1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992  Linus Torvalds
4  */
5 
6 /*
7  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
8  * or rs-channels. It also implements echoing, cooked mode etc.
9  *
10  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
11  *
12  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
13  * tty_struct and tty_queue structures.  Previously there was an array
14  * of 256 tty_struct's which was statically allocated, and the
15  * tty_queue structures were allocated at boot time.  Both are now
16  * dynamically allocated only when the tty is open.
17  *
18  * Also restructured routines so that there is more of a separation
19  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
20  * the low-level tty routines (serial.c, pty.c, console.c).  This
21  * makes for cleaner and more compact code.  -TYT, 9/17/92
22  *
23  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
24  * which can be dynamically activated and de-activated by the line
25  * discipline handling modules (like SLIP).
26  *
27  * NOTE: pay no attention to the line discipline code (yet); its
28  * interface is still subject to change in this version...
29  * -- TYT, 1/31/92
30  *
31  * Added functionality to the OPOST tty handling.  No delays, but all
32  * other bits should be there.
33  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
34  *
35  * Rewrote canonical mode and added more termios flags.
36  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
37  *
38  * Reorganized FASYNC support so mouse code can share it.
39  *	-- ctm@ardi.com, 9Sep95
40  *
41  * New TIOCLINUX variants added.
42  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
43  *
44  * Restrict vt switching via ioctl()
45  *      -- grif@cs.ucr.edu, 5-Dec-95
46  *
47  * Move console and virtual terminal code to more appropriate files,
48  * implement CONFIG_VT and generalize console device interface.
49  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
50  *
51  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
52  *	-- Bill Hawes <whawes@star.net>, June 97
53  *
54  * Added devfs support.
55  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
56  *
57  * Added support for a Unix98-style ptmx device.
58  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
59  *
60  * Reduced memory usage for older ARM systems
61  *      -- Russell King <rmk@arm.linux.org.uk>
62  *
63  * Move do_SAK() into process context.  Less stack use in devfs functions.
64  * alloc_tty_struct() always uses kmalloc()
65  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
66  */
67 
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched/signal.h>
74 #include <linux/sched/task.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/device.h>
94 #include <linux/wait.h>
95 #include <linux/bitops.h>
96 #include <linux/delay.h>
97 #include <linux/seq_file.h>
98 #include <linux/serial.h>
99 #include <linux/ratelimit.h>
100 
101 #include <linux/uaccess.h>
102 
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
106 
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
109 
110 #undef TTY_DEBUG_HANGUP
111 #ifdef TTY_DEBUG_HANGUP
112 # define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
113 #else
114 # define tty_debug_hangup(tty, f, args...)	do { } while (0)
115 #endif
116 
117 #define TTY_PARANOIA_CHECK 1
118 #define CHECK_TTY_COUNT 1
119 
120 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
121 	.c_iflag = ICRNL | IXON,
122 	.c_oflag = OPOST | ONLCR,
123 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
124 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
125 		   ECHOCTL | ECHOKE | IEXTEN,
126 	.c_cc = INIT_C_CC,
127 	.c_ispeed = 38400,
128 	.c_ospeed = 38400,
129 	/* .c_line = N_TTY, */
130 };
131 
132 EXPORT_SYMBOL(tty_std_termios);
133 
134 /* This list gets poked at by procfs and various bits of boot up code. This
135    could do with some rationalisation such as pulling the tty proc function
136    into this file */
137 
138 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
139 
140 /* Mutex to protect creating and releasing a tty */
141 DEFINE_MUTEX(tty_mutex);
142 
143 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
144 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
145 ssize_t redirected_tty_write(struct file *, const char __user *,
146 							size_t, loff_t *);
147 static __poll_t tty_poll(struct file *, poll_table *);
148 static int tty_open(struct inode *, struct file *);
149 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
150 #ifdef CONFIG_COMPAT
151 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
152 				unsigned long arg);
153 #else
154 #define tty_compat_ioctl NULL
155 #endif
156 static int __tty_fasync(int fd, struct file *filp, int on);
157 static int tty_fasync(int fd, struct file *filp, int on);
158 static void release_tty(struct tty_struct *tty, int idx);
159 
160 /**
161  *	free_tty_struct		-	free a disused tty
162  *	@tty: tty struct to free
163  *
164  *	Free the write buffers, tty queue and tty memory itself.
165  *
166  *	Locking: none. Must be called after tty is definitely unused
167  */
168 
free_tty_struct(struct tty_struct * tty)169 static void free_tty_struct(struct tty_struct *tty)
170 {
171 	tty_ldisc_deinit(tty);
172 	put_device(tty->dev);
173 	kfree(tty->write_buf);
174 	tty->magic = 0xDEADDEAD;
175 	kfree(tty);
176 }
177 
file_tty(struct file * file)178 static inline struct tty_struct *file_tty(struct file *file)
179 {
180 	return ((struct tty_file_private *)file->private_data)->tty;
181 }
182 
tty_alloc_file(struct file * file)183 int tty_alloc_file(struct file *file)
184 {
185 	struct tty_file_private *priv;
186 
187 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
188 	if (!priv)
189 		return -ENOMEM;
190 
191 	file->private_data = priv;
192 
193 	return 0;
194 }
195 
196 /* Associate a new file with the tty structure */
tty_add_file(struct tty_struct * tty,struct file * file)197 void tty_add_file(struct tty_struct *tty, struct file *file)
198 {
199 	struct tty_file_private *priv = file->private_data;
200 
201 	priv->tty = tty;
202 	priv->file = file;
203 
204 	spin_lock(&tty->files_lock);
205 	list_add(&priv->list, &tty->tty_files);
206 	spin_unlock(&tty->files_lock);
207 }
208 
209 /**
210  * tty_free_file - free file->private_data
211  *
212  * This shall be used only for fail path handling when tty_add_file was not
213  * called yet.
214  */
tty_free_file(struct file * file)215 void tty_free_file(struct file *file)
216 {
217 	struct tty_file_private *priv = file->private_data;
218 
219 	file->private_data = NULL;
220 	kfree(priv);
221 }
222 
223 /* Delete file from its tty */
tty_del_file(struct file * file)224 static void tty_del_file(struct file *file)
225 {
226 	struct tty_file_private *priv = file->private_data;
227 	struct tty_struct *tty = priv->tty;
228 
229 	spin_lock(&tty->files_lock);
230 	list_del(&priv->list);
231 	spin_unlock(&tty->files_lock);
232 	tty_free_file(file);
233 }
234 
235 /**
236  *	tty_name	-	return tty naming
237  *	@tty: tty structure
238  *
239  *	Convert a tty structure into a name. The name reflects the kernel
240  *	naming policy and if udev is in use may not reflect user space
241  *
242  *	Locking: none
243  */
244 
tty_name(const struct tty_struct * tty)245 const char *tty_name(const struct tty_struct *tty)
246 {
247 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
248 		return "NULL tty";
249 	return tty->name;
250 }
251 
252 EXPORT_SYMBOL(tty_name);
253 
tty_driver_name(const struct tty_struct * tty)254 const char *tty_driver_name(const struct tty_struct *tty)
255 {
256 	if (!tty || !tty->driver)
257 		return "";
258 	return tty->driver->name;
259 }
260 
tty_paranoia_check(struct tty_struct * tty,struct inode * inode,const char * routine)261 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
262 			      const char *routine)
263 {
264 #ifdef TTY_PARANOIA_CHECK
265 	if (!tty) {
266 		pr_warn("(%d:%d): %s: NULL tty\n",
267 			imajor(inode), iminor(inode), routine);
268 		return 1;
269 	}
270 	if (tty->magic != TTY_MAGIC) {
271 		pr_warn("(%d:%d): %s: bad magic number\n",
272 			imajor(inode), iminor(inode), routine);
273 		return 1;
274 	}
275 #endif
276 	return 0;
277 }
278 
279 /* Caller must hold tty_lock */
check_tty_count(struct tty_struct * tty,const char * routine)280 static int check_tty_count(struct tty_struct *tty, const char *routine)
281 {
282 #ifdef CHECK_TTY_COUNT
283 	struct list_head *p;
284 	int count = 0, kopen_count = 0;
285 
286 	spin_lock(&tty->files_lock);
287 	list_for_each(p, &tty->tty_files) {
288 		count++;
289 	}
290 	spin_unlock(&tty->files_lock);
291 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
292 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
293 	    tty->link && tty->link->count)
294 		count++;
295 	if (tty_port_kopened(tty->port))
296 		kopen_count++;
297 	if (tty->count != (count + kopen_count)) {
298 		tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
299 			 routine, tty->count, count, kopen_count);
300 		return (count + kopen_count);
301 	}
302 #endif
303 	return 0;
304 }
305 
306 /**
307  *	get_tty_driver		-	find device of a tty
308  *	@dev_t: device identifier
309  *	@index: returns the index of the tty
310  *
311  *	This routine returns a tty driver structure, given a device number
312  *	and also passes back the index number.
313  *
314  *	Locking: caller must hold tty_mutex
315  */
316 
get_tty_driver(dev_t device,int * index)317 static struct tty_driver *get_tty_driver(dev_t device, int *index)
318 {
319 	struct tty_driver *p;
320 
321 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
322 		dev_t base = MKDEV(p->major, p->minor_start);
323 		if (device < base || device >= base + p->num)
324 			continue;
325 		*index = device - base;
326 		return tty_driver_kref_get(p);
327 	}
328 	return NULL;
329 }
330 
331 /**
332  *	tty_dev_name_to_number	-	return dev_t for device name
333  *	@name: user space name of device under /dev
334  *	@number: pointer to dev_t that this function will populate
335  *
336  *	This function converts device names like ttyS0 or ttyUSB1 into dev_t
337  *	like (4, 64) or (188, 1). If no corresponding driver is registered then
338  *	the function returns -ENODEV.
339  *
340  *	Locking: this acquires tty_mutex to protect the tty_drivers list from
341  *		being modified while we are traversing it, and makes sure to
342  *		release it before exiting.
343  */
tty_dev_name_to_number(const char * name,dev_t * number)344 int tty_dev_name_to_number(const char *name, dev_t *number)
345 {
346 	struct tty_driver *p;
347 	int ret;
348 	int index, prefix_length = 0;
349 	const char *str;
350 
351 	for (str = name; *str && !isdigit(*str); str++)
352 		;
353 
354 	if (!*str)
355 		return -EINVAL;
356 
357 	ret = kstrtoint(str, 10, &index);
358 	if (ret)
359 		return ret;
360 
361 	prefix_length = str - name;
362 	mutex_lock(&tty_mutex);
363 
364 	list_for_each_entry(p, &tty_drivers, tty_drivers)
365 		if (prefix_length == strlen(p->name) && strncmp(name,
366 					p->name, prefix_length) == 0) {
367 			if (index < p->num) {
368 				*number = MKDEV(p->major, p->minor_start + index);
369 				goto out;
370 			}
371 		}
372 
373 	/* if here then driver wasn't found */
374 	ret = -ENODEV;
375 out:
376 	mutex_unlock(&tty_mutex);
377 	return ret;
378 }
379 EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
380 
381 #ifdef CONFIG_CONSOLE_POLL
382 
383 /**
384  *	tty_find_polling_driver	-	find device of a polled tty
385  *	@name: name string to match
386  *	@line: pointer to resulting tty line nr
387  *
388  *	This routine returns a tty driver structure, given a name
389  *	and the condition that the tty driver is capable of polled
390  *	operation.
391  */
tty_find_polling_driver(char * name,int * line)392 struct tty_driver *tty_find_polling_driver(char *name, int *line)
393 {
394 	struct tty_driver *p, *res = NULL;
395 	int tty_line = 0;
396 	int len;
397 	char *str, *stp;
398 
399 	for (str = name; *str; str++)
400 		if ((*str >= '0' && *str <= '9') || *str == ',')
401 			break;
402 	if (!*str)
403 		return NULL;
404 
405 	len = str - name;
406 	tty_line = simple_strtoul(str, &str, 10);
407 
408 	mutex_lock(&tty_mutex);
409 	/* Search through the tty devices to look for a match */
410 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
411 		if (strncmp(name, p->name, len) != 0)
412 			continue;
413 		stp = str;
414 		if (*stp == ',')
415 			stp++;
416 		if (*stp == '\0')
417 			stp = NULL;
418 
419 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
420 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
421 			res = tty_driver_kref_get(p);
422 			*line = tty_line;
423 			break;
424 		}
425 	}
426 	mutex_unlock(&tty_mutex);
427 
428 	return res;
429 }
430 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
431 #endif
432 
hung_up_tty_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)433 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
434 				size_t count, loff_t *ppos)
435 {
436 	return 0;
437 }
438 
hung_up_tty_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)439 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
440 				 size_t count, loff_t *ppos)
441 {
442 	return -EIO;
443 }
444 
445 /* No kernel lock held - none needed ;) */
hung_up_tty_poll(struct file * filp,poll_table * wait)446 static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
447 {
448 	return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
449 }
450 
hung_up_tty_ioctl(struct file * file,unsigned int cmd,unsigned long arg)451 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
452 		unsigned long arg)
453 {
454 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
455 }
456 
hung_up_tty_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)457 static long hung_up_tty_compat_ioctl(struct file *file,
458 				     unsigned int cmd, unsigned long arg)
459 {
460 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
461 }
462 
hung_up_tty_fasync(int fd,struct file * file,int on)463 static int hung_up_tty_fasync(int fd, struct file *file, int on)
464 {
465 	return -ENOTTY;
466 }
467 
tty_show_fdinfo(struct seq_file * m,struct file * file)468 static void tty_show_fdinfo(struct seq_file *m, struct file *file)
469 {
470 	struct tty_struct *tty = file_tty(file);
471 
472 	if (tty && tty->ops && tty->ops->show_fdinfo)
473 		tty->ops->show_fdinfo(tty, m);
474 }
475 
476 static const struct file_operations tty_fops = {
477 	.llseek		= no_llseek,
478 	.read		= tty_read,
479 	.write		= tty_write,
480 	.poll		= tty_poll,
481 	.unlocked_ioctl	= tty_ioctl,
482 	.compat_ioctl	= tty_compat_ioctl,
483 	.open		= tty_open,
484 	.release	= tty_release,
485 	.fasync		= tty_fasync,
486 	.show_fdinfo	= tty_show_fdinfo,
487 };
488 
489 static const struct file_operations console_fops = {
490 	.llseek		= no_llseek,
491 	.read		= tty_read,
492 	.write		= redirected_tty_write,
493 	.poll		= tty_poll,
494 	.unlocked_ioctl	= tty_ioctl,
495 	.compat_ioctl	= tty_compat_ioctl,
496 	.open		= tty_open,
497 	.release	= tty_release,
498 	.fasync		= tty_fasync,
499 };
500 
501 static const struct file_operations hung_up_tty_fops = {
502 	.llseek		= no_llseek,
503 	.read		= hung_up_tty_read,
504 	.write		= hung_up_tty_write,
505 	.poll		= hung_up_tty_poll,
506 	.unlocked_ioctl	= hung_up_tty_ioctl,
507 	.compat_ioctl	= hung_up_tty_compat_ioctl,
508 	.release	= tty_release,
509 	.fasync		= hung_up_tty_fasync,
510 };
511 
512 static DEFINE_SPINLOCK(redirect_lock);
513 static struct file *redirect;
514 
515 /**
516  *	tty_wakeup	-	request more data
517  *	@tty: terminal
518  *
519  *	Internal and external helper for wakeups of tty. This function
520  *	informs the line discipline if present that the driver is ready
521  *	to receive more output data.
