1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_USB_H
3 #define __LINUX_USB_H
4
5 #include <linux/mod_devicetable.h>
6 #include <linux/usb/ch9.h>
7
8 #define USB_MAJOR 180
9 #define USB_DEVICE_MAJOR 189
10
11
12 #ifdef __KERNEL__
13
14 #include <linux/errno.h> /* for -ENODEV */
15 #include <linux/delay.h> /* for mdelay() */
16 #include <linux/interrupt.h> /* for in_interrupt() */
17 #include <linux/list.h> /* for struct list_head */
18 #include <linux/kref.h> /* for struct kref */
19 #include <linux/device.h> /* for struct device */
20 #include <linux/fs.h> /* for struct file_operations */
21 #include <linux/completion.h> /* for struct completion */
22 #include <linux/sched.h> /* for current && schedule_timeout */
23 #include <linux/mutex.h> /* for struct mutex */
24 #include <linux/pm_runtime.h> /* for runtime PM */
25
26 struct usb_device;
27 struct usb_driver;
28 struct wusb_dev;
29
30 /*-------------------------------------------------------------------------*/
31
32 /*
33 * Host-side wrappers for standard USB descriptors ... these are parsed
34 * from the data provided by devices. Parsing turns them from a flat
35 * sequence of descriptors into a hierarchy:
36 *
37 * - devices have one (usually) or more configs;
38 * - configs have one (often) or more interfaces;
39 * - interfaces have one (usually) or more settings;
40 * - each interface setting has zero or (usually) more endpoints.
41 * - a SuperSpeed endpoint has a companion descriptor
42 *
43 * And there might be other descriptors mixed in with those.
44 *
45 * Devices may also have class-specific or vendor-specific descriptors.
46 */
47
48 struct ep_device;
49
50 /**
51 * struct usb_host_endpoint - host-side endpoint descriptor and queue
52 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
53 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
54 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
55 * @urb_list: urbs queued to this endpoint; maintained by usbcore
56 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
57 * with one or more transfer descriptors (TDs) per urb
58 * @ep_dev: ep_device for sysfs info
59 * @extra: descriptors following this endpoint in the configuration
60 * @extralen: how many bytes of "extra" are valid
61 * @enabled: URBs may be submitted to this endpoint
62 * @streams: number of USB-3 streams allocated on the endpoint
63 *
64 * USB requests are always queued to a given endpoint, identified by a
65 * descriptor within an active interface in a given USB configuration.
66 */
67 struct usb_host_endpoint {
68 struct usb_endpoint_descriptor desc;
69 struct usb_ss_ep_comp_descriptor ss_ep_comp;
70 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp;
71 struct list_head urb_list;
72 void *hcpriv;
73 struct ep_device *ep_dev; /* For sysfs info */
74
75 unsigned char *extra; /* Extra descriptors */
76 int extralen;
77 int enabled;
78 int streams;
79 };
80
81 /* host-side wrapper for one interface setting's parsed descriptors */
82 struct usb_host_interface {
83 struct usb_interface_descriptor desc;
84
85 int extralen;
86 unsigned char *extra; /* Extra descriptors */
87
88 /* array of desc.bNumEndpoints endpoints associated with this
89 * interface setting. these will be in no particular order.
90 */
91 struct usb_host_endpoint *endpoint;
92
93 char *string; /* iInterface string, if present */
94 };
95
96 enum usb_interface_condition {
97 USB_INTERFACE_UNBOUND = 0,
98 USB_INTERFACE_BINDING,
99 USB_INTERFACE_BOUND,
100 USB_INTERFACE_UNBINDING,
101 };
102
103 int __must_check
104 usb_find_common_endpoints(struct usb_host_interface *alt,
105 struct usb_endpoint_descriptor **bulk_in,
106 struct usb_endpoint_descriptor **bulk_out,
107 struct usb_endpoint_descriptor **int_in,
108 struct usb_endpoint_descriptor **int_out);
109
110 int __must_check
111 usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
112 struct usb_endpoint_descriptor **bulk_in,
113 struct usb_endpoint_descriptor **bulk_out,
114 struct usb_endpoint_descriptor **int_in,
115 struct usb_endpoint_descriptor **int_out);
116
117 static inline int __must_check
usb_find_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)118 usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
119 struct usb_endpoint_descriptor **bulk_in)
120 {
121 return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
122 }
123
124 static inline int __must_check
usb_find_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)125 usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
126 struct usb_endpoint_descriptor **bulk_out)
127 {
128 return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
129 }
130
131 static inline int __must_check
usb_find_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)132 usb_find_int_in_endpoint(struct usb_host_interface *alt,
133 struct usb_endpoint_descriptor **int_in)
134 {
135 return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
136 }
137
138 static inline int __must_check
usb_find_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)139 usb_find_int_out_endpoint(struct usb_host_interface *alt,
140 struct usb_endpoint_descriptor **int_out)
141 {
142 return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
143 }
144
145 static inline int __must_check
usb_find_last_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)146 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
147 struct usb_endpoint_descriptor **bulk_in)
148 {
149 return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
150 }
151
152 static inline int __must_check
usb_find_last_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)153 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
154 struct usb_endpoint_descriptor **bulk_out)
155 {
156 return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
157 }
158
159 static inline int __must_check
usb_find_last_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)160 usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
161 struct usb_endpoint_descriptor **int_in)
162 {
163 return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
164 }
165
166 static inline int __must_check
usb_find_last_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)167 usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
168 struct usb_endpoint_descriptor **int_out)
169 {
170 return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
171 }
172
173 /**
174 * struct usb_interface - what usb device drivers talk to
175 * @altsetting: array of interface structures, one for each alternate
176 * setting that may be selected. Each one includes a set of
177 * endpoint configurations. They will be in no particular order.
178 * @cur_altsetting: the current altsetting.
179 * @num_altsetting: number of altsettings defined.
180 * @intf_assoc: interface association descriptor
181 * @minor: the minor number assigned to this interface, if this
182 * interface is bound to a driver that uses the USB major number.
183 * If this interface does not use the USB major, this field should
184 * be unused. The driver should set this value in the probe()
185 * function of the driver, after it has been assigned a minor
186 * number from the USB core by calling usb_register_dev().
187 * @condition: binding state of the interface: not bound, binding
188 * (in probe()), bound to a driver, or unbinding (in disconnect())
189 * @sysfs_files_created: sysfs attributes exist
190 * @ep_devs_created: endpoint child pseudo-devices exist
191 * @unregistering: flag set when the interface is being unregistered
192 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
193 * capability during autosuspend.
194 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
195 * has been deferred.
196 * @needs_binding: flag set when the driver should be re-probed or unbound
197 * following a reset or suspend operation it doesn't support.
198 * @authorized: This allows to (de)authorize individual interfaces instead
199 * a whole device in contrast to the device authorization.
200 * @dev: driver model's view of this device
201 * @usb_dev: if an interface is bound to the USB major, this will point
202 * to the sysfs representation for that device.
203 * @reset_ws: Used for scheduling resets from atomic context.
204 * @resetting_device: USB core reset the device, so use alt setting 0 as
205 * current; needs bandwidth alloc after reset.
206 *
207 * USB device drivers attach to interfaces on a physical device. Each
208 * interface encapsulates a single high level function, such as feeding
209 * an audio stream to a speaker or reporting a change in a volume control.
210 * Many USB devices only have one interface. The protocol used to talk to
211 * an interface's endpoints can be defined in a usb "class" specification,
212 * or by a product's vendor. The (default) control endpoint is part of
213 * every interface, but is never listed among the interface's descriptors.
214 *
215 * The driver that is bound to the interface can use standard driver model
216 * calls such as dev_get_drvdata() on the dev member of this structure.
217 *
218 * Each interface may have alternate settings. The initial configuration
219 * of a device sets altsetting 0, but the device driver can change
220 * that setting using usb_set_interface(). Alternate settings are often
221 * used to control the use of periodic endpoints, such as by having
222 * different endpoints use different amounts of reserved USB bandwidth.
223 * All standards-conformant USB devices that use isochronous endpoints
224 * will use them in non-default settings.
225 *
226 * The USB specification says that alternate setting numbers must run from
227 * 0 to one less than the total number of alternate settings. But some
228 * devices manage to mess this up, and the structures aren't necessarily
229 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
230 * look up an alternate setting in the altsetting array based on its number.
