);
2012 	spin_unlock_irqrestore(&dev->lock, flags);
2013 
2014 	dev->driver = NULL;
2015 
2016 	/* set SD */
2017 	tmp = readl(&dev->regs->ctl);
2018 	tmp |= AMD_BIT(UDC_DEVCTL_SD);
2019 	writel(tmp, &dev->regs->ctl);
2020 
2021 	return 0;
2022 }
2023 
2024 /* Clear pending NAK bits */
udc_process_cnak_queue(struct udc * dev)2025 static void udc_process_cnak_queue(struct udc *dev)
2026 {
2027 	u32 tmp;
2028 	u32 reg;
2029 
2030 	/* check epin's */
2031 	DBG(dev, "CNAK pending queue processing\n");
2032 	for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
2033 		if (cnak_pending & (1 << tmp)) {
2034 			DBG(dev, "CNAK pending for ep%d\n", tmp);
2035 			/* clear NAK by writing CNAK */
2036 			reg = readl(&dev->ep[tmp].regs->ctl);
2037 			reg |= AMD_BIT(UDC_EPCTL_CNAK);
2038 			writel(reg, &dev->ep[tmp].regs->ctl);
2039 			dev->ep[tmp].naking = 0;
2040 			UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
2041 		}
2042 	}
2043 	/* ...	and ep0out */
2044 	if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
2045 		DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
2046 		/* clear NAK by writing CNAK */
2047 		reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2048 		reg |= AMD_BIT(UDC_EPCTL_CNAK);
2049 		writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2050 		dev->ep[UDC_EP0OUT_IX].naking = 0;
2051 		UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
2052 				dev->ep[UDC_EP0OUT_IX].num);
2053 	}
2054 }
2055 
2056 /* Enabling RX DMA after setup packet */
udc_ep0_set_rde(struct udc * dev)2057 static void udc_ep0_set_rde(struct udc *dev)
2058 {
2059 	if (use_dma) {
2060 		/*
2061 		 * only enable RXDMA when no data endpoint enabled
2062 		 * or data is queued
2063 		 */
2064 		if (!dev->data_ep_enabled || dev->data_ep_queued) {
2065 			udc_set_rde(dev);
2066 		} else {
2067 			/*
2068 			 * setup timer for enabling RDE (to not enable
2069 			 * RXFIFO DMA for data endpoints to early)
2070 			 */
2071 			if (set_rde != 0 && !timer_pending(&udc_timer)) {
2072 				udc_timer.expires =
2073 					jiffies + HZ/UDC_RDE_TIMER_DIV;
2074 				set_rde = 1;
2075 				if (!stop_timer)
2076 					add_timer(&udc_timer);
2077 			}
2078 		}
2079 	}
2080 }
2081 
2082 
2083 /* Interrupt handler for data OUT traffic */
udc_data_out_isr(struct udc * dev,int ep_ix)2084 static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
2085 {
2086 	irqreturn_t		ret_val = IRQ_NONE;
2087 	u32			tmp;
2088 	struct udc_ep		*ep;
2089 	struct udc_request	*req;
2090 	unsigned int		count;
2091 	struct udc_data_dma	*td = NULL;
2092 	unsigned		dma_done;
2093 
2094 	VDBG(dev, "ep%d irq\n", ep_ix);
2095 	ep = &dev->ep[ep_ix];
2096 
2097 	tmp = readl(&ep->regs->sts);
2098 	if (use_dma) {
2099 		/* BNA event ? */
2100 		if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2101 			DBG(dev, "BNA ep%dout occurred - DESPTR = %x\n",
2102 					ep->num, readl(&ep->regs->desptr));
2103 			/* clear BNA */
2104 			writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
2105 			if (!ep->cancel_transfer)
2106 				ep->bna_occurred = 1;
2107 			else
2108 				ep->cancel_transfer = 0;
2109 			ret_val = IRQ_HANDLED;
2110 			goto finished;
2111 		}
2112 	}
2113 	/* HE event ? */
2114 	if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
2115 		dev_err(dev->dev, "HE ep%dout occurred\n", ep->num);
2116 
2117 		/* clear HE */
2118 		writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2119 		ret_val = IRQ_HANDLED;
2120 		goto finished;
2121 	}
2122 
2123 	if (!list_empty(&ep->queue)) {
2124 
2125 		/* next request */
2126 		req = list_entry(ep->queue.next,
2127 			struct udc_request, queue);
2128 	} else {
2129 		req = NULL;
2130 		udc_rxfifo_pending = 1;
2131 	}
2132 	VDBG(dev, "req = %p\n", req);
2133 	/* fifo mode */
2134 	if (!use_dma) {
2135 
2136 		/* read fifo */
2137 		if (req && udc_rxfifo_read(ep, req)) {
2138 			ret_val = IRQ_HANDLED;
2139 
2140 			/* finish */
2141 			complete_req(ep, req, 0);
2142 			/* next request */
2143 			if (!list_empty(&ep->queue) && !ep->halted) {
2144 				req = list_entry(ep->queue.next,
2145 					struct udc_request, queue);
2146 			} else
2147 				req = NULL;
2148 		}
2149 
2150 	/* DMA */
2151 	} else if (!ep->cancel_transfer && req) {
2152 		ret_val = IRQ_HANDLED;
2153 
2154 		/* check for DMA done */
2155 		if (!use_dma_ppb) {
2156 			dma_done = AMD_GETBITS(req->td_data->status,
2157 						UDC_DMA_OUT_STS_BS);
2158 		/* packet per buffer mode - rx bytes */
2159 		} else {
2160 			/*
2161 			 * if BNA occurred then recover desc. from
2162 			 * BNA dummy desc.