522  */
523 
tty_wakeup(struct tty_struct * tty)524 void tty_wakeup(struct tty_struct *tty)
525 {
526 	struct tty_ldisc *ld;
527 
528 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
529 		ld = tty_ldisc_ref(tty);
530 		if (ld) {
531 			if (ld->ops->write_wakeup)
532 				ld->ops->write_wakeup(tty);
533 			tty_ldisc_deref(ld);
534 		}
535 	}
536 	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
537 }
538 
539 EXPORT_SYMBOL_GPL(tty_wakeup);
540 
541 /**
542  *	__tty_hangup		-	actual handler for hangup events
543  *	@work: tty device
544  *
545  *	This can be called by a "kworker" kernel thread.  That is process
546  *	synchronous but doesn't hold any locks, so we need to make sure we
547  *	have the appropriate locks for what we're doing.
548  *
549  *	The hangup event clears any pending redirections onto the hung up
550  *	device. It ensures future writes will error and it does the needed
551  *	line discipline hangup and signal delivery. The tty object itself
552  *	remains intact.
553  *
554  *	Locking:
555  *		BTM
556  *		  redirect lock for undoing redirection
557  *		  file list lock for manipulating list of ttys
558  *		  tty_ldiscs_lock from called functions
559  *		  termios_rwsem resetting termios data
560  *		  tasklist_lock to walk task list for hangup event
561  *		    ->siglock to protect ->signal/->sighand
562  */
__tty_hangup(struct tty_struct * tty,int exit_session)563 static void __tty_hangup(struct tty_struct *tty, int exit_session)
564 {
565 	struct file *cons_filp = NULL;
566 	struct file *filp, *f = NULL;
567 	struct tty_file_private *priv;
568 	int    closecount = 0, n;
569 	int refs;
570 
571 	if (!tty)
572 		return;
573 
574 
575 	spin_lock(&redirect_lock);
576 	if (redirect && file_tty(redirect) == tty) {
577 		f = redirect;
578 		redirect = NULL;
579 	}
580 	spin_unlock(&redirect_lock);
581 
582 	tty_lock(tty);
583 
584 	if (test_bit(TTY_HUPPED, &tty->flags)) {
585 		tty_unlock(tty);
586 		return;
587 	}
588 
589 	/*
590 	 * Some console devices aren't actually hung up for technical and
591 	 * historical reasons, which can lead to indefinite interruptible
592 	 * sleep in n_tty_read().  The following explicitly tells
593 	 * n_tty_read() to abort readers.
594 	 */
595 	set_bit(TTY_HUPPING, &tty->flags);
596 
597 	/* inuse_filps is protected by the single tty lock,
598 	   this really needs to change if we want to flush the
599 	   workqueue with the lock held */
600 	check_tty_count(tty, "tty_hangup");
601 
602 	spin_lock(&tty->files_lock);
603 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
604 	list_for_each_entry(priv, &tty->tty_files, list) {
605 		filp = priv->file;
606 		if (filp->f_op->write == redirected_tty_write)
607 			cons_filp = filp;
608 		if (filp->f_op->write != tty_write)
609 			continue;
610 		closecount++;
611 		__tty_fasync(-1, filp, 0);	/* can't block */
612 		filp->f_op = &hung_up_tty_fops;
613 	}
614 	spin_unlock(&tty->files_lock);
615 
616 	refs = tty_signal_session_leader(tty, exit_session);
617 	/* Account for the p->signal references we killed */
618 	while (refs--)
619 		tty_kref_put(tty);
620 
621 	tty_ldisc_hangup(tty, cons_filp != NULL);
622 
623 	spin_lock_irq(&tty->ctrl_lock);
624 	clear_bit(TTY_THROTTLED, &tty->flags);
625 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
626 	put_pid(tty->session);
627 	put_pid(tty->pgrp);
628 	tty->session = NULL;
629 	tty->pgrp = NULL;
630 	tty->ctrl_status = 0;
631 	spin_unlock_irq(&tty->ctrl_lock);
632 
633 	/*
634 	 * If one of the devices matches a console pointer, we
635 	 * cannot just call hangup() because that will cause
636 	 * tty->count and state->count to go out of sync.
637 	 * So we just call close() the right number of times.
638 	 */
639 	if (cons_filp) {
640 		if (tty->ops->close)
641 			for (n = 0; n < closecount; n++)
642 				tty->ops->close(tty, cons_filp);
643 	} else if (tty->ops->hangup)
644 		tty->ops->hangup(tty);
645 	/*
646 	 * We don't want to have driver/ldisc interactions beyond the ones
647 	 * we did here. The driver layer expects no calls after ->hangup()
648 	 * from the ldisc side, which is now guaranteed.
649 	 */
650 	set_bit(TTY_HUPPED, &tty->flags);
651 	clear_bit(TTY_HUPPING, &tty->flags);
652 	tty_unlock(tty);
653 
654 	if (f)
655 		fput(f);
656 }
657 
do_tty_hangup(struct work_struct * work)658 static void do_tty_hangup(struct work_struct *work)
659 {
660 	struct tty_struct *tty =
661 		container_of(work, struct tty_struct, hangup_work);
662 
663 	__tty_hangup(tty, 0);
664 }
665 
666 /**
667  *	tty_hangup		-	trigger a hangup event
668  *	@tty: tty to hangup
669  *
670  *	A carrier loss (virtual or otherwise) has occurred on this like
671  *	schedule a hangup sequence to run after this event.
672  */
673 
tty_hangup(struct tty_struct * tty)674 void tty_hangup(struct tty_struct *tty)
675 {
676 	tty_debug_hangup(tty, "hangup\n");
677 	schedule_work(&tty->hangup_work);
678 }
679 
680 EXPORT_SYMBOL(tty_hangup);
681 
682 /**
683  *	tty_vhangup		-	process vhangup
684  *	@tty: tty to hangup
685  *
686  *	The user has asked via system call for the terminal to be hung up.
687  *	We do this synchronously so that when the syscall returns the process
688  *	is complete. That guarantee is necessary for security reasons.
689  */
690 
tty_vhangup(struct tty_struct * tty)691 void tty_vhangup(struct tty_struct *tty)
692 {
693 	tty_debug_hangup(tty, "vhangup\n");
694 	__tty_hangup(tty, 0);
695 }
696 
697 EXPORT_SYMBOL(tty_vhangup);
698 
699 
700 /**
701  *	tty_vhangup_self	-	process vhangup for own ctty
702  *
703  *	Perform a vhangup on the current controlling tty
704  */
705 
tty_vhangup_self(void)706 void tty_vhangup_self(void)
707 {
708 	struct tty_struct *tty;
709 
710 	tty = get_current_tty();
711 	if (tty) {
712 		tty_vhangup(tty);
713 		tty_kref_put(tty);
714 	}
715 }
716 
717 /**
718  *	tty_vhangup_session		-	hangup session leader exit
719  *	@tty: tty to hangup
720  *
721  *	The session leader is exiting and hanging up its controlling terminal.
722  *	Every process in the foreground process group is signalled SIGHUP.
723  *
724  *	We do this synchronously so that when the syscall returns the process
725  *	is complete. That guarantee is necessary for security reasons.
726  */
727 
tty_vhangup_session(struct tty_struct * tty)728 void tty_vhangup_session(struct tty_struct *tty)
729 {
730 	tty_debug_hangup(tty, "session hangup\n");
731 	__tty_hangup(tty, 1);
732 }
733 
734 /**
735  *	tty_hung_up_p		-	was tty hung up
736  *	@filp: file pointer of tty
737  *
738  *	Return true if the tty has been subject to a vhangup or a carrier
739  *	loss
740  */
741 
tty_hung_up_p(struct file * filp)742 int tty_hung_up_p(struct file *filp)
743 {
744 	return (filp && filp->f_op == &hung_up_tty_fops);
745 }
746 
747 EXPORT_SYMBOL(tty_hung_up_p);
748 
749 /**
750  *	stop_tty	-	propagate flow control
751  *	@tty: tty to stop
752  *
753  *	Perform flow control to the driver. May be called
754  *	on an already stopped device and will not re-call the driver
755  *	method.
756  *
757  *	This functionality is used by both the line disciplines for
758  *	halting incoming flow and by the driver. It may therefore be
759  *	called from any context, may be under the tty atomic_write_lock
760  *	but not always.
761  *
762  *	Locking:
763  *		flow_lock
764  */
765 
__stop_tty(struct tty_struct * tty)766 void __stop_tty(struct tty_struct *tty)
767 {
768 	if (tty->stopped)
769 		return;
770 	tty->stopped = 1;
771 	if (tty->ops->stop)
772 		tty->ops->stop(tty);
773 }
774 
stop_tty(struct tty_struct * tty)775 void stop_tty(struct tty_struct *tty)
776 {
777 	unsigned long flags;
778 
779 	spin_lock_irqsave(&tty->flow_lock, flags);
780 	__stop_tty(tty);
781 	spin_unlock_irqrestore(&tty->flow_lock, flags);
782 }
783 EXPORT_SYMBOL(stop_tty);
784 
785 /**
786  *	start_tty	-	propagate flow control
787  *	@tty: tty to start
788  *
789  *	Start a tty that has been stopped if at all possible. If this
790  *	tty was previous stopped and is now being started, the driver
791  *	start method is invoked and the line discipline woken.
792  *
793  *	Locking:
794  *		flow_lock
795  */
796 
__start_tty(struct tty_struct * tty)797 void __start_tty(struct tty_struct *tty)
798 {
799 	if (!tty->stopped || tty->flow_stopped)
800 		return;
801 	tty->stopped = 0;
802 	if (tty->ops->start)
803 		tty->ops->start(tty);
804 	tty_wakeup(tty);
805 }
806 
start_tty(struct tty_struct * tty)807 void start_tty(struct tty_struct *tty)
808 {
809 	unsigned long flags;
810 
811 	spin_lock_irqsave(&tty->flow_lock, flags);
812 	__start_tty(tty);
813 	spin_unlock_irqrestore(&tty->flow_lock, flags);
814 }
815 EXPORT_SYMBOL(start_tty);
816 
tty_update_time(struct timespec64 * time)817 static void tty_update_time(struct timespec64 *time)
818 {
819 	time64_t sec = ktime_get_real_seconds();
820 
821 	/*
822 	 * We only care if the two values differ in anything other than the
823 	 * lower three bits (i.e every 8 seconds).  If so, then we can update
824 	 * the time of the tty device, otherwise it could be construded as a
825 	 * security leak to let userspace know the exact timing of the tty.
826 	 */
827 	if ((sec ^ time->tv_sec) & ~7)
828 		time->tv_sec = sec;
829 }
830 
831 /**
832  *	tty_read	-	read method for tty device files
833  *	@file: pointer to tty file
834  *	@buf: user buffer
835  *	@count: size of user buffer
836  *	@ppos: unused
837  *
838  *	Perform the read system call function on this terminal device. Checks
839  *	for hung up devices before calling the line discipline method.
840  *
841  *	Locking:
842  *		Locks the line discipline internally while needed. Multiple
843  *	read calls may be outstanding in parallel.
844  */
845 
tty_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)846 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
847 			loff_t *ppos)
848 {
849 	int i;
850 	struct inode *inode = file_inode(file);
851 	struct tty_struct *tty = file_tty(file);
852 	struct tty_ldisc *ld;
853 
854 	if (tty_paranoia_check(tty, inode, "tty_read"))
855 		return -EIO;
856 	if (!tty || tty_io_error(tty))
857 		return -EIO;
858 
859 	/* We want to wait for the line discipline to sort out in this
860 	   situation */
861 	ld = tty_ldisc_ref_wait(tty);
862 	if (!ld)
863 		return hung_up_tty_read(file, buf, count, ppos);
864 	if (ld->ops->read)
865 		i = ld->ops->read(tty, file, buf, count);
866 	else
867 		i = -EIO;
868 	tty_ldisc_deref(ld);
869 
870 	if (i > 0)
871 		tty_update_time(&inode->i_atime);
872 
873 	return i;
874 }
875 
tty_write_unlock(struct tty_struct * tty)876 static void tty_write_unlock(struct tty_struct *tty)
877 {
878 	mutex_unlock(&tty->atomic_write_lock);
879 	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
880 }
881 
tty_write_lock(struct tty_struct * tty,int ndelay)882 static int tty_write_lock(struct tty_struct *tty, int ndelay)
883 {
884 	if (!mutex_trylock(&tty->atomic_write_lock)) {
885 		if (ndelay)
886 			return -EAGAIN;
887 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
888 			return -ERESTARTSYS;
889 	}
890 	return 0;
891 }
892 
893 /*
894  * Split writes up in sane blocksizes to avoid
895  * denial-of-service type attacks
896  */
do_tty_write(ssize_t (* write)(struct tty_struct *,struct file *,const unsigned char *,size_t),struct tty_struct * tty,struct file * file,const char __user * buf,size_t count)897 static inline ssize_t do_tty_write(
898 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
899 	struct tty_struct *tty,
900 	struct file *file,
901 	const char __user *buf,
902 	size_t count)
903 {
904 	ssize_t ret, written = 0;
905 	unsigned int chunk;
906 
907 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
908 	if (ret < 0)
909 		return ret;
910 
911 	/*
912 	 * We chunk up writes into a temporary buffer. This
913 	 * simplifies low-level drivers immensely, since they
914 	 * don't have locking issues and user mode accesses.