231 */
232 struct usb_interface {
233 /* array of alternate settings for this interface,
234 * stored in no particular order */
235 struct usb_host_interface *altsetting;
236
237 struct usb_host_interface *cur_altsetting; /* the currently
238 * active alternate setting */
239 unsigned num_altsetting; /* number of alternate settings */
240
241 /* If there is an interface association descriptor then it will list
242 * the associated interfaces */
243 struct usb_interface_assoc_descriptor *intf_assoc;
244
245 int minor; /* minor number this interface is
246 * bound to */
247 enum usb_interface_condition condition; /* state of binding */
248 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
249 unsigned ep_devs_created:1; /* endpoint "devices" exist */
250 unsigned unregistering:1; /* unregistration is in progress */
251 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
252 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
253 unsigned needs_binding:1; /* needs delayed unbind/rebind */
254 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
255 unsigned authorized:1; /* used for interface authorization */
256
257 struct device dev; /* interface specific device info */
258 struct device *usb_dev;
259 struct work_struct reset_ws; /* for resets in atomic context */
260 };
261 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
262
usb_get_intfdata(struct usb_interface * intf)263 static inline void *usb_get_intfdata(struct usb_interface *intf)
264 {
265 return dev_get_drvdata(&intf->dev);
266 }
267
usb_set_intfdata(struct usb_interface * intf,void * data)268 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
269 {
270 dev_set_drvdata(&intf->dev, data);
271 }
272
273 struct usb_interface *usb_get_intf(struct usb_interface *intf);
274 void usb_put_intf(struct usb_interface *intf);
275
276 /* Hard limit */
277 #define USB_MAXENDPOINTS 30
278 /* this maximum is arbitrary */
279 #define USB_MAXINTERFACES 32
280 #define USB_MAXIADS (USB_MAXINTERFACES/2)
281
282 /*
283 * USB Resume Timer: Every Host controller driver should drive the resume
284 * signalling on the bus for the amount of time defined by this macro.
285 *
286 * That way we will have a 'stable' behavior among all HCDs supported by Linux.
287 *
288 * Note that the USB Specification states we should drive resume for *at least*
289 * 20 ms, but it doesn't give an upper bound. This creates two possible
290 * situations which we want to avoid:
291 *
292 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
293 * us to fail USB Electrical Tests, thus failing Certification
294 *
295 * (b) Some (many) devices actually need more than 20 ms of resume signalling,
296 * and while we can argue that's against the USB Specification, we don't have
297 * control over which devices a certification laboratory will be using for
298 * certification. If CertLab uses a device which was tested against Windows and
299 * that happens to have relaxed resume signalling rules, we might fall into
300 * situations where we fail interoperability and electrical tests.
301 *
302 * In order to avoid both conditions, we're using a 40 ms resume timeout, which
303 * should cope with both LPJ calibration errors and devices not following every
304 * detail of the USB Specification.
305 */
306 #define USB_RESUME_TIMEOUT 40 /* ms */
307
308 /**
309 * struct usb_interface_cache - long-term representation of a device interface
310 * @num_altsetting: number of altsettings defined.
311 * @ref: reference counter.
312 * @altsetting: variable-length array of interface structures, one for
313 * each alternate setting that may be selected. Each one includes a
314 * set of endpoint configurations. They will be in no particular order.
315 *
316 * These structures persist for the lifetime of a usb_device, unlike
317 * struct usb_interface (which persists only as long as its configuration
318 * is installed). The altsetting arrays can be accessed through these
319 * structures at any time, permitting comparison of configurations and
320 * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
321 */
322 struct usb_interface_cache {
323 unsigned num_altsetting; /* number of alternate settings */
324 struct kref ref; /* reference counter */
325
326 /* variable-length array of alternate settings for this interface,
327 * stored in no particular order */
328 struct usb_host_interface altsetting[0];
329 };
330 #define ref_to_usb_interface_cache(r) \
331 container_of(r, struct usb_interface_cache, ref)
332 #define altsetting_to_usb_interface_cache(a) \
333 container_of(a, struct usb_interface_cache, altsetting[0])
334
335 /**
336 * struct usb_host_config - representation of a device's configuration
337 * @desc: the device's configuration descriptor.
338 * @string: pointer to the cached version of the iConfiguration string, if
339 * present for this configuration.
340 * @intf_assoc: list of any interface association descriptors in this config
341 * @interface: array of pointers to usb_interface structures, one for each
342 * interface in the configuration. The number of interfaces is stored
343 * in desc.bNumInterfaces. These pointers are valid only while the
344 * the configuration is active.
345 * @intf_cache: array of pointers to usb_interface_cache structures, one
346 * for each interface in the configuration. These structures exist
347 * for the entire life of the device.
348 * @extra: pointer to buffer containing all extra descriptors associated
349 * with this configuration (those preceding the first interface
350 * descriptor).
351 * @extralen: length of the extra descriptors buffer.
352 *
353 * USB devices may have multiple configurations, but only one can be active
354 * at any time. Each encapsulates a different operational environment;
355 * for example, a dual-speed device would have separate configurations for
356 * full-speed and high-speed operation. The number of configurations
357 * available is stored in the device descriptor as bNumConfigurations.
358 *
359 * A configuration can contain multiple interfaces. Each corresponds to
360 * a different function of the USB device, and all are available whenever
361 * the configuration is active. The USB standard says that interfaces
362 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
363 * of devices get this wrong. In addition, the interface array is not
364 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
365 * look up an interface entry based on its number.
366 *
367 * Device drivers should not attempt to activate configurations. The choice
368 * of which configuration to install is a policy decision based on such
369 * considerations as available power, functionality provided, and the user's
370 * desires (expressed through userspace tools). However, drivers can call
371 * usb_reset_configuration() to reinitialize the current configuration and
372 * all its interfaces.
373 */
374 struct usb_host_config {
375 struct usb_config_descriptor desc;
376
377 char *string; /* iConfiguration string, if present */
378
379 /* List of any Interface Association Descriptors in this
380 * configuration. */
381 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
382
383 /* the interfaces associated with this configuration,
384 * stored in no particular order */
385 struct usb_interface *interface[USB_MAXINTERFACES];
386
387 /* Interface information available even when this is not the
388 * active configuration */
389 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
390
391 unsigned char *extra; /* Extra descriptors */
392 int extralen;
393 };
394
395 /* USB2.0 and USB3.0 device BOS descriptor set */
396 struct usb_host_bos {
397 struct usb_bos_descriptor *desc;
398
399 /* wireless cap descriptor is handled by wusb */
400 struct usb_ext_cap_descriptor *ext_cap;
401 struct usb_ss_cap_descriptor *ss_cap;
402 struct usb_ssp_cap_descriptor *ssp_cap;
403 struct usb_ss_container_id_descriptor *ss_id;
404 struct usb_ptm_cap_descriptor *ptm_cap;
405 };
406
407 int __usb_get_extra_descriptor(char *buffer, unsigned size,
408 unsigned char type, void **ptr, size_t min);
409 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
410 __usb_get_extra_descriptor((ifpoint)->extra, \
411 (ifpoint)->extralen, \
412 type, (void **)ptr, sizeof(**(ptr)))
413
414 /* ----------------------------------------------------------------------- */
415
416 /* USB device number allocation bitmap */
417 struct usb_devmap {
418 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
419 };
420
421 /*
422 * Allocated per bus (tree of devices) we have:
423 */
424 struct usb_bus {
425 struct device *controller; /* host/master side hardware */
426 struct device *sysdev; /* as seen from firmware or bus */
427 int busnum; /* Bus number (in order of reg) */
428 const char *bus_name; /* stable id (PCI slot_name etc) */
429 u8 uses_pio_for_control; /*
430 * Does the host controller use PIO
431 * for control transfers?
432 */
433 u8 otg_port; /* 0, or number of OTG/HNP port */
434 unsigned is_b_host:1; /* true during some HNP roleswitches */
435 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
436 unsigned no_stop_on_short:1; /*
437 * Quirk: some controllers don't stop
438 * the ep queue on a short transfer
439 * with the URB_SHORT_NOT_OK flag set.
440 */
441 unsigned no_sg_constraint:1; /* no sg constraint */
442 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
443
444 int devnum_next; /* Next open device number in
445 * round-robin allocation */
446 struct mutex devnum_next_mutex; /* devnum_next mutex */
447
448 struct usb_devmap devmap; /* device address allocation map */
449 struct usb_device *root_hub; /* Root hub */
450 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
451
452 int bandwidth_allocated; /* on this bus: how much of the time
453 * reserved for periodic (intr/iso)
454 * requests is used, on average?
455 * Units: microseconds/frame.
456 * Limits: Full/low speed reserve 90%,
457 * while high speed reserves 80%.
458 */
459 int bandwidth_int_reqs; /* number of Interrupt requests */
460 int bandwidth_isoc_reqs; /* number of Isoc. requests */
461
462 unsigned resuming_ports; /* bit array: resuming root-hub ports */
463
464 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
465 struct mon_bus *mon_bus; /* non-null when associated */
466 int monitored; /* non-zero when monitored */
467 #endif
468 };
469
470 struct usb_dev_state;
471
472 /* ----------------------------------------------------------------------- */
473
474 struct usb_tt;
475
476 enum usb_device_removable {
477 USB_DEVICE_REMOVABLE_UNKNOWN = 0,
478 USB_DEVICE_REMOVABLE,
479 USB_DEVICE_FIXED,
480 };
481
482 enum usb_port_connect_type {
483 USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
484 USB_PORT_CONNECT_TYPE_HOT_PLUG,
485 USB_PORT_CONNECT_TYPE_HARD_WIRED,
486 USB_PORT_NOT_USED,
487 };
488
489 /*
490 * USB port quirks.
491 */
492
493 /* For the given port, prefer the old (faster) enumeration scheme. */
494 #define USB_PORT_QUIRK_OLD_SCHEME BIT(0)
495
496 /* Decrease TRSTRCY to 10ms during device enumeration. */
497 #define USB_PORT_QUIRK_FAST_ENUM BIT(1)
498
499 /*
500 * USB 2.0 Link Power Management (LPM) parameters.
