1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 */
5
6 /*
7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
8 * or rs-channels. It also implements echoing, cooked mode etc.
9 *
10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
11 *
12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
13 * tty_struct and tty_queue structures. Previously there was an array
14 * of 256 tty_struct's which was statically allocated, and the
15 * tty_queue structures were allocated at boot time. Both are now
16 * dynamically allocated only when the tty is open.
17 *
18 * Also restructured routines so that there is more of a separation
19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
20 * the low-level tty routines (serial.c, pty.c, console.c). This
21 * makes for cleaner and more compact code. -TYT, 9/17/92
22 *
23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
24 * which can be dynamically activated and de-activated by the line
25 * discipline handling modules (like SLIP).
26 *
27 * NOTE: pay no attention to the line discipline code (yet); its
28 * interface is still subject to change in this version...
29 * -- TYT, 1/31/92
30 *
31 * Added functionality to the OPOST tty handling. No delays, but all
32 * other bits should be there.
33 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
34 *
35 * Rewrote canonical mode and added more termios flags.
36 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
37 *
38 * Reorganized FASYNC support so mouse code can share it.
39 * -- ctm@ardi.com, 9Sep95
40 *
41 * New TIOCLINUX variants added.
42 * -- mj@k332.feld.cvut.cz, 19-Nov-95
43 *
44 * Restrict vt switching via ioctl()
45 * -- grif@cs.ucr.edu, 5-Dec-95
46 *
47 * Move console and virtual terminal code to more appropriate files,
48 * implement CONFIG_VT and generalize console device interface.
49 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
50 *
51 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
52 * -- Bill Hawes <whawes@star.net>, June 97
53 *
54 * Added devfs support.
55 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
56 *
57 * Added support for a Unix98-style ptmx device.
58 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
59 *
60 * Reduced memory usage for older ARM systems
61 * -- Russell King <rmk@arm.linux.org.uk>
62 *
63 * Move do_SAK() into process context. Less stack use in devfs functions.
64 * alloc_tty_struct() always uses kmalloc()
65 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
66 */
67
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched/signal.h>
74 #include <linux/sched/task.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/device.h>
94 #include <linux/wait.h>
95 #include <linux/bitops.h>
96 #include <linux/delay.h>
97 #include <linux/seq_file.h>
98 #include <linux/serial.h>
99 #include <linux/ratelimit.h>
100
101 #include <linux/uaccess.h>
102
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
106
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
109
110 #undef TTY_DEBUG_HANGUP
111 #ifdef TTY_DEBUG_HANGUP
112 # define tty_debug_hangup(tty, f, args...) tty_debug(tty, f, ##args)
113 #else
114 # define tty_debug_hangup(tty, f, args...) do { } while (0)
115 #endif
116
117 #define TTY_PARANOIA_CHECK 1
118 #define CHECK_TTY_COUNT 1
119
120 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
121 .c_iflag = ICRNL | IXON,
122 .c_oflag = OPOST | ONLCR,
123 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
124 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
125 ECHOCTL | ECHOKE | IEXTEN,
126 .c_cc = INIT_C_CC,
127 .c_ispeed = 38400,
128 .c_ospeed = 38400,
129 /* .c_line = N_TTY, */
130 };
131
132 EXPORT_SYMBOL(tty_std_termios);
133
134 /* This list gets poked at by procfs and various bits of boot up code. This
135 could do with some rationalisation such as pulling the tty proc function
136 into this file */
137
138 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
139
140 /* Mutex to protect creating and releasing a tty */
141 DEFINE_MUTEX(tty_mutex);
142
143 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
144 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
145 ssize_t redirected_tty_write(struct file *, const char __user *,
146 size_t, loff_t *);
147 static __poll_t tty_poll(struct file *, poll_table *);
148 static int tty_open(struct inode *, struct file *);
149 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
150 #ifdef CONFIG_COMPAT
151 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
152 unsigned long arg);
153 #else
154 #define tty_compat_ioctl NULL
155 #endif
156 static int __tty_fasync(int fd, struct file *filp, int on);
157 static int tty_fasync(int fd, struct file *filp, int on);
158 static void release_tty(struct tty_struct *tty, int idx);
159
160 /**
161 * free_tty_struct - free a disused tty
162 * @tty: tty struct to free
163 *
164 * Free the write buffers, tty queue and tty memory itself.
