1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  * Procedures for interfacing to the RTAS on CHRP machines.
5  *
6  * Peter Bergner, IBM	March 2001.
7  * Copyright (C) 2001 IBM.
8  */
9 
10 #include <stdarg.h>
11 #include <linux/kernel.h>
12 #include <linux/types.h>
13 #include <linux/spinlock.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/capability.h>
17 #include <linux/delay.h>
18 #include <linux/cpu.h>
19 #include <linux/sched.h>
20 #include <linux/smp.h>
21 #include <linux/completion.h>
22 #include <linux/cpumask.h>
23 #include <linux/memblock.h>
24 #include <linux/slab.h>
25 #include <linux/reboot.h>
26 #include <linux/syscalls.h>
27 
28 #include <asm/prom.h>
29 #include <asm/rtas.h>
30 #include <asm/hvcall.h>
31 #include <asm/machdep.h>
32 #include <asm/firmware.h>
33 #include <asm/page.h>
34 #include <asm/param.h>
35 #include <asm/delay.h>
36 #include <linux/uaccess.h>
37 #include <asm/udbg.h>
38 #include <asm/syscalls.h>
39 #include <asm/smp.h>
40 #include <linux/atomic.h>
41 #include <asm/time.h>
42 #include <asm/mmu.h>
43 #include <asm/topology.h>
44 
45 /* This is here deliberately so it's only used in this file */
46 void enter_rtas(unsigned long);
47 
48 struct rtas_t rtas = {
49 	.lock = __ARCH_SPIN_LOCK_UNLOCKED
50 };
51 EXPORT_SYMBOL(rtas);
52 
53 DEFINE_SPINLOCK(rtas_data_buf_lock);
54 EXPORT_SYMBOL(rtas_data_buf_lock);
55 
56 char rtas_data_buf[RTAS_DATA_BUF_SIZE] __cacheline_aligned;
57 EXPORT_SYMBOL(rtas_data_buf);
58 
59 unsigned long rtas_rmo_buf;
60 
61 /*
62  * If non-NULL, this gets called when the kernel terminates.
63  * This is done like this so rtas_flash can be a module.
64  */
65 void (*rtas_flash_term_hook)(int);
66 EXPORT_SYMBOL(rtas_flash_term_hook);
67 
68 /* RTAS use home made raw locking instead of spin_lock_irqsave
69  * because those can be called from within really nasty contexts
70  * such as having the timebase stopped which would lockup with
71  * normal locks and spinlock debugging enabled
72  */
lock_rtas(void)73 static unsigned long lock_rtas(void)
74 {
75 	unsigned long flags;
76 
77 	local_irq_save(flags);
78 	preempt_disable();
79 	arch_spin_lock(&rtas.lock);
80 	return flags;
81 }
82 
unlock_rtas(unsigned long flags)83 static void unlock_rtas(unsigned long flags)
84 {
85 	arch_spin_unlock(&rtas.lock);
86 	local_irq_restore(flags);
87 	preempt_enable();
88 }
89 
90 /*
91  * call_rtas_display_status and call_rtas_display_status_delay
92  * are designed only for very early low-level debugging, which
93  * is why the token is hard-coded to 10.
94  */
call_rtas_display_status(unsigned char c)95 static void call_rtas_display_status(unsigned char c)
96 {
97 	unsigned long s;
98 
99 	if (!rtas.base)
100 		return;
101 
102 	s = lock_rtas();
103 	rtas_call_unlocked(&rtas.args, 10, 1, 1, NULL, c);
104 	unlock_rtas(s);
105 }
106 
call_rtas_display_status_delay(char c)107 static void call_rtas_display_status_delay(char c)
108 {
109 	static int pending_newline = 0;  /* did last write end with unprinted newline? */
110 	static int width = 16;
111 
112 	if (c == '\n') {
113 		while (width-- > 0)
114 			call_rtas_display_status(' ');
115 		width = 16;
116 		mdelay(500);
117 		pending_newline = 1;
118 	} else {
119 		if (pending_newline) {
120 			call_rtas_display_status('\r');
121 			call_rtas_display_status('\n');
122 		}
123 		pending_newline = 0;
124 		if (width--) {
125 			call_rtas_display_status(c);
126 			udelay(10000);
127 		}
128 	}
129 }
130 
udbg_init_rtas_panel(void)131 void __init udbg_init_rtas_panel(void)
132 {
133 	udbg_putc = call_rtas_display_status_delay;
134 }
135 
136 #ifdef CONFIG_UDBG_RTAS_CONSOLE
137 
138 /* If you think you're dying before early_init_dt_scan_rtas() does its
139  * work, you can hard code the token values for your firmware here and
140  * hardcode rtas.base/entry etc.
