1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 * Copyright (C) 2006, 2007 University of Szeged, Hungary
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published by
9 * the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program; if not, write to the Free Software Foundation, Inc., 51
18 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 * Authors: Artem Bityutskiy (Битюцкий Артём)
21 * Adrian Hunter
22 * Zoltan Sogor
23 */
24
25 /*
26 * This file implements UBIFS I/O subsystem which provides various I/O-related
27 * helper functions (reading/writing/checking/validating nodes) and implements
28 * write-buffering support. Write buffers help to save space which otherwise
29 * would have been wasted for padding to the nearest minimal I/O unit boundary.
30 * Instead, data first goes to the write-buffer and is flushed when the
31 * buffer is full or when it is not used for some time (by timer). This is
32 * similar to the mechanism is used by JFFS2.
33 *
34 * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
35 * write size (@c->max_write_size). The latter is the maximum amount of bytes
36 * the underlying flash is able to program at a time, and writing in
37 * @c->max_write_size units should presumably be faster. Obviously,
38 * @c->min_io_size <= @c->max_write_size. Write-buffers are of
39 * @c->max_write_size bytes in size for maximum performance. However, when a
40 * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
41 * boundary) which contains data is written, not the whole write-buffer,
42 * because this is more space-efficient.
43 *
44 * This optimization adds few complications to the code. Indeed, on the one
45 * hand, we want to write in optimal @c->max_write_size bytes chunks, which
46 * also means aligning writes at the @c->max_write_size bytes offsets. On the
47 * other hand, we do not want to waste space when synchronizing the write
48 * buffer, so during synchronization we writes in smaller chunks. And this makes
49 * the next write offset to be not aligned to @c->max_write_size bytes. So the
50 * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
51 * to @c->max_write_size bytes again. We do this by temporarily shrinking
52 * write-buffer size (@wbuf->size).
53 *
54 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
55 * mutexes defined inside these objects. Since sometimes upper-level code
56 * has to lock the write-buffer (e.g. journal space reservation code), many
57 * functions related to write-buffers have "nolock" suffix which means that the
58 * caller has to lock the write-buffer before calling this function.
59 *
60 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
61 * aligned, UBIFS starts the next node from the aligned address, and the padded
62 * bytes may contain any rubbish. In other words, UBIFS does not put padding
63 * bytes in those small gaps. Common headers of nodes store real node lengths,
64 * not aligned lengths. Indexing nodes also store real lengths in branches.
65 *
66 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
67 * uses padding nodes or padding bytes, if the padding node does not fit.
68 *
69 * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
70 * they are read from the flash media.
71 */
72
73 #include <linux/crc32.h>
74 #include <linux/slab.h>
75 #include "ubifs.h"
76
77 /**
78 * ubifs_ro_mode - switch UBIFS to read read-only mode.
79 * @c: UBIFS file-system description object
80 * @err: error code which is the reason of switching to R/O mode
81 */
ubifs_ro_mode(struct ubifs_info * c,int err)82 void ubifs_ro_mode(struct ubifs_info *c, int err)
83 {
84 if (!c->ro_error) {
85 c->ro_error = 1;
86 c->no_chk_data_crc = 0;
87 c->vfs_sb->s_flags |= SB_RDONLY;
88 ubifs_warn(c, "switched to read-only mode, error %d", err);
89 dump_stack();
90 }
91 }
92
93 /*
94 * Below are simple wrappers over UBI I/O functions which include some
95 * additional checks and UBIFS debugging stuff. See corresponding UBI function
96 * for more information.
97 */
98
ubifs_leb_read(const struct ubifs_info * c,int lnum,void * buf,int offs,int len,int even_ebadmsg)99 int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
100 int len, int even_ebadmsg)
101 {
102 int err;
103
104 err = ubi_read(c->ubi, lnum, buf, offs, len);
105 /*
106 * In case of %-EBADMSG print the error message only if the
107 * @even_ebadmsg is true.