501 */
502 struct usb2_lpm_parameters {
503 /* Best effort service latency indicate how long the host will drive
504 * resume on an exit from L1.
505 */
506 unsigned int besl;
507
508 /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
509 * When the timer counts to zero, the parent hub will initiate a LPM
510 * transition to L1.
511 */
512 int timeout;
513 };
514
515 /*
516 * USB 3.0 Link Power Management (LPM) parameters.
517 *
518 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
519 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
520 * All three are stored in nanoseconds.
521 */
522 struct usb3_lpm_parameters {
523 /*
524 * Maximum exit latency (MEL) for the host to send a packet to the
525 * device (either a Ping for isoc endpoints, or a data packet for
526 * interrupt endpoints), the hubs to decode the packet, and for all hubs
527 * in the path to transition the links to U0.
528 */
529 unsigned int mel;
530 /*
531 * Maximum exit latency for a device-initiated LPM transition to bring
532 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB
533 * 3.0 spec, with no explanation of what "P" stands for. "Path"?
534 */
535 unsigned int pel;
536
537 /*
538 * The System Exit Latency (SEL) includes PEL, and three other
539 * latencies. After a device initiates a U0 transition, it will take
540 * some time from when the device sends the ERDY to when it will finally
541 * receive the data packet. Basically, SEL should be the worse-case
542 * latency from when a device starts initiating a U0 transition to when
543 * it will get data.
544 */
545 unsigned int sel;
546 /*
547 * The idle timeout value that is currently programmed into the parent
548 * hub for this device. When the timer counts to zero, the parent hub
549 * will initiate an LPM transition to either U1 or U2.
550 */
551 int timeout;
552 };
553
554 /**
555 * struct usb_device - kernel's representation of a USB device
556 * @devnum: device number; address on a USB bus
557 * @devpath: device ID string for use in messages (e.g., /port/...)
558 * @route: tree topology hex string for use with xHCI
559 * @state: device state: configured, not attached, etc.
560 * @speed: device speed: high/full/low (or error)
561 * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support
562 * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support
563 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
564 * @ttport: device port on that tt hub
565 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
566 * @parent: our hub, unless we're the root
567 * @bus: bus we're part of
568 * @ep0: endpoint 0 data (default control pipe)
569 * @dev: generic device interface
570 * @descriptor: USB device descriptor
571 * @bos: USB device BOS descriptor set
572 * @config: all of the device's configs
573 * @actconfig: the active configuration
574 * @ep_in: array of IN endpoints
575 * @ep_out: array of OUT endpoints
576 * @rawdescriptors: raw descriptors for each config
577 * @bus_mA: Current available from the bus
578 * @portnum: parent port number (origin 1)
579 * @level: number of USB hub ancestors
580 * @devaddr: device address, XHCI: assigned by HW, others: same as devnum
581 * @can_submit: URBs may be submitted
582 * @persist_enabled: USB_PERSIST enabled for this device
583 * @have_langid: whether string_langid is valid
584 * @authorized: policy has said we can use it;
585 * (user space) policy determines if we authorize this device to be
586 * used or not. By default, wired USB devices are authorized.
587 * WUSB devices are not, until we authorize them from user space.
588 * FIXME -- complete doc
589 * @authenticated: Crypto authentication passed
590 * @wusb: device is Wireless USB
591 * @lpm_capable: device supports LPM
592 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
593 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
594 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
595 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
596 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
597 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
598 * @string_langid: language ID for strings
599 * @product: iProduct string, if present (static)
600 * @manufacturer: iManufacturer string, if present (static)
601 * @serial: iSerialNumber string, if present (static)
602 * @filelist: usbfs files that are open to this device
603 * @maxchild: number of ports if hub
604 * @quirks: quirks of the whole device
605 * @urbnum: number of URBs submitted for the whole device
606 * @active_duration: total time device is not suspended
607 * @connect_time: time device was first connected
608 * @do_remote_wakeup: remote wakeup should be enabled
609 * @reset_resume: needs reset instead of resume
610 * @port_is_suspended: the upstream port is suspended (L2 or U3)
611 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
612 * specific data for the device.
613 * @slot_id: Slot ID assigned by xHCI
614 * @removable: Device can be physically removed from this port
615 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
616 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
617 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
618 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
619 * to keep track of the number of functions that require USB 3.0 Link Power
620 * Management to be disabled for this usb_device. This count should only
621 * be manipulated by those functions, with the bandwidth_mutex is held.
622 * @hub_delay: cached value consisting of:
623 * parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
624 *
625 * Will be used as wValue for SetIsochDelay requests.
626 *
627 * Notes:
628 * Usbcore drivers should not set usbdev->state directly. Instead use
629 * usb_set_device_state().
630 */
631 struct usb_device {
632 int devnum;
633 char devpath[16];
634 u32 route;
635 enum usb_device_state state;
636 enum usb_device_speed speed;
637 unsigned int rx_lanes;
638 unsigned int tx_lanes;
639
640 struct usb_tt *tt;
641 int ttport;
642
643 unsigned int toggle[2];
644
645 struct usb_device *parent;
646 struct usb_bus *bus;
647 struct usb_host_endpoint ep0;
648
649 struct device dev;
650
651 struct usb_device_descriptor descriptor;
652 struct usb_host_bos *bos;
653 struct usb_host_config *config;
654
655 struct usb_host_config *actconfig;
656 struct usb_host_endpoint *ep_in[16];
657 struct usb_host_endpoint *ep_out[16];
658
659 char **rawdescriptors;
660
661 unsigned short bus_mA;
662 u8 portnum;
663 u8 level;
664 u8 devaddr;
665
666 unsigned can_submit:1;
667 unsigned persist_enabled:1;
668 unsigned have_langid:1;
669 unsigned authorized:1;
670 unsigned authenticated:1;
671 unsigned wusb:1;
672 unsigned lpm_capable:1;
673 unsigned usb2_hw_lpm_capable:1;
674 unsigned usb2_hw_lpm_besl_capable:1;
675 unsigned usb2_hw_lpm_enabled:1;
676 unsigned usb2_hw_lpm_allowed:1;
677 unsigned usb3_lpm_u1_enabled:1;
678 unsigned usb3_lpm_u2_enabled:1;
679 int string_langid;
680
681 /* static strings from the device */
682 char *product;
683 char *manufacturer;
684 char *serial;
685
686 struct list_head filelist;
687
688 int maxchild;
689
690 u32 quirks;
691 atomic_t urbnum;
692
693 unsigned long active_duration;
694
695 #ifdef CONFIG_PM
696 unsigned long connect_time;
697
698 unsigned do_remote_wakeup:1;
699 unsigned reset_resume:1;
700 unsigned port_is_suspended:1;
701 #endif
702 struct wusb_dev *wusb_dev;
703 int slot_id;
704 enum usb_device_removable removable;
705 struct usb2_lpm_parameters l1_params;
706 struct usb3_lpm_parameters u1_params;
707 struct usb3_lpm_parameters u2_params;
708 unsigned lpm_disable_count;
709
710 u16 hub_delay;
711 };
712 #define to_usb_device(d) container_of(d, struct usb_device, dev)
713
interface_to_usbdev(struct usb_interface * intf)714 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
715 {
716 return to_usb_device(intf->dev.parent);
717 }
718
719 extern struct usb_device *usb_get_dev(struct usb_device *dev);
720 extern void usb_put_dev(struct usb_device *dev);
721 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
722 int port1);
723
724 /**
725 * usb_hub_for_each_child - iterate over all child devices on the hub
726 * @hdev: USB device belonging to the usb hub
727 * @port1: portnum associated with child device
728 * @child: child device pointer
729 */
730 #define usb_hub_for_each_child(hdev, port1, child) \
731 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
732 port1 <= hdev->maxchild; \
733 child = usb_hub_find_child(hdev, ++port1)) \
734 if (!child) continue; else
735
736 /* USB device locking */
737 #define usb_lock_device(udev) device_lock(&(udev)->dev)
738 #define usb_unlock_device(udev) device_unlock(&(udev)->dev)
739 #define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev)
740 #define usb_trylock_device(udev) device_trylock(&(udev)->dev)
741 extern int usb_lock_device_for_reset(struct usb_device *udev,
742 const struct usb_interface *iface);
743
744 /* USB port reset for device reinitialization */
745 extern int usb_reset_device(struct usb_device *dev);
746 extern void usb_queue_reset_device(struct usb_interface *dev);
747
748 #ifdef CONFIG_ACPI
749 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
750 bool enable);
751 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
752 #else
usb_acpi_set_power_state(struct usb_device * hdev,int index,bool enable)753 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
754 bool enable) { return 0; }
usb_acpi_power_manageable(struct usb_device * hdev,int index)755 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
756 { return true; }
757 #endif
758
759 /* USB autosuspend and autoresume */
760 #ifdef CONFIG_PM
761 extern void usb_enable_autosuspend(struct usb_device *udev);
762 extern void usb_disable_autosuspend(struct usb_device *udev);
763
764 extern int usb_autopm_get_interface(struct usb_interface *intf);
765 extern void usb_autopm_put_interface(struct usb_interface *intf);
766 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
767 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
768 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
769 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
770
usb_mark_last_busy(struct usb_device * udev)771 static inline void usb_mark_last_busy(struct usb_device *udev)
772 {
773 pm_runtime_mark_last_busy(&udev->dev);
774 }
775
776 #else
777
usb_enable_autosuspend(struct usb_device * udev)778 static inline int usb_enable_autosuspend(struct usb_device *udev)
