1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements the budgeting sub-system which is responsible for UBIFS
25  * space management.
26  *
27  * Factors such as compression, wasted space at the ends of LEBs, space in other
28  * journal heads, the effect of updates on the index, and so on, make it
29  * impossible to accurately predict the amount of space needed. Consequently
30  * approximations are used.
31  */
32 
33 #include "ubifs.h"
34 #include <linux/writeback.h>
35 #include <linux/math64.h>
36 
37 /*
38  * When pessimistic budget calculations say that there is no enough space,
39  * UBIFS starts writing back dirty inodes and pages, doing garbage collection,
40  * or committing. The below constant defines maximum number of times UBIFS
41  * repeats the operations.
42  */
43 #define MAX_MKSPC_RETRIES 3
44 
45 /*
46  * The below constant defines amount of dirty pages which should be written
47  * back at when trying to shrink the liability.
48  */
49 #define NR_TO_WRITE 16
50 
51 /**
52  * shrink_liability - write-back some dirty pages/inodes.
53  * @c: UBIFS file-system description object
54  * @nr_to_write: how many dirty pages to write-back
55  *
56  * This function shrinks UBIFS liability by means of writing back some amount
57  * of dirty inodes and their pages.
58  *
59  * Note, this function synchronizes even VFS inodes which are locked
60  * (@i_mutex) by the caller of the budgeting function, because write-back does
61  * not touch @i_mutex.
62  */
shrink_liability(struct ubifs_info * c,int nr_to_write)63 static void shrink_liability(struct ubifs_info *c, int nr_to_write)
64 {
65 	down_read(&c->vfs_sb->s_umount);
66 	writeback_inodes_sb(c->vfs_sb, WB_REASON_FS_FREE_SPACE);
67 	up_read(&c->vfs_sb->s_umount);
68 }
69 
70 /**
71  * run_gc - run garbage collector.
72  * @c: UBIFS file-system description object
73  *
74  * This function runs garbage collector to make some more free space. Returns
75  * zero if a free LEB has been produced, %-EAGAIN if commit is required, and a
76  * negative error code in case of failure.
77  */
run_gc(struct ubifs_info * c)78 static int run_gc(struct ubifs_info *c)
79 {
80 	int err, lnum;
81 
82 	/* Make some free space by garbage-collecting dirty space */
83 	down_read(&c->commit_sem);
84 	lnum = ubifs_garbage_collect(c, 1);
85 	up_read(&c->commit_sem);
86 	if (lnum < 0)
87 		return lnum;
88 
89 	/* GC freed one LEB, return it to lprops */
90 	dbg_budg("GC freed LEB %d", lnum);
91 	err = ubifs_return_leb(c, lnum);
92 	if (err)
93 		return err;
94 	return 0;
95 }
96 
97 /**
98  * get_liability - calculate current liability.
99  * @c: UBIFS file-system description object
100  *
101  * This function calculates and returns current UBIFS liability, i.e. the
102  * amount of bytes UBIFS has "promised" to write to the media.
103  */
get_liability(struct ubifs_info * c)104 static long long get_liability(struct ubifs_info *c)
105 {
106 	long long liab;
107 
108 	spin_lock(&c->space_lock);
109 	liab = c->bi.idx_growth + c->bi.data_growth + c->bi.dd_growth;
110 	spin_unlock(&c->space_lock);
111 	return liab;
112 }
113 
114 /**
115  * make_free_space - make more free space on the file-system.
116  * @c: UBIFS file-system description object
117  *
118  * This function is called when an operation cannot be budgeted because there
119  * is supposedly no free space. But in most cases there is some free space:
120  *   o budgeting is pessimistic, so it always budgets more than it is actually
121  *     needed, so shrinking the liability is one way to make free space - the
122  *     cached data will take less space then it was budgeted for;
123  *   o GC may turn some dark space into free space (budgeting treats dark space
124  *     as not available);
125  *   o commit may free some LEB, i.e., turn freeable LEBs into free LEBs.
126  *
127  * So this function tries to do the above. Returns %-EAGAIN if some free space
128  * was presumably made and the caller has to re-try budgeting the operation.
129  * Returns %-ENOSPC if it couldn't do more free space, and other negative error
130  * codes on failures.