108 */
109 if (err && (err != -EBADMSG || even_ebadmsg)) {
110 ubifs_err(c, "reading %d bytes from LEB %d:%d failed, error %d",
111 len, lnum, offs, err);
112 dump_stack();
113 }
114 return err;
115 }
116
ubifs_leb_write(struct ubifs_info * c,int lnum,const void * buf,int offs,int len)117 int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
118 int len)
119 {
120 int err;
121
122 ubifs_assert(c, !c->ro_media && !c->ro_mount);
123 if (c->ro_error)
124 return -EROFS;
125 if (!dbg_is_tst_rcvry(c))
126 err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
127 else
128 err = dbg_leb_write(c, lnum, buf, offs, len);
129 if (err) {
130 ubifs_err(c, "writing %d bytes to LEB %d:%d failed, error %d",
131 len, lnum, offs, err);
132 ubifs_ro_mode(c, err);
133 dump_stack();
134 }
135 return err;
136 }
137
ubifs_leb_change(struct ubifs_info * c,int lnum,const void * buf,int len)138 int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len)
139 {
140 int err;
141
142 ubifs_assert(c, !c->ro_media && !c->ro_mount);
143 if (c->ro_error)
144 return -EROFS;
145 if (!dbg_is_tst_rcvry(c))
146 err = ubi_leb_change(c->ubi, lnum, buf, len);
147 else
148 err = dbg_leb_change(c, lnum, buf, len);
149 if (err) {
150 ubifs_err(c, "changing %d bytes in LEB %d failed, error %d",
151 len, lnum, err);
152 ubifs_ro_mode(c, err);
153 dump_stack();
154 }
155 return err;
156 }
157
ubifs_leb_unmap(struct ubifs_info * c,int lnum)158 int ubifs_leb_unmap(struct ubifs_info *c, int lnum)
159 {
160 int err;
161
162 ubifs_assert(c, !c->ro_media && !c->ro_mount);
163 if (c->ro_error)
164 return -EROFS;
165 if (!dbg_is_tst_rcvry(c))
166 err = ubi_leb_unmap(c->ubi, lnum);
167 else
168 err = dbg_leb_unmap(c, lnum);
169 if (err) {
170 ubifs_err(c, "unmap LEB %d failed, error %d", lnum, err);
171 ubifs_ro_mode(c, err);
172 dump_stack();
173 }
174 return err;
175 }
176
ubifs_leb_map(struct ubifs_info * c,int lnum)177 int ubifs_leb_map(struct ubifs_info *c, int lnum)
178 {
179 int err;
180
181 ubifs_assert(c, !c->ro_media && !c->ro_mount);
182 if (c->ro_error)
183 return -EROFS;
184 if (!dbg_is_tst_rcvry(c))
185 err = ubi_leb_map(c->ubi, lnum);
186 else
187 err = dbg_leb_map(c, lnum);
188 if (err) {
189 ubifs_err(c, "mapping LEB %d failed, error %d", lnum, err);
190 ubifs_ro_mode(c, err);
191 dump_stack();
192 }
193 return err;
194 }
195
ubifs_is_mapped(const struct ubifs_info * c,int lnum)196 int ubifs_is_mapped(const struct ubifs_info *c, int lnum)
197 {
198 int err;
199
200 err = ubi_is_mapped(c->ubi, lnum);
201 if (err < 0) {
202 ubifs_err(c, "ubi_is_mapped failed for LEB %d, error %d",
203 lnum, err);
204 dump_stack();
205 }
206 return err;
207 }
208
209 /**
210 * ubifs_check_node - check node.
211 * @c: UBIFS file-system description object
212 * @buf: node to check
213 * @lnum: logical eraseblock number
214 * @offs: offset within the logical eraseblock
215 * @quiet: print no messages
216 * @must_chk_crc: indicates whether to always check the CRC
217 *
218 * This function checks node magic number and CRC checksum. This function also
219 * validates node length to prevent UBIFS from becoming crazy when an attacker
220 * feeds it a file-system image with incorrect nodes. For example, too large
221 * node length in the common header could cause UBIFS to read memory outside of
222 * allocated buffer when checking the CRC checksum.
223 *
224 * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
225 * true, which is controlled by corresponding UBIFS mount option. However, if
226 * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
227 * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
228 * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
229 * is checked. This is because during mounting or re-mounting from R/O mode to
230 * R/W mode we may read journal nodes (when replying the journal or doing the
231 * recovery) and the journal nodes may potentially be corrupted, so checking is
232 * required.
233 *
234 * This function returns zero in case of success and %-EUCLEAN in case of bad
235 * CRC or magic.
236 */
ubifs_check_node(const struct ubifs_info * c,const void * buf,int lnum,int offs,int quiet,int must_chk_crc)237 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
238 int offs, int quiet, int must_chk_crc)
239 {
240 int err = -EINVAL, type, node_len;
241 uint32_t crc, node_crc, magic;
242 const struct ubifs_ch *ch = buf;
243
244 ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
245 ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
246
247 magic = le32_to_cpu(ch->magic);
248 if (magic != UBIFS_NODE_MAGIC) {
249 if (!quiet)
250 ubifs_err(c, "bad magic %#08x, expected %#08x",
251 magic, UBIFS_NODE_MAGIC);
252 err = -EUCLEAN;
253 goto out;
254 }
255
256 type = ch->node_type;
257 if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
258 if (!quiet)
259 ubifs_err(c, "bad node type %d", type);
260 goto out;
261 }
262
263 node_len = le32_to_cpu(ch->len);
264 if (node_len + offs > c->leb_size)
265 goto out_len;
266
267 if (c->ranges[type].max_len == 0) {
268 if (node_len != c->ranges[type].len)
269 goto out_len;
270 } else if (node_len < c->ranges[type].min_len ||
271 node_len > c->ranges[type].max_len)
272 goto out_len;
273
274 if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
275 !c->remounting_rw && c->no_chk_data_crc)
276 return 0;
277
278 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
279 node_crc = le32_to_cpu(ch->crc);
280 if (crc != node_crc) {
281 if (!quiet)
282 ubifs_err(c, "bad CRC: calculated %#08x, read %#08x",
283 crc, node_crc);
284 err = -EUCLEAN;
285 goto out;
286 }
287
288 return 0;
289
290 out_len:
291 if (!quiet)
292 ubifs_err(c, "bad node length %d", node_len);
293 out:
294 if (!quiet) {
295 ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
296 ubifs_dump_node(c, buf);
297 dump_stack();
298 }
299 return err;
300 }
301
302 /**
303 * ubifs_pad - pad flash space.