915 	 *
916 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
917 	 * big chunk-size..
918 	 *
919 	 * The default chunk-size is 2kB, because the NTTY
920 	 * layer has problems with bigger chunks. It will
921 	 * claim to be able to handle more characters than
922 	 * it actually does.
923 	 *
924 	 * FIXME: This can probably go away now except that 64K chunks
925 	 * are too likely to fail unless switched to vmalloc...
926 	 */
927 	chunk = 2048;
928 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
929 		chunk = 65536;
930 	if (count < chunk)
931 		chunk = count;
932 
933 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
934 	if (tty->write_cnt < chunk) {
935 		unsigned char *buf_chunk;
936 
937 		if (chunk < 1024)
938 			chunk = 1024;
939 
940 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
941 		if (!buf_chunk) {
942 			ret = -ENOMEM;
943 			goto out;
944 		}
945 		kfree(tty->write_buf);
946 		tty->write_cnt = chunk;
947 		tty->write_buf = buf_chunk;
948 	}
949 
950 	/* Do the write .. */
951 	for (;;) {
952 		size_t size = count;
953 		if (size > chunk)
954 			size = chunk;
955 		ret = -EFAULT;
956 		if (copy_from_user(tty->write_buf, buf, size))
957 			break;
958 		ret = write(tty, file, tty->write_buf, size);
959 		if (ret <= 0)
960 			break;
961 		written += ret;
962 		buf += ret;
963 		count -= ret;
964 		if (!count)
965 			break;
966 		ret = -ERESTARTSYS;
967 		if (signal_pending(current))
968 			break;
969 		cond_resched();
970 	}
971 	if (written) {
972 		tty_update_time(&file_inode(file)->i_mtime);
973 		ret = written;
974 	}
975 out:
976 	tty_write_unlock(tty);
977 	return ret;
978 }
979 
980 /**
981  * tty_write_message - write a message to a certain tty, not just the console.
982  * @tty: the destination tty_struct
983  * @msg: the message to write
984  *
985  * This is used for messages that need to be redirected to a specific tty.
986  * We don't put it into the syslog queue right now maybe in the future if
987  * really needed.
988  *
989  * We must still hold the BTM and test the CLOSING flag for the moment.
990  */
991 
tty_write_message(struct tty_struct * tty,char * msg)992 void tty_write_message(struct tty_struct *tty, char *msg)
993 {
994 	if (tty) {
995 		mutex_lock(&tty->atomic_write_lock);
996 		tty_lock(tty);
997 		if (tty->ops->write && tty->count > 0)
998 			tty->ops->write(tty, msg, strlen(msg));
999 		tty_unlock(tty);
1000 		tty_write_unlock(tty);
1001 	}
1002 	return;
1003 }
1004 
1005 
1006 /**
1007  *	tty_write		-	write method for tty device file
1008  *	@file: tty file pointer
1009  *	@buf: user data to write
1010  *	@count: bytes to write
1011  *	@ppos: unused
1012  *
1013  *	Write data to a tty device via the line discipline.
1014  *
1015  *	Locking:
1016  *		Locks the line discipline as required
1017  *		Writes to the tty driver are serialized by the atomic_write_lock
1018  *	and are then processed in chunks to the device. The line discipline
1019  *	write method will not be invoked in parallel for each device.
1020  */
1021 
tty_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1022 static ssize_t tty_write(struct file *file, const char __user *buf,
1023 						size_t count, loff_t *ppos)
1024 {
1025 	struct tty_struct *tty = file_tty(file);
1026  	struct tty_ldisc *ld;
1027 	ssize_t ret;
1028 
1029 	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1030 		return -EIO;
1031 	if (!tty || !tty->ops->write ||	tty_io_error(tty))
1032 			return -EIO;
1033 	/* Short term debug to catch buggy drivers */
1034 	if (tty->ops->write_room == NULL)
1035 		tty_err(tty, "missing write_room method\n");
1036 	ld = tty_ldisc_ref_wait(tty);
1037 	if (!ld)
1038 		return hung_up_tty_write(file, buf, count, ppos);
1039 	if (!ld->ops->write)
1040 		ret = -EIO;
1041 	else
1042 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1043 	tty_ldisc_deref(ld);
1044 	return ret;
1045 }
1046 
redirected_tty_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1047 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1048 						size_t count, loff_t *ppos)
1049 {
1050 	struct file *p = NULL;
1051 
1052 	spin_lock(&redirect_lock);
1053 	if (redirect)
1054 		p = get_file(redirect);
1055 	spin_unlock(&redirect_lock);
1056 
1057 	if (p) {
1058 		ssize_t res;
1059 		res = vfs_write(p, buf, count, &p->f_pos);
1060 		fput(p);
1061 		return res;
1062 	}
1063 	return tty_write(file, buf, count, ppos);
1064 }
1065 
1066 /**
1067  *	tty_send_xchar	-	send priority character
1068  *
1069  *	Send a high priority character to the tty even if stopped
1070  *
1071  *	Locking: none for xchar method, write ordering for write method.
1072  */
1073 
tty_send_xchar(struct tty_struct * tty,char ch)1074 int tty_send_xchar(struct tty_struct *tty, char ch)
1075 {
1076 	int	was_stopped = tty->stopped;
1077 
1078 	if (tty->ops->send_xchar) {
1079 		down_read(&tty->termios_rwsem);
1080 		tty->ops->send_xchar(tty, ch);
1081 		up_read(&tty->termios_rwsem);
1082 		return 0;
1083 	}
1084 
1085 	if (tty_write_lock(tty, 0) < 0)
1086 		return -ERESTARTSYS;
1087 
1088 	down_read(&tty->termios_rwsem);
1089 	if (was_stopped)
1090 		start_tty(tty);
1091 	tty->ops->write(tty, &ch, 1);
1092 	if (was_stopped)
1093 		stop_tty(tty);
1094 	up_read(&tty->termios_rwsem);
1095 	tty_write_unlock(tty);
1096 	return 0;
1097 }
1098 
1099 static char ptychar[] = "pqrstuvwxyzabcde";
1100 
1101 /**
1102  *	pty_line_name	-	generate name for a pty
1103  *	@driver: the tty driver in use
1104  *	@index: the minor number
1105  *	@p: output buffer of at least 6 bytes
1106  *
1107  *	Generate a name from a driver reference and write it to the output
1108  *	buffer.
1109  *
1110  *	Locking: None
1111  */
pty_line_name(struct tty_driver * driver,int index,char * p)1112 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1113 {
1114 	int i = index + driver->name_base;
1115 	/* ->name is initialized to "ttyp", but "tty" is expected */
1116 	sprintf(p, "%s%c%x",
1117 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1118 		ptychar[i >> 4 & 0xf], i & 0xf);
1119 }
1120 
1121 /**
1122  *	tty_line_name	-	generate name for a tty
1123  *	@driver: the tty driver in use
1124  *	@index: the minor number
1125  *	@p: output buffer of at least 7 bytes
1126  *
1127  *	Generate a name from a driver reference and write it to the output
1128  *	buffer.
1129  *
1130  *	Locking: None
1131  */
tty_line_name(struct tty_driver * driver,int index,char * p)1132 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1133 {
1134 	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1135 		return sprintf(p, "%s", driver->name);
1136 	else
1137 		return sprintf(p, "%s%d", driver->name,
1138 			       index + driver->name_base);
1139 }
1140 
1141 /**
1142  *	tty_driver_lookup_tty() - find an existing tty, if any
1143  *	@driver: the driver for the tty
1144  *	@idx:	 the minor number
1145  *
1146  *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1147  *	driver lookup() method returns an error.
1148  *
1149  *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1150  */
tty_driver_lookup_tty(struct tty_driver * driver,struct file * file,int idx)1151 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1152 		struct file *file, int idx)
1153 {
1154 	struct tty_struct *tty;
1155 
1156 	if (driver->ops->lookup)
1157 		if (!file)
1158 			tty = ERR_PTR(-EIO);
1159 		else
1160 			tty = driver->ops->lookup(driver, file, idx);
1161 	else
1162 		tty = driver->ttys[idx];
1163 
1164 	if (!IS_ERR(tty))
1165 		tty_kref_get(tty);
1166 	return tty;
1167 }
1168 
1169 /**
1170  *	tty_init_termios	-  helper for termios setup
1171  *	@tty: the tty to set up
1172  *
1173  *	Initialise the termios structures for this tty. Thus runs under
1174  *	the tty_mutex currently so we can be relaxed about ordering.
1175  */
1176 
tty_init_termios(struct tty_struct * tty)1177 void tty_init_termios(struct tty_struct *tty)
1178 {
1179 	struct ktermios *tp;
1180 	int idx = tty->index;
1181 
1182 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1183 		tty->termios = tty->driver->init_termios;
1184 	else {
1185 		/* Check for lazy saved data */
1186 		tp = tty->driver->termios[idx];
1187 		if (tp != NULL) {
1188 			tty->termios = *tp;
1189 			tty->termios.c_line  = tty->driver->init_termios.c_line;
1190 		} else
1191 			tty->termios = tty->driver->init_termios;
1192 	}
1193 	/* Compatibility until drivers always set this */
1194 	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1195 	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1196 }
1197 EXPORT_SYMBOL_GPL(tty_init_termios);
1198 
tty_standard_install(struct tty_driver * driver,struct tty_struct * tty)1199 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1200 {
1201 	tty_init_termios(tty);
1202 	tty_driver_kref_get(driver);
1203 	tty->count++;
1204 	driver->ttys[tty->index] = tty;
1205 	return 0;
1206 }
1207 EXPORT_SYMBOL_GPL(tty_standard_install);
1208 
1209 /**
1210  *	tty_driver_install_tty() - install a tty entry in the driver
1211  *	@driver: the driver for the tty
1212  *	@tty: the tty
1213  *
1214  *	Install a tty object into the driver tables. The tty->index field
1215  *	will be set by the time this is called. This method is responsible
1216  *	for ensuring any need additional structures are allocated and
1217  *	configured.
1218  *
1219  *	Locking: tty_mutex for now
1220  */
tty_driver_install_tty(struct tty_driver * driver,struct tty_struct * tty)1221 static int tty_driver_install_tty(struct tty_driver *driver,
1222 						struct tty_struct *tty)
1223 {
1224 	return driver->ops->install ? driver->ops->install(driver, tty) :
1225 		tty_standard_install(driver, tty);
1226 }
1227 
1228 /**
1229  *	tty_driver_remove_tty() - remove a tty from the driver tables
1230  *	@driver: the driver for the tty
1231  *	@idx:	 the minor number
1232  *
1233  *	Remvoe a tty object from the driver tables. The tty->index field
1234  *	will be set by the time this is called.
1235  *
1236  *	Locking: tty_mutex for now
1237  */
tty_driver_remove_tty(struct tty_driver * driver,struct tty_struct * tty)1238 static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1239 {
1240 	if (driver->ops->remove)
1241 		driver->ops->remove(driver, tty);
1242 	else
1243 		driver->ttys[tty->index] = NULL;
1244 }
1245 
1246 /*
1247  * 	tty_reopen()	- fast re-open of an open tty
1248  * 	@tty	- the tty to open
1249  *
1250  *	Return 0 on success, -errno on error.
1251  *	Re-opens on master ptys are not allowed and return -EIO.
1252  *
1253  *	Locking: Caller must hold tty_lock
1254  */
tty_reopen(struct tty_struct * tty)1255 static int tty_reopen(struct tty_struct *tty)
1256 {
1257 	struct tty_driver *driver = tty->driver;
1258 	int retval;
1259 
1260 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1261 	    driver->subtype == PTY_TYPE_MASTER)
1262 		return -EIO;
1263 
1264 	if (!tty->count)
1265 		return -EAGAIN;
1266 
1267 	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1268 		return -EBUSY;
1269 
1270 	tty->count++;
1271 
1272 	if (tty->ldisc)
1273 		return 0;
1274 
1275 	retval = tty_ldisc_reinit(tty, tty->termios.c_line);
1276 	if (retval)
1277 		tty->count--;
1278 
1279 	return retval;
1280 }
1281 
1282 /**
1283  *	tty_init_dev		-	initialise a tty device
1284  *	@driver: tty driver we are opening a device on
1285  *	@idx: device index
1286  *	@ret_tty: returned tty structure
1287  *
1288  *	Prepare a tty device. This may not be a "new" clean device but
1289  *	could also be an active device. The pty drivers require special
1290  *	handling because of this.
1291  *
1292  *	Locking:
1293  *		The function is called under the tty_mutex, which
1294  *	protects us from the tty struct or driver itself going away.
1295  *
1296  *	On exit the tty device has the line discipline attached and
1297  *	a reference count of 1. If a pair was created for pty/tty use
1298  *	and the other was a pty master then it too has a reference count of 1.
1299  *
1300  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1301  * failed open.  The new code protects the open with a mutex, so it's
1302  * really quite straightforward.  The mutex locking can probably be
1303  * relaxed for the (most common) case of reopening a tty.