2163 			 */
2164 			if (ep->bna_occurred) {
2165 				VDBG(dev, "Recover desc. from BNA dummy\n");
2166 				memcpy(req->td_data, ep->bna_dummy_req->td_data,
2167 						sizeof(struct udc_data_dma));
2168 				ep->bna_occurred = 0;
2169 				udc_init_bna_dummy(ep->req);
2170 			}
2171 			td = udc_get_last_dma_desc(req);
2172 			dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
2173 		}
2174 		if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
2175 			/* buffer fill mode - rx bytes */
2176 			if (!use_dma_ppb) {
2177 				/* received number bytes */
2178 				count = AMD_GETBITS(req->td_data->status,
2179 						UDC_DMA_OUT_STS_RXBYTES);
2180 				VDBG(dev, "rx bytes=%u\n", count);
2181 			/* packet per buffer mode - rx bytes */
2182 			} else {
2183 				VDBG(dev, "req->td_data=%p\n", req->td_data);
2184 				VDBG(dev, "last desc = %p\n", td);
2185 				/* received number bytes */
2186 				if (use_dma_ppb_du) {
2187 					/* every desc. counts bytes */
2188 					count = udc_get_ppbdu_rxbytes(req);
2189 				} else {
2190 					/* last desc. counts bytes */
2191 					count = AMD_GETBITS(td->status,
2192 						UDC_DMA_OUT_STS_RXBYTES);
2193 					if (!count && req->req.length
2194 						== UDC_DMA_MAXPACKET) {
2195 						/*
2196 						 * on 64k packets the RXBYTES
2197 						 * field is zero
2198 						 */
2199 						count = UDC_DMA_MAXPACKET;
2200 					}
2201 				}
2202 				VDBG(dev, "last desc rx bytes=%u\n", count);
2203 			}
2204 
2205 			tmp = req->req.length - req->req.actual;
2206 			if (count > tmp) {
2207 				if ((tmp % ep->ep.maxpacket) != 0) {
2208 					DBG(dev, "%s: rx %db, space=%db\n",
2209 						ep->ep.name, count, tmp);
2210 					req->req.status = -EOVERFLOW;
2211 				}
2212 				count = tmp;
2213 			}
2214 			req->req.actual += count;
2215 			req->dma_going = 0;
2216 			/* complete request */
2217 			complete_req(ep, req, 0);
2218 
2219 			/* next request */
2220 			if (!list_empty(&ep->queue) && !ep->halted) {
2221 				req = list_entry(ep->queue.next,
2222 					struct udc_request,
2223 					queue);
2224 				/*
2225 				 * DMA may be already started by udc_queue()
2226 				 * called by gadget drivers completion
2227 				 * routine. This happens when queue
2228 				 * holds one request only.
2229 				 */
2230 				if (req->dma_going == 0) {
2231 					/* next dma */
2232 					if (prep_dma(ep, req, GFP_ATOMIC) != 0)
2233 						goto finished;
2234 					/* write desc pointer */
2235 					writel(req->td_phys,
2236 						&ep->regs->desptr);
2237 					req->dma_going = 1;
2238 					/* enable DMA */
2239 					udc_set_rde(dev);
2240 				}
2241 			} else {
2242 				/*
2243 				 * implant BNA dummy descriptor to allow
2244 				 * RXFIFO opening by RDE
2245 				 */
2246 				if (ep->bna_dummy_req) {
2247 					/* write desc pointer */
2248 					writel(ep->bna_dummy_req->td_phys,
2249 						&ep->regs->desptr);
2250 					ep->bna_occurred = 0;
2251 				}
2252 
2253 				/*
2254 				 * schedule timer for setting RDE if queue
2255 				 * remains empty to allow ep0 packets pass
2256 				 * through
2257 				 */
2258 				if (set_rde != 0
2259 						&& !timer_pending(&udc_timer)) {
2260 					udc_timer.expires =
2261 						jiffies
2262 						+ HZ*UDC_RDE_TIMER_SECONDS;
2263 					set_rde = 1;
2264 					if (!stop_timer)
2265 						add_timer(&udc_timer);
2266 				}
2267 				if (ep->num != UDC_EP0OUT_IX)
2268 					dev->data_ep_queued = 0;
2269 			}
2270 
2271 		} else {
2272 			/*
2273 			* RX DMA must be reenabled for each desc in PPBDU mode
2274 			* and must be enabled for PPBNDU mode in case of BNA
2275 			*/
2276 			udc_set_rde(dev);
2277 		}
2278 
2279 	} else if (ep->cancel_transfer) {
2280 		ret_val = IRQ_HANDLED;
2281 		ep->cancel_transfer = 0;
2282 	}
2283 
2284 	/* check pending CNAKS */
2285 	if (cnak_pending) {
2286 		/* CNAk processing when rxfifo empty only */
2287 		if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2288 			udc_process_cnak_queue(dev);
2289 	}
2290 
2291 	/* clear OUT bits in ep status */
2292 	writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
2293 finished:
2294 	return ret_val;
2295 }
2296 
2297 /* Interrupt handler for data IN traffic */
udc_data_in_isr(struct udc * dev,int ep_ix)2298 static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
2299 {
2300 	irqreturn_t ret_val = IRQ_NONE;
2301 	u32 tmp;
2302 	u32 epsts;
2303 	struct udc_ep *ep;
2304 	struct udc_request *req;
2305 	struct udc_data_dma *td;
2306 	unsigned len;
2307 
2308 	ep = &dev->ep[ep_ix];
2309 
2310 	epsts = readl(&ep->regs->sts);
2311 	if (use_dma) {
2312 		/* BNA ? */
2313 		if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
2314 			dev_err(dev->dev,
2315 				"BNA ep%din occurred - DESPTR = %08lx\n",
2316 				ep->num,