304 * @c: UBIFS file-system description object
305 * @buf: buffer to put padding to
306 * @pad: how many bytes to pad
307 *
308 * The flash media obliges us to write only in chunks of %c->min_io_size and
309 * when we have to write less data we add padding node to the write-buffer and
310 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
311 * media is being scanned. If the amount of wasted space is not enough to fit a
312 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
313 * pattern (%UBIFS_PADDING_BYTE).
314 *
315 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
316 * used.
317 */
ubifs_pad(const struct ubifs_info * c,void * buf,int pad)318 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
319 {
320 uint32_t crc;
321
322 ubifs_assert(c, pad >= 0 && !(pad & 7));
323
324 if (pad >= UBIFS_PAD_NODE_SZ) {
325 struct ubifs_ch *ch = buf;
326 struct ubifs_pad_node *pad_node = buf;
327
328 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
329 ch->node_type = UBIFS_PAD_NODE;
330 ch->group_type = UBIFS_NO_NODE_GROUP;
331 ch->padding[0] = ch->padding[1] = 0;
332 ch->sqnum = 0;
333 ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
334 pad -= UBIFS_PAD_NODE_SZ;
335 pad_node->pad_len = cpu_to_le32(pad);
336 crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
337 ch->crc = cpu_to_le32(crc);
338 memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
339 } else if (pad > 0)
340 /* Too little space, padding node won't fit */
341 memset(buf, UBIFS_PADDING_BYTE, pad);
342 }
343
344 /**
345 * next_sqnum - get next sequence number.
346 * @c: UBIFS file-system description object
347 */
next_sqnum(struct ubifs_info * c)348 static unsigned long long next_sqnum(struct ubifs_info *c)
349 {
350 unsigned long long sqnum;
351
352 spin_lock(&c->cnt_lock);
353 sqnum = ++c->max_sqnum;
354 spin_unlock(&c->cnt_lock);
355
356 if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
357 if (sqnum >= SQNUM_WATERMARK) {
358 ubifs_err(c, "sequence number overflow %llu, end of life",
359 sqnum);
360 ubifs_ro_mode(c, -EINVAL);
361 }
362 ubifs_warn(c, "running out of sequence numbers, end of life soon");
363 }
364
365 return sqnum;
366 }
367
368 /**
369 * ubifs_prepare_node - prepare node to be written to flash.
370 * @c: UBIFS file-system description object
371 * @node: the node to pad
372 * @len: node length
373 * @pad: if the buffer has to be padded
374 *
375 * This function prepares node at @node to be written to the media - it
376 * calculates node CRC, fills the common header, and adds proper padding up to
377 * the next minimum I/O unit if @pad is not zero.
378 */
ubifs_prepare_node(struct ubifs_info * c,void * node,int len,int pad)379 void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
380 {
381 uint32_t crc;
382 struct ubifs_ch *ch = node;
383 unsigned long long sqnum = next_sqnum(c);
384
385 ubifs_assert(c, len >= UBIFS_CH_SZ);
386
387 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
388 ch->len = cpu_to_le32(len);
389 ch->group_type = UBIFS_NO_NODE_GROUP;
390 ch->sqnum = cpu_to_le64(sqnum);
391 ch->padding[0] = ch->padding[1] = 0;
392 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
393 ch->crc = cpu_to_le32(crc);
394
395 if (pad) {
396 len = ALIGN(len, 8);
397 pad = ALIGN(len, c->min_io_size) - len;
398 ubifs_pad(c, node + len, pad);
399 }
400 }
401
402 /**
403 * ubifs_prep_grp_node - prepare node of a group to be written to flash.
404 * @c: UBIFS file-system description object
405 * @node: the node to pad
406 * @len: node length
407 * @last: indicates the last node of the group
408 *
409 * This function prepares node at @node to be written to the media - it
410 * calculates node CRC and fills the common header.
411 */
ubifs_prep_grp_node(struct ubifs_info * c,void * node,int len,int last)412 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
413 {
414 uint32_t crc;
415 struct ubifs_ch *ch = node;
416 unsigned long long sqnum = next_sqnum(c);
417
418 ubifs_assert(c, len >= UBIFS_CH_SZ);
419
420 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
421 ch->len = cpu_to_le32(len);
422 if (last)
423 ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
424 else
425 ch->group_type = UBIFS_IN_NODE_GROUP;
426 ch->sqnum = cpu_to_le64(sqnum);
427 ch->padding[0] = ch->padding[1] = 0;
428 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
429 ch->crc = cpu_to_le32(crc);
430 }
431
432 /**
433 * wbuf_timer_callback - write-buffer timer callback function.