1304  */
1305 
tty_init_dev(struct tty_driver * driver,int idx)1306 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1307 {
1308 	struct tty_struct *tty;
1309 	int retval;
1310 
1311 	/*
1312 	 * First time open is complex, especially for PTY devices.
1313 	 * This code guarantees that either everything succeeds and the
1314 	 * TTY is ready for operation, or else the table slots are vacated
1315 	 * and the allocated memory released.  (Except that the termios
1316 	 * may be retained.)
1317 	 */
1318 
1319 	if (!try_module_get(driver->owner))
1320 		return ERR_PTR(-ENODEV);
1321 
1322 	tty = alloc_tty_struct(driver, idx);
1323 	if (!tty) {
1324 		retval = -ENOMEM;
1325 		goto err_module_put;
1326 	}
1327 
1328 	tty_lock(tty);
1329 	retval = tty_driver_install_tty(driver, tty);
1330 	if (retval < 0)
1331 		goto err_free_tty;
1332 
1333 	if (!tty->port)
1334 		tty->port = driver->ports[idx];
1335 
1336 	WARN_RATELIMIT(!tty->port,
1337 			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1338 			__func__, tty->driver->name);
1339 
1340 	retval = tty_ldisc_lock(tty, 5 * HZ);
1341 	if (retval)
1342 		goto err_release_lock;
1343 	tty->port->itty = tty;
1344 
1345 	/*
1346 	 * Structures all installed ... call the ldisc open routines.
1347 	 * If we fail here just call release_tty to clean up.  No need
1348 	 * to decrement the use counts, as release_tty doesn't care.
1349 	 */
1350 	retval = tty_ldisc_setup(tty, tty->link);
1351 	if (retval)
1352 		goto err_release_tty;
1353 	tty_ldisc_unlock(tty);
1354 	/* Return the tty locked so that it cannot vanish under the caller */
1355 	return tty;
1356 
1357 err_free_tty:
1358 	tty_unlock(tty);
1359 	free_tty_struct(tty);
1360 err_module_put:
1361 	module_put(driver->owner);
1362 	return ERR_PTR(retval);
1363 
1364 	/* call the tty release_tty routine to clean out this slot */
1365 err_release_tty:
1366 	tty_ldisc_unlock(tty);
1367 	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1368 			     retval, idx);
1369 err_release_lock:
1370 	tty_unlock(tty);
1371 	release_tty(tty, idx);
1372 	return ERR_PTR(retval);
1373 }
1374 
tty_free_termios(struct tty_struct * tty)1375 static void tty_free_termios(struct tty_struct *tty)
1376 {
1377 	struct ktermios *tp;
1378 	int idx = tty->index;
1379 
1380 	/* If the port is going to reset then it has no termios to save */
1381 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1382 		return;
1383 
1384 	/* Stash the termios data */
1385 	tp = tty->driver->termios[idx];
1386 	if (tp == NULL) {
1387 		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1388 		if (tp == NULL)
1389 			return;
1390 		tty->driver->termios[idx] = tp;
1391 	}
1392 	*tp = tty->termios;
1393 }
1394 
1395 /**
1396  *	tty_flush_works		-	flush all works of a tty/pty pair
1397  *	@tty: tty device to flush works for (or either end of a pty pair)
1398  *
1399  *	Sync flush all works belonging to @tty (and the 'other' tty).
1400  */
tty_flush_works(struct tty_struct * tty)1401 static void tty_flush_works(struct tty_struct *tty)
1402 {
1403 	flush_work(&tty->SAK_work);
1404 	flush_work(&tty->hangup_work);
1405 	if (tty->link) {
1406 		flush_work(&tty->link->SAK_work);
1407 		flush_work(&tty->link->hangup_work);
1408 	}
1409 }
1410 
1411 /**
1412  *	release_one_tty		-	release tty structure memory
1413  *	@kref: kref of tty we are obliterating
1414  *
1415  *	Releases memory associated with a tty structure, and clears out the
1416  *	driver table slots. This function is called when a device is no longer
1417  *	in use. It also gets called when setup of a device fails.
1418  *
1419  *	Locking:
1420  *		takes the file list lock internally when working on the list
1421  *	of ttys that the driver keeps.
1422  *
1423  *	This method gets called from a work queue so that the driver private
1424  *	cleanup ops can sleep (needed for USB at least)
1425  */
release_one_tty(struct work_struct * work)1426 static void release_one_tty(struct work_struct *work)
1427 {
1428 	struct tty_struct *tty =
1429 		container_of(work, struct tty_struct, hangup_work);
1430 	struct tty_driver *driver = tty->driver;
1431 	struct module *owner = driver->owner;
1432 
1433 	if (tty->ops->cleanup)
1434 		tty->ops->cleanup(tty);
1435 
1436 	tty->magic = 0;
1437 	tty_driver_kref_put(driver);
1438 	module_put(owner);
1439 
1440 	spin_lock(&tty->files_lock);
1441 	list_del_init(&tty->tty_files);
1442 	spin_unlock(&tty->files_lock);
1443 
1444 	put_pid(tty->pgrp);
1445 	put_pid(tty->session);
1446 	free_tty_struct(tty);
1447 }
1448 
queue_release_one_tty(struct kref * kref)1449 static void queue_release_one_tty(struct kref *kref)
1450 {
1451 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1452 
1453 	/* The hangup queue is now free so we can reuse it rather than
1454 	   waste a chunk of memory for each port */
1455 	INIT_WORK(&tty->hangup_work, release_one_tty);
1456 	schedule_work(&tty->hangup_work);
1457 }
1458 
1459 /**
1460  *	tty_kref_put		-	release a tty kref
1461  *	@tty: tty device
1462  *
1463  *	Release a reference to a tty device and if need be let the kref
1464  *	layer destruct the object for us
1465  */
1466 
tty_kref_put(struct tty_struct * tty)1467 void tty_kref_put(struct tty_struct *tty)
1468 {
1469 	if (tty)
1470 		kref_put(&tty->kref, queue_release_one_tty);
1471 }
1472 EXPORT_SYMBOL(tty_kref_put);
1473 
1474 /**
1475  *	release_tty		-	release tty structure memory
1476  *
1477  *	Release both @tty and a possible linked partner (think pty pair),
1478  *	and decrement the refcount of the backing module.
1479  *
1480  *	Locking:
1481  *		tty_mutex
1482  *		takes the file list lock internally when working on the list
1483  *	of ttys that the driver keeps.
1484  *
1485  */
release_tty(struct tty_struct * tty,int idx)1486 static void release_tty(struct tty_struct *tty, int idx)
1487 {
1488 	/* This should always be true but check for the moment */
1489 	WARN_ON(tty->index != idx);
1490 	WARN_ON(!mutex_is_locked(&tty_mutex));
1491 	if (tty->ops->shutdown)
1492 		tty->ops->shutdown(tty);
1493 	tty_free_termios(tty);
1494 	tty_driver_remove_tty(tty->driver, tty);
1495 	tty->port->itty = NULL;
1496 	if (tty->link)
1497 		tty->link->port->itty = NULL;
1498 	tty_buffer_cancel_work(tty->port);
1499 	if (tty->link)
1500 		tty_buffer_cancel_work(tty->link->port);
1501 
1502 	tty_kref_put(tty->link);
1503 	tty_kref_put(tty);
1504 }
1505 
1506 /**
1507  *	tty_release_checks - check a tty before real release
1508  *	@tty: tty to check
1509  *	@o_tty: link of @tty (if any)
1510  *	@idx: index of the tty
1511  *
1512  *	Performs some paranoid checking before true release of the @tty.
1513  *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1514  */
tty_release_checks(struct tty_struct * tty,int idx)1515 static int tty_release_checks(struct tty_struct *tty, int idx)
1516 {
1517 #ifdef TTY_PARANOIA_CHECK
1518 	if (idx < 0 || idx >= tty->driver->num) {
1519 		tty_debug(tty, "bad idx %d\n", idx);
1520 		return -1;
1521 	}
1522 
1523 	/* not much to check for devpts */
1524 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1525 		return 0;
1526 
1527 	if (tty != tty->driver->ttys[idx]) {
1528 		tty_debug(tty, "bad driver table[%d] = %p\n",
1529 			  idx, tty->driver->ttys[idx]);
1530 		return -1;
1531 	}
1532 	if (tty->driver->other) {
1533 		struct tty_struct *o_tty = tty->link;
1534 
1535 		if (o_tty != tty->driver->other->ttys[idx]) {
1536 			tty_debug(tty, "bad other table[%d] = %p\n",
1537 				  idx, tty->driver->other->ttys[idx]);
1538 			return -1;
1539 		}
1540 		if (o_tty->link != tty) {
1541 			tty_debug(tty, "bad link = %p\n", o_tty->link);
1542 			return -1;
1543 		}
1544 	}
1545 #endif
1546 	return 0;
1547 }
1548 
1549 /**
1550  *      tty_kclose      -       closes tty opened by tty_kopen
1551  *      @tty: tty device
1552  *
1553  *      Performs the final steps to release and free a tty device. It is the
1554  *      same as tty_release_struct except that it also resets TTY_PORT_KOPENED
1555  *      flag on tty->port.
1556  */
tty_kclose(struct tty_struct * tty)1557 void tty_kclose(struct tty_struct *tty)
1558 {
1559 	/*
1560 	 * Ask the line discipline code to release its structures
1561 	 */
1562 	tty_ldisc_release(tty);
1563 
1564 	/* Wait for pending work before tty destruction commmences */
1565 	tty_flush_works(tty);
1566 
1567 	tty_debug_hangup(tty, "freeing structure\n");
1568 	/*
1569 	 * The release_tty function takes care of the details of clearing
1570 	 * the slots and preserving the termios structure. The tty_unlock_pair
1571 	 * should be safe as we keep a kref while the tty is locked (so the
1572 	 * unlock never unlocks a freed tty).
1573 	 */
1574 	mutex_lock(&tty_mutex);
1575 	tty_port_set_kopened(tty->port, 0);
1576 	release_tty(tty, tty->index);
1577 	mutex_unlock(&tty_mutex);
1578 }
1579 EXPORT_SYMBOL_GPL(tty_kclose);
1580 
1581 /**
1582  *	tty_release_struct	-	release a tty struct
1583  *	@tty: tty device
1584  *	@idx: index of the tty
1585  *
1586  *	Performs the final steps to release and free a tty device. It is
1587  *	roughly the reverse of tty_init_dev.
1588  */
tty_release_struct(struct tty_struct * tty,int idx)1589 void tty_release_struct(struct tty_struct *tty, int idx)
1590 {
1591 	/*
1592 	 * Ask the line discipline code to release its structures
1593 	 */
1594 	tty_ldisc_release(tty);
1595 
1596 	/* Wait for pending work before tty destruction commmences */
1597 	tty_flush_works(tty);
1598 
1599 	tty_debug_hangup(tty, "freeing structure\n");
1600 	/*
1601 	 * The release_tty function takes care of the details of clearing
1602 	 * the slots and preserving the termios structure. The tty_unlock_pair
1603 	 * should be safe as we keep a kref while the tty is locked (so the
1604 	 * unlock never unlocks a freed tty).
1605 	 */
1606 	mutex_lock(&tty_mutex);
1607 	release_tty(tty, idx);
1608 	mutex_unlock(&tty_mutex);
1609 }
1610 EXPORT_SYMBOL_GPL(tty_release_struct);
1611 
1612 /**
1613  *	tty_release		-	vfs callback for close
1614  *	@inode: inode of tty
1615  *	@filp: file pointer for handle to tty
1616  *
1617  *	Called the last time each file handle is closed that references
1618  *	this tty. There may however be several such references.
1619  *
1620  *	Locking:
1621  *		Takes bkl. See tty_release_dev
1622  *
1623  * Even releasing the tty structures is a tricky business.. We have
1624  * to be very careful that the structures are all released at the
1625  * same time, as interrupts might otherwise get the wrong pointers.
1626  *
1627  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1628  * lead to double frees or releasing memory still in use.
1629  */
1630 
tty_release(struct inode * inode,struct file * filp)1631 int tty_release(struct inode *inode, struct file *filp)
1632 {
1633 	struct tty_struct *tty = file_tty(filp);
1634 	struct tty_struct *o_tty = NULL;
1635 	int	do_sleep, final;
1636 	int	idx;
1637 	long	timeout = 0;
1638 	int	once = 1;
1639 
1640 	if (tty_paranoia_check(tty, inode, __func__))
1641 		return 0;
1642 
1643 	tty_lock(tty);
1644 	check_tty_count(tty, __func__);
1645 
1646 	__tty_fasync(-1, filp, 0);
1647 
1648 	idx = tty->index;
1649 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1650 	    tty->driver->subtype == PTY_TYPE_MASTER)
1651 		o_tty = tty->link;
1652 
1653 	if (tty_release_checks(tty, idx)) {
1654 		tty_unlock(tty);
1655 		return 0;
1656 	}
1657 
1658 	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1659 
1660 	if (tty->ops->close)
1661 		tty->ops->close(tty, filp);
1662 
1663 	/* If tty is pty master, lock the slave pty (stable lock order) */
1664 	tty_lock_slave(o_tty);
1665 
1666 	/*
1667 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1668 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1669 	 * wait queues and kick everyone out _before_ actually starting to
1670 	 * close.  This ensures that we won't block while releasing the tty
1671 	 * structure.
1672 	 *
1673 	 * The test for the o_tty closing is necessary, since the master and
1674 	 * slave sides may close in any order.  If the slave side closes out
1675 	 * first, its count will be one, since the master side holds an open.
1676 	 * Thus this test wouldn't be triggered at the time the slave closed,
1677 	 * so we do it now.