131  */
make_free_space(struct ubifs_info * c)132 static int make_free_space(struct ubifs_info *c)
133 {
134 	int err, retries = 0;
135 	long long liab1, liab2;
136 
137 	do {
138 		liab1 = get_liability(c);
139 		/*
140 		 * We probably have some dirty pages or inodes (liability), try
141 		 * to write them back.
142 		 */
143 		dbg_budg("liability %lld, run write-back", liab1);
144 		shrink_liability(c, NR_TO_WRITE);
145 
146 		liab2 = get_liability(c);
147 		if (liab2 < liab1)
148 			return -EAGAIN;
149 
150 		dbg_budg("new liability %lld (not shrunk)", liab2);
151 
152 		/* Liability did not shrink again, try GC */
153 		dbg_budg("Run GC");
154 		err = run_gc(c);
155 		if (!err)
156 			return -EAGAIN;
157 
158 		if (err != -EAGAIN && err != -ENOSPC)
159 			/* Some real error happened */
160 			return err;
161 
162 		dbg_budg("Run commit (retries %d)", retries);
163 		err = ubifs_run_commit(c);
164 		if (err)
165 			return err;
166 	} while (retries++ < MAX_MKSPC_RETRIES);
167 
168 	return -ENOSPC;
169 }
170 
171 /**
172  * ubifs_calc_min_idx_lebs - calculate amount of LEBs for the index.
173  * @c: UBIFS file-system description object
174  *
175  * This function calculates and returns the number of LEBs which should be kept
176  * for index usage.
177  */
ubifs_calc_min_idx_lebs(struct ubifs_info * c)178 int ubifs_calc_min_idx_lebs(struct ubifs_info *c)
179 {
180 	int idx_lebs;
181 	long long idx_size;
182 
183 	idx_size = c->bi.old_idx_sz + c->bi.idx_growth + c->bi.uncommitted_idx;
184 	/* And make sure we have thrice the index size of space reserved */
185 	idx_size += idx_size << 1;
186 	/*
187 	 * We do not maintain 'old_idx_size' as 'old_idx_lebs'/'old_idx_bytes'
188 	 * pair, nor similarly the two variables for the new index size, so we
189 	 * have to do this costly 64-bit division on fast-path.
190 	 */
191 	idx_lebs = div_u64(idx_size + c->idx_leb_size - 1, c->idx_leb_size);
192 	/*
193 	 * The index head is not available for the in-the-gaps method, so add an
194 	 * extra LEB to compensate.
195 	 */
196 	idx_lebs += 1;
197 	if (idx_lebs < MIN_INDEX_LEBS)
198 		idx_lebs = MIN_INDEX_LEBS;
199 	return idx_lebs;
200 }
201 
202 /**
203  * ubifs_calc_available - calculate available FS space.
204  * @c: UBIFS file-system description object
205  * @min_idx_lebs: minimum number of LEBs reserved for the index
206  *
207  * This function calculates and returns amount of FS space available for use.
208  */
ubifs_calc_available(const struct ubifs_info * c,int min_idx_lebs)209 long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs)
210 {
211 	int subtract_lebs;
212 	long long available;
213 
214 	available = c->main_bytes - c->lst.total_used;
215 
216 	/*
217 	 * Now 'available' contains theoretically available flash space
218 	 * assuming there is no index, so we have to subtract the space which
219 	 * is reserved for the index.
220 	 */
221 	subtract_lebs = min_idx_lebs;
222 
223 	/* Take into account that GC reserves one LEB for its own needs */
224 	subtract_lebs += 1;
225 
226 	/*
227 	 * The GC journal head LEB is not really accessible. And since
228 	 * different write types go to different heads, we may count only on
229 	 * one head's space.
230 	 */
231 	subtract_lebs += c->jhead_cnt - 1;
232 
233 	/* We also reserve one LEB for deletions, which bypass budgeting */
234 	subtract_lebs += 1;
235 
236 	available -= (long long)subtract_lebs * c->leb_size;
237 
238 	/* Subtract the dead space which is not available for use */
239 	available -= c->lst.total_dead;
240 
241 	/*
242 	 * Subtract dark space, which might or might not be usable - it depends
243 	 * on the data which we have on the media and which will be written. If
244 	 * this is a lot of uncompressed or not-compressible data, the dark
245 	 * space cannot be used.