141  */
142 static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE;
143 static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE;
144 
udbg_rtascon_putc(char c)145 static void udbg_rtascon_putc(char c)
146 {
147 	int tries;
148 
149 	if (!rtas.base)
150 		return;
151 
152 	/* Add CRs before LFs */
153 	if (c == '\n')
154 		udbg_rtascon_putc('\r');
155 
156 	/* if there is more than one character to be displayed, wait a bit */
157 	for (tries = 0; tries < 16; tries++) {
158 		if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0)
159 			break;
160 		udelay(1000);
161 	}
162 }
163 
udbg_rtascon_getc_poll(void)164 static int udbg_rtascon_getc_poll(void)
165 {
166 	int c;
167 
168 	if (!rtas.base)
169 		return -1;
170 
171 	if (rtas_call(rtas_getchar_token, 0, 2, &c))
172 		return -1;
173 
174 	return c;
175 }
176 
udbg_rtascon_getc(void)177 static int udbg_rtascon_getc(void)
178 {
179 	int c;
180 
181 	while ((c = udbg_rtascon_getc_poll()) == -1)
182 		;
183 
184 	return c;
185 }
186 
187 
udbg_init_rtas_console(void)188 void __init udbg_init_rtas_console(void)
189 {
190 	udbg_putc = udbg_rtascon_putc;
191 	udbg_getc = udbg_rtascon_getc;
192 	udbg_getc_poll = udbg_rtascon_getc_poll;
193 }
194 #endif /* CONFIG_UDBG_RTAS_CONSOLE */
195 
rtas_progress(char * s,unsigned short hex)196 void rtas_progress(char *s, unsigned short hex)
197 {
198 	struct device_node *root;
199 	int width;
200 	const __be32 *p;
201 	char *os;
202 	static int display_character, set_indicator;
203 	static int display_width, display_lines, form_feed;
204 	static const int *row_width;
205 	static DEFINE_SPINLOCK(progress_lock);
206 	static int current_line;
207 	static int pending_newline = 0;  /* did last write end with unprinted newline? */
208 
209 	if (!rtas.base)
210 		return;
211 
212 	if (display_width == 0) {
213 		display_width = 0x10;
214 		if ((root = of_find_node_by_path("/rtas"))) {
215 			if ((p = of_get_property(root,
216 					"ibm,display-line-length", NULL)))
217 				display_width = be32_to_cpu(*p);
218 			if ((p = of_get_property(root,
219 					"ibm,form-feed", NULL)))
220 				form_feed = be32_to_cpu(*p);
221 			if ((p = of_get_property(root,
222 					"ibm,display-number-of-lines", NULL)))
223 				display_lines = be32_to_cpu(*p);
224 			row_width = of_get_property(root,
225 					"ibm,display-truncation-length", NULL);
226 			of_node_put(root);
227 		}
228 		display_character = rtas_token("display-character");
229 		set_indicator = rtas_token("set-indicator");
230 	}
231 
232 	if (display_character == RTAS_UNKNOWN_SERVICE) {
233 		/* use hex display if available */
234 		if (set_indicator != RTAS_UNKNOWN_SERVICE)
235 			rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex);
236 		return;
237 	}
238 
239 	spin_lock(&progress_lock);
240 
241 	/*
242 	 * Last write ended with newline, but we didn't print it since
243 	 * it would just clear the bottom line of output. Print it now
244 	 * instead.
245 	 *
246 	 * If no newline is pending and form feed is supported, clear the
247 	 * display with a form feed; otherwise, print a CR to start output
248 	 * at the beginning of the line.
249 	 */
250 	if (pending_newline) {
251 		rtas_call(display_character, 1, 1, NULL, '\r');
252 		rtas_call(display_character, 1, 1, NULL, '\n');
253 		pending_newline = 0;
254 	} else {
255 		current_line = 0;
256 		if (form_feed)
257 			rtas_call(display_character, 1, 1, NULL,
258 				  (char)form_feed);
259 		else
260 			rtas_call(display_character, 1, 1, NULL, '\r');
261 	}
262 
263 	if (row_width)
264 		width = row_width[current_line];
265 	else
266 		width = display_width;
267 	os = s;
268 	while (*os) {
269 		if (*os == '\n' || *os == '\r') {
270 			/* If newline is the last character, save it
271 			 * until next call to avoid bumping up the
272 			 * display output.
273 			 */
274 			if (*os == '\n' && !os[1]) {
275 				pending_newline = 1;
276 				current_line++;
277 				if (current_line > display_lines-1)
278 					current_line = display_lines-1;
279 				spin_unlock(&progress_lock);
280 				return;
281 			}
282 
283 			/* RTAS wants CR-LF, not just LF */
284 
285 			if (*os == '\n') {
286 				rtas_call(display_character, 1, 1, NULL, '\r');
287 				rtas_call(display_character, 1, 1, NULL, '\n');
288 			} else {
289 				/* CR might be used to re-draw a line, so we'll
290 				 * leave it alone and not add LF.
291 				 */
292 				rtas_call(display_character, 1, 1, NULL, *os);
293 			}
294 
295 			if (row_width)
296 				width = row_width[current_line];
297 			else
298 				width = display_width;
299 		} else {
300 			width--;
301 			rtas_call(display_character, 1, 1, NULL, *os);
302 		}
303 
304 		os++;
305 
306 		/* if we overwrite the screen length */
307 		if (width <= 0)
308 			while ((*os != 0) && (*os != '\n') && (*os != '\r'))
309 				os++;
310 	}
311 
312 	spin_unlock(&progress_lock);
313 }
314 EXPORT_SYMBOL(rtas_progress);		/* needed by rtas_flash module */
315 
rtas_token(const char * service)316 int rtas_token(const char *service)
317 {
318 	const __be32 *tokp;
319 	if (rtas.dev == NULL)
320 		return RTAS_UNKNOWN_SERVICE;
321 	tokp = of_get_property(rtas.dev, service, NULL);
322 	return tokp ? be32_to_cpu(*tokp) : RTAS_UNKNOWN_SERVICE;
323 }
324 EXPORT_SYMBOL(rtas_token);
325 
rtas_service_present(const char * service)326 int rtas_service_present(const char *service)
327 {
328 	return rtas_token(service) != RTAS_UNKNOWN_SERVICE;
329 }
330 EXPORT_SYMBOL(rtas_service_present);
331 
332 #ifdef CONFIG_RTAS_ERROR_LOGGING
333 /*
334  * Return the firmware-specified size of the error log buffer
335  *  for all rtas calls that require an error buffer argument.
336  *  This includes 'check-exception' and 'rtas-last-error'.