2317 				(unsigned long) readl(&ep->regs->desptr));
2318 
2319 			/* clear BNA */
2320 			writel(epsts, &ep->regs->sts);
2321 			ret_val = IRQ_HANDLED;
2322 			goto finished;
2323 		}
2324 	}
2325 	/* HE event ? */
2326 	if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
2327 		dev_err(dev->dev,
2328 			"HE ep%dn occurred - DESPTR = %08lx\n",
2329 			ep->num, (unsigned long) readl(&ep->regs->desptr));
2330 
2331 		/* clear HE */
2332 		writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2333 		ret_val = IRQ_HANDLED;
2334 		goto finished;
2335 	}
2336 
2337 	/* DMA completion */
2338 	if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
2339 		VDBG(dev, "TDC set- completion\n");
2340 		ret_val = IRQ_HANDLED;
2341 		if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
2342 			req = list_entry(ep->queue.next,
2343 					struct udc_request, queue);
2344 			/*
2345 			 * length bytes transferred
2346 			 * check dma done of last desc. in PPBDU mode
2347 			 */
2348 			if (use_dma_ppb_du) {
2349 				td = udc_get_last_dma_desc(req);
2350 				if (td)
2351 					req->req.actual = req->req.length;
2352 			} else {
2353 				/* assume all bytes transferred */
2354 				req->req.actual = req->req.length;
2355 			}
2356 
2357 			if (req->req.actual == req->req.length) {
2358 				/* complete req */
2359 				complete_req(ep, req, 0);
2360 				req->dma_going = 0;
2361 				/* further request available ? */
2362 				if (list_empty(&ep->queue)) {
2363 					/* disable interrupt */
2364 					tmp = readl(&dev->regs->ep_irqmsk);
2365 					tmp |= AMD_BIT(ep->num);
2366 					writel(tmp, &dev->regs->ep_irqmsk);
2367 				}
2368 			}
2369 		}
2370 		ep->cancel_transfer = 0;
2371 
2372 	}
2373 	/*
2374 	 * status reg has IN bit set and TDC not set (if TDC was handled,
2375 	 * IN must not be handled (UDC defect) ?
2376 	 */
2377 	if ((epsts & AMD_BIT(UDC_EPSTS_IN))
2378 			&& !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
2379 		ret_val = IRQ_HANDLED;
2380 		if (!list_empty(&ep->queue)) {
2381 			/* next request */
2382 			req = list_entry(ep->queue.next,
2383 					struct udc_request, queue);
2384 			/* FIFO mode */
2385 			if (!use_dma) {
2386 				/* write fifo */
2387 				udc_txfifo_write(ep, &req->req);
2388 				len = req->req.length - req->req.actual;
2389 				if (len > ep->ep.maxpacket)
2390 					len = ep->ep.maxpacket;
2391 				req->req.actual += len;
2392 				if (req->req.actual == req->req.length
2393 					|| (len != ep->ep.maxpacket)) {
2394 					/* complete req */
2395 					complete_req(ep, req, 0);
2396 				}
2397 			/* DMA */
2398 			} else if (req && !req->dma_going) {
2399 				VDBG(dev, "IN DMA : req=%p req->td_data=%p\n",
2400 					req, req->td_data);
2401 				if (req->td_data) {
2402 
2403 					req->dma_going = 1;
2404 
2405 					/*
2406 					 * unset L bit of first desc.
2407 					 * for chain
2408 					 */
2409 					if (use_dma_ppb && req->req.length >
2410 							ep->ep.maxpacket) {
2411 						req->td_data->status &=
2412 							AMD_CLEAR_BIT(
2413 							UDC_DMA_IN_STS_L);
2414 					}
2415 
2416 					/* write desc pointer */
2417 					writel(req->td_phys, &ep->regs->desptr);
2418 
2419 					/* set HOST READY */
2420 					req->td_data->status =
2421 						AMD_ADDBITS(
2422 						req->td_data->status,
2423 						UDC_DMA_IN_STS_BS_HOST_READY,
2424 						UDC_DMA_IN_STS_BS);
2425 
2426 					/* set poll demand bit */
2427 					tmp = readl(&ep->regs->ctl);
2428 					tmp |= AMD_BIT(UDC_EPCTL_P);
2429 					writel(tmp, &ep->regs->ctl);
2430 				}
2431 			}
2432 
2433 		} else if (!use_dma && ep->in) {
2434 			/* disable interrupt */
2435 			tmp = readl(
2436 				&dev->regs->ep_irqmsk);
2437 			tmp |= AMD_BIT(ep->num);
2438 			writel(tmp,
2439 				&dev->regs->ep_irqmsk);
2440 		}
2441 	}
2442 	/* clear status bits */
2443 	writel(epsts, &ep->regs->sts);
2444 
2445 finished:
2446 	return ret_val;
2447 
2448 }
2449 
2450 /* Interrupt handler for Control OUT traffic */
udc_control_out_isr(struct udc * dev)2451 static irqreturn_t udc_control_out_isr(struct udc *dev)
2452 __releases(dev->lock)
2453 __acquires(dev->lock)
2454 {
2455 	irqreturn_t ret_val = IRQ_NONE;
2456 	u32 tmp;
2457 	int setup_supported;
2458 	u32 count;
2459 	int set = 0;
2460 	struct udc_ep	*ep;
2461 	struct udc_ep	*ep_tmp;
2462 
2463 	ep = &dev->ep[UDC_EP0OUT_IX];
2464 
2465 	/* clear irq */
2466 	writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
2467 
2468 	tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2469 	/* check BNA and clear if set */
2470 	if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2471 		VDBG(dev, "ep0: BNA set\n");
2472 		writel(AMD_BIT(UDC_EPSTS_BNA),
2473 			&dev->ep[UDC_EP0OUT_IX].regs->sts);
2474 		ep->bna_occurred = 1;
2475 		ret_val = IRQ_HANDLED;