434 * @timer: timer data (write-buffer descriptor)
435 *
436 * This function is called when the write-buffer timer expires.
437 */
wbuf_timer_callback_nolock(struct hrtimer * timer)438 static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
439 {
440 struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
441
442 dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
443 wbuf->need_sync = 1;
444 wbuf->c->need_wbuf_sync = 1;
445 ubifs_wake_up_bgt(wbuf->c);
446 return HRTIMER_NORESTART;
447 }
448
449 /**
450 * new_wbuf_timer - start new write-buffer timer.
451 * @c: UBIFS file-system description object
452 * @wbuf: write-buffer descriptor
453 */
new_wbuf_timer_nolock(struct ubifs_info * c,struct ubifs_wbuf * wbuf)454 static void new_wbuf_timer_nolock(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
455 {
456 ktime_t softlimit = ms_to_ktime(dirty_writeback_interval * 10);
457 unsigned long long delta = dirty_writeback_interval;
458
459 /* centi to milli, milli to nano, then 10% */
460 delta *= 10ULL * NSEC_PER_MSEC / 10ULL;
461
462 ubifs_assert(c, !hrtimer_active(&wbuf->timer));
463 ubifs_assert(c, delta <= ULONG_MAX);
464
465 if (wbuf->no_timer)
466 return;
467 dbg_io("set timer for jhead %s, %llu-%llu millisecs",
468 dbg_jhead(wbuf->jhead),
469 div_u64(ktime_to_ns(softlimit), USEC_PER_SEC),
470 div_u64(ktime_to_ns(softlimit) + delta, USEC_PER_SEC));
471 hrtimer_start_range_ns(&wbuf->timer, softlimit, delta,
472 HRTIMER_MODE_REL);
473 }
474
475 /**
476 * cancel_wbuf_timer - cancel write-buffer timer.
477 * @wbuf: write-buffer descriptor
478 */
cancel_wbuf_timer_nolock(struct ubifs_wbuf * wbuf)479 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
480 {
481 if (wbuf->no_timer)
482 return;
483 wbuf->need_sync = 0;
484 hrtimer_cancel(&wbuf->timer);
485 }
486
487 /**
488 * ubifs_wbuf_sync_nolock - synchronize write-buffer.
489 * @wbuf: write-buffer to synchronize
490 *
491 * This function synchronizes write-buffer @buf and returns zero in case of
492 * success or a negative error code in case of failure.
493 *
494 * Note, although write-buffers are of @c->max_write_size, this function does
495 * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
496 * if the write-buffer is only partially filled with data, only the used part
497 * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
498 * This way we waste less space.
499 */
ubifs_wbuf_sync_nolock(struct ubifs_wbuf * wbuf)500 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
501 {
502 struct ubifs_info *c = wbuf->c;
503 int err, dirt, sync_len;
504
505 cancel_wbuf_timer_nolock(wbuf);
506 if (!wbuf->used || wbuf->lnum == -1)
507 /* Write-buffer is empty or not seeked */
508 return 0;
509
510 dbg_io("LEB %d:%d, %d bytes, jhead %s",
511 wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
512 ubifs_assert(c, !(wbuf->avail & 7));
513 ubifs_assert(c, wbuf->offs + wbuf->size <= c->leb_size);
514 ubifs_assert(c, wbuf->size >= c->min_io_size);
515 ubifs_assert(c, wbuf->size <= c->max_write_size);
516 ubifs_assert(c, wbuf->size % c->min_io_size == 0);
517 ubifs_assert(c, !c->ro_media && !c->ro_mount);
518 if (c->leb_size - wbuf->offs >= c->max_write_size)
519 ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size));
520
521 if (c->ro_error)
522 return -EROFS;
523
524 /*
525 * Do not write whole write buffer but write only the minimum necessary
526 * amount of min. I/O units.
527 */
528 sync_len = ALIGN(wbuf->used, c->min_io_size);
529 dirt = sync_len - wbuf->used;
530 if (dirt)
531 ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
532 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len);
533 if (err)
534 return err;
535
536 spin_lock(&wbuf->lock);
537 wbuf->offs += sync_len;
538 /*
539 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
540 * But our goal is to optimize writes and make sure we write in
541 * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
542 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
543 * sure that @wbuf->offs + @wbuf->size is aligned to
544 * @c->max_write_size. This way we make sure that after next
545 * write-buffer flush we are again at the optimal offset (aligned to
546 * @c->max_write_size).