337  */
rtas_get_error_log_max(void)338 int rtas_get_error_log_max(void)
339 {
340 	static int rtas_error_log_max;
341 	if (rtas_error_log_max)
342 		return rtas_error_log_max;
343 
344 	rtas_error_log_max = rtas_token ("rtas-error-log-max");
345 	if ((rtas_error_log_max == RTAS_UNKNOWN_SERVICE) ||
346 	    (rtas_error_log_max > RTAS_ERROR_LOG_MAX)) {
347 		printk (KERN_WARNING "RTAS: bad log buffer size %d\n",
348 			rtas_error_log_max);
349 		rtas_error_log_max = RTAS_ERROR_LOG_MAX;
350 	}
351 	return rtas_error_log_max;
352 }
353 EXPORT_SYMBOL(rtas_get_error_log_max);
354 
355 
356 static char rtas_err_buf[RTAS_ERROR_LOG_MAX];
357 static int rtas_last_error_token;
358 
359 /** Return a copy of the detailed error text associated with the
360  *  most recent failed call to rtas.  Because the error text
361  *  might go stale if there are any other intervening rtas calls,
362  *  this routine must be called atomically with whatever produced
363  *  the error (i.e. with rtas.lock still held from the previous call).
364  */
__fetch_rtas_last_error(char * altbuf)365 static char *__fetch_rtas_last_error(char *altbuf)
366 {
367 	struct rtas_args err_args, save_args;
368 	u32 bufsz;
369 	char *buf = NULL;
370 
371 	if (rtas_last_error_token == -1)
372 		return NULL;
373 
374 	bufsz = rtas_get_error_log_max();
375 
376 	err_args.token = cpu_to_be32(rtas_last_error_token);
377 	err_args.nargs = cpu_to_be32(2);
378 	err_args.nret = cpu_to_be32(1);
379 	err_args.args[0] = cpu_to_be32(__pa(rtas_err_buf));
380 	err_args.args[1] = cpu_to_be32(bufsz);
381 	err_args.args[2] = 0;
382 
383 	save_args = rtas.args;
384 	rtas.args = err_args;
385 
386 	enter_rtas(__pa(&rtas.args));
387 
388 	err_args = rtas.args;
389 	rtas.args = save_args;
390 
391 	/* Log the error in the unlikely case that there was one. */
392 	if (unlikely(err_args.args[2] == 0)) {
393 		if (altbuf) {
394 			buf = altbuf;
395 		} else {
396 			buf = rtas_err_buf;
397 			if (slab_is_available())
398 				buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC);
399 		}
400 		if (buf)
401 			memcpy(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX);
402 	}
403 
404 	return buf;
405 }
406 
407 #define get_errorlog_buffer()	kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL)
408 
409 #else /* CONFIG_RTAS_ERROR_LOGGING */
410 #define __fetch_rtas_last_error(x)	NULL
411 #define get_errorlog_buffer()		NULL
412 #endif
413 
414 
415 static void
va_rtas_call_unlocked(struct rtas_args * args,int token,int nargs,int nret,va_list list)416 va_rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret,
417 		      va_list list)
418 {
419 	int i;
420 
421 	args->token = cpu_to_be32(token);
422 	args->nargs = cpu_to_be32(nargs);
423 	args->nret  = cpu_to_be32(nret);
424 	args->rets  = &(args->args[nargs]);
425 
426 	for (i = 0; i < nargs; ++i)
427 		args->args[i] = cpu_to_be32(va_arg(list, __u32));
428 
429 	for (i = 0; i < nret; ++i)
430 		args->rets[i] = 0;
431 
432 	enter_rtas(__pa(args));
433 }
434 
rtas_call_unlocked(struct rtas_args * args,int token,int nargs,int nret,...)435 void rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, ...)
436 {
437 	va_list list;
438 
439 	va_start(list, nret);
440 	va_rtas_call_unlocked(args, token, nargs, nret, list);
441 	va_end(list);
442 }
443 
rtas_call(int token,int nargs,int nret,int * outputs,...)444 int rtas_call(int token, int nargs, int nret, int *outputs, ...)
445 {
446 	va_list list;
447 	int i;
448 	unsigned long s;
449 	struct rtas_args *rtas_args;
450 	char *buff_copy = NULL;
451 	int ret;
452 
453 	if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE)
454 		return -1;
455 
456 	s = lock_rtas();
457 
458 	/* We use the global rtas args buffer */
459 	rtas_args = &rtas.args;
460 
461 	va_start(list, outputs);
462 	va_rtas_call_unlocked(rtas_args, token, nargs, nret, list);
463 	va_end(list);
464 
465 	/* A -1 return code indicates that the last command couldn't
466 	   be completed due to a hardware error. */
467 	if (be32_to_cpu(rtas_args->rets[0]) == -1)
468 		buff_copy = __fetch_rtas_last_error(NULL);
469 
470 	if (nret > 1 && outputs != NULL)
471 		for (i = 0; i < nret-1; ++i)
472 			outputs[i] = be32_to_cpu(rtas_args->rets[i+1]);
473 	ret = (nret > 0)? be32_to_cpu(rtas_args->rets[0]): 0;
474 
475 	unlock_rtas(s);
476 
477 	if (buff_copy) {
478 		log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0);
479 		if (slab_is_available())
480 			kfree(buff_copy);
481 	}
482 	return ret;
483 }
484 EXPORT_SYMBOL(rtas_call);
485 
486 /* For RTAS_BUSY (-2), delay for 1 millisecond.  For an extended busy status
487  * code of 990n, perform the hinted delay of 10^n (last digit) milliseconds.