2476 		goto finished;
2477 	}
2478 
2479 	/* type of data: SETUP or DATA 0 bytes */
2480 	tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
2481 	VDBG(dev, "data_typ = %x\n", tmp);
2482 
2483 	/* setup data */
2484 	if (tmp == UDC_EPSTS_OUT_SETUP) {
2485 		ret_val = IRQ_HANDLED;
2486 
2487 		ep->dev->stall_ep0in = 0;
2488 		dev->waiting_zlp_ack_ep0in = 0;
2489 
2490 		/* set NAK for EP0_IN */
2491 		tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2492 		tmp |= AMD_BIT(UDC_EPCTL_SNAK);
2493 		writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2494 		dev->ep[UDC_EP0IN_IX].naking = 1;
2495 		/* get setup data */
2496 		if (use_dma) {
2497 
2498 			/* clear OUT bits in ep status */
2499 			writel(UDC_EPSTS_OUT_CLEAR,
2500 				&dev->ep[UDC_EP0OUT_IX].regs->sts);
2501 
2502 			setup_data.data[0] =
2503 				dev->ep[UDC_EP0OUT_IX].td_stp->data12;
2504 			setup_data.data[1] =
2505 				dev->ep[UDC_EP0OUT_IX].td_stp->data34;
2506 			/* set HOST READY */
2507 			dev->ep[UDC_EP0OUT_IX].td_stp->status =
2508 					UDC_DMA_STP_STS_BS_HOST_READY;
2509 		} else {
2510 			/* read fifo */
2511 			udc_rxfifo_read_dwords(dev, setup_data.data, 2);
2512 		}
2513 
2514 		/* determine direction of control data */
2515 		if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
2516 			dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
2517 			/* enable RDE */
2518 			udc_ep0_set_rde(dev);
2519 			set = 0;
2520 		} else {
2521 			dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
2522 			/*
2523 			 * implant BNA dummy descriptor to allow RXFIFO opening
2524 			 * by RDE
2525 			 */
2526 			if (ep->bna_dummy_req) {
2527 				/* write desc pointer */
2528 				writel(ep->bna_dummy_req->td_phys,
2529 					&dev->ep[UDC_EP0OUT_IX].regs->desptr);
2530 				ep->bna_occurred = 0;
2531 			}
2532 
2533 			set = 1;
2534 			dev->ep[UDC_EP0OUT_IX].naking = 1;
2535 			/*
2536 			 * setup timer for enabling RDE (to not enable
2537 			 * RXFIFO DMA for data to early)
2538 			 */
2539 			set_rde = 1;
2540 			if (!timer_pending(&udc_timer)) {
2541 				udc_timer.expires = jiffies +
2542 							HZ/UDC_RDE_TIMER_DIV;
2543 				if (!stop_timer)
2544 					add_timer(&udc_timer);
2545 			}
2546 		}
2547 
2548 		/*
2549 		 * mass storage reset must be processed here because
2550 		 * next packet may be a CLEAR_FEATURE HALT which would not
2551 		 * clear the stall bit when no STALL handshake was received
2552 		 * before (autostall can cause this)
2553 		 */
2554 		if (setup_data.data[0] == UDC_MSCRES_DWORD0
2555 				&& setup_data.data[1] == UDC_MSCRES_DWORD1) {
2556 			DBG(dev, "MSC Reset\n");
2557 			/*
2558 			 * clear stall bits
2559 			 * only one IN and OUT endpoints are handled
2560 			 */
2561 			ep_tmp = &udc->ep[UDC_EPIN_IX];
2562 			udc_set_halt(&ep_tmp->ep, 0);
2563 			ep_tmp = &udc->ep[UDC_EPOUT_IX];
2564 			udc_set_halt(&ep_tmp->ep, 0);
2565 		}
2566 
2567 		/* call gadget with setup data received */
2568 		spin_unlock(&dev->lock);
2569 		setup_supported = dev->driver->setup(&dev->gadget,
2570 						&setup_data.request);
2571 		spin_lock(&dev->lock);
2572 
2573 		tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2574 		/* ep0 in returns data (not zlp) on IN phase */
2575 		if (setup_supported >= 0 && setup_supported <
2576 				UDC_EP0IN_MAXPACKET) {
2577 			/* clear NAK by writing CNAK in EP0_IN */
2578 			tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2579 			writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2580 			dev->ep[UDC_EP0IN_IX].naking = 0;
2581 			UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
2582 
2583 		/* if unsupported request then stall */
2584 		} else if (setup_supported < 0) {
2585 			tmp |= AMD_BIT(UDC_EPCTL_S);
2586 			writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2587 		} else
2588 			dev->waiting_zlp_ack_ep0in = 1;
2589 
2590 
2591 		/* clear NAK by writing CNAK in EP0_OUT */
2592 		if (!set) {
2593 			tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2594 			tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2595 			writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2596 			dev->ep[UDC_EP0OUT_IX].naking = 0;
2597 			UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
2598 		}
2599 
2600 		if (!use_dma) {
2601 			/* clear OUT bits in ep status */
2602 			writel(UDC_EPSTS_OUT_CLEAR,
2603 				&dev->ep[UDC_EP0OUT_IX].regs->sts);
2604 		}
2605 
2606 	/* data packet 0 bytes */
2607 	} else if (tmp == UDC_EPSTS_OUT_DATA) {
2608 		/* clear OUT bits in ep status */
2609 		writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
2610 
2611 		/* get setup data: only 0 packet */
2612 		if (use_dma) {
2613 			/* no req if 0 packet, just reactivate */
2614 			if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