1678 	 */
1679 	while (1) {
1680 		do_sleep = 0;
1681 
1682 		if (tty->count <= 1) {
1683 			if (waitqueue_active(&tty->read_wait)) {
1684 				wake_up_poll(&tty->read_wait, EPOLLIN);
1685 				do_sleep++;
1686 			}
1687 			if (waitqueue_active(&tty->write_wait)) {
1688 				wake_up_poll(&tty->write_wait, EPOLLOUT);
1689 				do_sleep++;
1690 			}
1691 		}
1692 		if (o_tty && o_tty->count <= 1) {
1693 			if (waitqueue_active(&o_tty->read_wait)) {
1694 				wake_up_poll(&o_tty->read_wait, EPOLLIN);
1695 				do_sleep++;
1696 			}
1697 			if (waitqueue_active(&o_tty->write_wait)) {
1698 				wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1699 				do_sleep++;
1700 			}
1701 		}
1702 		if (!do_sleep)
1703 			break;
1704 
1705 		if (once) {
1706 			once = 0;
1707 			tty_warn(tty, "read/write wait queue active!\n");
1708 		}
1709 		schedule_timeout_killable(timeout);
1710 		if (timeout < 120 * HZ)
1711 			timeout = 2 * timeout + 1;
1712 		else
1713 			timeout = MAX_SCHEDULE_TIMEOUT;
1714 	}
1715 
1716 	if (o_tty) {
1717 		if (--o_tty->count < 0) {
1718 			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1719 			o_tty->count = 0;
1720 		}
1721 	}
1722 	if (--tty->count < 0) {
1723 		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1724 		tty->count = 0;
1725 	}
1726 
1727 	/*
1728 	 * We've decremented tty->count, so we need to remove this file
1729 	 * descriptor off the tty->tty_files list; this serves two
1730 	 * purposes:
1731 	 *  - check_tty_count sees the correct number of file descriptors
1732 	 *    associated with this tty.
1733 	 *  - do_tty_hangup no longer sees this file descriptor as
1734 	 *    something that needs to be handled for hangups.
1735 	 */
1736 	tty_del_file(filp);
1737 
1738 	/*
1739 	 * Perform some housekeeping before deciding whether to return.
1740 	 *
1741 	 * If _either_ side is closing, make sure there aren't any
1742 	 * processes that still think tty or o_tty is their controlling
1743 	 * tty.
1744 	 */
1745 	if (!tty->count) {
1746 		read_lock(&tasklist_lock);
1747 		session_clear_tty(tty->session);
1748 		if (o_tty)
1749 			session_clear_tty(o_tty->session);
1750 		read_unlock(&tasklist_lock);
1751 	}
1752 
1753 	/* check whether both sides are closing ... */
1754 	final = !tty->count && !(o_tty && o_tty->count);
1755 
1756 	tty_unlock_slave(o_tty);
1757 	tty_unlock(tty);
1758 
1759 	/* At this point, the tty->count == 0 should ensure a dead tty
1760 	   cannot be re-opened by a racing opener */
1761 
1762 	if (!final)
1763 		return 0;
1764 
1765 	tty_debug_hangup(tty, "final close\n");
1766 
1767 	tty_release_struct(tty, idx);
1768 	return 0;
1769 }
1770 
1771 /**
1772  *	tty_open_current_tty - get locked tty of current task
1773  *	@device: device number
1774  *	@filp: file pointer to tty
1775  *	@return: locked tty of the current task iff @device is /dev/tty
1776  *
1777  *	Performs a re-open of the current task's controlling tty.
1778  *
1779  *	We cannot return driver and index like for the other nodes because
1780  *	devpts will not work then. It expects inodes to be from devpts FS.
1781  */
tty_open_current_tty(dev_t device,struct file * filp)1782 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1783 {
1784 	struct tty_struct *tty;
1785 	int retval;
1786 
1787 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1788 		return NULL;
1789 
1790 	tty = get_current_tty();
1791 	if (!tty)
1792 		return ERR_PTR(-ENXIO);
1793 
1794 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1795 	/* noctty = 1; */
1796 	tty_lock(tty);
1797 	tty_kref_put(tty);	/* safe to drop the kref now */
1798 
1799 	retval = tty_reopen(tty);
1800 	if (retval < 0) {
1801 		tty_unlock(tty);
1802 		tty = ERR_PTR(retval);
1803 	}
1804 	return tty;
1805 }
1806 
1807 /**
1808  *	tty_lookup_driver - lookup a tty driver for a given device file
1809  *	@device: device number
1810  *	@filp: file pointer to tty
1811  *	@index: index for the device in the @return driver
1812  *	@return: driver for this inode (with increased refcount)
1813  *
1814  * 	If @return is not erroneous, the caller is responsible to decrement the
1815  * 	refcount by tty_driver_kref_put.
1816  *
1817  *	Locking: tty_mutex protects get_tty_driver
1818  */
tty_lookup_driver(dev_t device,struct file * filp,int * index)1819 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1820 		int *index)
1821 {
1822 	struct tty_driver *driver;
1823 
1824 	switch (device) {
1825 #ifdef CONFIG_VT
1826 	case MKDEV(TTY_MAJOR, 0): {
1827 		extern struct tty_driver *console_driver;
1828 		driver = tty_driver_kref_get(console_driver);
1829 		*index = fg_console;
1830 		break;
1831 	}
1832 #endif
1833 	case MKDEV(TTYAUX_MAJOR, 1): {
1834 		struct tty_driver *console_driver = console_device(index);
1835 		if (console_driver) {
1836 			driver = tty_driver_kref_get(console_driver);
1837 			if (driver && filp) {
1838 				/* Don't let /dev/console block */
1839 				filp->f_flags |= O_NONBLOCK;
1840 				break;
1841 			}
1842 		}
1843 		return ERR_PTR(-ENODEV);
1844 	}
1845 	default:
1846 		driver = get_tty_driver(device, index);
1847 		if (!driver)
1848 			return ERR_PTR(-ENODEV);
1849 		break;
1850 	}
1851 	return driver;
1852 }
1853 
1854 /**
1855  *	tty_kopen	-	open a tty device for kernel
1856  *	@device: dev_t of device to open
1857  *
1858  *	Opens tty exclusively for kernel. Performs the driver lookup,
1859  *	makes sure it's not already opened and performs the first-time
1860  *	tty initialization.
1861  *
1862  *	Returns the locked initialized &tty_struct
1863  *
1864  *	Claims the global tty_mutex to serialize:
1865  *	  - concurrent first-time tty initialization
1866  *	  - concurrent tty driver removal w/ lookup
1867  *	  - concurrent tty removal from driver table
1868  */
tty_kopen(dev_t device)1869 struct tty_struct *tty_kopen(dev_t device)
1870 {
1871 	struct tty_struct *tty;
1872 	struct tty_driver *driver = NULL;
1873 	int index = -1;
1874 
1875 	mutex_lock(&tty_mutex);
1876 	driver = tty_lookup_driver(device, NULL, &index);
1877 	if (IS_ERR(driver)) {
1878 		mutex_unlock(&tty_mutex);
1879 		return ERR_CAST(driver);
1880 	}
1881 
1882 	/* check whether we're reopening an existing tty */
1883 	tty = tty_driver_lookup_tty(driver, NULL, index);
1884 	if (IS_ERR(tty))
1885 		goto out;
1886 
1887 	if (tty) {
1888 		/* drop kref from tty_driver_lookup_tty() */
1889 		tty_kref_put(tty);
1890 		tty = ERR_PTR(-EBUSY);
1891 	} else { /* tty_init_dev returns tty with the tty_lock held */
1892 		tty = tty_init_dev(driver, index);
1893 		if (IS_ERR(tty))
1894 			goto out;
1895 		tty_port_set_kopened(tty->port, 1);
1896 	}
1897 out:
1898 	mutex_unlock(&tty_mutex);
1899 	tty_driver_kref_put(driver);
1900 	return tty;
1901 }
1902 EXPORT_SYMBOL_GPL(tty_kopen);
1903 
1904 /**
1905  *	tty_open_by_driver	-	open a tty device
1906  *	@device: dev_t of device to open
1907  *	@inode: inode of device file
1908  *	@filp: file pointer to tty
1909  *
1910  *	Performs the driver lookup, checks for a reopen, or otherwise
1911  *	performs the first-time tty initialization.
1912  *
1913  *	Returns the locked initialized or re-opened &tty_struct
1914  *
1915  *	Claims the global tty_mutex to serialize:
1916  *	  - concurrent first-time tty initialization
1917  *	  - concurrent tty driver removal w/ lookup
1918  *	  - concurrent tty removal from driver table
1919  */
tty_open_by_driver(dev_t device,struct inode * inode,struct file * filp)1920 static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode,
1921 					     struct file *filp)
1922 {
1923 	struct tty_struct *tty;
1924 	struct tty_driver *driver = NULL;
1925 	int index = -1;
1926 	int retval;
1927 
1928 	mutex_lock(&tty_mutex);
1929 	driver = tty_lookup_driver(device, filp, &index);
1930 	if (IS_ERR(driver)) {
1931 		mutex_unlock(&tty_mutex);
1932 		return ERR_CAST(driver);
1933 	}
1934 
1935 	/* check whether we're reopening an existing tty */
1936 	tty = tty_driver_lookup_tty(driver, filp, index);
1937 	if (IS_ERR(tty)) {
1938 		mutex_unlock(&tty_mutex);
1939 		goto out;
1940 	}
1941 
1942 	if (tty) {
1943 		if (tty_port_kopened(tty->port)) {
1944 			tty_kref_put(tty);
1945 			mutex_unlock(&tty_mutex);
1946 			tty = ERR_PTR(-EBUSY);
1947 			goto out;
1948 		}
1949 		mutex_unlock(&tty_mutex);
1950 		retval = tty_lock_interruptible(tty);
1951 		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
1952 		if (retval) {
1953 			if (retval == -EINTR)
1954 				retval = -ERESTARTSYS;
1955 			tty = ERR_PTR(retval);
1956 			goto out;
1957 		}
1958 		retval = tty_reopen(tty);
1959 		if (retval < 0) {
1960 			tty_unlock(tty);
1961 			tty = ERR_PTR(retval);
1962 		}
1963 	} else { /* Returns with the tty_lock held for now */
1964 		tty = tty_init_dev(driver, index);
1965 		mutex_unlock(&tty_mutex);
1966 	}
1967 out:
1968 	tty_driver_kref_put(driver);
1969 	return tty;
1970 }
1971 
1972 /**
1973  *	tty_open		-	open a tty device
1974  *	@inode: inode of device file
1975  *	@filp: file pointer to tty
1976  *
1977  *	tty_open and tty_release keep up the tty count that contains the
1978  *	number of opens done on a tty. We cannot use the inode-count, as
1979  *	different inodes might point to the same tty.
1980  *
1981  *	Open-counting is needed for pty masters, as well as for keeping
1982  *	track of serial lines: DTR is dropped when the last close happens.
1983  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1984  *
1985  *	The termios state of a pty is reset on first open so that
1986  *	settings don't persist across reuse.
1987  *
1988  *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1989  *		 tty->count should protect the rest.
1990  *		 ->siglock protects ->signal/->sighand
1991  *
1992  *	Note: the tty_unlock/lock cases without a ref are only safe due to
1993  *	tty_mutex
1994  */
1995 
tty_open(struct inode * inode,struct file * filp)1996 static int tty_open(struct inode *inode, struct file *filp)
1997 {
1998 	struct tty_struct *tty;
1999 	int noctty, retval;
2000 	dev_t device = inode->i_rdev;
2001 	unsigned saved_flags = filp->f_flags;
2002 
2003 	nonseekable_open(inode, filp);
2004 
2005 retry_open:
2006 	retval = tty_alloc_file(filp);
2007 	if (retval)
2008 		return -ENOMEM;
2009 
2010 	tty = tty_open_current_tty(device, filp);
2011 	if (!tty)
2012 		tty = tty_open_by_driver(device, inode, filp);
2013 
2014 	if (IS_ERR(tty)) {
2015 		tty_free_file(filp);
2016 		retval = PTR_ERR(tty);
2017 		if (retval != -EAGAIN || signal_pending(current))
2018 			return retval;
2019 		schedule();
2020 		goto retry_open;
2021 	}
2022 
2023 	tty_add_file(tty, filp);
2024 
2025 	check_tty_count(tty, __func__);
2026 	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2027 
2028 	if (tty->ops->open)
2029 		retval = tty->ops->open(tty, filp);
2030 	else
2031 		retval = -ENODEV;
2032 	filp->f_flags = saved_flags;
2033 
2034 	if (retval) {
2035 		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2036 
2037 		tty_unlock(tty); /* need to call tty_release without BTM */
2038 		tty_release(inode, filp);
2039 		if (retval != -ERESTARTSYS)
2040 			return retval;
2041 
2042 		if (signal_pending(current))
2043 			return retval;
2044 
2045 		schedule();
2046 		/*
2047 		 * Need to reset f_op in case a hangup happened.
2048 		 */
2049 		if (tty_hung_up_p(filp))
2050 			filp->f_op = &tty_fops;
2051 		goto retry_open;
2052 	}
2053 	clear_bit(TTY_HUPPED, &tty->flags);
2054 
2055 	noctty = (filp->f_flags & O_NOCTTY) ||
2056 		 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2057 		 device == MKDEV(TTYAUX_MAJOR, 1) ||
2058 		 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2059 		  tty->driver->subtype == PTY_TYPE_MASTER);
2060 	if (!noctty)
2061 		tty_open_proc_set_tty(filp, tty);
2062 	tty_unlock(tty);
2063 	return 0;
2064 }
2065 
2066 
2067 
2068 /**
2069  *	tty_poll	-	check tty status
2070  *	@filp: file being polled
2071  *	@wait: poll wait structures to update
2072  *
2073  *	Call the line discipline polling method to obtain the poll
2074  *	status of the device.
2075  *
2076  *	Locking: locks called line discipline but ldisc poll method
2077  *	may be re-entered freely by other callers.