779 { return 0; }
usb_disable_autosuspend(struct usb_device * udev)780 static inline int usb_disable_autosuspend(struct usb_device *udev)
781 { return 0; }
782
usb_autopm_get_interface(struct usb_interface * intf)783 static inline int usb_autopm_get_interface(struct usb_interface *intf)
784 { return 0; }
usb_autopm_get_interface_async(struct usb_interface * intf)785 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
786 { return 0; }
787
usb_autopm_put_interface(struct usb_interface * intf)788 static inline void usb_autopm_put_interface(struct usb_interface *intf)
789 { }
usb_autopm_put_interface_async(struct usb_interface * intf)790 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
791 { }
usb_autopm_get_interface_no_resume(struct usb_interface * intf)792 static inline void usb_autopm_get_interface_no_resume(
793 struct usb_interface *intf)
794 { }
usb_autopm_put_interface_no_suspend(struct usb_interface * intf)795 static inline void usb_autopm_put_interface_no_suspend(
796 struct usb_interface *intf)
797 { }
usb_mark_last_busy(struct usb_device * udev)798 static inline void usb_mark_last_busy(struct usb_device *udev)
799 { }
800 #endif
801
802 extern int usb_disable_lpm(struct usb_device *udev);
803 extern void usb_enable_lpm(struct usb_device *udev);
804 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
805 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
806 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
807
808 extern int usb_disable_ltm(struct usb_device *udev);
809 extern void usb_enable_ltm(struct usb_device *udev);
810
usb_device_supports_ltm(struct usb_device * udev)811 static inline bool usb_device_supports_ltm(struct usb_device *udev)
812 {
813 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
814 return false;
815 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
816 }
817
usb_device_no_sg_constraint(struct usb_device * udev)818 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
819 {
820 return udev && udev->bus && udev->bus->no_sg_constraint;
821 }
822
823
824 /*-------------------------------------------------------------------------*/
825
826 /* for drivers using iso endpoints */
827 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
828
829 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
830 extern int usb_alloc_streams(struct usb_interface *interface,
831 struct usb_host_endpoint **eps, unsigned int num_eps,
832 unsigned int num_streams, gfp_t mem_flags);
833
834 /* Reverts a group of bulk endpoints back to not using stream IDs. */
835 extern int usb_free_streams(struct usb_interface *interface,
836 struct usb_host_endpoint **eps, unsigned int num_eps,
837 gfp_t mem_flags);
838
839 /* used these for multi-interface device registration */
840 extern int usb_driver_claim_interface(struct usb_driver *driver,
841 struct usb_interface *iface, void *priv);
842
843 /**
844 * usb_interface_claimed - returns true iff an interface is claimed
845 * @iface: the interface being checked
846 *
847 * Return: %true (nonzero) iff the interface is claimed, else %false
848 * (zero).
849 *
850 * Note:
851 * Callers must own the driver model's usb bus readlock. So driver
852 * probe() entries don't need extra locking, but other call contexts
853 * may need to explicitly claim that lock.
854 *
855 */
usb_interface_claimed(struct usb_interface * iface)856 static inline int usb_interface_claimed(struct usb_interface *iface)
857 {
858 return (iface->dev.driver != NULL);
859 }
860
861 extern void usb_driver_release_interface(struct usb_driver *driver,
862 struct usb_interface *iface);
863 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
864 const struct usb_device_id *id);
865 extern int usb_match_one_id(struct usb_interface *interface,
866 const struct usb_device_id *id);
867
868 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
869 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
870 int minor);
871 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
872 unsigned ifnum);
873 extern struct usb_host_interface *usb_altnum_to_altsetting(
874 const struct usb_interface *intf, unsigned int altnum);
875 extern struct usb_host_interface *usb_find_alt_setting(
876 struct usb_host_config *config,
877 unsigned int iface_num,
878 unsigned int alt_num);
879
880 /* port claiming functions */
881 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
882 struct usb_dev_state *owner);
883 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
884 struct usb_dev_state *owner);
885
886 /**
887 * usb_make_path - returns stable device path in the usb tree
888 * @dev: the device whose path is being constructed
889 * @buf: where to put the string
890 * @size: how big is "buf"?
891 *
892 * Return: Length of the string (> 0) or negative if size was too small.
893 *
894 * Note:
895 * This identifier is intended to be "stable", reflecting physical paths in
896 * hardware such as physical bus addresses for host controllers or ports on
897 * USB hubs. That makes it stay the same until systems are physically
898 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
899 * controllers. Adding and removing devices, including virtual root hubs
900 * in host controller driver modules, does not change these path identifiers;
901 * neither does rebooting or re-enumerating. These are more useful identifiers
902 * than changeable ("unstable") ones like bus numbers or device addresses.
903 *
904 * With a partial exception for devices connected to USB 2.0 root hubs, these
905 * identifiers are also predictable. So long as the device tree isn't changed,
906 * plugging any USB device into a given hub port always gives it the same path.
907 * Because of the use of "companion" controllers, devices connected to ports on
908 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
909 * high speed, and a different one if they are full or low speed.
910 */
usb_make_path(struct usb_device * dev,char * buf,size_t size)911 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
912 {
913 int actual;
914 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
915 dev->devpath);
916 return (actual >= (int)size) ? -1 : actual;
917 }
918
919 /*-------------------------------------------------------------------------*/
920
921 #define USB_DEVICE_ID_MATCH_DEVICE \
922 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
923 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
924 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
925 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
926 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
927 #define USB_DEVICE_ID_MATCH_DEV_INFO \
928 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
929 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
930 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
931 #define USB_DEVICE_ID_MATCH_INT_INFO \
932 (USB_DEVICE_ID_MATCH_INT_CLASS | \
933 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
934 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
935
936 /**
937 * USB_DEVICE - macro used to describe a specific usb device
938 * @vend: the 16 bit USB Vendor ID
939 * @prod: the 16 bit USB Product ID
940 *
941 * This macro is used to create a struct usb_device_id that matches a
942 * specific device.
943 */
944 #define USB_DEVICE(vend, prod) \
945 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
946 .idVendor = (vend), \
947 .idProduct = (prod)
948 /**
949 * USB_DEVICE_VER - describe a specific usb device with a version range
950 * @vend: the 16 bit USB Vendor ID
951 * @prod: the 16 bit USB Product ID
952 * @lo: the bcdDevice_lo value
953 * @hi: the bcdDevice_hi value
954 *
955 * This macro is used to create a struct usb_device_id that matches a
956 * specific device, with a version range.
957 */
958 #define USB_DEVICE_VER(vend, prod, lo, hi) \
959 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
960 .idVendor = (vend), \
961 .idProduct = (prod), \
962 .bcdDevice_lo = (lo), \
963 .bcdDevice_hi = (hi)
964
965 /**
966 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
967 * @vend: the 16 bit USB Vendor ID
968 * @prod: the 16 bit USB Product ID
969 * @cl: bInterfaceClass value
970 *
971 * This macro is used to create a struct usb_device_id that matches a
972 * specific interface class of devices.
973 */
974 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
975 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
976 USB_DEVICE_ID_MATCH_INT_CLASS, \
977 .idVendor = (vend), \
978 .idProduct = (prod), \
979 .bInterfaceClass = (cl)
980
981 /**
982 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
983 * @vend: the 16 bit USB Vendor ID
984 * @prod: the 16 bit USB Product ID
985 * @pr: bInterfaceProtocol value
986 *
987 * This macro is used to create a struct usb_device_id that matches a
988 * specific interface protocol of devices.
989 */
990 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
991 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
992 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
993 .idVendor = (vend), \
994 .idProduct = (prod), \
995 .bInterfaceProtocol = (pr)
996
997 /**
998 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
999 * @vend: the 16 bit USB Vendor ID
1000 * @prod: the 16 bit USB Product ID
1001 * @num: bInterfaceNumber value
1002 *
1003 * This macro is used to create a struct usb_device_id that matches a
1004 * specific interface number of devices.
1005 */
1006 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
1007 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1008 USB_DEVICE_ID_MATCH_INT_NUMBER, \
1009 .idVendor = (vend), \
1010 .idProduct = (prod), \
1011 .bInterfaceNumber = (num)
1012
1013 /**
1014 * USB_DEVICE_INFO - macro used to describe a class of usb devices
1015 * @cl: bDeviceClass value
1016 * @sc: bDeviceSubClass value
1017 * @pr: bDeviceProtocol value
1018 *
1019 * This macro is used to create a struct usb_device_id that matches a
1020 * specific class of devices.
1021 */
1022 #define USB_DEVICE_INFO(cl, sc, pr) \
1023 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1024 .bDeviceClass = (cl), \
1025 .bDeviceSubClass = (sc), \
1026 .bDeviceProtocol = (pr)
1027
1028 /**
1029 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1030 * @cl: bInterfaceClass value
1031 * @sc: bInterfaceSubClass value
1032 * @pr: bInterfaceProtocol value
1033 *
1034 * This macro is used to create a struct usb_device_id that matches a
1035 * specific class of interfaces.