2615 				VDBG(dev, "ZLP\n");
2616 
2617 				/* set HOST READY */
2618 				dev->ep[UDC_EP0OUT_IX].td->status =
2619 					AMD_ADDBITS(
2620 					dev->ep[UDC_EP0OUT_IX].td->status,
2621 					UDC_DMA_OUT_STS_BS_HOST_READY,
2622 					UDC_DMA_OUT_STS_BS);
2623 				/* enable RDE */
2624 				udc_ep0_set_rde(dev);
2625 				ret_val = IRQ_HANDLED;
2626 
2627 			} else {
2628 				/* control write */
2629 				ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2630 				/* re-program desc. pointer for possible ZLPs */
2631 				writel(dev->ep[UDC_EP0OUT_IX].td_phys,
2632 					&dev->ep[UDC_EP0OUT_IX].regs->desptr);
2633 				/* enable RDE */
2634 				udc_ep0_set_rde(dev);
2635 			}
2636 		} else {
2637 
2638 			/* received number bytes */
2639 			count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2640 			count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
2641 			/* out data for fifo mode not working */
2642 			count = 0;
2643 
2644 			/* 0 packet or real data ? */
2645 			if (count != 0) {
2646 				ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2647 			} else {
2648 				/* dummy read confirm */
2649 				readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
2650 				ret_val = IRQ_HANDLED;
2651 			}
2652 		}
2653 	}
2654 
2655 	/* check pending CNAKS */
2656 	if (cnak_pending) {
2657 		/* CNAk processing when rxfifo empty only */
2658 		if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2659 			udc_process_cnak_queue(dev);
2660 	}
2661 
2662 finished:
2663 	return ret_val;
2664 }
2665 
2666 /* Interrupt handler for Control IN traffic */
udc_control_in_isr(struct udc * dev)2667 static irqreturn_t udc_control_in_isr(struct udc *dev)
2668 {
2669 	irqreturn_t ret_val = IRQ_NONE;
2670 	u32 tmp;
2671 	struct udc_ep *ep;
2672 	struct udc_request *req;
2673 	unsigned len;
2674 
2675 	ep = &dev->ep[UDC_EP0IN_IX];
2676 
2677 	/* clear irq */
2678 	writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
2679 
2680 	tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
2681 	/* DMA completion */
2682 	if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
2683 		VDBG(dev, "isr: TDC clear\n");
2684 		ret_val = IRQ_HANDLED;
2685 
2686 		/* clear TDC bit */
2687 		writel(AMD_BIT(UDC_EPSTS_TDC),
2688 				&dev->ep[UDC_EP0IN_IX].regs->sts);
2689 
2690 	/* status reg has IN bit set ? */
2691 	} else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
2692 		ret_val = IRQ_HANDLED;
2693 
2694 		if (ep->dma) {
2695 			/* clear IN bit */
2696 			writel(AMD_BIT(UDC_EPSTS_IN),
2697 				&dev->ep[UDC_EP0IN_IX].regs->sts);
2698 		}
2699 		if (dev->stall_ep0in) {
2700 			DBG(dev, "stall ep0in\n");
2701 			/* halt ep0in */
2702 			tmp = readl(&ep->regs->ctl);
2703 			tmp |= AMD_BIT(UDC_EPCTL_S);
2704 			writel(tmp, &ep->regs->ctl);
2705 		} else {
2706 			if (!list_empty(&ep->queue)) {
2707 				/* next request */
2708 				req = list_entry(ep->queue.next,
2709 						struct udc_request, queue);
2710 
2711 				if (ep->dma) {
2712 					/* write desc pointer */
2713 					writel(req->td_phys, &ep->regs->desptr);
2714 					/* set HOST READY */
2715 					req->td_data->status =
2716 						AMD_ADDBITS(
2717 						req->td_data->status,
2718 						UDC_DMA_STP_STS_BS_HOST_READY,
2719 						UDC_DMA_STP_STS_BS);
2720 
2721 					/* set poll demand bit */
2722 					tmp =
2723 					readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2724 					tmp |= AMD_BIT(UDC_EPCTL_P);
2725 					writel(tmp,
2726 					&dev->ep[UDC_EP0IN_IX].regs->ctl);
2727 
2728 					/* all bytes will be transferred */
2729 					req->req.actual = req->req.length;
2730 
2731 					/* complete req */
2732 					complete_req(ep, req, 0);
2733 
2734 				} else {
2735 					/* write fifo */
2736 					udc_txfifo_write(ep, &req->req);
2737 
2738 					/* lengh bytes transferred */
2739 					len = req->req.length - req->req.actual;
2740 					if (len > ep->ep.maxpacket)
2741 						len = ep->ep.maxpacket;
2742 
2743 					req->req.actual += len;
2744 					if (req->req.actual == req->req.length
2745 						|| (len != ep->ep.maxpacket)) {
2746 						/* complete req */
2747 						complete_req(ep, req, 0);
2748 					}
2749 				}
2750 
2751 			}
2752 		}
2753 		ep->halted = 0;
2754 		dev->stall_ep0in = 0;
2755 		if (!ep->dma) {
2756 			/* clear IN bit */
2757 			writel(AMD_BIT(UDC_EPSTS_IN),
2758 				&dev->ep[UDC_EP0IN_IX].regs->sts);
2759 		}
2760 	}
2761 
2762 	return ret_val;
2763 }
2764 
2765 
2766 /* Interrupt handler for global device events */
udc_dev_isr(struct udc * dev,u32 dev_irq)2767 static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
2768 __releases(dev->lock)
2769 __acquires(dev->lock)
2770 {
2771 	irqreturn_t ret_val = IRQ_NONE;
2772 	u32 tmp;
2773 	u32 cfg;