488  */
rtas_busy_delay_time(int status)489 unsigned int rtas_busy_delay_time(int status)
490 {
491 	int order;
492 	unsigned int ms = 0;
493 
494 	if (status == RTAS_BUSY) {
495 		ms = 1;
496 	} else if (status >= RTAS_EXTENDED_DELAY_MIN &&
497 		   status <= RTAS_EXTENDED_DELAY_MAX) {
498 		order = status - RTAS_EXTENDED_DELAY_MIN;
499 		for (ms = 1; order > 0; order--)
500 			ms *= 10;
501 	}
502 
503 	return ms;
504 }
505 EXPORT_SYMBOL(rtas_busy_delay_time);
506 
507 /* For an RTAS busy status code, perform the hinted delay. */
rtas_busy_delay(int status)508 unsigned int rtas_busy_delay(int status)
509 {
510 	unsigned int ms;
511 
512 	might_sleep();
513 	ms = rtas_busy_delay_time(status);
514 	if (ms && need_resched())
515 		msleep(ms);
516 
517 	return ms;
518 }
519 EXPORT_SYMBOL(rtas_busy_delay);
520 
rtas_error_rc(int rtas_rc)521 static int rtas_error_rc(int rtas_rc)
522 {
523 	int rc;
524 
525 	switch (rtas_rc) {
526 		case -1: 		/* Hardware Error */
527 			rc = -EIO;
528 			break;
529 		case -3:		/* Bad indicator/domain/etc */
530 			rc = -EINVAL;
531 			break;
532 		case -9000:		/* Isolation error */
533 			rc = -EFAULT;
534 			break;
535 		case -9001:		/* Outstanding TCE/PTE */
536 			rc = -EEXIST;
537 			break;
538 		case -9002:		/* No usable slot */
539 			rc = -ENODEV;
540 			break;
541 		default:
542 			printk(KERN_ERR "%s: unexpected RTAS error %d\n",
543 					__func__, rtas_rc);
544 			rc = -ERANGE;
545 			break;
546 	}
547 	return rc;
548 }
549 
rtas_get_power_level(int powerdomain,int * level)550 int rtas_get_power_level(int powerdomain, int *level)
551 {
552 	int token = rtas_token("get-power-level");
553 	int rc;
554 
555 	if (token == RTAS_UNKNOWN_SERVICE)
556 		return -ENOENT;
557 
558 	while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY)
559 		udelay(1);
560 
561 	if (rc < 0)
562 		return rtas_error_rc(rc);
563 	return rc;
564 }
565 EXPORT_SYMBOL(rtas_get_power_level);
566 
rtas_set_power_level(int powerdomain,int level,int * setlevel)567 int rtas_set_power_level(int powerdomain, int level, int *setlevel)
568 {
569 	int token = rtas_token("set-power-level");
570 	int rc;
571 
572 	if (token == RTAS_UNKNOWN_SERVICE)
573 		return -ENOENT;
574 
575 	do {
576 		rc = rtas_call(token, 2, 2, setlevel, powerdomain, level);
577 	} while (rtas_busy_delay(rc));
578 
579 	if (rc < 0)
580 		return rtas_error_rc(rc);
581 	return rc;
582 }
583 EXPORT_SYMBOL(rtas_set_power_level);
584 
rtas_get_sensor(int sensor,int index,int * state)585 int rtas_get_sensor(int sensor, int index, int *state)
586 {
587 	int token = rtas_token("get-sensor-state");
588 	int rc;
589 
590 	if (token == RTAS_UNKNOWN_SERVICE)
591 		return -ENOENT;
592 
593 	do {
594 		rc = rtas_call(token, 2, 2, state, sensor, index);
595 	} while (rtas_busy_delay(rc));
596 
597 	if (rc < 0)
598 		return rtas_error_rc(rc);
599 	return rc;
600 }
601 EXPORT_SYMBOL(rtas_get_sensor);
602 
rtas_get_sensor_fast(int sensor,int index,int * state)603 int rtas_get_sensor_fast(int sensor, int index, int *state)
604 {
605 	int token = rtas_token("get-sensor-state");
606 	int rc;
607 
608 	if (token == RTAS_UNKNOWN_SERVICE)
609 		return -ENOENT;
610 
611 	rc = rtas_call(token, 2, 2, state, sensor, index);
612 	WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
613 				    rc <= RTAS_EXTENDED_DELAY_MAX));
614 
615 	if (rc < 0)
616 		return rtas_error_rc(rc);
617 	return rc;
618 }
619 
rtas_indicator_present(int token,int * maxindex)620 bool rtas_indicator_present(int token, int *maxindex)
621 {
622 	int proplen, count, i;
623 	const struct indicator_elem {
624 		__be32 token;
625 		__be32 maxindex;
626 	} *indicators;
627 
628 	indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen);
629 	if (!indicators)
630 		return false;
631 
632 	count = proplen / sizeof(struct indicator_elem);
633 
634 	for (i = 0; i < count; i++) {
635 		if (__be32_to_cpu(indicators[i].token) != token)
636 			continue;
637 		if (maxindex)
638 			*maxindex = __be32_to_cpu(indicators[i].maxindex);
639 		return true;
640 	}
641 
642 	return false;
643 }
644 EXPORT_SYMBOL(rtas_indicator_present);
645 
rtas_set_indicator(int indicator,int index,int new_value)646 int rtas_set_indicator(int indicator, int index, int new_value)
647 {
648 	int token = rtas_token("set-indicator");
649 	int rc;
650 
651 	if (token == RTAS_UNKNOWN_SERVICE)
652 		return -ENOENT;
653 
654 	do {
655 		rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
656 	} while (rtas_busy_delay(rc));
657 
658 	if (rc < 0)
659 		return rtas_error_rc(rc);
660 	return rc;
661 }
662 EXPORT_SYMBOL(rtas_set_indicator);
663 
664 /*
665  * Ignoring RTAS extended delay
666  */
rtas_set_indicator_fast(int indicator,int index,int new_value)667 int rtas_set_indicator_fast(int indicator, int index, int new_value)
668 {
669 	int rc;
670 	int token = rtas_token("set-indicator");
671 
672 	if (token == RTAS_UNKNOWN_SERVICE)
673 		return -ENOENT;
674 
675 	rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
676 
677 	WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
678 				    rc <= RTAS_EXTENDED_DELAY_MAX));
679 
680 	if (rc < 0)
681 		return rtas_error_rc(rc);
682 
683 	return rc;
684 }
685 
rtas_restart(char * cmd)686 void __noreturn rtas_restart(char *cmd)
687 {
688 	if (rtas_flash_term_hook)
689 		rtas_flash_term_hook(SYS_RESTART);
690 	printk("RTAS system-reboot returned %d\n",
691 	       rtas_call(rtas_token("system-reboot"), 0, 1, NULL));
692 	for (;;);
693 }
694 
rtas_power_off(void)695 void rtas_power_off(void)
696 {
697 	if (rtas_flash_term_hook)
698 		rtas_flash_term_hook(SYS_POWER_OFF);
699 	/* allow power on only with power button press */
700 	printk("RTAS power-off returned %d\n",
701 	       rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1));
702 	for (;;);
703 }
704 
rtas_halt(void)705 void __noreturn rtas_halt(void)
706 {
707 	if (rtas_flash_term_hook)
708 		rtas_flash_term_hook(SYS_HALT);
709 	/* allow power on only with power button press */
710 	printk("RTAS power-off returned %d\n",
711 	       rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1));
712 	for (;;);
713 }
714 
715 /* Must be in the RMO region, so we place it here */
716 static char rtas_os_term_buf[2048];
717 
rtas_os_term(char * str)718 void rtas_os_term(char *str)
719 {
720 	int status;
721 
722 	/*
723 	 * Firmware with the ibm,extended-os-term property is guaranteed
724 	 * to always return from an ibm,os-term call. Earlier versions without
725 	 * this property may terminate the partition which we want to avoid
726 	 * since it interferes with panic_timeout.