1036 */
1037 #define USB_INTERFACE_INFO(cl, sc, pr) \
1038 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1039 .bInterfaceClass = (cl), \
1040 .bInterfaceSubClass = (sc), \
1041 .bInterfaceProtocol = (pr)
1042
1043 /**
1044 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1045 * @vend: the 16 bit USB Vendor ID
1046 * @prod: the 16 bit USB Product ID
1047 * @cl: bInterfaceClass value
1048 * @sc: bInterfaceSubClass value
1049 * @pr: bInterfaceProtocol value
1050 *
1051 * This macro is used to create a struct usb_device_id that matches a
1052 * specific device with a specific class of interfaces.
1053 *
1054 * This is especially useful when explicitly matching devices that have
1055 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1056 */
1057 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1058 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1059 | USB_DEVICE_ID_MATCH_DEVICE, \
1060 .idVendor = (vend), \
1061 .idProduct = (prod), \
1062 .bInterfaceClass = (cl), \
1063 .bInterfaceSubClass = (sc), \
1064 .bInterfaceProtocol = (pr)
1065
1066 /**
1067 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1068 * @vend: the 16 bit USB Vendor ID
1069 * @cl: bInterfaceClass value
1070 * @sc: bInterfaceSubClass value
1071 * @pr: bInterfaceProtocol value
1072 *
1073 * This macro is used to create a struct usb_device_id that matches a
1074 * specific vendor with a specific class of interfaces.
1075 *
1076 * This is especially useful when explicitly matching devices that have
1077 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1078 */
1079 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1080 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1081 | USB_DEVICE_ID_MATCH_VENDOR, \
1082 .idVendor = (vend), \
1083 .bInterfaceClass = (cl), \
1084 .bInterfaceSubClass = (sc), \
1085 .bInterfaceProtocol = (pr)
1086
1087 /* ----------------------------------------------------------------------- */
1088
1089 /* Stuff for dynamic usb ids */
1090 struct usb_dynids {
1091 spinlock_t lock;
1092 struct list_head list;
1093 };
1094
1095 struct usb_dynid {
1096 struct list_head node;
1097 struct usb_device_id id;
1098 };
1099
1100 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1101 const struct usb_device_id *id_table,
1102 struct device_driver *driver,
1103 const char *buf, size_t count);
1104
1105 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1106
1107 /**
1108 * struct usbdrv_wrap - wrapper for driver-model structure
1109 * @driver: The driver-model core driver structure.
1110 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1111 */
1112 struct usbdrv_wrap {
1113 struct device_driver driver;
1114 int for_devices;
1115 };
1116
1117 /**
1118 * struct usb_driver - identifies USB interface driver to usbcore
1119 * @name: The driver name should be unique among USB drivers,
1120 * and should normally be the same as the module name.
1121 * @probe: Called to see if the driver is willing to manage a particular
1122 * interface on a device. If it is, probe returns zero and uses
1123 * usb_set_intfdata() to associate driver-specific data with the
1124 * interface. It may also use usb_set_interface() to specify the
1125 * appropriate altsetting. If unwilling to manage the interface,
1126 * return -ENODEV, if genuine IO errors occurred, an appropriate
1127 * negative errno value.
1128 * @disconnect: Called when the interface is no longer accessible, usually
1129 * because its device has been (or is being) disconnected or the
1130 * driver module is being unloaded.
1131 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1132 * the "usbfs" filesystem. This lets devices provide ways to
1133 * expose information to user space regardless of where they
1134 * do (or don't) show up otherwise in the filesystem.
1135 * @suspend: Called when the device is going to be suspended by the
1136 * system either from system sleep or runtime suspend context. The
1137 * return value will be ignored in system sleep context, so do NOT
1138 * try to continue using the device if suspend fails in this case.
1139 * Instead, let the resume or reset-resume routine recover from
1140 * the failure.
1141 * @resume: Called when the device is being resumed by the system.
1142 * @reset_resume: Called when the suspended device has been reset instead
1143 * of being resumed.
1144 * @pre_reset: Called by usb_reset_device() when the device is about to be
1145 * reset. This routine must not return until the driver has no active
1146 * URBs for the device, and no more URBs may be submitted until the
1147 * post_reset method is called.
1148 * @post_reset: Called by usb_reset_device() after the device
1149 * has been reset
1150 * @id_table: USB drivers use ID table to support hotplugging.
1151 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
1152 * or your driver's probe function will never get called.
1153 * @dev_groups: Attributes attached to the device that will be created once it
1154 * is bound to the driver.
1155 * @dynids: used internally to hold the list of dynamically added device
1156 * ids for this driver.
1157 * @drvwrap: Driver-model core structure wrapper.
1158 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1159 * added to this driver by preventing the sysfs file from being created.
1160 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1161 * for interfaces bound to this driver.
1162 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1163 * endpoints before calling the driver's disconnect method.
1164 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1165 * to initiate lower power link state transitions when an idle timeout
1166 * occurs. Device-initiated USB 3.0 link PM will still be allowed.
1167 *
1168 * USB interface drivers must provide a name, probe() and disconnect()
1169 * methods, and an id_table. Other driver fields are optional.
1170 *
1171 * The id_table is used in hotplugging. It holds a set of descriptors,
1172 * and specialized data may be associated with each entry. That table
1173 * is used by both user and kernel mode hotplugging support.
1174 *
1175 * The probe() and disconnect() methods are called in a context where
1176 * they can sleep, but they should avoid abusing the privilege. Most
1177 * work to connect to a device should be done when the device is opened,
1178 * and undone at the last close. The disconnect code needs to address
1179 * concurrency issues with respect to open() and close() methods, as
1180 * well as forcing all pending I/O requests to complete (by unlinking
1181 * them as necessary, and blocking until the unlinks complete).
1182 */
1183 struct usb_driver {
1184 const char *name;
1185
1186 int (*probe) (struct usb_interface *intf,
1187 const struct usb_device_id *id);
1188
1189 void (*disconnect) (struct usb_interface *intf);
1190
1191 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1192 void *buf);
1193
1194 int (*suspend) (struct usb_interface *intf, pm_message_t message);
1195 int (*resume) (struct usb_interface *intf);
1196 int (*reset_resume)(struct usb_interface *intf);
1197
1198 int (*pre_reset)(struct usb_interface *intf);
1199 int (*post_reset)(struct usb_interface *intf);
1200
1201 const struct usb_device_id *id_table;
1202 const struct attribute_group **dev_groups;
1203
1204 struct usb_dynids dynids;
1205 struct usbdrv_wrap drvwrap;
1206 unsigned int no_dynamic_id:1;
1207 unsigned int supports_autosuspend:1;
1208 unsigned int disable_hub_initiated_lpm:1;
1209 unsigned int soft_unbind:1;
1210 };
1211 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1212
1213 /**
1214 * struct usb_device_driver - identifies USB device driver to usbcore
1215 * @name: The driver name should be unique among USB drivers,
1216 * and should normally be the same as the module name.
1217 * @probe: Called to see if the driver is willing to manage a particular
1218 * device. If it is, probe returns zero and uses dev_set_drvdata()
1219 * to associate driver-specific data with the device. If unwilling
1220 * to manage the device, return a negative errno value.
1221 * @disconnect: Called when the device is no longer accessible, usually
1222 * because it has been (or is being) disconnected or the driver's
1223 * module is being unloaded.
1224 * @suspend: Called when the device is going to be suspended by the system.
1225 * @resume: Called when the device is being resumed by the system.
1226 * @dev_groups: Attributes attached to the device that will be created once it
1227 * is bound to the driver.
1228 * @drvwrap: Driver-model core structure wrapper.
1229 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1230 * for devices bound to this driver.
1231 *
1232 * USB drivers must provide all the fields listed above except drvwrap.
1233 */
1234 struct usb_device_driver {
1235 const char *name;
1236
1237 int (*probe) (struct usb_device *udev);
1238 void (*disconnect) (struct usb_device *udev);
1239
1240 int (*suspend) (struct usb_device *udev, pm_message_t message);
1241 int (*resume) (struct usb_device *udev, pm_message_t message);
1242 const struct attribute_group **dev_groups;
1243 struct usbdrv_wrap drvwrap;
1244 unsigned int supports_autosuspend:1;
1245 };
1246 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1247 drvwrap.driver)
1248
1249 extern struct bus_type usb_bus_type;
1250
1251 /**
1252 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1253 * @name: the usb class device name for this driver. Will show up in sysfs.
1254 * @devnode: Callback to provide a naming hint for a possible
1255 * device node to create.
1256 * @fops: pointer to the struct file_operations of this driver.
1257 * @minor_base: the start of the minor range for this driver.
1258 *
1259 * This structure is used for the usb_register_dev() and
1260 * usb_deregister_dev() functions, to consolidate a number of the
1261 * parameters used for them.