547 */
548 if (c->leb_size - wbuf->offs < c->max_write_size)
549 wbuf->size = c->leb_size - wbuf->offs;
550 else if (wbuf->offs & (c->max_write_size - 1))
551 wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
552 else
553 wbuf->size = c->max_write_size;
554 wbuf->avail = wbuf->size;
555 wbuf->used = 0;
556 wbuf->next_ino = 0;
557 spin_unlock(&wbuf->lock);
558
559 if (wbuf->sync_callback)
560 err = wbuf->sync_callback(c, wbuf->lnum,
561 c->leb_size - wbuf->offs, dirt);
562 return err;
563 }
564
565 /**
566 * ubifs_wbuf_seek_nolock - seek write-buffer.
567 * @wbuf: write-buffer
568 * @lnum: logical eraseblock number to seek to
569 * @offs: logical eraseblock offset to seek to
570 *
571 * This function targets the write-buffer to logical eraseblock @lnum:@offs.
572 * The write-buffer has to be empty. Returns zero in case of success and a
573 * negative error code in case of failure.
574 */
ubifs_wbuf_seek_nolock(struct ubifs_wbuf * wbuf,int lnum,int offs)575 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs)
576 {
577 const struct ubifs_info *c = wbuf->c;
578
579 dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
580 ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt);
581 ubifs_assert(c, offs >= 0 && offs <= c->leb_size);
582 ubifs_assert(c, offs % c->min_io_size == 0 && !(offs & 7));
583 ubifs_assert(c, lnum != wbuf->lnum);
584 ubifs_assert(c, wbuf->used == 0);
585
586 spin_lock(&wbuf->lock);
587 wbuf->lnum = lnum;
588 wbuf->offs = offs;
589 if (c->leb_size - wbuf->offs < c->max_write_size)
590 wbuf->size = c->leb_size - wbuf->offs;
591 else if (wbuf->offs & (c->max_write_size - 1))
592 wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
593 else
594 wbuf->size = c->max_write_size;
595 wbuf->avail = wbuf->size;
596 wbuf->used = 0;
597 spin_unlock(&wbuf->lock);
598
599 return 0;
600 }
601
602 /**
603 * ubifs_bg_wbufs_sync - synchronize write-buffers.
604 * @c: UBIFS file-system description object
605 *
606 * This function is called by background thread to synchronize write-buffers.
607 * Returns zero in case of success and a negative error code in case of
608 * failure.
609 */
ubifs_bg_wbufs_sync(struct ubifs_info * c)610 int ubifs_bg_wbufs_sync(struct ubifs_info *c)
611 {
612 int err, i;
613
614 ubifs_assert(c, !c->ro_media && !c->ro_mount);
615 if (!c->need_wbuf_sync)
616 return 0;
617 c->need_wbuf_sync = 0;
618
619 if (c->ro_error) {
620 err = -EROFS;
621 goto out_timers;
622 }
623
624 dbg_io("synchronize");
625 for (i = 0; i < c->jhead_cnt; i++) {
626 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
627
628 cond_resched();
629
630 /*
631 * If the mutex is locked then wbuf is being changed, so
632 * synchronization is not necessary.
633 */
634 if (mutex_is_locked(&wbuf->io_mutex))
635 continue;
636
637 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
638 if (!wbuf->need_sync) {
639 mutex_unlock(&wbuf->io_mutex);
640 continue;
641 }
642
643 err = ubifs_wbuf_sync_nolock(wbuf);
644 mutex_unlock(&wbuf->io_mutex);
645 if (err) {
646 ubifs_err(c, "cannot sync write-buffer, error %d", err);
647 ubifs_ro_mode(c, err);
648 goto out_timers;
649 }
650 }
651
652 return 0;
653
654 out_timers:
655 /* Cancel all timers to prevent repeated errors */
656 for (i = 0; i < c->jhead_cnt; i++) {
657 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
658
659 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
660 cancel_wbuf_timer_nolock(wbuf);
661 mutex_unlock(&wbuf->io_mutex);
662 }
663 return err;
664 }
665
666 /**
667 * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
668 * @wbuf: write-buffer
669 * @buf: node to write
670 * @len: node length
671 *
672 * This function writes data to flash via write-buffer @wbuf. This means that
673 * the last piece of the node won't reach the flash media immediately if it
674 * does not take whole max. write unit (@c->max_write_size). Instead, the node
675 * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
676 * because more data are appended to the write-buffer).
677 *
678 * This function returns zero in case of success and a negative error code in
679 * case of failure. If the node cannot be written because there is no more
680 * space in this logical eraseblock, %-ENOSPC is returned.