2774 	struct udc_ep *ep;
2775 	u16 i;
2776 	u8 udc_csr_epix;
2777 
2778 	/* SET_CONFIG irq ? */
2779 	if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
2780 		ret_val = IRQ_HANDLED;
2781 
2782 		/* read config value */
2783 		tmp = readl(&dev->regs->sts);
2784 		cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
2785 		DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
2786 		dev->cur_config = cfg;
2787 		dev->set_cfg_not_acked = 1;
2788 
2789 		/* make usb request for gadget driver */
2790 		memset(&setup_data, 0 , sizeof(union udc_setup_data));
2791 		setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
2792 		setup_data.request.wValue = cpu_to_le16(dev->cur_config);
2793 
2794 		/* programm the NE registers */
2795 		for (i = 0; i < UDC_EP_NUM; i++) {
2796 			ep = &dev->ep[i];
2797 			if (ep->in) {
2798 
2799 				/* ep ix in UDC CSR register space */
2800 				udc_csr_epix = ep->num;
2801 
2802 
2803 			/* OUT ep */
2804 			} else {
2805 				/* ep ix in UDC CSR register space */
2806 				udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2807 			}
2808 
2809 			tmp = readl(&dev->csr->ne[udc_csr_epix]);
2810 			/* ep cfg */
2811 			tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
2812 						UDC_CSR_NE_CFG);
2813 			/* write reg */
2814 			writel(tmp, &dev->csr->ne[udc_csr_epix]);
2815 
2816 			/* clear stall bits */
2817 			ep->halted = 0;
2818 			tmp = readl(&ep->regs->ctl);
2819 			tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2820 			writel(tmp, &ep->regs->ctl);
2821 		}
2822 		/* call gadget zero with setup data received */
2823 		spin_unlock(&dev->lock);
2824 		tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2825 		spin_lock(&dev->lock);
2826 
2827 	} /* SET_INTERFACE ? */
2828 	if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
2829 		ret_val = IRQ_HANDLED;
2830 
2831 		dev->set_cfg_not_acked = 1;
2832 		/* read interface and alt setting values */
2833 		tmp = readl(&dev->regs->sts);
2834 		dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
2835 		dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
2836 
2837 		/* make usb request for gadget driver */
2838 		memset(&setup_data, 0 , sizeof(union udc_setup_data));
2839 		setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
2840 		setup_data.request.bRequestType = USB_RECIP_INTERFACE;
2841 		setup_data.request.wValue = cpu_to_le16(dev->cur_alt);
2842 		setup_data.request.wIndex = cpu_to_le16(dev->cur_intf);
2843 
2844 		DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
2845 				dev->cur_alt, dev->cur_intf);
2846 
2847 		/* programm the NE registers */
2848 		for (i = 0; i < UDC_EP_NUM; i++) {
2849 			ep = &dev->ep[i];
2850 			if (ep->in) {
2851 
2852 				/* ep ix in UDC CSR register space */
2853 				udc_csr_epix = ep->num;
2854 
2855 
2856 			/* OUT ep */
2857 			} else {
2858 				/* ep ix in UDC CSR register space */
2859 				udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2860 			}
2861 
2862 			/* UDC CSR reg */
2863 			/* set ep values */
2864 			tmp = readl(&dev->csr->ne[udc_csr_epix]);
2865 			/* ep interface */
2866 			tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
2867 						UDC_CSR_NE_INTF);
2868 			/* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
2869 			/* ep alt */
2870 			tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
2871 						UDC_CSR_NE_ALT);
2872 			/* write reg */
2873 			writel(tmp, &dev->csr->ne[udc_csr_epix]);
2874 
2875 			/* clear stall bits */
2876 			ep->halted = 0;
2877 			tmp = readl(&ep->regs->ctl);
2878 			tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2879 			writel(tmp, &ep->regs->ctl);
2880 		}
2881 
2882 		/* call gadget zero with setup data received */
2883 		spin_unlock(&dev->lock);
2884 		tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2885 		spin_lock(&dev->lock);
2886 
2887 	} /* USB reset */
2888 	if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
2889 		DBG(dev, "USB Reset interrupt\n");
2890 		ret_val = IRQ_HANDLED;
2891 
2892 		/* allow soft reset when suspend occurs */
2893 		soft_reset_occured = 0;
2894 
2895 		dev->waiting_zlp_ack_ep0in = 0;
2896 		dev->set_cfg_not_acked = 0;
2897 
2898 		/* mask not needed interrupts */
2899 		udc_mask_unused_interrupts(dev);
2900 
2901 		/* call gadget to resume and reset configs etc. */
2902 		spin_unlock(&dev->lock);
2903 		if (dev->sys_suspended && dev->driver->resume) {
2904 			dev->driver->resume(&dev->gadget);
2905 			dev->sys_suspended = 0;
2906 		}
2907 		usb_gadget_udc_reset(&dev->gadget, dev->driver);
2908 		spin_lock(&dev->lock);
2909 
2910 		/* disable ep0 to empty req queue */
2911 		empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
2912 		ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