165 *
166 * Locking: none. Must be called after tty is definitely unused
167 */
168
free_tty_struct(struct tty_struct * tty)169 static void free_tty_struct(struct tty_struct *tty)
170 {
171 tty_ldisc_deinit(tty);
172 put_device(tty->dev);
173 kfree(tty->write_buf);
174 tty->magic = 0xDEADDEAD;
175 kfree(tty);
176 }
177
file_tty(struct file * file)178 static inline struct tty_struct *file_tty(struct file *file)
179 {
180 return ((struct tty_file_private *)file->private_data)->tty;
181 }
182
tty_alloc_file(struct file * file)183 int tty_alloc_file(struct file *file)
184 {
185 struct tty_file_private *priv;
186
187 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
188 if (!priv)
189 return -ENOMEM;
190
191 file->private_data = priv;
192
193 return 0;
194 }
195
196 /* Associate a new file with the tty structure */
tty_add_file(struct tty_struct * tty,struct file * file)197 void tty_add_file(struct tty_struct *tty, struct file *file)
198 {
199 struct tty_file_private *priv = file->private_data;
200
201 priv->tty = tty;
202 priv->file = file;
203
204 spin_lock(&tty->files_lock);
205 list_add(&priv->list, &tty->tty_files);
206 spin_unlock(&tty->files_lock);
207 }
208
209 /**
210 * tty_free_file - free file->private_data
211 *
212 * This shall be used only for fail path handling when tty_add_file was not
213 * called yet.
214 */
tty_free_file(struct file * file)215 void tty_free_file(struct file *file)
216 {
217 struct tty_file_private *priv = file->private_data;
218
219 file->private_data = NULL;
220 kfree(priv);
221 }
222
223 /* Delete file from its tty */
tty_del_file(struct file * file)224 static void tty_del_file(struct file *file)
225 {
226 struct tty_file_private *priv = file->private_data;
227 struct tty_struct *tty = priv->tty;
228
229 spin_lock(&tty->files_lock);
230 list_del(&priv->list);
231 spin_unlock(&tty->files_lock);
232 tty_free_file(file);
233 }
234
235 /**
236 * tty_name - return tty naming
237 * @tty: tty structure
238 *
239 * Convert a tty structure into a name. The name reflects the kernel
240 * naming policy and if udev is in use may not reflect user space
241 *
242 * Locking: none
243 */
244
tty_name(const struct tty_struct * tty)245 const char *tty_name(const struct tty_struct *tty)
246 {
247 if (!tty) /* Hmm. NULL pointer. That's fun. */
248 return "NULL tty";
249 return tty->name;
250 }
251
252 EXPORT_SYMBOL(tty_name);
253
tty_driver_name(const struct tty_struct * tty)254 const char *tty_driver_name(const struct tty_struct *tty)
255 {
256 if (!tty || !tty->driver)
257 return "";
258 return tty->driver->name;
259 }
260
tty_paranoia_check(struct tty_struct * tty,struct inode * inode,const char * routine)261 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
262 const char *routine)
263 {
264 #ifdef TTY_PARANOIA_CHECK
265 if (!tty) {
266 pr_warn("(%d:%d): %s: NULL tty\n",
267 imajor(inode), iminor(inode), routine);
268 return 1;
269 }
270 if (tty->magic != TTY_MAGIC) {
271 pr_warn("(%d:%d): %s: bad magic number\n",
272 imajor(inode), iminor(inode), routine);
273 return 1;
274 }
275 #endif
276 return 0;
277 }
278
279 /* Caller must hold tty_lock */
check_tty_count(struct tty_struct * tty,const char * routine)280 static int check_tty_count(struct tty_struct *tty, const char *routine)
281 {
282 #ifdef CHECK_TTY_COUNT
283 struct list_head *p;
284 int count = 0, kopen_count = 0;
285
286 spin_lock(&tty->files_lock);
287 list_for_each(p, &tty->tty_files) {
288 count++;
289 }
290 spin_unlock(&tty->files_lock);
291 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
292 tty->driver->subtype == PTY_TYPE_SLAVE &&
293 tty->link && tty->link->count)
294 count++;
295 if (tty_port_kopened(tty->port))
296 kopen_count++;
297 if (tty->count != (count + kopen_count)) {
298 tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
299 routine, tty->count, count, kopen_count);
300 return (count + kopen_count);
301 }
302 #endif
303 return 0;
304 }
305
306 /**
307 * get_tty_driver - find device of a tty
308 * @dev_t: device identifier
309 * @index: returns the index of the tty
310 *
311 * This routine returns a tty driver structure, given a device number
312 * and also passes back the index number.