681 */
ubifs_wbuf_write_nolock(struct ubifs_wbuf * wbuf,void * buf,int len)682 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
683 {
684 struct ubifs_info *c = wbuf->c;
685 int err, written, n, aligned_len = ALIGN(len, 8);
686
687 dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
688 dbg_ntype(((struct ubifs_ch *)buf)->node_type),
689 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
690 ubifs_assert(c, len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
691 ubifs_assert(c, wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
692 ubifs_assert(c, !(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
693 ubifs_assert(c, wbuf->avail > 0 && wbuf->avail <= wbuf->size);
694 ubifs_assert(c, wbuf->size >= c->min_io_size);
695 ubifs_assert(c, wbuf->size <= c->max_write_size);
696 ubifs_assert(c, wbuf->size % c->min_io_size == 0);
697 ubifs_assert(c, mutex_is_locked(&wbuf->io_mutex));
698 ubifs_assert(c, !c->ro_media && !c->ro_mount);
699 ubifs_assert(c, !c->space_fixup);
700 if (c->leb_size - wbuf->offs >= c->max_write_size)
701 ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size));
702
703 if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
704 err = -ENOSPC;
705 goto out;
706 }
707
708 cancel_wbuf_timer_nolock(wbuf);
709
710 if (c->ro_error)
711 return -EROFS;
712
713 if (aligned_len <= wbuf->avail) {
714 /*
715 * The node is not very large and fits entirely within
716 * write-buffer.
717 */
718 memcpy(wbuf->buf + wbuf->used, buf, len);
719
720 if (aligned_len == wbuf->avail) {
721 dbg_io("flush jhead %s wbuf to LEB %d:%d",
722 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
723 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf,
724 wbuf->offs, wbuf->size);
725 if (err)
726 goto out;
727
728 spin_lock(&wbuf->lock);
729 wbuf->offs += wbuf->size;
730 if (c->leb_size - wbuf->offs >= c->max_write_size)
731 wbuf->size = c->max_write_size;
732 else
733 wbuf->size = c->leb_size - wbuf->offs;
734 wbuf->avail = wbuf->size;
735 wbuf->used = 0;
736 wbuf->next_ino = 0;
737 spin_unlock(&wbuf->lock);
738 } else {
739 spin_lock(&wbuf->lock);
740 wbuf->avail -= aligned_len;
741 wbuf->used += aligned_len;
742 spin_unlock(&wbuf->lock);
743 }
744
745 goto exit;
746 }
747
748 written = 0;
749
750 if (wbuf->used) {
751 /*
752 * The node is large enough and does not fit entirely within
753 * current available space. We have to fill and flush
754 * write-buffer and switch to the next max. write unit.
755 */
756 dbg_io("flush jhead %s wbuf to LEB %d:%d",
757 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
758 memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
759 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs,
760 wbuf->size);
761 if (err)
762 goto out;
763
764 wbuf->offs += wbuf->size;
765 len -= wbuf->avail;
766 aligned_len -= wbuf->avail;
767 written += wbuf->avail;
768 } else if (wbuf->offs & (c->max_write_size - 1)) {
769 /*
770 * The write-buffer offset is not aligned to
771 * @c->max_write_size and @wbuf->size is less than
772 * @c->max_write_size. Write @wbuf->size bytes to make sure the
773 * following writes are done in optimal @c->max_write_size
774 * chunks.
775 */
776 dbg_io("write %d bytes to LEB %d:%d",
777 wbuf->size, wbuf->lnum, wbuf->offs);
778 err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs,
779 wbuf->size);
780 if (err)
781 goto out;
782
783 wbuf->offs += wbuf->size;
784 len -= wbuf->size;
785 aligned_len -= wbuf->size;
786 written += wbuf->size;
787 }
788
789 /*
790 * The remaining data may take more whole max. write units, so write the
791 * remains multiple to max. write unit size directly to the flash media.
792 * We align node length to 8-byte boundary because we anyway flash wbuf
793 * if the remaining space is less than 8 bytes.
794 */
795 n = aligned_len >> c->max_write_shift;
796 if (n) {
797 n <<= c->max_write_shift;
798 dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum,
799 wbuf->offs);
800 err = ubifs_leb_write(c, wbuf->lnum, buf + written,
801 wbuf->offs, n);
802 if (err)
803 goto out;
804 wbuf->offs += n;
805 aligned_len -= n;
806 len -= n;
807 written += n;
808 }
809
810 spin_lock(&wbuf->lock);
811 if (aligned_len)
812 /*
813 * And now we have what's left and what does not take whole
814 * max. write unit, so write it to the write-buffer and we are
815 * done.
816 */
817 memcpy(wbuf->buf, buf + written, len);
818
819 if (c->leb_size - wbuf->offs >= c->max_write_size)
820 wbuf->size = c->max_write_size;
821 else
822 wbuf->size = c->leb_size - wbuf->offs;
823 wbuf->avail = wbuf->size - aligned_len;
824 wbuf->used = aligned_len;
825 wbuf->next_ino = 0;
826 spin_unlock(&wbuf->lock);
827
828 exit:
829 if (wbuf->sync_callback) {
830 int free = c->leb_size - wbuf->offs - wbuf->used;
831
832 err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
833 if (err)
834 goto out;
835 }
836
837 if (wbuf->used)
838 new_wbuf_timer_nolock(c, wbuf);
839
840 return 0;
841
842 out:
843 ubifs_err(c, "cannot write %d bytes to LEB %d:%d, error %d",
844 len, wbuf->lnum, wbuf->offs, err);
845 ubifs_dump_node(c, buf);
846 dump_stack();
847 ubifs_dump_leb(c, wbuf->lnum);
848 return err;
849 }
850
851 /**
852 * ubifs_write_node - write node to the media.