2913 
2914 		/* soft reset when rxfifo not empty */
2915 		tmp = readl(&dev->regs->sts);
2916 		if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2917 				&& !soft_reset_after_usbreset_occured) {
2918 			udc_soft_reset(dev);
2919 			soft_reset_after_usbreset_occured++;
2920 		}
2921 
2922 		/*
2923 		 * DMA reset to kill potential old DMA hw hang,
2924 		 * POLL bit is already reset by ep_init() through
2925 		 * disconnect()
2926 		 */
2927 		DBG(dev, "DMA machine reset\n");
2928 		tmp = readl(&dev->regs->cfg);
2929 		writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
2930 		writel(tmp, &dev->regs->cfg);
2931 
2932 		/* put into initial config */
2933 		udc_basic_init(dev);
2934 
2935 		/* enable device setup interrupts */
2936 		udc_enable_dev_setup_interrupts(dev);
2937 
2938 		/* enable suspend interrupt */
2939 		tmp = readl(&dev->regs->irqmsk);
2940 		tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
2941 		writel(tmp, &dev->regs->irqmsk);
2942 
2943 	} /* USB suspend */
2944 	if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
2945 		DBG(dev, "USB Suspend interrupt\n");
2946 		ret_val = IRQ_HANDLED;
2947 		if (dev->driver->suspend) {
2948 			spin_unlock(&dev->lock);
2949 			dev->sys_suspended = 1;
2950 			dev->driver->suspend(&dev->gadget);
2951 			spin_lock(&dev->lock);
2952 		}
2953 	} /* new speed ? */
2954 	if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
2955 		DBG(dev, "ENUM interrupt\n");
2956 		ret_val = IRQ_HANDLED;
2957 		soft_reset_after_usbreset_occured = 0;
2958 
2959 		/* disable ep0 to empty req queue */
2960 		empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
2961 		ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
2962 
2963 		/* link up all endpoints */
2964 		udc_setup_endpoints(dev);
2965 		dev_info(dev->dev, "Connect: %s\n",
2966 			 usb_speed_string(dev->gadget.speed));
2967 
2968 		/* init ep 0 */
2969 		activate_control_endpoints(dev);
2970 
2971 		/* enable ep0 interrupts */
2972 		udc_enable_ep0_interrupts(dev);
2973 	}
2974 	/* session valid change interrupt */
2975 	if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
2976 		DBG(dev, "USB SVC interrupt\n");
2977 		ret_val = IRQ_HANDLED;
2978 
2979 		/* check that session is not valid to detect disconnect */
2980 		tmp = readl(&dev->regs->sts);
2981 		if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
2982 			/* disable suspend interrupt */
2983 			tmp = readl(&dev->regs->irqmsk);
2984 			tmp |= AMD_BIT(UDC_DEVINT_US);
2985 			writel(tmp, &dev->regs->irqmsk);
2986 			DBG(dev, "USB Disconnect (session valid low)\n");
2987 			/* cleanup on disconnect */
2988 			usb_disconnect(udc);
2989 		}
2990 
2991 	}
2992 
2993 	return ret_val;
2994 }
2995 
2996 /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
udc_irq(int irq,void * pdev)2997 irqreturn_t udc_irq(int irq, void *pdev)
2998 {
2999 	struct udc *dev = pdev;
3000 	u32 reg;
3001 	u16 i;
3002 	u32 ep_irq;
3003 	irqreturn_t ret_val = IRQ_NONE;
3004 
3005 	spin_lock(&dev->lock);
3006 
3007 	/* check for ep irq */
3008 	reg = readl(&dev->regs->ep_irqsts);
3009 	if (reg) {
3010 		if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
3011 			ret_val |= udc_control_out_isr(dev);
3012 		if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
3013 			ret_val |= udc_control_in_isr(dev);
3014 
3015 		/*
3016 		 * data endpoint
3017 		 * iterate ep's
3018 		 */
3019 		for (i = 1; i < UDC_EP_NUM; i++) {
3020 			ep_irq = 1 << i;
3021 			if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
3022 				continue;
3023 
3024 			/* clear irq status */
3025 			writel(ep_irq, &dev->regs->ep_irqsts);
3026 
3027 			/* irq for out ep ? */
3028 			if (i > UDC_EPIN_NUM)
3029 				ret_val |= udc_data_out_isr(dev, i);
3030 			else
3031 				ret_val |= udc_data_in_isr(dev, i);
3032 		}
3033 
3034 	}
3035 
3036 
3037 	/* check for dev irq */
3038 	reg = readl(&dev->regs->irqsts);
3039 	if (reg) {
3040 		/* clear irq */
3041 		writel(reg, &dev->regs->irqsts);
3042 		ret_val |= udc_dev_isr(dev, reg);
3043 	}
3044 
3045 
3046 	spin_unlock(&dev->lock);
3047 	return ret_val;
3048 }
3049 EXPORT_SYMBOL_GPL(udc_irq);
3050 
3051 /* Tears down device */
gadget_release(struct device * pdev)3052 void gadget_release(struct device *pdev)
3053 {
3054 	struct amd5536udc *dev = dev_get_drvdata(pdev);
3055 	kfree(dev);
3056 }
3057 EXPORT_SYMBOL_GPL(gadget_release);
3058 
3059 /* Cleanup on device remove */
udc_remove(struct udc * dev)3060 void udc_remove(struct udc *dev)
3061 {
3062 	/* remove timer */
3063 	stop_timer++;
3064 	if (timer_pending(&udc_timer))
3065 		wait_for_completion(&on_exit);
3066 	del_timer_sync(&udc_timer);
3067 	/* remove pollstall timer */
3068 	stop_pollstall_timer++;