727 	 */
728 	if (RTAS_UNKNOWN_SERVICE == rtas_token("ibm,os-term") ||
729 	    RTAS_UNKNOWN_SERVICE == rtas_token("ibm,extended-os-term"))
730 		return;
731 
732 	snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str);
733 
734 	do {
735 		status = rtas_call(rtas_token("ibm,os-term"), 1, 1, NULL,
736 				   __pa(rtas_os_term_buf));
737 	} while (rtas_busy_delay(status));
738 
739 	if (status != 0)
740 		printk(KERN_EMERG "ibm,os-term call failed %d\n", status);
741 }
742 
743 static int ibm_suspend_me_token = RTAS_UNKNOWN_SERVICE;
744 #ifdef CONFIG_PPC_PSERIES
__rtas_suspend_last_cpu(struct rtas_suspend_me_data * data,int wake_when_done)745 static int __rtas_suspend_last_cpu(struct rtas_suspend_me_data *data, int wake_when_done)
746 {
747 	u16 slb_size = mmu_slb_size;
748 	int rc = H_MULTI_THREADS_ACTIVE;
749 	int cpu;
750 
751 	slb_set_size(SLB_MIN_SIZE);
752 	printk(KERN_DEBUG "calling ibm,suspend-me on cpu %i\n", smp_processor_id());
753 
754 	while (rc == H_MULTI_THREADS_ACTIVE && !atomic_read(&data->done) &&
755 	       !atomic_read(&data->error))
756 		rc = rtas_call(data->token, 0, 1, NULL);
757 
758 	if (rc || atomic_read(&data->error)) {
759 		printk(KERN_DEBUG "ibm,suspend-me returned %d\n", rc);
760 		slb_set_size(slb_size);
761 	}
762 
763 	if (atomic_read(&data->error))
764 		rc = atomic_read(&data->error);
765 
766 	atomic_set(&data->error, rc);
767 	pSeries_coalesce_init();
768 
769 	if (wake_when_done) {
770 		atomic_set(&data->done, 1);
771 
772 		for_each_online_cpu(cpu)
773 			plpar_hcall_norets(H_PROD, get_hard_smp_processor_id(cpu));
774 	}
775 
776 	if (atomic_dec_return(&data->working) == 0)
777 		complete(data->complete);
778 
779 	return rc;
780 }
781 
rtas_suspend_last_cpu(struct rtas_suspend_me_data * data)782 int rtas_suspend_last_cpu(struct rtas_suspend_me_data *data)
783 {
784 	atomic_inc(&data->working);
785 	return __rtas_suspend_last_cpu(data, 0);
786 }
787 
__rtas_suspend_cpu(struct rtas_suspend_me_data * data,int wake_when_done)788 static int __rtas_suspend_cpu(struct rtas_suspend_me_data *data, int wake_when_done)
789 {
790 	long rc = H_SUCCESS;
791 	unsigned long msr_save;
792 	int cpu;
793 
794 	atomic_inc(&data->working);
795 
796 	/* really need to ensure MSR.EE is off for H_JOIN */
797 	msr_save = mfmsr();
798 	mtmsr(msr_save & ~(MSR_EE));
799 
800 	while (rc == H_SUCCESS && !atomic_read(&data->done) && !atomic_read(&data->error))
801 		rc = plpar_hcall_norets(H_JOIN);
802 
803 	mtmsr(msr_save);
804 
805 	if (rc == H_SUCCESS) {
806 		/* This cpu was prodded and the suspend is complete. */
807 		goto out;
808 	} else if (rc == H_CONTINUE) {
809 		/* All other cpus are in H_JOIN, this cpu does
810 		 * the suspend.
811 		 */
812 		return __rtas_suspend_last_cpu(data, wake_when_done);
813 	} else {
814 		printk(KERN_ERR "H_JOIN on cpu %i failed with rc = %ld\n",
815 		       smp_processor_id(), rc);
816 		atomic_set(&data->error, rc);
817 	}
818 
819 	if (wake_when_done) {
820 		atomic_set(&data->done, 1);
821 
822 		/* This cpu did the suspend or got an error; in either case,
823 		 * we need to prod all other other cpus out of join state.
824 		 * Extra prods are harmless.