313 *
314 * Locking: caller must hold tty_mutex
315 */
316
get_tty_driver(dev_t device,int * index)317 static struct tty_driver *get_tty_driver(dev_t device, int *index)
318 {
319 struct tty_driver *p;
320
321 list_for_each_entry(p, &tty_drivers, tty_drivers) {
322 dev_t base = MKDEV(p->major, p->minor_start);
323 if (device < base || device >= base + p->num)
324 continue;
325 *index = device - base;
326 return tty_driver_kref_get(p);
327 }
328 return NULL;
329 }
330
331 /**
332 * tty_dev_name_to_number - return dev_t for device name
333 * @name: user space name of device under /dev
334 * @number: pointer to dev_t that this function will populate
335 *
336 * This function converts device names like ttyS0 or ttyUSB1 into dev_t
337 * like (4, 64) or (188, 1). If no corresponding driver is registered then
338 * the function returns -ENODEV.
339 *
340 * Locking: this acquires tty_mutex to protect the tty_drivers list from
341 * being modified while we are traversing it, and makes sure to
342 * release it before exiting.
343 */
tty_dev_name_to_number(const char * name,dev_t * number)344 int tty_dev_name_to_number(const char *name, dev_t *number)
345 {
346 struct tty_driver *p;
347 int ret;
348 int index, prefix_length = 0;
349 const char *str;
350
351 for (str = name; *str && !isdigit(*str); str++)
352 ;
353
354 if (!*str)
355 return -EINVAL;
356
357 ret = kstrtoint(str, 10, &index);
358 if (ret)
359 return ret;
360
361 prefix_length = str - name;
362 mutex_lock(&tty_mutex);
363
364 list_for_each_entry(p, &tty_drivers, tty_drivers)
365 if (prefix_length == strlen(p->name) && strncmp(name,
366 p->name, prefix_length) == 0) {
367 if (index < p->num) {
368 *number = MKDEV(p->major, p->minor_start + index);
369 goto out;
370 }
371 }
372
373 /* if here then driver wasn't found */
374 ret = -ENODEV;
375 out:
376 mutex_unlock(&tty_mutex);
377 return ret;
378 }
379 EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
380
381 #ifdef CONFIG_CONSOLE_POLL
382
383 /**
384 * tty_find_polling_driver - find device of a polled tty
385 * @name: name string to match
386 * @line: pointer to resulting tty line nr
387 *
388 * This routine returns a tty driver structure, given a name
389 * and the condition that the tty driver is capable of polled
390 * operation.
391 */
tty_find_polling_driver(char * name,int * line)392 struct tty_driver *tty_find_polling_driver(char *name, int *line)
393 {
394 struct tty_driver *p, *res = NULL;
395 int tty_line = 0;
396 int len;
397 char *str, *stp;
398
399 for (str = name; *str; str++)
400 if ((*str >= '0' && *str <= '9') || *str == ',')
401 break;
402 if (!*str)
403 return NULL;
404
405 len = str - name;
406 tty_line = simple_strtoul(str, &str, 10);
407
408 mutex_lock(&tty_mutex);
409 /* Search through the tty devices to look for a match */
410 list_for_each_entry(p, &tty_drivers, tty_drivers) {
411 if (strncmp(name, p->name, len) != 0)
412 continue;
413 stp = str;
414 if (*stp == ',')
415 stp++;
416 if (*stp == '\0')
417 stp = NULL;
418
419 if (tty_line >= 0 && tty_line < p->num && p->ops &&
420 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
421 res = tty_driver_kref_get(p);
422 *line = tty_line;
423 break;
424 }
425 }
426 mutex_unlock(&tty_mutex);
427
428 return res;
429 }
430 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
431 #endif
432
hung_up_tty_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)433 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
434 size_t count, loff_t *ppos)
435 {
436 return 0;
437 }
438
hung_up_tty_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)439 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
440 size_t count, loff_t *ppos)
441 {
442 return -EIO;
443 }
444
445 /* No kernel lock held - none needed ;) */
hung_up_tty_poll(struct file * filp,poll_table * wait)446 static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
447 {
448 return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
449 }
450
hung_up_tty_ioctl(struct file * file,unsigned int cmd,unsigned long arg)451 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
452 unsigned long arg)
453 {
454 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