246 	 */
247 	available -= c->lst.total_dark;
248 
249 	/*
250 	 * However, there is more dark space. The index may be bigger than
251 	 * @min_idx_lebs. Those extra LEBs are assumed to be available, but
252 	 * their dark space is not included in total_dark, so it is subtracted
253 	 * here.
254 	 */
255 	if (c->lst.idx_lebs > min_idx_lebs) {
256 		subtract_lebs = c->lst.idx_lebs - min_idx_lebs;
257 		available -= subtract_lebs * c->dark_wm;
258 	}
259 
260 	/* The calculations are rough and may end up with a negative number */
261 	return available > 0 ? available : 0;
262 }
263 
264 /**
265  * can_use_rp - check whether the user is allowed to use reserved pool.
266  * @c: UBIFS file-system description object
267  *
268  * UBIFS has so-called "reserved pool" which is flash space reserved
269  * for the superuser and for uses whose UID/GID is recorded in UBIFS superblock.
270  * This function checks whether current user is allowed to use reserved pool.
271  * Returns %1  current user is allowed to use reserved pool and %0 otherwise.
272  */
can_use_rp(struct ubifs_info * c)273 static int can_use_rp(struct ubifs_info *c)
274 {
275 	if (uid_eq(current_fsuid(), c->rp_uid) || capable(CAP_SYS_RESOURCE) ||
276 	    (!gid_eq(c->rp_gid, GLOBAL_ROOT_GID) && in_group_p(c->rp_gid)))
277 		return 1;
278 	return 0;
279 }
280 
281 /**
282  * do_budget_space - reserve flash space for index and data growth.
283  * @c: UBIFS file-system description object
284  *
285  * This function makes sure UBIFS has enough free LEBs for index growth and
286  * data.
287  *
288  * When budgeting index space, UBIFS reserves thrice as many LEBs as the index
289  * would take if it was consolidated and written to the flash. This guarantees
290  * that the "in-the-gaps" commit method always succeeds and UBIFS will always
291  * be able to commit dirty index. So this function basically adds amount of
292  * budgeted index space to the size of the current index, multiplies this by 3,
293  * and makes sure this does not exceed the amount of free LEBs.
294  *
295  * Notes about @c->bi.min_idx_lebs and @c->lst.idx_lebs variables:
296  * o @c->lst.idx_lebs is the number of LEBs the index currently uses. It might
297  *    be large, because UBIFS does not do any index consolidation as long as
298  *    there is free space. IOW, the index may take a lot of LEBs, but the LEBs
299  *    will contain a lot of dirt.
300  * o @c->bi.min_idx_lebs is the number of LEBS the index presumably takes. IOW,
301  *    the index may be consolidated to take up to @c->bi.min_idx_lebs LEBs.
302  *
303  * This function returns zero in case of success, and %-ENOSPC in case of
304  * failure.
305  */
do_budget_space(struct ubifs_info * c)306 static int do_budget_space(struct ubifs_info *c)
307 {
308 	long long outstanding, available;
309 	int lebs, rsvd_idx_lebs, min_idx_lebs;
310 
311 	/* First budget index space */
312 	min_idx_lebs = ubifs_calc_min_idx_lebs(c);
313 
314 	/* Now 'min_idx_lebs' contains number of LEBs to reserve */
315 	if (min_idx_lebs > c->lst.idx_lebs)
316 		rsvd_idx_lebs = min_idx_lebs - c->lst.idx_lebs;
317 	else
318 		rsvd_idx_lebs = 0;
319 
320 	/*
321 	 * The number of LEBs that are available to be used by the index is:
322 	 *
323 	 *    @c->lst.empty_lebs + @c->freeable_cnt + @c->idx_gc_cnt -
324 	 *    @c->lst.taken_empty_lebs
325 	 *
326 	 * @c->lst.empty_lebs are available because they are empty.
327 	 * @c->freeable_cnt are available because they contain only free and
328 	 * dirty space, @c->idx_gc_cnt are available because they are index
329 	 * LEBs that have been garbage collected and are awaiting the commit
330 	 * before they can be used. And the in-the-gaps method will grab these
331 	 * if it needs them. @c->lst.taken_empty_lebs are empty LEBs that have
332 	 * already been allocated for some purpose.
333 	 *
334 	 * Note, @c->idx_gc_cnt is included to both @c->lst.empty_lebs (because
335 	 * these LEBs are empty) and to @c->lst.taken_empty_lebs (because they
336 	 * are taken until after the commit).