825 		 */
826 		for_each_online_cpu(cpu)
827 			plpar_hcall_norets(H_PROD, get_hard_smp_processor_id(cpu));
828 	}
829 out:
830 	if (atomic_dec_return(&data->working) == 0)
831 		complete(data->complete);
832 	return rc;
833 }
834 
rtas_suspend_cpu(struct rtas_suspend_me_data * data)835 int rtas_suspend_cpu(struct rtas_suspend_me_data *data)
836 {
837 	return __rtas_suspend_cpu(data, 0);
838 }
839 
rtas_percpu_suspend_me(void * info)840 static void rtas_percpu_suspend_me(void *info)
841 {
842 	__rtas_suspend_cpu((struct rtas_suspend_me_data *)info, 1);
843 }
844 
845 enum rtas_cpu_state {
846 	DOWN,
847 	UP,
848 };
849 
850 #ifndef CONFIG_SMP
rtas_cpu_state_change_mask(enum rtas_cpu_state state,cpumask_var_t cpus)851 static int rtas_cpu_state_change_mask(enum rtas_cpu_state state,
852 				cpumask_var_t cpus)
853 {
854 	if (!cpumask_empty(cpus)) {
855 		cpumask_clear(cpus);
856 		return -EINVAL;
857 	} else
858 		return 0;
859 }
860 #else
861 /* On return cpumask will be altered to indicate CPUs changed.
862  * CPUs with states changed will be set in the mask,
863  * CPUs with status unchanged will be unset in the mask. */
rtas_cpu_state_change_mask(enum rtas_cpu_state state,cpumask_var_t cpus)864 static int rtas_cpu_state_change_mask(enum rtas_cpu_state state,
865 				cpumask_var_t cpus)
866 {
867 	int cpu;
868 	int cpuret = 0;
869 	int ret = 0;
870 
871 	if (cpumask_empty(cpus))
872 		return 0;
873 
874 	for_each_cpu(cpu, cpus) {
875 		struct device *dev = get_cpu_device(cpu);
876 
877 		switch (state) {
878 		case DOWN:
879 			cpuret = device_offline(dev);
880 			break;
881 		case UP:
882 			cpuret = device_online(dev);
883 			break;
884 		}
885 		if (cpuret < 0) {
886 			pr_debug("%s: cpu_%s for cpu#%d returned %d.\n",
887 					__func__,
888 					((state == UP) ? "up" : "down"),
889 					cpu, cpuret);
890 			if (!ret)
891 				ret = cpuret;
892 			if (state == UP) {
893 				/* clear bits for unchanged cpus, return */
894 				cpumask_shift_right(cpus, cpus, cpu);
895 				cpumask_shift_left(cpus, cpus, cpu);
896 				break;
897 			} else {
898 				/* clear bit for unchanged cpu, continue */
899 				cpumask_clear_cpu(cpu, cpus);
900 			}
901 		}
902 		cond_resched();
903 	}
904 
905 	return ret;
906 }
907 #endif
908 
rtas_online_cpus_mask(cpumask_var_t cpus)909 int rtas_online_cpus_mask(cpumask_var_t cpus)
910 {
911 	int ret;
912 
913 	ret = rtas_cpu_state_change_mask(UP, cpus);
914 
915 	if (ret) {
916 		cpumask_var_t tmp_mask;
917 
918 		if (!alloc_cpumask_var(&tmp_mask, GFP_KERNEL))
919 			return ret;
920 
921 		/* Use tmp_mask to preserve cpus mask from first failure */
922 		cpumask_copy(tmp_mask, cpus);
923 		rtas_offline_cpus_mask(tmp_mask);
924 		free_cpumask_var(tmp_mask);
925 	}
926 
927 	return ret;
928 }
929 
rtas_offline_cpus_mask(cpumask_var_t cpus)930 int rtas_offline_cpus_mask(cpumask_var_t cpus)
931 {
932 	return rtas_cpu_state_change_mask(DOWN, cpus);
933 }
934 
rtas_ibm_suspend_me(u64 handle)935 int rtas_ibm_suspend_me(u64 handle)
936 {
937 	long state;
938 	long rc;
939 	unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
940 	struct rtas_suspend_me_data data;
941 	DECLARE_COMPLETION_ONSTACK(done);
942 	cpumask_var_t offline_mask;
943 	int cpuret;
944 
945 	if (!rtas_service_present("ibm,suspend-me"))
946 		return -ENOSYS;
947 
948 	/* Make sure the state is valid */
949 	rc = plpar_hcall(H_VASI_STATE, retbuf, handle);
950 
951 	state = retbuf[0];
952 
953 	if (rc) {
954 		printk(KERN_ERR "rtas_ibm_suspend_me: vasi_state returned %ld\n",rc);
955 		return rc;
956 	} else if (state == H_VASI_ENABLED) {
957 		return -EAGAIN;
958 	} else if (state != H_VASI_SUSPENDING) {
959 		printk(KERN_ERR "rtas_ibm_suspend_me: vasi_state returned state %ld\n",
960 		       state);
961 		return -EIO;
962 	}
963 
964 	if (!alloc_cpumask_var(&offline_mask, GFP_KERNEL))
965 		return -ENOMEM;
966 
967 	atomic_set(&data.working, 0);
968 	atomic_set(&data.done, 0);
969 	atomic_set(&data.error, 0);
970 	data.token = rtas_token("ibm,suspend-me");
971 	data.complete = &done;
972 
973 	lock_device_hotplug();
974 
975 	/* All present CPUs must be online */
976 	cpumask_andnot(offline_mask, cpu_present_mask, cpu_online_mask);
977 	cpuret = rtas_online_cpus_mask(offline_mask);
978 	if (cpuret) {
979 		pr_err("%s: Could not bring present CPUs online.\n", __func__);
980 		atomic_set(&data.error, cpuret);
981 		goto out;
982 	}
983 
984 	cpu_hotplug_disable();
985 
986 	/* Check if we raced with a CPU-Offline Operation */
987 	if (!cpumask_equal(cpu_present_mask, cpu_online_mask)) {
988 		pr_info("%s: Raced against a concurrent CPU-Offline\n", __func__);
989 		atomic_set(&data.error, -EAGAIN);
990 		goto out_hotplug_enable;
991 	}
992 
993 	/* Call function on all CPUs.  One of us will make the
994 	 * rtas call
995 	 */
996 	on_each_cpu(rtas_percpu_suspend_me, &data, 0);
997 
998 	wait_for_completion(&done);
999 
1000 	if (atomic_read(&data.error) != 0)
1001 		printk(KERN_ERR "Error doing global join\n");
1002 
1003 out_hotplug_enable:
1004 	cpu_hotplug_enable();
1005 
1006 	/* Take down CPUs not online prior to suspend */
1007 	cpuret = rtas_offline_cpus_mask(offline_mask);
1008 	if (cpuret)
1009 		pr_warn("%s: Could not restore CPUs to offline state.\n",
1010 				__func__);
1011 
1012 out:
1013 	unlock_device_hotplug();
1014 	free_cpumask_var(offline_mask);
1015 	return atomic_read(&data.error);
1016 }
1017 #else /* CONFIG_PPC_PSERIES */
rtas_ibm_suspend_me(u64 handle)1018 int rtas_ibm_suspend_me(u64 handle)
1019 {
1020 	return -ENOSYS;
1021 }
1022 #endif
1023 
1024 /**
1025  * Find a specific pseries error log in an RTAS extended event log.