853 * @c: UBIFS file-system description object
854 * @buf: the node to write
855 * @len: node length
856 * @lnum: logical eraseblock number
857 * @offs: offset within the logical eraseblock
858 *
859 * This function automatically fills node magic number, assigns sequence
860 * number, and calculates node CRC checksum. The length of the @buf buffer has
861 * to be aligned to the minimal I/O unit size. This function automatically
862 * appends padding node and padding bytes if needed. Returns zero in case of
863 * success and a negative error code in case of failure.
864 */
ubifs_write_node(struct ubifs_info * c,void * buf,int len,int lnum,int offs)865 int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
866 int offs)
867 {
868 int err, buf_len = ALIGN(len, c->min_io_size);
869
870 dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
871 lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
872 buf_len);
873 ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
874 ubifs_assert(c, offs % c->min_io_size == 0 && offs < c->leb_size);
875 ubifs_assert(c, !c->ro_media && !c->ro_mount);
876 ubifs_assert(c, !c->space_fixup);
877
878 if (c->ro_error)
879 return -EROFS;
880
881 ubifs_prepare_node(c, buf, len, 1);
882 err = ubifs_leb_write(c, lnum, buf, offs, buf_len);
883 if (err)
884 ubifs_dump_node(c, buf);
885
886 return err;
887 }
888
889 /**
890 * ubifs_read_node_wbuf - read node from the media or write-buffer.
891 * @wbuf: wbuf to check for un-written data
892 * @buf: buffer to read to
893 * @type: node type
894 * @len: node length
895 * @lnum: logical eraseblock number
896 * @offs: offset within the logical eraseblock
897 *
898 * This function reads a node of known type and length, checks it and stores
899 * in @buf. If the node partially or fully sits in the write-buffer, this
900 * function takes data from the buffer, otherwise it reads the flash media.
901 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
902 * error code in case of failure.
903 */
ubifs_read_node_wbuf(struct ubifs_wbuf * wbuf,void * buf,int type,int len,int lnum,int offs)904 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
905 int lnum, int offs)
906 {
907 const struct ubifs_info *c = wbuf->c;
908 int err, rlen, overlap;
909 struct ubifs_ch *ch = buf;
910
911 dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
912 dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
913 ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
914 ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
915 ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT);
916
917 spin_lock(&wbuf->lock);
918 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
919 if (!overlap) {
920 /* We may safely unlock the write-buffer and read the data */
921 spin_unlock(&wbuf->lock);
922 return ubifs_read_node(c, buf, type, len, lnum, offs);
923 }
924
925 /* Don't read under wbuf */
926 rlen = wbuf->offs - offs;
927 if (rlen < 0)
928 rlen = 0;
929
930 /* Copy the rest from the write-buffer */
931 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
932 spin_unlock(&wbuf->lock);
933
934 if (rlen > 0) {
935 /* Read everything that goes before write-buffer */
936 err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
937 if (err && err != -EBADMSG)
938 return err;
939 }
940
941 if (type != ch->node_type) {
942 ubifs_err(c, "bad node type (%d but expected %d)",
943 ch->node_type, type);
944 goto out;
945 }
946
947 err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
948 if (err) {
949 ubifs_err(c, "expected node type %d", type);
950 return err;
951 }
952
953 rlen = le32_to_cpu(ch->len);
954 if (rlen != len) {
955 ubifs_err(c, "bad node length %d, expected %d", rlen, len);
956 goto out;
957 }
958
959 return 0;
960
961 out:
962 ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
963 ubifs_dump_node(c, buf);
964 dump_stack();
965 return -EINVAL;
966 }
967
968 /**
969 * ubifs_read_node - read node.
970 * @c: UBIFS file-system description object
971 * @buf: buffer to read to
972 * @type: node type
973 * @len: node length (not aligned)
974 * @lnum: logical eraseblock number
975 * @offs: offset within the logical eraseblock
976 *
977 * This function reads a node of known type and and length, checks it and
978 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
979 * and a negative error code in case of failure.