337 	 *
338 	 * Note, @c->lst.taken_empty_lebs may temporarily be higher by one
339 	 * because of the way we serialize LEB allocations and budgeting. See a
340 	 * comment in 'ubifs_find_free_space()'.
341 	 */
342 	lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
343 	       c->lst.taken_empty_lebs;
344 	if (unlikely(rsvd_idx_lebs > lebs)) {
345 		dbg_budg("out of indexing space: min_idx_lebs %d (old %d), rsvd_idx_lebs %d",
346 			 min_idx_lebs, c->bi.min_idx_lebs, rsvd_idx_lebs);
347 		return -ENOSPC;
348 	}
349 
350 	available = ubifs_calc_available(c, min_idx_lebs);
351 	outstanding = c->bi.data_growth + c->bi.dd_growth;
352 
353 	if (unlikely(available < outstanding)) {
354 		dbg_budg("out of data space: available %lld, outstanding %lld",
355 			 available, outstanding);
356 		return -ENOSPC;
357 	}
358 
359 	if (available - outstanding <= c->rp_size && !can_use_rp(c))
360 		return -ENOSPC;
361 
362 	c->bi.min_idx_lebs = min_idx_lebs;
363 	return 0;
364 }
365 
366 /**
367  * calc_idx_growth - calculate approximate index growth from budgeting request.
368  * @c: UBIFS file-system description object
369  * @req: budgeting request
370  *
371  * For now we assume each new node adds one znode. But this is rather poor
372  * approximation, though.
373  */
calc_idx_growth(const struct ubifs_info * c,const struct ubifs_budget_req * req)374 static int calc_idx_growth(const struct ubifs_info *c,
375 			   const struct ubifs_budget_req *req)
376 {
377 	int znodes;
378 
379 	znodes = req->new_ino + (req->new_page << UBIFS_BLOCKS_PER_PAGE_SHIFT) +
380 		 req->new_dent;
381 	return znodes * c->max_idx_node_sz;
382 }
383 
384 /**
385  * calc_data_growth - calculate approximate amount of new data from budgeting
386  * request.
387  * @c: UBIFS file-system description object
388  * @req: budgeting request
389  */
calc_data_growth(const struct ubifs_info * c,const struct ubifs_budget_req * req)390 static int calc_data_growth(const struct ubifs_info *c,
391 			    const struct ubifs_budget_req *req)
392 {
393 	int data_growth;
394 
395 	data_growth = req->new_ino  ? c->bi.inode_budget : 0;
396 	if (req->new_page)
397 		data_growth += c->bi.page_budget;
398 	if (req->new_dent)
399 		data_growth += c->bi.dent_budget;
400 	data_growth += req->new_ino_d;
401 	return data_growth;
402 }
403 
404 /**
405  * calc_dd_growth - calculate approximate amount of data which makes other data
406  * dirty from budgeting request.
407  * @c: UBIFS file-system description object
408  * @req: budgeting request
409  */
calc_dd_growth(const struct ubifs_info * c,const struct ubifs_budget_req * req)410 static int calc_dd_growth(const struct ubifs_info *c,
411 			  const struct ubifs_budget_req *req)
412 {
413 	int dd_growth;
414 
415 	dd_growth = req->dirtied_page ? c->bi.page_budget : 0;
416 
417 	if (req->dirtied_ino)
418 		dd_growth += c->bi.inode_budget << (req->dirtied_ino - 1);
419 	if (req->mod_dent)
420 		dd_growth += c->bi.dent_budget;
421 	dd_growth += req->dirtied_ino_d;
422 	return dd_growth;
423 }
424 
425 /**
426  * ubifs_budget_space - ensure there is enough space to complete an operation.
427  * @c: UBIFS file-system description object
428  * @req: budget request
429  *
430  * This function allocates budget for an operation. It uses pessimistic
431  * approximation of how much flash space the operation needs. The goal of this
432  * function is to make sure UBIFS always has flash space to flush all dirty
433  * pages, dirty inodes, and dirty znodes (liability). This function may force
434  * commit, garbage-collection or write-back. Returns zero in case of success,
435  * %-ENOSPC if there is no free space and other negative error codes in case of
436  * failures.