1026  * @log: RTAS error/event log
1027  * @section_id: two character section identifier
1028  *
1029  * Returns a pointer to the specified errorlog or NULL if not found.
1030  */
get_pseries_errorlog(struct rtas_error_log * log,uint16_t section_id)1031 struct pseries_errorlog *get_pseries_errorlog(struct rtas_error_log *log,
1032 					      uint16_t section_id)
1033 {
1034 	struct rtas_ext_event_log_v6 *ext_log =
1035 		(struct rtas_ext_event_log_v6 *)log->buffer;
1036 	struct pseries_errorlog *sect;
1037 	unsigned char *p, *log_end;
1038 	uint32_t ext_log_length = rtas_error_extended_log_length(log);
1039 	uint8_t log_format = rtas_ext_event_log_format(ext_log);
1040 	uint32_t company_id = rtas_ext_event_company_id(ext_log);
1041 
1042 	/* Check that we understand the format */
1043 	if (ext_log_length < sizeof(struct rtas_ext_event_log_v6) ||
1044 	    log_format != RTAS_V6EXT_LOG_FORMAT_EVENT_LOG ||
1045 	    company_id != RTAS_V6EXT_COMPANY_ID_IBM)
1046 		return NULL;
1047 
1048 	log_end = log->buffer + ext_log_length;
1049 	p = ext_log->vendor_log;
1050 
1051 	while (p < log_end) {
1052 		sect = (struct pseries_errorlog *)p;
1053 		if (pseries_errorlog_id(sect) == section_id)
1054 			return sect;
1055 		p += pseries_errorlog_length(sect);
1056 	}
1057 
1058 	return NULL;
1059 }
1060 
1061 /* We assume to be passed big endian arguments */
SYSCALL_DEFINE1(rtas,struct rtas_args __user *,uargs)1062 SYSCALL_DEFINE1(rtas, struct rtas_args __user *, uargs)
1063 {
1064 	struct rtas_args args;
1065 	unsigned long flags;
1066 	char *buff_copy, *errbuf = NULL;
1067 	int nargs, nret, token;
1068 
1069 	if (!capable(CAP_SYS_ADMIN))
1070 		return -EPERM;
1071 
1072 	if (!rtas.entry)
1073 		return -EINVAL;
1074 
1075 	if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0)
1076 		return -EFAULT;
1077 
1078 	nargs = be32_to_cpu(args.nargs);
1079 	nret  = be32_to_cpu(args.nret);
1080 	token = be32_to_cpu(args.token);
1081 
1082 	if (nargs >= ARRAY_SIZE(args.args)
1083 	    || nret > ARRAY_SIZE(args.args)
1084 	    || nargs + nret > ARRAY_SIZE(args.args))
1085 		return -EINVAL;
1086 
1087 	/* Copy in args. */
1088 	if (copy_from_user(args.args, uargs->args,
1089 			   nargs * sizeof(rtas_arg_t)) != 0)
1090 		return -EFAULT;
1091 
1092 	if (token == RTAS_UNKNOWN_SERVICE)
1093 		return -EINVAL;
1094 
1095 	args.rets = &args.args[nargs];
1096 	memset(args.rets, 0, nret * sizeof(rtas_arg_t));
1097 
1098 	/* Need to handle ibm,suspend_me call specially */
1099 	if (token == ibm_suspend_me_token) {
1100 
1101 		/*
1102 		 * rtas_ibm_suspend_me assumes the streamid handle is in cpu
1103 		 * endian, or at least the hcall within it requires it.