1262 */
1263 struct usb_class_driver {
1264 char *name;
1265 char *(*devnode)(struct device *dev, umode_t *mode);
1266 const struct file_operations *fops;
1267 int minor_base;
1268 };
1269
1270 /*
1271 * use these in module_init()/module_exit()
1272 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1273 */
1274 extern int usb_register_driver(struct usb_driver *, struct module *,
1275 const char *);
1276
1277 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1278 #define usb_register(driver) \
1279 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1280
1281 extern void usb_deregister(struct usb_driver *);
1282
1283 /**
1284 * module_usb_driver() - Helper macro for registering a USB driver
1285 * @__usb_driver: usb_driver struct
1286 *
1287 * Helper macro for USB drivers which do not do anything special in module
1288 * init/exit. This eliminates a lot of boilerplate. Each module may only
1289 * use this macro once, and calling it replaces module_init() and module_exit()
1290 */
1291 #define module_usb_driver(__usb_driver) \
1292 module_driver(__usb_driver, usb_register, \
1293 usb_deregister)
1294
1295 extern int usb_register_device_driver(struct usb_device_driver *,
1296 struct module *);
1297 extern void usb_deregister_device_driver(struct usb_device_driver *);
1298
1299 extern int usb_register_dev(struct usb_interface *intf,
1300 struct usb_class_driver *class_driver);
1301 extern void usb_deregister_dev(struct usb_interface *intf,
1302 struct usb_class_driver *class_driver);
1303
1304 extern int usb_disabled(void);
1305
1306 /* ----------------------------------------------------------------------- */
1307
1308 /*
1309 * URB support, for asynchronous request completions
1310 */
1311
1312 /*
1313 * urb->transfer_flags:
1314 *
1315 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1316 */
1317 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1318 #define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired
1319 * slot in the schedule */
1320 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1321 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1322 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1323 * needed */
1324 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1325
1326 /* The following flags are used internally by usbcore and HCDs */
1327 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
1328 #define URB_DIR_OUT 0
1329 #define URB_DIR_MASK URB_DIR_IN
1330
1331 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
1332 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
1333 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
1334 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
1335 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
1336 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
1337 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
1338 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
1339
1340 struct usb_iso_packet_descriptor {
1341 unsigned int offset;
1342 unsigned int length; /* expected length */
1343 unsigned int actual_length;
1344 int status;
1345 };
1346
1347 struct urb;
1348
1349 struct usb_anchor {
1350 struct list_head urb_list;
1351 wait_queue_head_t wait;
1352 spinlock_t lock;
1353 atomic_t suspend_wakeups;
1354 unsigned int poisoned:1;
1355 };
1356
init_usb_anchor(struct usb_anchor * anchor)1357 static inline void init_usb_anchor(struct usb_anchor *anchor)
1358 {
1359 memset(anchor, 0, sizeof(*anchor));
1360 INIT_LIST_HEAD(&anchor->urb_list);
1361 init_waitqueue_head(&anchor->wait);
1362 spin_lock_init(&anchor->lock);
1363 }
1364
1365 typedef void (*usb_complete_t)(struct urb *);
1366
1367 /**
1368 * struct urb - USB Request Block
1369 * @urb_list: For use by current owner of the URB.
1370 * @anchor_list: membership in the list of an anchor
1371 * @anchor: to anchor URBs to a common mooring
1372 * @ep: Points to the endpoint's data structure. Will eventually
1373 * replace @pipe.
1374 * @pipe: Holds endpoint number, direction, type, and more.
1375 * Create these values with the eight macros available;
1376 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1377 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1378 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1379 * numbers range from zero to fifteen. Note that "in" endpoint two
1380 * is a different endpoint (and pipe) from "out" endpoint two.
1381 * The current configuration controls the existence, type, and
1382 * maximum packet size of any given endpoint.
1383 * @stream_id: the endpoint's stream ID for bulk streams
1384 * @dev: Identifies the USB device to perform the request.
1385 * @status: This is read in non-iso completion functions to get the
1386 * status of the particular request. ISO requests only use it
1387 * to tell whether the URB was unlinked; detailed status for
1388 * each frame is in the fields of the iso_frame-desc.
1389 * @transfer_flags: A variety of flags may be used to affect how URB
1390 * submission, unlinking, or operation are handled. Different
1391 * kinds of URB can use different flags.
1392 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1393 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1394 * (however, do not leave garbage in transfer_buffer even then).
1395 * This buffer must be suitable for DMA; allocate it with
1396 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1397 * of this buffer will be modified. This buffer is used for the data
1398 * stage of control transfers.
1399 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1400 * the device driver is saying that it provided this DMA address,
1401 * which the host controller driver should use in preference to the
1402 * transfer_buffer.
1403 * @sg: scatter gather buffer list, the buffer size of each element in
1404 * the list (except the last) must be divisible by the endpoint's
1405 * max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1406 * @num_mapped_sgs: (internal) number of mapped sg entries
1407 * @num_sgs: number of entries in the sg list
1408 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1409 * be broken up into chunks according to the current maximum packet
1410 * size for the endpoint, which is a function of the configuration
1411 * and is encoded in the pipe. When the length is zero, neither
1412 * transfer_buffer nor transfer_dma is used.
1413 * @actual_length: This is read in non-iso completion functions, and
1414 * it tells how many bytes (out of transfer_buffer_length) were
1415 * transferred. It will normally be the same as requested, unless
1416 * either an error was reported or a short read was performed.
1417 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1418 * short reads be reported as errors.
1419 * @setup_packet: Only used for control transfers, this points to eight bytes
1420 * of setup data. Control transfers always start by sending this data
1421 * to the device. Then transfer_buffer is read or written, if needed.
1422 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1423 * this field; setup_packet must point to a valid buffer.
1424 * @start_frame: Returns the initial frame for isochronous transfers.
1425 * @number_of_packets: Lists the number of ISO transfer buffers.
1426 * @interval: Specifies the polling interval for interrupt or isochronous
1427 * transfers. The units are frames (milliseconds) for full and low
1428 * speed devices, and microframes (1/8 millisecond) for highspeed
1429 * and SuperSpeed devices.
1430 * @error_count: Returns the number of ISO transfers that reported errors.
1431 * @context: For use in completion functions. This normally points to
1432 * request-specific driver context.
1433 * @complete: Completion handler. This URB is passed as the parameter to the
1434 * completion function. The completion function may then do what
1435 * it likes with the URB, including resubmitting or freeing it.
1436 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1437 * collect the transfer status for each buffer.
1438 *
1439 * This structure identifies USB transfer requests. URBs must be allocated by
1440 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1441 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1442 * are submitted using usb_submit_urb(), and pending requests may be canceled
1443 * using usb_unlink_urb() or usb_kill_urb().
1444 *
1445 * Data Transfer Buffers:
1446 *
1447 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1448 * taken from the general page pool. That is provided by transfer_buffer
1449 * (control requests also use setup_packet), and host controller drivers
1450 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1451 * mapping operations can be expensive on some platforms (perhaps using a dma
1452 * bounce buffer or talking to an IOMMU),
1453 * although they're cheap on commodity x86 and ppc hardware.
1454 *
1455 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1456 * which tells the host controller driver that no such mapping is needed for
1457 * the transfer_buffer since
1458 * the device driver is DMA-aware. For example, a device driver might
1459 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1460 * When this transfer flag is provided, host controller drivers will
1461 * attempt to use the dma address found in the transfer_dma
1462 * field rather than determining a dma address themselves.
1463 *
1464 * Note that transfer_buffer must still be set if the controller
1465 * does not support DMA (as indicated by hcd_uses_dma()) and when talking
1466 * to root hub. If you have to trasfer between highmem zone and the device
1467 * on such controller, create a bounce buffer or bail out with an error.
1468 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1469 * capable, assign NULL to it, so that usbmon knows not to use the value.
1470 * The setup_packet must always be set, so it cannot be located in highmem.
1471 *
1472 * Initialization:
1473 *
1474 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1475 * zero), and complete fields. All URBs must also initialize
1476 * transfer_buffer and transfer_buffer_length. They may provide the
1477 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1478 * to be treated as errors; that flag is invalid for write requests.
1479 *
1480 * Bulk URBs may
1481 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1482 * should always terminate with a short packet, even if it means adding an
1483 * extra zero length packet.
1484 *
1485 * Control URBs must provide a valid pointer in the setup_packet field.
1486 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1487 * beforehand.
1488 *
1489 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1490 * or, for highspeed devices, 125 microsecond units)
1491 * to poll for transfers. After the URB has been submitted, the interval
1492 * field reflects how the transfer was actually scheduled.
1493 * The polling interval may be more frequent than requested.
1494 * For example, some controllers have a maximum interval of 32 milliseconds,
1495 * while others support intervals of up to 1024 milliseconds.
1496 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1497 * endpoints, as well as high speed interrupt endpoints, the encoding of
1498 * the transfer interval in the endpoint descriptor is logarithmic.
1499 * Device drivers must convert that value to linear units themselves.)