980 */
ubifs_read_node(const struct ubifs_info * c,void * buf,int type,int len,int lnum,int offs)981 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
982 int lnum, int offs)
983 {
984 int err, l;
985 struct ubifs_ch *ch = buf;
986
987 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
988 ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
989 ubifs_assert(c, len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
990 ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
991 ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT);
992
993 err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
994 if (err && err != -EBADMSG)
995 return err;
996
997 if (type != ch->node_type) {
998 ubifs_errc(c, "bad node type (%d but expected %d)",
999 ch->node_type, type);
1000 goto out;
1001 }
1002
1003 err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
1004 if (err) {
1005 ubifs_errc(c, "expected node type %d", type);
1006 return err;
1007 }
1008
1009 l = le32_to_cpu(ch->len);
1010 if (l != len) {
1011 ubifs_errc(c, "bad node length %d, expected %d", l, len);
1012 goto out;
1013 }
1014
1015 return 0;
1016
1017 out:
1018 ubifs_errc(c, "bad node at LEB %d:%d, LEB mapping status %d", lnum,
1019 offs, ubi_is_mapped(c->ubi, lnum));
1020 if (!c->probing) {
1021 ubifs_dump_node(c, buf);
1022 dump_stack();
1023 }
1024 return -EINVAL;
1025 }
1026
1027 /**
1028 * ubifs_wbuf_init - initialize write-buffer.
1029 * @c: UBIFS file-system description object
1030 * @wbuf: write-buffer to initialize
1031 *
1032 * This function initializes write-buffer. Returns zero in case of success
1033 * %-ENOMEM in case of failure.
1034 */
ubifs_wbuf_init(struct ubifs_info * c,struct ubifs_wbuf * wbuf)1035 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
1036 {
1037 size_t size;
1038
1039 wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
1040 if (!wbuf->buf)
1041 return -ENOMEM;
1042
1043 size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
1044 wbuf->inodes = kmalloc(size, GFP_KERNEL);
1045 if (!wbuf->inodes) {
1046 kfree(wbuf->buf);
1047 wbuf->buf = NULL;
1048 return -ENOMEM;
1049 }
1050
1051 wbuf->used = 0;
1052 wbuf->lnum = wbuf->offs = -1;
1053 /*
1054 * If the LEB starts at the max. write size aligned address, then
1055 * write-buffer size has to be set to @c->max_write_size. Otherwise,
1056 * set it to something smaller so that it ends at the closest max.
1057 * write size boundary.
1058 */
1059 size = c->max_write_size - (c->leb_start % c->max_write_size);
1060 wbuf->avail = wbuf->size = size;
1061 wbuf->sync_callback = NULL;
1062 mutex_init(&wbuf->io_mutex);
1063 spin_lock_init(&wbuf->lock);
1064 wbuf->c = c;
1065 wbuf->next_ino = 0;
1066
1067 hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1068 wbuf->timer.function = wbuf_timer_callback_nolock;
1069 return 0;
1070 }
1071
1072 /**
1073 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
1074 * @wbuf: the write-buffer where to add
1075 * @inum: the inode number
1076 *
1077 * This function adds an inode number to the inode array of the write-buffer.
1078 */
ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf * wbuf,ino_t inum)1079 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
1080 {
1081 if (!wbuf->buf)
1082 /* NOR flash or something similar */
1083 return;
1084
1085 spin_lock(&wbuf->lock);
1086 if (wbuf->used)
1087 wbuf->inodes[wbuf->next_ino++] = inum;
1088 spin_unlock(&wbuf->lock);
1089 }
1090
1091 /**
1092 * wbuf_has_ino - returns if the wbuf contains data from the inode.
1093 * @wbuf: the write-buffer
1094 * @inum: the inode number
1095 *
1096 * This function returns with %1 if the write-buffer contains some data from the
1097 * given inode otherwise it returns with %0.
1098 */
wbuf_has_ino(struct ubifs_wbuf * wbuf,ino_t inum)1099 static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
1100 {
1101 int i, ret = 0;
1102
1103 spin_lock(&wbuf->lock);
1104 for (i = 0; i < wbuf->next_ino; i++)
1105 if (inum == wbuf->inodes[i]) {
1106 ret = 1;
1107 break;
1108 }
1109 spin_unlock(&wbuf->lock);
1110
1111 return ret;
1112 }
1113
1114 /**
1115 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
1116 * @c: UBIFS file-system description object
1117 * @inode: inode to synchronize
1118 *
1119 * This function synchronizes write-buffers which contain nodes belonging to
1120 * @inode. Returns zero in case of success and a negative error code in case of
1121 * failure.
1122 */
ubifs_sync_wbufs_by_inode(struct ubifs_info * c,struct inode * inode)1123 int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
1124 {
1125 int i, err = 0;
1126
1127 for (i = 0; i < c->jhead_cnt; i++) {
1128 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
1129
1130 if (i == GCHD)
1131 /*
1132 * GC head is special, do not look at it. Even if the
1133 * head contains something related to this inode, it is
1134 * a _copy_ of corresponding on-flash node which sits
1135 * somewhere else.
1136 */
1137 continue;
1138
1139 if (!wbuf_has_ino(wbuf, inode->i_ino))
1140 continue;
1141
1142 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1143 if (wbuf_has_ino(wbuf, inode->i_ino))
1144 err = ubifs_wbuf_sync_nolock(wbuf);
1145 mutex_unlock(&wbuf->io_mutex);
1146
1147 if (err) {
1148 ubifs_ro_mode(c, err);
1149 return err;
1150 }
1151 }
1152 return 0;
1153 }
1154