437  */
ubifs_budget_space(struct ubifs_info * c,struct ubifs_budget_req * req)438 int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req)
439 {
440 	int err, idx_growth, data_growth, dd_growth, retried = 0;
441 
442 	ubifs_assert(c, req->new_page <= 1);
443 	ubifs_assert(c, req->dirtied_page <= 1);
444 	ubifs_assert(c, req->new_dent <= 1);
445 	ubifs_assert(c, req->mod_dent <= 1);
446 	ubifs_assert(c, req->new_ino <= 1);
447 	ubifs_assert(c, req->new_ino_d <= UBIFS_MAX_INO_DATA);
448 	ubifs_assert(c, req->dirtied_ino <= 4);
449 	ubifs_assert(c, req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
450 	ubifs_assert(c, !(req->new_ino_d & 7));
451 	ubifs_assert(c, !(req->dirtied_ino_d & 7));
452 
453 	data_growth = calc_data_growth(c, req);
454 	dd_growth = calc_dd_growth(c, req);
455 	if (!data_growth && !dd_growth)
456 		return 0;
457 	idx_growth = calc_idx_growth(c, req);
458 
459 again:
460 	spin_lock(&c->space_lock);
461 	ubifs_assert(c, c->bi.idx_growth >= 0);
462 	ubifs_assert(c, c->bi.data_growth >= 0);
463 	ubifs_assert(c, c->bi.dd_growth >= 0);
464 
465 	if (unlikely(c->bi.nospace) && (c->bi.nospace_rp || !can_use_rp(c))) {
466 		dbg_budg("no space");
467 		spin_unlock(&c->space_lock);
468 		return -ENOSPC;
469 	}
470 
471 	c->bi.idx_growth += idx_growth;
472 	c->bi.data_growth += data_growth;
473 	c->bi.dd_growth += dd_growth;
474 
475 	err = do_budget_space(c);
476 	if (likely(!err)) {
477 		req->idx_growth = idx_growth;
478 		req->data_growth = data_growth;
479 		req->dd_growth = dd_growth;
480 		spin_unlock(&c->space_lock);
481 		return 0;
482 	}
483 
484 	/* Restore the old values */
485 	c->bi.idx_growth -= idx_growth;
486 	c->bi.data_growth -= data_growth;
487 	c->bi.dd_growth -= dd_growth;
488 	spin_unlock(&c->space_lock);
489 
490 	if (req->fast) {
491 		dbg_budg("no space for fast budgeting");
492 		return err;
493 	}
494 
495 	err = make_free_space(c);
496 	cond_resched();
497 	if (err == -EAGAIN) {
498 		dbg_budg("try again");
499 		goto again;
500 	} else if (err == -ENOSPC) {
501 		if (!retried) {
502 			retried = 1;
503 			dbg_budg("-ENOSPC, but anyway try once again");
504 			goto again;
505 		}
506 		dbg_budg("FS is full, -ENOSPC");
507 		c->bi.nospace = 1;
508 		if (can_use_rp(c) || c->rp_size == 0)
509 			c->bi.nospace_rp = 1;
510 		smp_wmb();
511 	} else
512 		ubifs_err(c, "cannot budget space, error %d", err);
513 	return err;
514 }
515 
516 /**
517  * ubifs_release_budget - release budgeted free space.
518  * @c: UBIFS file-system description object
519  * @req: budget request
520  *
521  * This function releases the space budgeted by 'ubifs_budget_space()'. Note,
522  * since the index changes (which were budgeted for in @req->idx_growth) will
523  * only be written to the media on commit, this function moves the index budget
524  * from @c->bi.idx_growth to @c->bi.uncommitted_idx. The latter will be zeroed
525  * by the commit operation.