455 }
456
hung_up_tty_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)457 static long hung_up_tty_compat_ioctl(struct file *file,
458 unsigned int cmd, unsigned long arg)
459 {
460 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
461 }
462
hung_up_tty_fasync(int fd,struct file * file,int on)463 static int hung_up_tty_fasync(int fd, struct file *file, int on)
464 {
465 return -ENOTTY;
466 }
467
tty_show_fdinfo(struct seq_file * m,struct file * file)468 static void tty_show_fdinfo(struct seq_file *m, struct file *file)
469 {
470 struct tty_struct *tty = file_tty(file);
471
472 if (tty && tty->ops && tty->ops->show_fdinfo)
473 tty->ops->show_fdinfo(tty, m);
474 }
475
476 static const struct file_operations tty_fops = {
477 .llseek = no_llseek,
478 .read = tty_read,
479 .write = tty_write,
480 .poll = tty_poll,
481 .unlocked_ioctl = tty_ioctl,
482 .compat_ioctl = tty_compat_ioctl,
483 .open = tty_open,
484 .release = tty_release,
485 .fasync = tty_fasync,
486 .show_fdinfo = tty_show_fdinfo,
487 };
488
489 static const struct file_operations console_fops = {
490 .llseek = no_llseek,
491 .read = tty_read,
492 .write = redirected_tty_write,
493 .poll = tty_poll,
494 .unlocked_ioctl = tty_ioctl,
495 .compat_ioctl = tty_compat_ioctl,
496 .open = tty_open,
497 .release = tty_release,
498 .fasync = tty_fasync,
499 };
500
501 static const struct file_operations hung_up_tty_fops = {
502 .llseek = no_llseek,
503 .read = hung_up_tty_read,
504 .write = hung_up_tty_write,
505 .poll = hung_up_tty_poll,
506 .unlocked_ioctl = hung_up_tty_ioctl,
507 .compat_ioctl = hung_up_tty_compat_ioctl,
508 .release = tty_release,
509 .fasync = hung_up_tty_fasync,
510 };
511
512 static DEFINE_SPINLOCK(redirect_lock);
513 static struct file *redirect;
514
515 /**
516 * tty_wakeup - request more data
517 * @tty: terminal
518 *
519 * Internal and external helper for wakeups of tty. This function
520 * informs the line discipline if present that the driver is ready
521 * to receive more output data.
522 */
523
tty_wakeup(struct tty_struct * tty)524 void tty_wakeup(struct tty_struct *tty)
525 {
526 struct tty_ldisc *ld;
527
528 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
529 ld = tty_ldisc_ref(tty);
530 if (ld) {
531 if (ld->ops->write_wakeup)
532 ld->ops->write_wakeup(tty);
533 tty_ldisc_deref(ld);
534 }
535 }
536 wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
537 }
538
539 EXPORT_SYMBOL_GPL(tty_wakeup);
540
541 /**
542 * __tty_hangup - actual handler for hangup events
543 * @work: tty device
544 *
545 * This can be called by a "kworker" kernel thread. That is process
546 * synchronous but doesn't hold any locks, so we need to make sure we
547 * have the appropriate locks for what we're doing.
548 *
549 * The hangup event clears any pending redirections onto the hung up
550 * device. It ensures future writes will error and it does the needed
551 * line discipline hangup and signal delivery. The tty object itself
552 * remains intact.
553 *
554 * Locking:
555 * BTM
556 * redirect lock for undoing redirection
557 * file list lock for manipulating list of ttys
558 * tty_ldiscs_lock from called functions
559 * termios_rwsem resetting termios data
560 * tasklist_lock to walk task list for hangup event
561 * ->siglock to protect ->signal/->sighand
562 */
__tty_hangup(struct tty_struct * tty,int exit_session)563 static void __tty_hangup(struct tty_struct *tty, int exit_session)
564 {
565 struct file *cons_filp = NULL;
566 struct file *filp, *f = NULL;
567 struct tty_file_private *priv;
568 int closecount = 0, n;
569 int refs;
570
571 if (!tty)
572 return;
573
574
575 spin_lock(&redirect_lock);
576 if (redirect && file_tty(redirect) == tty) {
577 f = redirect;
578 redirect = NULL;
579 }
580 spin_unlock(&redirect_lock);
581
582 tty_lock(tty);
583
584 if (test_bit(TTY_HUPPED, &tty->flags)) {
585 tty_unlock(tty);
586 return;
587 }
588
589 /*
590 * Some console devices aren't actually hung up for technical and
591 * historical reasons, which can lead to indefinite interruptible
592 * sleep in n_tty_read(). The following explicitly tells
593 * n_tty_read() to abort readers.