3069 	if (timer_pending(&udc_pollstall_timer))
3070 		wait_for_completion(&on_pollstall_exit);
3071 	del_timer_sync(&udc_pollstall_timer);
3072 	udc = NULL;
3073 }
3074 EXPORT_SYMBOL_GPL(udc_remove);
3075 
3076 /* free all the dma pools */
free_dma_pools(struct udc * dev)3077 void free_dma_pools(struct udc *dev)
3078 {
3079 	dma_pool_free(dev->stp_requests, dev->ep[UDC_EP0OUT_IX].td,
3080 		      dev->ep[UDC_EP0OUT_IX].td_phys);
3081 	dma_pool_free(dev->stp_requests, dev->ep[UDC_EP0OUT_IX].td_stp,
3082 		      dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3083 	dma_pool_destroy(dev->stp_requests);
3084 	dma_pool_destroy(dev->data_requests);
3085 }
3086 EXPORT_SYMBOL_GPL(free_dma_pools);
3087 
3088 /* create dma pools on init */
init_dma_pools(struct udc * dev)3089 int init_dma_pools(struct udc *dev)
3090 {
3091 	struct udc_stp_dma	*td_stp;
3092 	struct udc_data_dma	*td_data;
3093 	int retval;
3094 
3095 	/* consistent DMA mode setting ? */
3096 	if (use_dma_ppb) {
3097 		use_dma_bufferfill_mode = 0;
3098 	} else {
3099 		use_dma_ppb_du = 0;
3100 		use_dma_bufferfill_mode = 1;
3101 	}
3102 
3103 	/* DMA setup */
3104 	dev->data_requests = dma_pool_create("data_requests", dev->dev,
3105 		sizeof(struct udc_data_dma), 0, 0);
3106 	if (!dev->data_requests) {
3107 		DBG(dev, "can't get request data pool\n");
3108 		return -ENOMEM;
3109 	}
3110 
3111 	/* EP0 in dma regs = dev control regs */
3112 	dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
3113 
3114 	/* dma desc for setup data */
3115 	dev->stp_requests = dma_pool_create("setup requests", dev->dev,
3116 		sizeof(struct udc_stp_dma), 0, 0);
3117 	if (!dev->stp_requests) {
3118 		DBG(dev, "can't get stp request pool\n");
3119 		retval = -ENOMEM;
3120 		goto err_create_dma_pool;
3121 	}
3122 	/* setup */
3123 	td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3124 				&dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3125 	if (!td_stp) {
3126 		retval = -ENOMEM;
3127 		goto err_alloc_dma;
3128 	}
3129 	dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
3130 
3131 	/* data: 0 packets !? */
3132 	td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3133 				&dev->ep[UDC_EP0OUT_IX].td_phys);
3134 	if (!td_data) {
3135 		retval = -ENOMEM;
3136 		goto err_alloc_phys;
3137 	}
3138 	dev->ep[UDC_EP0OUT_IX].td = td_data;
3139 	return 0;
3140 
3141 err_alloc_phys:
3142 	dma_pool_free(dev->stp_requests, dev->ep[UDC_EP0OUT_IX].td_stp,
3143 		      dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3144 err_alloc_dma:
3145 	dma_pool_destroy(dev->stp_requests);
3146 	dev->stp_requests = NULL;
3147 err_create_dma_pool:
3148 	dma_pool_destroy(dev->data_requests);
3149 	dev->data_requests = NULL;
3150 	return retval;
3151 }
3152 EXPORT_SYMBOL_GPL(init_dma_pools);
3153 
3154 /* general probe */
udc_probe(struct udc * dev)3155 int udc_probe(struct udc *dev)
3156 {
3157 	char		tmp[128];
3158 	u32		reg;
3159 	int		retval;
3160 
3161 	/* device struct setup */
3162 	dev->gadget.ops = &udc_ops;
3163 
3164 	dev_set_name(&dev->gadget.dev, "gadget");
3165 	dev->gadget.name = name;
3166 	dev->gadget.max_speed = USB_SPEED_HIGH;
3167 
3168 	/* init registers, interrupts, ... */
3169 	startup_registers(dev);
3170 
3171 	dev_info(dev->dev, "%s\n", mod_desc);
3172 
3173 	snprintf(tmp, sizeof(tmp), "%d", dev->irq);
3174 
3175 	/* Print this device info for AMD chips only*/
3176 	if (dev->chiprev == UDC_HSA0_REV ||
3177 	    dev->chiprev == UDC_HSB1_REV) {
3178 		dev_info(dev->dev, "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
3179 			 tmp, dev->phys_addr, dev->chiprev,
3180 			 (dev->chiprev == UDC_HSA0_REV) ?
3181 			 "A0" : "B1");
3182 		strcpy(tmp, UDC_DRIVER_VERSION_STRING);
3183 		if (dev->chiprev == UDC_HSA0_REV) {
3184 			dev_err(dev->dev, "chip revision is A0; too old\n");
3185 			retval = -ENODEV;
3186 			goto finished;
3187 		}
3188 		dev_info(dev->dev,
3189 			 "driver version: %s(for Geode5536 B1)\n", tmp);
3190 	}
3191 
3192 	udc = dev;
3193 
3194 	retval = usb_add_gadget_udc_release(udc->dev, &dev->gadget,
3195 					    gadget_release);
3196 	if (retval)
3197 		goto finished;
3198 
3199 	/* timer init */
3200 	timer_setup(&udc_timer, udc_timer_function, 0);
3201 	timer_setup(&udc_pollstall_timer, udc_pollstall_timer_function, 0);
3202 
3203 	/* set SD */
3204 	reg = readl(&dev->regs->ctl);
3205 	reg |= AMD_BIT(UDC_DEVCTL_SD);
3206 	writel(reg, &dev->regs->ctl);
3207 
3208 	/* print dev register info */
3209 	print_regs(dev);
3210 
3211 	return 0;
3212 
3213 finished:
3214 	return retval;
3215 }
3216 EXPORT_SYMBOL_GPL(udc_probe);
3217 
3218 MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION);
3219 MODULE_AUTHOR("Thomas Dahlmann");
3220 MODULE_LICENSE("GPL");
3221