1104 		 */
1105 		int rc = 0;
1106 		u64 handle = ((u64)be32_to_cpu(args.args[0]) << 32)
1107 		              | be32_to_cpu(args.args[1]);
1108 		rc = rtas_ibm_suspend_me(handle);
1109 		if (rc == -EAGAIN)
1110 			args.rets[0] = cpu_to_be32(RTAS_NOT_SUSPENDABLE);
1111 		else if (rc == -EIO)
1112 			args.rets[0] = cpu_to_be32(-1);
1113 		else if (rc)
1114 			return rc;
1115 		goto copy_return;
1116 	}
1117 
1118 	buff_copy = get_errorlog_buffer();
1119 
1120 	flags = lock_rtas();
1121 
1122 	rtas.args = args;
1123 	enter_rtas(__pa(&rtas.args));
1124 	args = rtas.args;
1125 
1126 	/* A -1 return code indicates that the last command couldn't
1127 	   be completed due to a hardware error. */
1128 	if (be32_to_cpu(args.rets[0]) == -1)
1129 		errbuf = __fetch_rtas_last_error(buff_copy);
1130 
1131 	unlock_rtas(flags);
1132 
1133 	if (buff_copy) {
1134 		if (errbuf)
1135 			log_error(errbuf, ERR_TYPE_RTAS_LOG, 0);
1136 		kfree(buff_copy);
1137 	}
1138 
1139  copy_return:
1140 	/* Copy out args. */
1141 	if (copy_to_user(uargs->args + nargs,
1142 			 args.args + nargs,
1143 			 nret * sizeof(rtas_arg_t)) != 0)
1144 		return -EFAULT;
1145 
1146 	return 0;
1147 }
1148 
1149 /*
1150  * Call early during boot, before mem init, to retrieve the RTAS
1151  * information from the device-tree and allocate the RMO buffer for userland
1152  * accesses.
1153  */
rtas_initialize(void)1154 void __init rtas_initialize(void)
1155 {
1156 	unsigned long rtas_region = RTAS_INSTANTIATE_MAX;
1157 	u32 base, size, entry;
1158 	int no_base, no_size, no_entry;
1159 
1160 	/* Get RTAS dev node and fill up our "rtas" structure with infos
1161 	 * about it.
1162 	 */
1163 	rtas.dev = of_find_node_by_name(NULL, "rtas");
1164 	if (!rtas.dev)
1165 		return;
1166 
1167 	no_base = of_property_read_u32(rtas.dev, "linux,rtas-base", &base);
1168 	no_size = of_property_read_u32(rtas.dev, "rtas-size", &size);
1169 	if (no_base || no_size) {
1170 		of_node_put(rtas.dev);
1171 		rtas.dev = NULL;
1172 		return;
1173 	}
1174 
1175 	rtas.base = base;
1176 	rtas.size = size;
1177 	no_entry = of_property_read_u32(rtas.dev, "linux,rtas-entry", &entry);
1178 	rtas.entry = no_entry ? rtas.base : entry;
1179 
1180 	/* If RTAS was found, allocate the RMO buffer for it and look for
1181 	 * the stop-self token if any
1182 	 */
1183 #ifdef CONFIG_PPC64
1184 	if (firmware_has_feature(FW_FEATURE_LPAR)) {
1185 		rtas_region = min(ppc64_rma_size, RTAS_INSTANTIATE_MAX);
1186 		ibm_suspend_me_token = rtas_token("ibm,suspend-me");
1187 	}
1188 #endif
1189 	rtas_rmo_buf = memblock_phys_alloc_range(RTAS_RMOBUF_MAX, PAGE_SIZE,
1190 						 0, rtas_region);
1191 	if (!rtas_rmo_buf)
1192 		panic("ERROR: RTAS: Failed to allocate %lx bytes below %pa\n",
1193 		      PAGE_SIZE, &rtas_region);
1194 
1195 #ifdef CONFIG_RTAS_ERROR_LOGGING
1196 	rtas_last_error_token = rtas_token("rtas-last-error");
1197 #endif
1198 }
1199 
early_init_dt_scan_rtas(unsigned long node,const char * uname,int depth,void * data)1200 int __init early_init_dt_scan_rtas(unsigned long node,
1201 		const char *uname, int depth, void *data)
1202 {
1203 	const u32 *basep, *entryp, *sizep;
1204 
1205 	if (depth != 1 || strcmp(uname, "rtas") != 0)
1206 		return 0;
1207 
1208 	basep  = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
1209 	entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
1210 	sizep  = of_get_flat_dt_prop(node, "rtas-size", NULL);
1211 
1212 	if (basep && entryp && sizep) {
1213 		rtas.base = *basep;
1214 		rtas.entry = *entryp;
1215 		rtas.size = *sizep;
1216 	}
1217 
1218 #ifdef CONFIG_UDBG_RTAS_CONSOLE
1219 	basep = of_get_flat_dt_prop(node, "put-term-char", NULL);
1220 	if (basep)
1221 		rtas_putchar_token = *basep;
1222 
1223 	basep = of_get_flat_dt_prop(node, "get-term-char", NULL);
1224 	if (basep)
1225 		rtas_getchar_token = *basep;
1226 
1227 	if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE &&
1228 	    rtas_getchar_token != RTAS_UNKNOWN_SERVICE)
1229 		udbg_init_rtas_console();
1230 
1231 #endif
1232 
1233 	/* break now */
1234 	return 1;
1235 }
1236 
1237 static arch_spinlock_t timebase_lock;
1238 static u64 timebase = 0;
1239 
rtas_give_timebase(void)1240 void rtas_give_timebase(void)
1241 {
1242 	unsigned long flags;
1243 
1244 	local_irq_save(flags);
1245 	hard_irq_disable();
1246 	arch_spin_lock(&timebase_lock);
1247 	rtas_call(rtas_token("freeze-time-base"), 0, 1, NULL);
1248 	timebase = get_tb();
1249 	arch_spin_unlock(&timebase_lock);
1250 
1251 	while (timebase)
1252 		barrier();
1253 	rtas_call(rtas_token("thaw-time-base"), 0, 1, NULL);
1254 	local_irq_restore(flags);
1255 }
1256 
rtas_take_timebase(void)1257 void rtas_take_timebase(void)
1258 {
1259 	while (!timebase)
1260 		barrier();
1261 	arch_spin_lock(&timebase_lock);
1262 	set_tb(timebase >> 32, timebase & 0xffffffff);
1263 	timebase = 0;
1264 	arch_spin_unlock(&timebase_lock);
1265 }
1266