526  */
ubifs_release_budget(struct ubifs_info * c,struct ubifs_budget_req * req)527 void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req)
528 {
529 	ubifs_assert(c, req->new_page <= 1);
530 	ubifs_assert(c, req->dirtied_page <= 1);
531 	ubifs_assert(c, req->new_dent <= 1);
532 	ubifs_assert(c, req->mod_dent <= 1);
533 	ubifs_assert(c, req->new_ino <= 1);
534 	ubifs_assert(c, req->new_ino_d <= UBIFS_MAX_INO_DATA);
535 	ubifs_assert(c, req->dirtied_ino <= 4);
536 	ubifs_assert(c, req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
537 	ubifs_assert(c, !(req->new_ino_d & 7));
538 	ubifs_assert(c, !(req->dirtied_ino_d & 7));
539 	if (!req->recalculate) {
540 		ubifs_assert(c, req->idx_growth >= 0);
541 		ubifs_assert(c, req->data_growth >= 0);
542 		ubifs_assert(c, req->dd_growth >= 0);
543 	}
544 
545 	if (req->recalculate) {
546 		req->data_growth = calc_data_growth(c, req);
547 		req->dd_growth = calc_dd_growth(c, req);
548 		req->idx_growth = calc_idx_growth(c, req);
549 	}
550 
551 	if (!req->data_growth && !req->dd_growth)
552 		return;
553 
554 	c->bi.nospace = c->bi.nospace_rp = 0;
555 	smp_wmb();
556 
557 	spin_lock(&c->space_lock);
558 	c->bi.idx_growth -= req->idx_growth;
559 	c->bi.uncommitted_idx += req->idx_growth;
560 	c->bi.data_growth -= req->data_growth;
561 	c->bi.dd_growth -= req->dd_growth;
562 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
563 
564 	ubifs_assert(c, c->bi.idx_growth >= 0);
565 	ubifs_assert(c, c->bi.data_growth >= 0);
566 	ubifs_assert(c, c->bi.dd_growth >= 0);
567 	ubifs_assert(c, c->bi.min_idx_lebs < c->main_lebs);
568 	ubifs_assert(c, !(c->bi.idx_growth & 7));
569 	ubifs_assert(c, !(c->bi.data_growth & 7));
570 	ubifs_assert(c, !(c->bi.dd_growth & 7));
571 	spin_unlock(&c->space_lock);
572 }
573 
574 /**
575  * ubifs_convert_page_budget - convert budget of a new page.
576  * @c: UBIFS file-system description object
577  *
578  * This function converts budget which was allocated for a new page of data to
579  * the budget of changing an existing page of data. The latter is smaller than
580  * the former, so this function only does simple re-calculation and does not
581  * involve any write-back.
582  */
ubifs_convert_page_budget(struct ubifs_info * c)583 void ubifs_convert_page_budget(struct ubifs_info *c)
584 {
585 	spin_lock(&c->space_lock);
586 	/* Release the index growth reservation */
587 	c->bi.idx_growth -= c->max_idx_node_sz << UBIFS_BLOCKS_PER_PAGE_SHIFT;
588 	/* Release the data growth reservation */
589 	c->bi.data_growth -= c->bi.page_budget;
590 	/* Increase the dirty data growth reservation instead */
591 	c->bi.dd_growth += c->bi.page_budget;
592 	/* And re-calculate the indexing space reservation */
593 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
594 	spin_unlock(&c->space_lock);
595 }
596 
597 /**
598  * ubifs_release_dirty_inode_budget - release dirty inode budget.
599  * @c: UBIFS file-system description object
600  * @ui: UBIFS inode to release the budget for
601  *
602  * This function releases budget corresponding to a dirty inode. It is usually
603  * called when after the inode has been written to the media and marked as
604  * clean. It also causes the "no space" flags to be cleared.
605  */
ubifs_release_dirty_inode_budget(struct ubifs_info * c,struct ubifs_inode * ui)606 void ubifs_release_dirty_inode_budget(struct ubifs_info *c,
607 				      struct ubifs_inode *ui)
608 {
609 	struct ubifs_budget_req req;
610 
611 	memset(&req, 0, sizeof(struct ubifs_budget_req));
612 	/* The "no space" flags will be cleared because dd_growth is > 0 */
613 	req.dd_growth = c->bi.inode_budget + ALIGN(ui->data_len, 8);
614 	ubifs_release_budget(c, &req);
615 }
616 
617 /**
618  * ubifs_reported_space - calculate reported free space.
619  * @c: the UBIFS file-system description object
620  * @free: amount of free space
621  *
622  * This function calculates amount of free space which will be reported to
623  * user-space. User-space application tend to expect that if the file-system
624  * (e.g., via the 'statfs()' call) reports that it has N bytes available, they
625  * are able to write a file of size N. UBIFS attaches node headers to each data
626  * node and it has to write indexing nodes as well. This introduces additional
627  * overhead, and UBIFS has to report slightly less free space to meet the above
628  * expectations.
629  *
630  * This function assumes free space is made up of uncompressed data nodes and
631  * full index nodes (one per data node, tripled because we always allow enough
632  * space to write the index thrice).