2078  */
2079 
tty_poll(struct file * filp,poll_table * wait)2080 static __poll_t tty_poll(struct file *filp, poll_table *wait)
2081 {
2082 	struct tty_struct *tty = file_tty(filp);
2083 	struct tty_ldisc *ld;
2084 	__poll_t ret = 0;
2085 
2086 	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2087 		return 0;
2088 
2089 	ld = tty_ldisc_ref_wait(tty);
2090 	if (!ld)
2091 		return hung_up_tty_poll(filp, wait);
2092 	if (ld->ops->poll)
2093 		ret = ld->ops->poll(tty, filp, wait);
2094 	tty_ldisc_deref(ld);
2095 	return ret;
2096 }
2097 
__tty_fasync(int fd,struct file * filp,int on)2098 static int __tty_fasync(int fd, struct file *filp, int on)
2099 {
2100 	struct tty_struct *tty = file_tty(filp);
2101 	unsigned long flags;
2102 	int retval = 0;
2103 
2104 	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2105 		goto out;
2106 
2107 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2108 	if (retval <= 0)
2109 		goto out;
2110 
2111 	if (on) {
2112 		enum pid_type type;
2113 		struct pid *pid;
2114 
2115 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2116 		if (tty->pgrp) {
2117 			pid = tty->pgrp;
2118 			type = PIDTYPE_PGID;
2119 		} else {
2120 			pid = task_pid(current);
2121 			type = PIDTYPE_TGID;
2122 		}
2123 		get_pid(pid);
2124 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2125 		__f_setown(filp, pid, type, 0);
2126 		put_pid(pid);
2127 		retval = 0;
2128 	}
2129 out:
2130 	return retval;
2131 }
2132 
tty_fasync(int fd,struct file * filp,int on)2133 static int tty_fasync(int fd, struct file *filp, int on)
2134 {
2135 	struct tty_struct *tty = file_tty(filp);
2136 	int retval = -ENOTTY;
2137 
2138 	tty_lock(tty);
2139 	if (!tty_hung_up_p(filp))
2140 		retval = __tty_fasync(fd, filp, on);
2141 	tty_unlock(tty);
2142 
2143 	return retval;
2144 }
2145 
2146 /**
2147  *	tiocsti			-	fake input character
2148  *	@tty: tty to fake input into
2149  *	@p: pointer to character
2150  *
2151  *	Fake input to a tty device. Does the necessary locking and
2152  *	input management.
2153  *
2154  *	FIXME: does not honour flow control ??
2155  *
2156  *	Locking:
2157  *		Called functions take tty_ldiscs_lock
2158  *		current->signal->tty check is safe without locks
2159  *
2160  *	FIXME: may race normal receive processing
2161  */
2162 
tiocsti(struct tty_struct * tty,char __user * p)2163 static int tiocsti(struct tty_struct *tty, char __user *p)
2164 {
2165 	char ch, mbz = 0;
2166 	struct tty_ldisc *ld;
2167 
2168 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2169 		return -EPERM;
2170 	if (get_user(ch, p))
2171 		return -EFAULT;
2172 	tty_audit_tiocsti(tty, ch);
2173 	ld = tty_ldisc_ref_wait(tty);
2174 	if (!ld)
2175 		return -EIO;
2176 	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2177 	tty_ldisc_deref(ld);
2178 	return 0;
2179 }
2180 
2181 /**
2182  *	tiocgwinsz		-	implement window query ioctl
2183  *	@tty; tty
2184  *	@arg: user buffer for result
2185  *
2186  *	Copies the kernel idea of the window size into the user buffer.
2187  *
2188  *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2189  *		is consistent.
2190  */
2191 
tiocgwinsz(struct tty_struct * tty,struct winsize __user * arg)2192 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2193 {
2194 	int err;
2195 
2196 	mutex_lock(&tty->winsize_mutex);
2197 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2198 	mutex_unlock(&tty->winsize_mutex);
2199 
2200 	return err ? -EFAULT: 0;
2201 }
2202 
2203 /**
2204  *	tty_do_resize		-	resize event
2205  *	@tty: tty being resized
2206  *	@rows: rows (character)
2207  *	@cols: cols (character)
2208  *
2209  *	Update the termios variables and send the necessary signals to
2210  *	peform a terminal resize correctly
2211  */
2212 
tty_do_resize(struct tty_struct * tty,struct winsize * ws)2213 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2214 {
2215 	struct pid *pgrp;
2216 
2217 	/* Lock the tty */
2218 	mutex_lock(&tty->winsize_mutex);
2219 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2220 		goto done;
2221 
2222 	/* Signal the foreground process group */
2223 	pgrp = tty_get_pgrp(tty);
2224 	if (pgrp)
2225 		kill_pgrp(pgrp, SIGWINCH, 1);
2226 	put_pid(pgrp);
2227 
2228 	tty->winsize = *ws;
2229 done:
2230 	mutex_unlock(&tty->winsize_mutex);
2231 	return 0;
2232 }
2233 EXPORT_SYMBOL(tty_do_resize);
2234 
2235 /**
2236  *	tiocswinsz		-	implement window size set ioctl
2237  *	@tty; tty side of tty
2238  *	@arg: user buffer for result
2239  *
2240  *	Copies the user idea of the window size to the kernel. Traditionally
2241  *	this is just advisory information but for the Linux console it
2242  *	actually has driver level meaning and triggers a VC resize.
2243  *
2244  *	Locking:
2245  *		Driver dependent. The default do_resize method takes the
2246  *	tty termios mutex and ctrl_lock. The console takes its own lock
2247  *	then calls into the default method.
2248  */
2249 
tiocswinsz(struct tty_struct * tty,struct winsize __user * arg)2250 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2251 {
2252 	struct winsize tmp_ws;
2253 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2254 		return -EFAULT;
2255 
2256 	if (tty->ops->resize)
2257 		return tty->ops->resize(tty, &tmp_ws);
2258 	else
2259 		return tty_do_resize(tty, &tmp_ws);
2260 }
2261 
2262 /**
2263  *	tioccons	-	allow admin to move logical console
2264  *	@file: the file to become console
2265  *
2266  *	Allow the administrator to move the redirected console device
2267  *
2268  *	Locking: uses redirect_lock to guard the redirect information
2269  */
2270 
tioccons(struct file * file)2271 static int tioccons(struct file *file)
2272 {
2273 	if (!capable(CAP_SYS_ADMIN))
2274 		return -EPERM;
2275 	if (file->f_op->write == redirected_tty_write) {
2276 		struct file *f;
2277 		spin_lock(&redirect_lock);
2278 		f = redirect;
2279 		redirect = NULL;
2280 		spin_unlock(&redirect_lock);
2281 		if (f)
2282 			fput(f);
2283 		return 0;
2284 	}
2285 	spin_lock(&redirect_lock);
2286 	if (redirect) {
2287 		spin_unlock(&redirect_lock);
2288 		return -EBUSY;
2289 	}
2290 	redirect = get_file(file);
2291 	spin_unlock(&redirect_lock);
2292 	return 0;
2293 }
2294 
2295 /**
2296  *	fionbio		-	non blocking ioctl
2297  *	@file: file to set blocking value
2298  *	@p: user parameter
2299  *
2300  *	Historical tty interfaces had a blocking control ioctl before
2301  *	the generic functionality existed. This piece of history is preserved
2302  *	in the expected tty API of posix OS's.
2303  *
2304  *	Locking: none, the open file handle ensures it won't go away.
2305  */
2306 
fionbio(struct file * file,int __user * p)2307 static int fionbio(struct file *file, int __user *p)
2308 {
2309 	int nonblock;
2310 
2311 	if (get_user(nonblock, p))
2312 		return -EFAULT;
2313 
2314 	spin_lock(&file->f_lock);
2315 	if (nonblock)
2316 		file->f_flags |= O_NONBLOCK;
2317 	else
2318 		file->f_flags &= ~O_NONBLOCK;
2319 	spin_unlock(&file->f_lock);
2320 	return 0;
2321 }
2322 
2323 /**
2324  *	tiocsetd	-	set line discipline
2325  *	@tty: tty device
2326  *	@p: pointer to user data
2327  *
2328  *	Set the line discipline according to user request.
2329  *
2330  *	Locking: see tty_set_ldisc, this function is just a helper
2331  */
2332 
tiocsetd(struct tty_struct * tty,int __user * p)2333 static int tiocsetd(struct tty_struct *tty, int __user *p)
2334 {
2335 	int disc;
2336 	int ret;
2337 
2338 	if (get_user(disc, p))
2339 		return -EFAULT;
2340 
2341 	ret = tty_set_ldisc(tty, disc);
2342 
2343 	return ret;
2344 }
2345 
2346 /**
2347  *	tiocgetd	-	get line discipline
2348  *	@tty: tty device
2349  *	@p: pointer to user data
2350  *
2351  *	Retrieves the line discipline id directly from the ldisc.
2352  *
2353  *	Locking: waits for ldisc reference (in case the line discipline
2354  *		is changing or the tty is being hungup)
2355  */
2356 
tiocgetd(struct tty_struct * tty,int __user * p)2357 static int tiocgetd(struct tty_struct *tty, int __user *p)
2358 {
2359 	struct tty_ldisc *ld;
2360 	int ret;
2361 
2362 	ld = tty_ldisc_ref_wait(tty);
2363 	if (!ld)
2364 		return -EIO;
2365 	ret = put_user(ld->ops->num, p);
2366 	tty_ldisc_deref(ld);
2367 	return ret;
2368 }
2369 
2370 /**
2371  *	send_break	-	performed time break
2372  *	@tty: device to break on
2373  *	@duration: timeout in mS
2374  *
2375  *	Perform a timed break on hardware that lacks its own driver level
2376  *	timed break functionality.
2377  *
2378  *	Locking:
2379  *		atomic_write_lock serializes
2380  *
2381  */
2382 
send_break(struct tty_struct * tty,unsigned int duration)2383 static int send_break(struct tty_struct *tty, unsigned int duration)
2384 {
2385 	int retval;
2386 
2387 	if (tty->ops->break_ctl == NULL)
2388 		return 0;
2389 
2390 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2391 		retval = tty->ops->break_ctl(tty, duration);
2392 	else {
2393 		/* Do the work ourselves */
2394 		if (tty_write_lock(tty, 0) < 0)
2395 			return -EINTR;
2396 		retval = tty->ops->break_ctl(tty, -1);
2397 		if (retval)
2398 			goto out;
2399 		if (!signal_pending(current))
2400 			msleep_interruptible(duration);
2401 		retval = tty->ops->break_ctl(tty, 0);
2402 out:
2403 		tty_write_unlock(tty);
2404 		if (signal_pending(current))
2405 			retval = -EINTR;
2406 	}
2407 	return retval;
2408 }
2409 
2410 /**
2411  *	tty_tiocmget		-	get modem status
2412  *	@tty: tty device
2413  *	@file: user file pointer
2414  *	@p: pointer to result
2415  *
2416  *	Obtain the modem status bits from the tty driver if the feature
2417  *	is supported. Return -EINVAL if it is not available.
2418  *
2419  *	Locking: none (up to the driver)
2420  */
2421 
tty_tiocmget(struct tty_struct * tty,int __user * p)2422 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2423 {
2424 	int retval = -EINVAL;
2425 
2426 	if (tty->ops->tiocmget) {
2427 		retval = tty->ops->tiocmget(tty);
2428 
2429 		if (retval >= 0)
2430 			retval = put_user(retval, p);
2431 	}
2432 	return retval;
2433 }
2434 
2435 /**
2436  *	tty_tiocmset		-	set modem status
2437  *	@tty: tty device
2438  *	@cmd: command - clear bits, set bits or set all
2439  *	@p: pointer to desired bits
2440  *
2441  *	Set the modem status bits from the tty driver if the feature
2442  *	is supported. Return -EINVAL if it is not available.
2443  *
2444  *	Locking: none (up to the driver)
2445  */
2446 
tty_tiocmset(struct tty_struct * tty,unsigned int cmd,unsigned __user * p)2447 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2448 	     unsigned __user *p)
2449 {
2450 	int retval;
2451 	unsigned int set, clear, val;
2452 
2453 	if (tty->ops->tiocmset == NULL)
2454 		return -EINVAL;
2455 
2456 	retval = get_user(val, p);
2457 	if (retval)
2458 		return retval;
2459 	set = clear = 0;
2460 	switch (cmd) {
2461 	case TIOCMBIS:
2462 		set = val;
2463 		break;
2464 	case TIOCMBIC:
2465 		clear = val;
2466 		break;
2467 	case TIOCMSET:
2468 		set = val;
2469 		clear = ~val;
2470 		break;
2471 	}
2472 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2473 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2474 	return tty->ops->tiocmset(tty, set, clear);
2475 }
2476 
tty_tiocgicount(struct tty_struct * tty,void __user * arg)2477 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2478 {
2479 	int retval = -EINVAL;
2480 	struct serial_icounter_struct icount;
2481 	memset(&icount, 0, sizeof(icount));
2482 	if (tty->ops->get_icount)
2483 		retval = tty->ops->get_icount(tty, &icount);
2484 	if (retval != 0)
2485 		return retval;
2486 	if (copy_to_user(arg, &icount, sizeof(icount)))
2487 		return -EFAULT;
2488 	return 0;
2489 }
2490 
tty_warn_deprecated_flags(struct serial_struct __user * ss)2491 static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2492 {
2493 	static DEFINE_RATELIMIT_STATE(depr_flags,
2494 			DEFAULT_RATELIMIT_INTERVAL,
2495 			DEFAULT_RATELIMIT_BURST);
2496 	char comm[TASK_COMM_LEN];
2497 	int flags;
2498 
2499 	if (get_user(flags, &ss->flags))
2500 		return;
2501 
2502 	flags &= ASYNC_DEPRECATED;
2503 
2504 	if (flags && __ratelimit(&depr_flags))
2505 		pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2506 			__func__, get_task_comm(comm, current), flags);
2507 }
2508 
2509 /*
2510  * if pty, return the slave side (real_tty)
2511  * otherwise, return self
2512  */
tty_pair_get_tty(struct tty_struct * tty)2513 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2514 {
2515 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2516 	    tty->driver->subtype == PTY_TYPE_MASTER)
2517 		tty = tty->link;
2518 	return tty;
2519 }
2520 
2521 /*
2522  * Split this up, as gcc can choke on it otherwise..