1500 *
1501 * If an isochronous endpoint queue isn't already running, the host
1502 * controller will schedule a new URB to start as soon as bandwidth
1503 * utilization allows. If the queue is running then a new URB will be
1504 * scheduled to start in the first transfer slot following the end of the
1505 * preceding URB, if that slot has not already expired. If the slot has
1506 * expired (which can happen when IRQ delivery is delayed for a long time),
1507 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag
1508 * is clear then the URB will be scheduled to start in the expired slot,
1509 * implying that some of its packets will not be transferred; if the flag
1510 * is set then the URB will be scheduled in the first unexpired slot,
1511 * breaking the queue's synchronization. Upon URB completion, the
1512 * start_frame field will be set to the (micro)frame number in which the
1513 * transfer was scheduled. Ranges for frame counter values are HC-specific
1514 * and can go from as low as 256 to as high as 65536 frames.
1515 *
1516 * Isochronous URBs have a different data transfer model, in part because
1517 * the quality of service is only "best effort". Callers provide specially
1518 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1519 * at the end. Each such packet is an individual ISO transfer. Isochronous
1520 * URBs are normally queued, submitted by drivers to arrange that
1521 * transfers are at least double buffered, and then explicitly resubmitted
1522 * in completion handlers, so
1523 * that data (such as audio or video) streams at as constant a rate as the
1524 * host controller scheduler can support.
1525 *
1526 * Completion Callbacks:
1527 *
1528 * The completion callback is made in_interrupt(), and one of the first
1529 * things that a completion handler should do is check the status field.
1530 * The status field is provided for all URBs. It is used to report
1531 * unlinked URBs, and status for all non-ISO transfers. It should not
1532 * be examined before the URB is returned to the completion handler.
1533 *
1534 * The context field is normally used to link URBs back to the relevant
1535 * driver or request state.
1536 *
1537 * When the completion callback is invoked for non-isochronous URBs, the
1538 * actual_length field tells how many bytes were transferred. This field
1539 * is updated even when the URB terminated with an error or was unlinked.
1540 *
1541 * ISO transfer status is reported in the status and actual_length fields
1542 * of the iso_frame_desc array, and the number of errors is reported in
1543 * error_count. Completion callbacks for ISO transfers will normally
1544 * (re)submit URBs to ensure a constant transfer rate.
1545 *
1546 * Note that even fields marked "public" should not be touched by the driver
1547 * when the urb is owned by the hcd, that is, since the call to
1548 * usb_submit_urb() till the entry into the completion routine.
1549 */
1550 struct urb {
1551 /* private: usb core and host controller only fields in the urb */
1552 struct kref kref; /* reference count of the URB */
1553 int unlinked; /* unlink error code */
1554 void *hcpriv; /* private data for host controller */
1555 atomic_t use_count; /* concurrent submissions counter */
1556 atomic_t reject; /* submissions will fail */
1557
1558 /* public: documented fields in the urb that can be used by drivers */
1559 struct list_head urb_list; /* list head for use by the urb's
1560 * current owner */
1561 struct list_head anchor_list; /* the URB may be anchored */
1562 struct usb_anchor *anchor;
1563 struct usb_device *dev; /* (in) pointer to associated device */
1564 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1565 unsigned int pipe; /* (in) pipe information */
1566 unsigned int stream_id; /* (in) stream ID */
1567 int status; /* (return) non-ISO status */
1568 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1569 void *transfer_buffer; /* (in) associated data buffer */
1570 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1571 struct scatterlist *sg; /* (in) scatter gather buffer list */
1572 int num_mapped_sgs; /* (internal) mapped sg entries */
1573 int num_sgs; /* (in) number of entries in the sg list */
1574 u32 transfer_buffer_length; /* (in) data buffer length */
1575 u32 actual_length; /* (return) actual transfer length */
1576 unsigned char *setup_packet; /* (in) setup packet (control only) */
1577 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1578 int start_frame; /* (modify) start frame (ISO) */
1579 int number_of_packets; /* (in) number of ISO packets */
1580 int interval; /* (modify) transfer interval
1581 * (INT/ISO) */
1582 int error_count; /* (return) number of ISO errors */
1583 void *context; /* (in) context for completion */
1584 usb_complete_t complete; /* (in) completion routine */
1585 struct usb_iso_packet_descriptor iso_frame_desc[0];
1586 /* (in) ISO ONLY */
1587 };
1588
1589 /* ----------------------------------------------------------------------- */
1590
1591 /**
1592 * usb_fill_control_urb - initializes a control urb
1593 * @urb: pointer to the urb to initialize.
1594 * @dev: pointer to the struct usb_device for this urb.
1595 * @pipe: the endpoint pipe
1596 * @setup_packet: pointer to the setup_packet buffer
1597 * @transfer_buffer: pointer to the transfer buffer
1598 * @buffer_length: length of the transfer buffer
1599 * @complete_fn: pointer to the usb_complete_t function
1600 * @context: what to set the urb context to.
1601 *
1602 * Initializes a control urb with the proper information needed to submit
1603 * it to a device.
1604 */
usb_fill_control_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,unsigned char * setup_packet,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1605 static inline void usb_fill_control_urb(struct urb *urb,
1606 struct usb_device *dev,
1607 unsigned int pipe,
1608 unsigned char *setup_packet,
1609 void *transfer_buffer,
1610 int buffer_length,
1611 usb_complete_t complete_fn,
1612 void *context)
1613 {
1614 urb->dev = dev;
1615 urb->pipe = pipe;
1616 urb->setup_packet = setup_packet;
1617 urb->transfer_buffer = transfer_buffer;
1618 urb->transfer_buffer_length = buffer_length;
1619 urb->complete = complete_fn;
1620 urb->context = context;
1621 }
1622
1623 /**
1624 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1625 * @urb: pointer to the urb to initialize.
1626 * @dev: pointer to the struct usb_device for this urb.
1627 * @pipe: the endpoint pipe
1628 * @transfer_buffer: pointer to the transfer buffer
1629 * @buffer_length: length of the transfer buffer
1630 * @complete_fn: pointer to the usb_complete_t function
1631 * @context: what to set the urb context to.
1632 *
1633 * Initializes a bulk urb with the proper information needed to submit it
1634 * to a device.
1635 */
usb_fill_bulk_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1636 static inline void usb_fill_bulk_urb(struct urb *urb,
1637 struct usb_device *dev,
1638 unsigned int pipe,
1639 void *transfer_buffer,
1640 int buffer_length,
1641 usb_complete_t complete_fn,
1642 void *context)
1643 {
1644 urb->dev = dev;
1645 urb->pipe = pipe;
1646 urb->transfer_buffer = transfer_buffer;
1647 urb->transfer_buffer_length = buffer_length;
1648 urb->complete = complete_fn;
1649 urb->context = context;
1650 }
1651
1652 /**
1653 * usb_fill_int_urb - macro to help initialize a interrupt urb
1654 * @urb: pointer to the urb to initialize.
1655 * @dev: pointer to the struct usb_device for this urb.
1656 * @pipe: the endpoint pipe
1657 * @transfer_buffer: pointer to the transfer buffer
1658 * @buffer_length: length of the transfer buffer
1659 * @complete_fn: pointer to the usb_complete_t function
1660 * @context: what to set the urb context to.
1661 * @interval: what to set the urb interval to, encoded like
1662 * the endpoint descriptor's bInterval value.
1663 *
1664 * Initializes a interrupt urb with the proper information needed to submit
1665 * it to a device.
1666 *
1667 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1668 * encoding of the endpoint interval, and express polling intervals in
1669 * microframes (eight per millisecond) rather than in frames (one per
1670 * millisecond).
1671 *
1672 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1673 * 128us instead of 125us. For Wireless USB devices, the interval is passed
1674 * through to the host controller, rather than being translated into microframe
1675 * units.
1676 */
usb_fill_int_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context,int interval)1677 static inline void usb_fill_int_urb(struct urb *urb,
1678 struct usb_device *dev,
1679 unsigned int pipe,
1680 void *transfer_buffer,
1681 int buffer_length,
1682 usb_complete_t complete_fn,
1683 void *context,
1684 int interval)
1685 {
1686 urb->dev = dev;
1687 urb->pipe = pipe;
1688 urb->transfer_buffer = transfer_buffer;
1689 urb->transfer_buffer_length = buffer_length;
1690 urb->complete = complete_fn;
1691 urb->context = context;
1692
1693 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1694 /* make sure interval is within allowed range */
1695 interval = clamp(interval, 1, 16);
1696
1697 urb->interval = 1 << (interval - 1);
1698 } else {
1699 urb->interval = interval;
1700 }
1701
1702 urb->start_frame = -1;
1703 }
1704
1705 extern void usb_init_urb(struct urb *urb);
1706 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1707 extern void usb_free_urb(struct urb *urb);
1708 #define usb_put_urb usb_free_urb
1709 extern struct urb *usb_get_urb(struct urb *urb);
1710 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1711 extern int usb_unlink_urb(struct urb *urb);
1712 extern void usb_kill_urb(struct urb *urb);
1713 extern void usb_poison_urb(struct urb *urb);
1714 extern void usb_unpoison_urb(struct urb *urb);
1715 extern void usb_block_urb(struct urb *urb);
1716 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1717 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1718 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1719 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1720 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1721 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1722 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1723 extern void usb_unanchor_urb(struct urb *urb);
1724 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1725 unsigned int timeout);
1726 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1727 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1728 extern int usb_anchor_empty(struct usb_anchor *anchor);
1729
1730 #define usb_unblock_urb usb_unpoison_urb
1731
1732 /**
1733 * usb_urb_dir_in - check if an URB describes an IN transfer
1734 * @urb: URB to be checked
1735 *
1736 * Return: 1 if @urb describes an IN transfer (device-to-host),
1737 * otherwise 0.