633  *
634  * Note, the calculation is pessimistic, which means that most of the time
635  * UBIFS reports less space than it actually has.
636  */
ubifs_reported_space(const struct ubifs_info * c,long long free)637 long long ubifs_reported_space(const struct ubifs_info *c, long long free)
638 {
639 	int divisor, factor, f;
640 
641 	/*
642 	 * Reported space size is @free * X, where X is UBIFS block size
643 	 * divided by UBIFS block size + all overhead one data block
644 	 * introduces. The overhead is the node header + indexing overhead.
645 	 *
646 	 * Indexing overhead calculations are based on the following formula:
647 	 * I = N/(f - 1) + 1, where I - number of indexing nodes, N - number
648 	 * of data nodes, f - fanout. Because effective UBIFS fanout is twice
649 	 * as less than maximum fanout, we assume that each data node
650 	 * introduces 3 * @c->max_idx_node_sz / (@c->fanout/2 - 1) bytes.
651 	 * Note, the multiplier 3 is because UBIFS reserves thrice as more space
652 	 * for the index.
653 	 */
654 	f = c->fanout > 3 ? c->fanout >> 1 : 2;
655 	factor = UBIFS_BLOCK_SIZE;
656 	divisor = UBIFS_MAX_DATA_NODE_SZ;
657 	divisor += (c->max_idx_node_sz * 3) / (f - 1);
658 	free *= factor;
659 	return div_u64(free, divisor);
660 }
661 
662 /**
663  * ubifs_get_free_space_nolock - return amount of free space.
664  * @c: UBIFS file-system description object
665  *
666  * This function calculates amount of free space to report to user-space.
667  *
668  * Because UBIFS may introduce substantial overhead (the index, node headers,
669  * alignment, wastage at the end of LEBs, etc), it cannot report real amount of
670  * free flash space it has (well, because not all dirty space is reclaimable,
671  * UBIFS does not actually know the real amount). If UBIFS did so, it would
672  * bread user expectations about what free space is. Users seem to accustomed
673  * to assume that if the file-system reports N bytes of free space, they would
674  * be able to fit a file of N bytes to the FS. This almost works for
675  * traditional file-systems, because they have way less overhead than UBIFS.
676  * So, to keep users happy, UBIFS tries to take the overhead into account.
677  */
ubifs_get_free_space_nolock(struct ubifs_info * c)678 long long ubifs_get_free_space_nolock(struct ubifs_info *c)
679 {
680 	int rsvd_idx_lebs, lebs;
681 	long long available, outstanding, free;
682 
683 	ubifs_assert(c, c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c));
684 	outstanding = c->bi.data_growth + c->bi.dd_growth;
685 	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
686 
687 	/*
688 	 * When reporting free space to user-space, UBIFS guarantees that it is
689 	 * possible to write a file of free space size. This means that for
690 	 * empty LEBs we may use more precise calculations than
691 	 * 'ubifs_calc_available()' is using. Namely, we know that in empty
692 	 * LEBs we would waste only @c->leb_overhead bytes, not @c->dark_wm.
693 	 * Thus, amend the available space.
694 	 *
695 	 * Note, the calculations below are similar to what we have in
696 	 * 'do_budget_space()', so refer there for comments.
697 	 */
698 	if (c->bi.min_idx_lebs > c->lst.idx_lebs)
699 		rsvd_idx_lebs = c->bi.min_idx_lebs - c->lst.idx_lebs;
700 	else
701 		rsvd_idx_lebs = 0;
702 	lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
703 	       c->lst.taken_empty_lebs;
704 	lebs -= rsvd_idx_lebs;
705 	available += lebs * (c->dark_wm - c->leb_overhead);
706 
707 	if (available > outstanding)
708 		free = ubifs_reported_space(c, available - outstanding);
709 	else
710 		free = 0;
711 	return free;
712 }
713 
714 /**
715  * ubifs_get_free_space - return amount of free space.
716  * @c: UBIFS file-system description object
717  *
718  * This function calculates and returns amount of free space to report to
719  * user-space.
720  */
ubifs_get_free_space(struct ubifs_info * c)721 long long ubifs_get_free_space(struct ubifs_info *c)
722 {
723 	long long free;
724 
725 	spin_lock(&c->space_lock);
726 	free = ubifs_get_free_space_nolock(c);
727 	spin_unlock(&c->space_lock);
728 
729 	return free;
730 }
731