2523  */
tty_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2524 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2525 {
2526 	struct tty_struct *tty = file_tty(file);
2527 	struct tty_struct *real_tty;
2528 	void __user *p = (void __user *)arg;
2529 	int retval;
2530 	struct tty_ldisc *ld;
2531 
2532 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2533 		return -EINVAL;
2534 
2535 	real_tty = tty_pair_get_tty(tty);
2536 
2537 	/*
2538 	 * Factor out some common prep work
2539 	 */
2540 	switch (cmd) {
2541 	case TIOCSETD:
2542 	case TIOCSBRK:
2543 	case TIOCCBRK:
2544 	case TCSBRK:
2545 	case TCSBRKP:
2546 		retval = tty_check_change(tty);
2547 		if (retval)
2548 			return retval;
2549 		if (cmd != TIOCCBRK) {
2550 			tty_wait_until_sent(tty, 0);
2551 			if (signal_pending(current))
2552 				return -EINTR;
2553 		}
2554 		break;
2555 	}
2556 
2557 	/*
2558 	 *	Now do the stuff.
2559 	 */
2560 	switch (cmd) {
2561 	case TIOCSTI:
2562 		return tiocsti(tty, p);
2563 	case TIOCGWINSZ:
2564 		return tiocgwinsz(real_tty, p);
2565 	case TIOCSWINSZ:
2566 		return tiocswinsz(real_tty, p);
2567 	case TIOCCONS:
2568 		return real_tty != tty ? -EINVAL : tioccons(file);
2569 	case FIONBIO:
2570 		return fionbio(file, p);
2571 	case TIOCEXCL:
2572 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2573 		return 0;
2574 	case TIOCNXCL:
2575 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2576 		return 0;
2577 	case TIOCGEXCL:
2578 	{
2579 		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2580 		return put_user(excl, (int __user *)p);
2581 	}
2582 	case TIOCGETD:
2583 		return tiocgetd(tty, p);
2584 	case TIOCSETD:
2585 		return tiocsetd(tty, p);
2586 	case TIOCVHANGUP:
2587 		if (!capable(CAP_SYS_ADMIN))
2588 			return -EPERM;
2589 		tty_vhangup(tty);
2590 		return 0;
2591 	case TIOCGDEV:
2592 	{
2593 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2594 		return put_user(ret, (unsigned int __user *)p);
2595 	}
2596 	/*
2597 	 * Break handling
2598 	 */
2599 	case TIOCSBRK:	/* Turn break on, unconditionally */
2600 		if (tty->ops->break_ctl)
2601 			return tty->ops->break_ctl(tty, -1);
2602 		return 0;
2603 	case TIOCCBRK:	/* Turn break off, unconditionally */
2604 		if (tty->ops->break_ctl)
2605 			return tty->ops->break_ctl(tty, 0);
2606 		return 0;
2607 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2608 		/* non-zero arg means wait for all output data
2609 		 * to be sent (performed above) but don't send break.
2610 		 * This is used by the tcdrain() termios function.
2611 		 */
2612 		if (!arg)
2613 			return send_break(tty, 250);
2614 		return 0;
2615 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2616 		return send_break(tty, arg ? arg*100 : 250);
2617 
2618 	case TIOCMGET:
2619 		return tty_tiocmget(tty, p);
2620 	case TIOCMSET:
2621 	case TIOCMBIC:
2622 	case TIOCMBIS:
2623 		return tty_tiocmset(tty, cmd, p);
2624 	case TIOCGICOUNT:
2625 		retval = tty_tiocgicount(tty, p);
2626 		/* For the moment allow fall through to the old method */
2627         	if (retval != -EINVAL)
2628 			return retval;
2629 		break;
2630 	case TCFLSH:
2631 		switch (arg) {
2632 		case TCIFLUSH:
2633 		case TCIOFLUSH:
2634 		/* flush tty buffer and allow ldisc to process ioctl */
2635 			tty_buffer_flush(tty, NULL);
2636 			break;
2637 		}
2638 		break;
2639 	case TIOCSSERIAL:
2640 		tty_warn_deprecated_flags(p);
2641 		break;
2642 	case TIOCGPTPEER:
2643 		/* Special because the struct file is needed */
2644 		return ptm_open_peer(file, tty, (int)arg);
2645 	default:
2646 		retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2647 		if (retval != -ENOIOCTLCMD)
2648 			return retval;
2649 	}
2650 	if (tty->ops->ioctl) {
2651 		retval = tty->ops->ioctl(tty, cmd, arg);
2652 		if (retval != -ENOIOCTLCMD)
2653 			return retval;
2654 	}
2655 	ld = tty_ldisc_ref_wait(tty);
2656 	if (!ld)
2657 		return hung_up_tty_ioctl(file, cmd, arg);
2658 	retval = -EINVAL;
2659 	if (ld->ops->ioctl) {
2660 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2661 		if (retval == -ENOIOCTLCMD)
2662 			retval = -ENOTTY;
2663 	}
2664 	tty_ldisc_deref(ld);
2665 	return retval;
2666 }
2667 
2668 #ifdef CONFIG_COMPAT
tty_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2669 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2670 				unsigned long arg)
2671 {
2672 	struct tty_struct *tty = file_tty(file);
2673 	struct tty_ldisc *ld;
2674 	int retval = -ENOIOCTLCMD;
2675 
2676 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2677 		return -EINVAL;
2678 
2679 	if (tty->ops->compat_ioctl) {
2680 		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2681 		if (retval != -ENOIOCTLCMD)
2682 			return retval;
2683 	}
2684 
2685 	ld = tty_ldisc_ref_wait(tty);
2686 	if (!ld)
2687 		return hung_up_tty_compat_ioctl(file, cmd, arg);
2688 	if (ld->ops->compat_ioctl)
2689 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2690 	else
2691 		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2692 	tty_ldisc_deref(ld);
2693 
2694 	return retval;
2695 }
2696 #endif
2697 
this_tty(const void * t,struct file * file,unsigned fd)2698 static int this_tty(const void *t, struct file *file, unsigned fd)
2699 {
2700 	if (likely(file->f_op->read != tty_read))
2701 		return 0;
2702 	return file_tty(file) != t ? 0 : fd + 1;
2703 }
2704 
2705 /*
2706  * This implements the "Secure Attention Key" ---  the idea is to
2707  * prevent trojan horses by killing all processes associated with this
2708  * tty when the user hits the "Secure Attention Key".  Required for
2709  * super-paranoid applications --- see the Orange Book for more details.
2710  *
2711  * This code could be nicer; ideally it should send a HUP, wait a few
2712  * seconds, then send a INT, and then a KILL signal.  But you then
2713  * have to coordinate with the init process, since all processes associated
2714  * with the current tty must be dead before the new getty is allowed
2715  * to spawn.
2716  *
2717  * Now, if it would be correct ;-/ The current code has a nasty hole -
2718  * it doesn't catch files in flight. We may send the descriptor to ourselves
2719  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2720  *
2721  * Nasty bug: do_SAK is being called in interrupt context.  This can
2722  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2723  */
__do_SAK(struct tty_struct * tty)2724 void __do_SAK(struct tty_struct *tty)
2725 {
2726 #ifdef TTY_SOFT_SAK
2727 	tty_hangup(tty);
2728 #else
2729 	struct task_struct *g, *p;
2730 	struct pid *session;
2731 	int		i;
2732 
2733 	if (!tty)
2734 		return;
2735 	session = tty->session;
2736 
2737 	tty_ldisc_flush(tty);
2738 
2739 	tty_driver_flush_buffer(tty);
2740 
2741 	read_lock(&tasklist_lock);
2742 	/* Kill the entire session */
2743 	do_each_pid_task(session, PIDTYPE_SID, p) {
2744 		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
2745 			   task_pid_nr(p), p->comm);
2746 		send_sig(SIGKILL, p, 1);
2747 	} while_each_pid_task(session, PIDTYPE_SID, p);
2748 
2749 	/* Now kill any processes that happen to have the tty open */
2750 	do_each_thread(g, p) {
2751 		if (p->signal->tty == tty) {
2752 			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
2753 				   task_pid_nr(p), p->comm);
2754 			send_sig(SIGKILL, p, 1);
2755 			continue;
2756 		}
2757 		task_lock(p);
2758 		i = iterate_fd(p->files, 0, this_tty, tty);
2759 		if (i != 0) {
2760 			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
2761 				   task_pid_nr(p), p->comm, i - 1);
2762 			force_sig(SIGKILL, p);
2763 		}
2764 		task_unlock(p);
2765 	} while_each_thread(g, p);
2766 	read_unlock(&tasklist_lock);
2767 #endif
2768 }
2769 
do_SAK_work(struct work_struct * work)2770 static void do_SAK_work(struct work_struct *work)
2771 {
2772 	struct tty_struct *tty =
2773 		container_of(work, struct tty_struct, SAK_work);
2774 	__do_SAK(tty);
2775 }
2776 
2777 /*
2778  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2779  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2780  * the values which we write to it will be identical to the values which it
2781  * already has. --akpm
2782  */
do_SAK(struct tty_struct * tty)2783 void do_SAK(struct tty_struct *tty)
2784 {
2785 	if (!tty)
2786 		return;
2787 	schedule_work(&tty->SAK_work);
2788 }
2789 
2790 EXPORT_SYMBOL(do_SAK);
2791 
dev_match_devt(struct device * dev,const void * data)2792 static int dev_match_devt(struct device *dev, const void *data)
2793 {
2794 	const dev_t *devt = data;
2795 	return dev->devt == *devt;
2796 }
2797 
2798 /* Must put_device() after it's unused! */
tty_get_device(struct tty_struct * tty)2799 static struct device *tty_get_device(struct tty_struct *tty)
2800 {
2801 	dev_t devt = tty_devnum(tty);
2802 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2803 }
2804 
2805 
2806 /**
2807  *	alloc_tty_struct
2808  *
2809  *	This subroutine allocates and initializes a tty structure.
2810  *
2811  *	Locking: none - tty in question is not exposed at this point
2812  */
2813 
alloc_tty_struct(struct tty_driver * driver,int idx)2814 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
2815 {
2816 	struct tty_struct *tty;
2817 
2818 	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
2819 	if (!tty)
2820 		return NULL;
2821 
2822 	kref_init(&tty->kref);
2823 	tty->magic = TTY_MAGIC;
2824 	if (tty_ldisc_init(tty)) {
2825 		kfree(tty);
2826 		return NULL;
2827 	}
2828 	tty->session = NULL;
2829 	tty->pgrp = NULL;
2830 	mutex_init(&tty->legacy_mutex);
2831 	mutex_init(&tty->throttle_mutex);
2832 	init_rwsem(&tty->termios_rwsem);
2833 	mutex_init(&tty->winsize_mutex);
2834 	init_ldsem(&tty->ldisc_sem);
2835 	init_waitqueue_head(&tty->write_wait);
2836 	init_waitqueue_head(&tty->read_wait);
2837 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
2838 	mutex_init(&tty->atomic_write_lock);
2839 	spin_lock_init(&tty->ctrl_lock);
2840 	spin_lock_init(&tty->flow_lock);
2841 	spin_lock_init(&tty->files_lock);
2842 	INIT_LIST_HEAD(&tty->tty_files);
2843 	INIT_WORK(&tty->SAK_work, do_SAK_work);
2844 
2845 	tty->driver = driver;
2846 	tty->ops = driver->ops;
2847 	tty->index = idx;
2848 	tty_line_name(driver, idx, tty->name);
2849 	tty->dev = tty_get_device(tty);
2850 
2851 	return tty;
2852 }
2853 
2854 /**
2855  *	tty_put_char	-	write one character to a tty
2856  *	@tty: tty
2857  *	@ch: character
2858  *
2859  *	Write one byte to the tty using the provided put_char method
2860  *	if present. Returns the number of characters successfully output.
2861  *
2862  *	Note: the specific put_char operation in the driver layer may go
2863  *	away soon. Don't call it directly, use this method
2864  */
2865 
tty_put_char(struct tty_struct * tty,unsigned char ch)2866 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2867 {
2868 	if (tty->ops->put_char)
2869 		return tty->ops->put_char(tty, ch);
2870 	return tty->ops->write(tty, &ch, 1);
2871 }
2872 EXPORT_SYMBOL_GPL(tty_put_char);
2873 
2874 struct class *tty_class;
2875 
tty_cdev_add(struct tty_driver * driver,dev_t dev,unsigned int index,unsigned int count)2876 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
2877 		unsigned int index, unsigned int count)
2878 {
2879 	int err;
2880 
2881 	/* init here, since reused cdevs cause crashes */
2882 	driver->cdevs[index] = cdev_alloc();
2883 	if (!driver->cdevs[index])
2884 		return -ENOMEM;
2885 	driver->cdevs[index]->ops = &tty_fops;
2886 	driver->cdevs[index]->owner = driver->owner;
2887 	err = cdev_add(driver->cdevs[index], dev, count);
2888 	if (err)
2889 		kobject_put(&driver->cdevs[index]->kobj);
2890 	return err;
2891 }
2892 
2893 /**
2894  *	tty_register_device - register a tty device
2895  *	@driver: the tty driver that describes the tty device
2896  *	@index: the index in the tty driver for this tty device
2897  *	@device: a struct device that is associated with this tty device.
2898  *		This field is optional, if there is no known struct device
2899  *		for this tty device it can be set to NULL safely.
2900  *
2901  *	Returns a pointer to the struct device for this tty device
2902  *	(or ERR_PTR(-EFOO) on error).
2903  *
2904  *	This call is required to be made to register an individual tty device
2905  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2906  *	that bit is not set, this function should not be called by a tty
2907  *	driver.
2908  *
2909  *	Locking: ??