1738 */
usb_urb_dir_in(struct urb * urb)1739 static inline int usb_urb_dir_in(struct urb *urb)
1740 {
1741 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1742 }
1743
1744 /**
1745 * usb_urb_dir_out - check if an URB describes an OUT transfer
1746 * @urb: URB to be checked
1747 *
1748 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1749 * otherwise 0.
1750 */
usb_urb_dir_out(struct urb * urb)1751 static inline int usb_urb_dir_out(struct urb *urb)
1752 {
1753 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1754 }
1755
1756 int usb_urb_ep_type_check(const struct urb *urb);
1757
1758 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1759 gfp_t mem_flags, dma_addr_t *dma);
1760 void usb_free_coherent(struct usb_device *dev, size_t size,
1761 void *addr, dma_addr_t dma);
1762
1763 #if 0
1764 struct urb *usb_buffer_map(struct urb *urb);
1765 void usb_buffer_dmasync(struct urb *urb);
1766 void usb_buffer_unmap(struct urb *urb);
1767 #endif
1768
1769 struct scatterlist;
1770 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1771 struct scatterlist *sg, int nents);
1772 #if 0
1773 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1774 struct scatterlist *sg, int n_hw_ents);
1775 #endif
1776 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1777 struct scatterlist *sg, int n_hw_ents);
1778
1779 /*-------------------------------------------------------------------*
1780 * SYNCHRONOUS CALL SUPPORT *
1781 *-------------------------------------------------------------------*/
1782
1783 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1784 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1785 void *data, __u16 size, int timeout);
1786 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1787 void *data, int len, int *actual_length, int timeout);
1788 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1789 void *data, int len, int *actual_length,
1790 int timeout);
1791
1792 /* wrappers around usb_control_msg() for the most common standard requests */
1793 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1794 unsigned char descindex, void *buf, int size);
1795 extern int usb_get_status(struct usb_device *dev,
1796 int recip, int type, int target, void *data);
1797
usb_get_std_status(struct usb_device * dev,int recip,int target,void * data)1798 static inline int usb_get_std_status(struct usb_device *dev,
1799 int recip, int target, void *data)
1800 {
1801 return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1802 data);
1803 }
1804
usb_get_ptm_status(struct usb_device * dev,void * data)1805 static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1806 {
1807 return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1808 0, data);
1809 }
1810
1811 extern int usb_string(struct usb_device *dev, int index,
1812 char *buf, size_t size);
1813
1814 /* wrappers that also update important state inside usbcore */
1815 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1816 extern int usb_reset_configuration(struct usb_device *dev);
1817 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1818 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1819
1820 /* this request isn't really synchronous, but it belongs with the others */
1821 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1822
1823 /* choose and set configuration for device */
1824 extern int usb_choose_configuration(struct usb_device *udev);
1825 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1826
1827 /*
1828 * timeouts, in milliseconds, used for sending/receiving control messages
1829 * they typically complete within a few frames (msec) after they're issued
1830 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1831 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1832 */
1833 #define USB_CTRL_GET_TIMEOUT 5000
1834 #define USB_CTRL_SET_TIMEOUT 5000
1835
1836
1837 /**
1838 * struct usb_sg_request - support for scatter/gather I/O
1839 * @status: zero indicates success, else negative errno
1840 * @bytes: counts bytes transferred.
1841 *
1842 * These requests are initialized using usb_sg_init(), and then are used
1843 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1844 * members of the request object aren't for driver access.
1845 *
1846 * The status and bytecount values are valid only after usb_sg_wait()
1847 * returns. If the status is zero, then the bytecount matches the total
1848 * from the request.
1849 *
1850 * After an error completion, drivers may need to clear a halt condition
1851 * on the endpoint.
1852 */
1853 struct usb_sg_request {
1854 int status;
1855 size_t bytes;
1856
1857 /* private:
1858 * members below are private to usbcore,
1859 * and are not provided for driver access!
1860 */
1861 spinlock_t lock;
1862
1863 struct usb_device *dev;
1864 int pipe;
1865
1866 int entries;
1867 struct urb **urbs;
1868
1869 int count;
1870 struct completion complete;
1871 };
1872
1873 int usb_sg_init(
1874 struct usb_sg_request *io,
1875 struct usb_device *dev,
1876 unsigned pipe,
1877 unsigned period,
1878 struct scatterlist *sg,
1879 int nents,
1880 size_t length,
1881 gfp_t mem_flags
1882 );
1883 void usb_sg_cancel(struct usb_sg_request *io);
1884 void usb_sg_wait(struct usb_sg_request *io);
1885
1886
1887 /* ----------------------------------------------------------------------- */
1888
1889 /*
1890 * For various legacy reasons, Linux has a small cookie that's paired with
1891 * a struct usb_device to identify an endpoint queue. Queue characteristics
1892 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1893 * an unsigned int encoded as:
1894 *
1895 * - direction: bit 7 (0 = Host-to-Device [Out],
1896 * 1 = Device-to-Host [In] ...
1897 * like endpoint bEndpointAddress)
1898 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1899 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1900 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1901 * 10 = control, 11 = bulk)
1902 *
1903 * Given the device address and endpoint descriptor, pipes are redundant.
1904 */
1905
1906 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1907 /* (yet ... they're the values used by usbfs) */
1908 #define PIPE_ISOCHRONOUS 0
1909 #define PIPE_INTERRUPT 1
1910 #define PIPE_CONTROL 2
1911 #define PIPE_BULK 3
1912
1913 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1914 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1915
1916 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1917 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1918
1919 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1920 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1921 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1922 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1923 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1924
__create_pipe(struct usb_device * dev,unsigned int endpoint)1925 static inline unsigned int __create_pipe(struct usb_device *dev,
1926 unsigned int endpoint)
1927 {
1928 return (dev->devnum << 8) | (endpoint << 15);
1929 }
1930
1931 /* Create various pipes... */
1932 #define usb_sndctrlpipe(dev, endpoint) \
1933 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1934 #define usb_rcvctrlpipe(dev, endpoint) \
1935 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1936 #define usb_sndisocpipe(dev, endpoint) \
1937 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1938 #define usb_rcvisocpipe(dev, endpoint) \
1939 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1940 #define usb_sndbulkpipe(dev, endpoint) \
1941 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1942 #define usb_rcvbulkpipe(dev, endpoint) \
1943 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1944 #define usb_sndintpipe(dev, endpoint) \
1945 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1946 #define usb_rcvintpipe(dev, endpoint) \
1947 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1948
1949 static inline struct usb_host_endpoint *
usb_pipe_endpoint(struct usb_device * dev,unsigned int pipe)1950 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1951 {
1952 struct usb_host_endpoint **eps;
1953 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1954 return eps[usb_pipeendpoint(pipe)];
1955 }
1956
1957 /*-------------------------------------------------------------------------*/
1958
1959 static inline __u16
usb_maxpacket(struct usb_device * udev,int pipe,int is_out)1960 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1961 {
1962 struct usb_host_endpoint *ep;
1963 unsigned epnum = usb_pipeendpoint(pipe);
1964
1965 if (is_out) {
1966 WARN_ON(usb_pipein(pipe));
1967 ep = udev->ep_out[epnum];
1968 } else {
1969 WARN_ON(usb_pipeout(pipe));
1970 ep = udev->ep_in[epnum];
1971 }
1972 if (!ep)
1973 return 0;
1974
1975 /* NOTE: only 0x07ff bits are for packet size... */
1976 return usb_endpoint_maxp(&ep->desc);
1977 }
1978
1979 /* ----------------------------------------------------------------------- */
1980
1981 /* translate USB error codes to codes user space understands */
usb_translate_errors(int error_code)1982 static inline int usb_translate_errors(int error_code)
1983 {
1984 switch (error_code) {
1985 case 0:
1986 case -ENOMEM:
1987 case -ENODEV:
1988 case -EOPNOTSUPP:
1989 return error_code;
1990 default:
1991 return -EIO;
1992 }
1993 }
1994
1995 /* Events from the usb core */
1996 #define USB_DEVICE_ADD 0x0001
1997 #define USB_DEVICE_REMOVE 0x0002
1998 #define USB_BUS_ADD 0x0003
1999 #define USB_BUS_REMOVE 0x0004
2000 extern void usb_register_notify(struct notifier_block *nb);
2001 extern void usb_unregister_notify(struct notifier_block *nb);
2002
2003 /* debugfs stuff */
2004 extern struct dentry *usb_debug_root;
2005
2006 /* LED triggers */
2007 enum usb_led_event {
2008 USB_LED_EVENT_HOST = 0,
2009 USB_LED_EVENT_GADGET = 1,
2010 };
2011
2012 #ifdef CONFIG_USB_LED_TRIG
2013 extern void usb_led_activity(enum usb_led_event ev);
2014 #else
usb_led_activity(enum usb_led_event ev)2015 static inline void usb_led_activity(enum usb_led_event ev) {}
2016 #endif
2017
2018 #endif /* __KERNEL__ */
2019
2020 #endif
2021