2910  */
2911 
tty_register_device(struct tty_driver * driver,unsigned index,struct device * device)2912 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2913 				   struct device *device)
2914 {
2915 	return tty_register_device_attr(driver, index, device, NULL, NULL);
2916 }
2917 EXPORT_SYMBOL(tty_register_device);
2918 
tty_device_create_release(struct device * dev)2919 static void tty_device_create_release(struct device *dev)
2920 {
2921 	dev_dbg(dev, "releasing...\n");
2922 	kfree(dev);
2923 }
2924 
2925 /**
2926  *	tty_register_device_attr - register a tty device
2927  *	@driver: the tty driver that describes the tty device
2928  *	@index: the index in the tty driver for this tty device
2929  *	@device: a struct device that is associated with this tty device.
2930  *		This field is optional, if there is no known struct device
2931  *		for this tty device it can be set to NULL safely.
2932  *	@drvdata: Driver data to be set to device.
2933  *	@attr_grp: Attribute group to be set on device.
2934  *
2935  *	Returns a pointer to the struct device for this tty device
2936  *	(or ERR_PTR(-EFOO) on error).
2937  *
2938  *	This call is required to be made to register an individual tty device
2939  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2940  *	that bit is not set, this function should not be called by a tty
2941  *	driver.
2942  *
2943  *	Locking: ??
2944  */
tty_register_device_attr(struct tty_driver * driver,unsigned index,struct device * device,void * drvdata,const struct attribute_group ** attr_grp)2945 struct device *tty_register_device_attr(struct tty_driver *driver,
2946 				   unsigned index, struct device *device,
2947 				   void *drvdata,
2948 				   const struct attribute_group **attr_grp)
2949 {
2950 	char name[64];
2951 	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
2952 	struct ktermios *tp;
2953 	struct device *dev;
2954 	int retval;
2955 
2956 	if (index >= driver->num) {
2957 		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
2958 		       driver->name, index);
2959 		return ERR_PTR(-EINVAL);
2960 	}
2961 
2962 	if (driver->type == TTY_DRIVER_TYPE_PTY)
2963 		pty_line_name(driver, index, name);
2964 	else
2965 		tty_line_name(driver, index, name);
2966 
2967 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2968 	if (!dev)
2969 		return ERR_PTR(-ENOMEM);
2970 
2971 	dev->devt = devt;
2972 	dev->class = tty_class;
2973 	dev->parent = device;
2974 	dev->release = tty_device_create_release;
2975 	dev_set_name(dev, "%s", name);
2976 	dev->groups = attr_grp;
2977 	dev_set_drvdata(dev, drvdata);
2978 
2979 	dev_set_uevent_suppress(dev, 1);
2980 
2981 	retval = device_register(dev);
2982 	if (retval)
2983 		goto err_put;
2984 
2985 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
2986 		/*
2987 		 * Free any saved termios data so that the termios state is
2988 		 * reset when reusing a minor number.
2989 		 */
2990 		tp = driver->termios[index];
2991 		if (tp) {
2992 			driver->termios[index] = NULL;
2993 			kfree(tp);
2994 		}
2995 
2996 		retval = tty_cdev_add(driver, devt, index, 1);
2997 		if (retval)
2998 			goto err_del;
2999 	}
3000 
3001 	dev_set_uevent_suppress(dev, 0);
3002 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3003 
3004 	return dev;
3005 
3006 err_del:
3007 	device_del(dev);
3008 err_put:
3009 	put_device(dev);
3010 
3011 	return ERR_PTR(retval);
3012 }
3013 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3014 
3015 /**
3016  * 	tty_unregister_device - unregister a tty device
3017  * 	@driver: the tty driver that describes the tty device
3018  * 	@index: the index in the tty driver for this tty device
3019  *
3020  * 	If a tty device is registered with a call to tty_register_device() then
3021  *	this function must be called when the tty device is gone.
3022  *
3023  *	Locking: ??
3024  */
3025 
tty_unregister_device(struct tty_driver * driver,unsigned index)3026 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3027 {
3028 	device_destroy(tty_class,
3029 		MKDEV(driver->major, driver->minor_start) + index);
3030 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3031 		cdev_del(driver->cdevs[index]);
3032 		driver->cdevs[index] = NULL;
3033 	}
3034 }
3035 EXPORT_SYMBOL(tty_unregister_device);
3036 
3037 /**
3038  * __tty_alloc_driver -- allocate tty driver
3039  * @lines: count of lines this driver can handle at most
3040  * @owner: module which is responsible for this driver
3041  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3042  *
3043  * This should not be called directly, some of the provided macros should be
3044  * used instead. Use IS_ERR and friends on @retval.
3045  */
__tty_alloc_driver(unsigned int lines,struct module * owner,unsigned long flags)3046 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3047 		unsigned long flags)
3048 {
3049 	struct tty_driver *driver;
3050 	unsigned int cdevs = 1;
3051 	int err;
3052 
3053 	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3054 		return ERR_PTR(-EINVAL);
3055 
3056 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3057 	if (!driver)
3058 		return ERR_PTR(-ENOMEM);
3059 
3060 	kref_init(&driver->kref);
3061 	driver->magic = TTY_DRIVER_MAGIC;
3062 	driver->num = lines;
3063 	driver->owner = owner;
3064 	driver->flags = flags;
3065 
3066 	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3067 		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3068 				GFP_KERNEL);
3069 		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3070 				GFP_KERNEL);
3071 		if (!driver->ttys || !driver->termios) {
3072 			err = -ENOMEM;
3073 			goto err_free_all;
3074 		}
3075 	}
3076 
3077 	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3078 		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3079 				GFP_KERNEL);
3080 		if (!driver->ports) {
3081 			err = -ENOMEM;
3082 			goto err_free_all;
3083 		}
3084 		cdevs = lines;
3085 	}
3086 
3087 	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3088 	if (!driver->cdevs) {
3089 		err = -ENOMEM;
3090 		goto err_free_all;
3091 	}
3092 
3093 	return driver;
3094 err_free_all:
3095 	kfree(driver->ports);
3096 	kfree(driver->ttys);
3097 	kfree(driver->termios);
3098 	kfree(driver->cdevs);
3099 	kfree(driver);
3100 	return ERR_PTR(err);
3101 }
3102 EXPORT_SYMBOL(__tty_alloc_driver);
3103 
destruct_tty_driver(struct kref * kref)3104 static void destruct_tty_driver(struct kref *kref)
3105 {
3106 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3107 	int i;
3108 	struct ktermios *tp;
3109 
3110 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3111 		for (i = 0; i < driver->num; i++) {
3112 			tp = driver->termios[i];
3113 			if (tp) {
3114 				driver->termios[i] = NULL;
3115 				kfree(tp);
3116 			}
3117 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3118 				tty_unregister_device(driver, i);
3119 		}
3120 		proc_tty_unregister_driver(driver);
3121 		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3122 			cdev_del(driver->cdevs[0]);
3123 	}
3124 	kfree(driver->cdevs);
3125 	kfree(driver->ports);
3126 	kfree(driver->termios);
3127 	kfree(driver->ttys);
3128 	kfree(driver);
3129 }
3130 
tty_driver_kref_put(struct tty_driver * driver)3131 void tty_driver_kref_put(struct tty_driver *driver)
3132 {
3133 	kref_put(&driver->kref, destruct_tty_driver);
3134 }
3135 EXPORT_SYMBOL(tty_driver_kref_put);
3136 
tty_set_operations(struct tty_driver * driver,const struct tty_operations * op)3137 void tty_set_operations(struct tty_driver *driver,
3138 			const struct tty_operations *op)
3139 {
3140 	driver->ops = op;
3141 };
3142 EXPORT_SYMBOL(tty_set_operations);
3143 
put_tty_driver(struct tty_driver * d)3144 void put_tty_driver(struct tty_driver *d)
3145 {
3146 	tty_driver_kref_put(d);
3147 }
3148 EXPORT_SYMBOL(put_tty_driver);
3149 
3150 /*
3151  * Called by a tty driver to register itself.
3152  */
tty_register_driver(struct tty_driver * driver)3153 int tty_register_driver(struct tty_driver *driver)
3154 {
3155 	int error;
3156 	int i;
3157 	dev_t dev;
3158 	struct device *d;
3159 
3160 	if (!driver->major) {
3161 		error = alloc_chrdev_region(&dev, driver->minor_start,
3162 						driver->num, driver->name);
3163 		if (!error) {
3164 			driver->major = MAJOR(dev);
3165 			driver->minor_start = MINOR(dev);
3166 		}
3167 	} else {
3168 		dev = MKDEV(driver->major, driver->minor_start);
3169 		error = register_chrdev_region(dev, driver->num, driver->name);
3170 	}
3171 	if (error < 0)
3172 		goto err;
3173 
3174 	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3175 		error = tty_cdev_add(driver, dev, 0, driver->num);
3176 		if (error)
3177 			goto err_unreg_char;
3178 	}
3179 
3180 	mutex_lock(&tty_mutex);
3181 	list_add(&driver->tty_drivers, &tty_drivers);
3182 	mutex_unlock(&tty_mutex);
3183 
3184 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3185 		for (i = 0; i < driver->num; i++) {
3186 			d = tty_register_device(driver, i, NULL);
3187 			if (IS_ERR(d)) {
3188 				error = PTR_ERR(d);
3189 				goto err_unreg_devs;
3190 			}
3191 		}
3192 	}
3193 	proc_tty_register_driver(driver);
3194 	driver->flags |= TTY_DRIVER_INSTALLED;
3195 	return 0;
3196 
3197 err_unreg_devs:
3198 	for (i--; i >= 0; i--)
3199 		tty_unregister_device(driver, i);
3200 
3201 	mutex_lock(&tty_mutex);
3202 	list_del(&driver->tty_drivers);
3203 	mutex_unlock(&tty_mutex);
3204 
3205 err_unreg_char:
3206 	unregister_chrdev_region(dev, driver->num);
3207 err:
3208 	return error;
3209 }
3210 EXPORT_SYMBOL(tty_register_driver);
3211 
3212 /*
3213  * Called by a tty driver to unregister itself.
3214  */
tty_unregister_driver(struct tty_driver * driver)3215 int tty_unregister_driver(struct tty_driver *driver)
3216 {
3217 #if 0
3218 	/* FIXME */
3219 	if (driver->refcount)
3220 		return -EBUSY;
3221 #endif
3222 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3223 				driver->num);
3224 	mutex_lock(&tty_mutex);
3225 	list_del(&driver->tty_drivers);
3226 	mutex_unlock(&tty_mutex);
3227 	return 0;
3228 }
3229 
3230 EXPORT_SYMBOL(tty_unregister_driver);
3231 
tty_devnum(struct tty_struct * tty)3232 dev_t tty_devnum(struct tty_struct *tty)
3233 {
3234 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3235 }
3236 EXPORT_SYMBOL(tty_devnum);
3237 
tty_default_fops(struct file_operations * fops)3238 void tty_default_fops(struct file_operations *fops)
3239 {
3240 	*fops = tty_fops;
3241 }
3242 
tty_devnode(struct device * dev,umode_t * mode)3243 static char *tty_devnode(struct device *dev, umode_t *mode)
3244 {
3245 	if (!mode)
3246 		return NULL;
3247 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3248 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3249 		*mode = 0666;
3250 	return NULL;
3251 }
3252 
tty_class_init(void)3253 static int __init tty_class_init(void)
3254 {
3255 	tty_class = class_create(THIS_MODULE, "tty");
3256 	if (IS_ERR(tty_class))
3257 		return PTR_ERR(tty_class);
3258 	tty_class->devnode = tty_devnode;
3259 	return 0;
3260 }
3261 
3262 postcore_initcall(tty_class_init);
3263 
3264 /* 3/2004 jmc: why do these devices exist? */
3265 static struct cdev tty_cdev, console_cdev;
3266 
show_cons_active(struct device * dev,struct device_attribute * attr,char * buf)3267 static ssize_t show_cons_active(struct device *dev,
3268 				struct device_attribute *attr, char *buf)
3269 {
3270 	struct console *cs[16];
3271 	int i = 0;
3272 	struct console *c;
3273 	ssize_t count = 0;
3274 
3275 	console_lock();
3276 	for_each_console(c) {
3277 		if (!c->device)
3278 			continue;
3279 		if (!c->write)
3280 			continue;
3281 		if ((c->flags & CON_ENABLED) == 0)
3282 			continue;
3283 		cs[i++] = c;
3284 		if (i >= ARRAY_SIZE(cs))
3285 			break;
3286 	}
3287 	while (i--) {
3288 		int index = cs[i]->index;
3289 		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3290 
3291 		/* don't resolve tty0 as some programs depend on it */
3292 		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3293 			count += tty_line_name(drv, index, buf + count);
3294 		else
3295 			count += sprintf(buf + count, "%s%d",
3296 					 cs[i]->name, cs[i]->index);
3297 
3298 		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3299 	}
3300 	console_unlock();
3301 
3302 	return count;
3303 }
3304 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3305 
3306 static struct attribute *cons_dev_attrs[] = {
3307 	&dev_attr_active.attr,
3308 	NULL
3309 };
3310 
3311 ATTRIBUTE_GROUPS(cons_dev);
3312 
3313 static struct device *consdev;
3314 
console_sysfs_notify(void)3315 void console_sysfs_notify(void)
3316 {
3317 	if (consdev)
3318 		sysfs_notify(&consdev->kobj, NULL, "active");
3319 }
3320 
3321 /*
3322  * Ok, now we can initialize the rest of the tty devices and can count
3323  * on memory allocations, interrupts etc..
3324  */
tty_init(void)3325 int __init tty_init(void)
3326 {
3327 	cdev_init(&tty_cdev, &tty_fops);
3328 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3329 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3330 		panic("Couldn't register /dev/tty driver\n");
3331 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3332 
3333 	cdev_init(&console_cdev, &console_fops);
3334 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3335 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3336 		panic("Couldn't register /dev/console driver\n");
3337 	consdev = device_create_with_groups(tty_class, NULL,
3338 					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3339 					    cons_dev_groups, "console");
3340 	if (IS_ERR(consdev))
3341 		consdev = NULL;
3342 
3343 #ifdef CONFIG_VT
3344 	vty_init(&console_fops);
3345 #endif
3346 	return 0;
3347 }
3348 
3349