594 */
595 set_bit(TTY_HUPPING, &tty->flags);
596
597 /* inuse_filps is protected by the single tty lock,
598 this really needs to change if we want to flush the
599 workqueue with the lock held */
600 check_tty_count(tty, "tty_hangup");
601
602 spin_lock(&tty->files_lock);
603 /* This breaks for file handles being sent over AF_UNIX sockets ? */
604 list_for_each_entry(priv, &tty->tty_files, list) {
605 filp = priv->file;
606 if (filp->f_op->write == redirected_tty_write)
607 cons_filp = filp;
608 if (filp->f_op->write != tty_write)
609 continue;
610 closecount++;
611 __tty_fasync(-1, filp, 0); /* can't block */
612 filp->f_op = &hung_up_tty_fops;
613 }
614 spin_unlock(&tty->files_lock);
615
616 refs = tty_signal_session_leader(tty, exit_session);
617 /* Account for the p->signal references we killed */
618 while (refs--)
619 tty_kref_put(tty);
620
621 tty_ldisc_hangup(tty, cons_filp != NULL);
622
623 spin_lock_irq(&tty->ctrl_lock);
624 clear_bit(TTY_THROTTLED, &tty->flags);
625 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
626 put_pid(tty->session);
627 put_pid(tty->pgrp);
628 tty->session = NULL;
629 tty->pgrp = NULL;
630 tty->ctrl_status = 0;
631 spin_unlock_irq(&tty->ctrl_lock);
632
633 /*
634 * If one of the devices matches a console pointer, we
635 * cannot just call hangup() because that will cause
636 * tty->count and state->count to go out of sync.
637 * So we just call close() the right number of times.
638 */
639 if (cons_filp) {
640 if (tty->ops->close)
641 for (n = 0; n < closecount; n++)
642 tty->ops->close(tty, cons_filp);
643 } else if (tty->ops->hangup)
644 tty->ops->hangup(tty);
645 /*
646 * We don't want to have driver/ldisc interactions beyond the ones
647 * we did here. The driver layer expects no calls after ->hangup()
648 * from the ldisc side, which is now guaranteed.
649 */
650 set_bit(TTY_HUPPED, &tty->flags);
651 clear_bit(TTY_HUPPING, &tty->flags);
652 tty_unlock(tty);
653
654 if (f)
655 fput(f);
656 }
657
do_tty_hangup(struct work_struct * work)658 static void do_tty_hangup(struct work_struct *work)
659 {
660 struct tty_struct *tty =
661 container_of(work, struct tty_struct, hangup_work);
662
663 __tty_hangup(tty, 0);
664 }
665
666 /**
667 * tty_hangup - trigger a hangup event
668 * @tty: tty to hangup
669 *
670 * A carrier loss (virtual or otherwise) has occurred on this like
671 * schedule a hangup sequence to run after this event.
672 */
673
tty_hangup(struct tty_struct * tty)674 void tty_hangup(struct tty_struct *tty)
675 {
676 tty_debug_hangup(tty, "hangup\n");
677 schedule_work(&tty->hangup_work);
678 }
679
680 EXPORT_SYMBOL(tty_hangup);
681
682 /**
683 * tty_vhangup - process vhangup
684 * @tty: tty to hangup
685 *
686 * The user has asked via system call for the terminal to be hung up.
687 * We do this synchronously so that when the syscall returns the process
688 * is complete. That guarantee is necessary for security reasons.
689 */
690
tty_vhangup(struct tty_struct * tty)691 void tty_vhangup(struct tty_struct *tty)
692 {
693 tty_debug_hangup(tty, "vhangup\n");
694 __tty_hangup(tty, 0);
695 }
696
697 EXPORT_SYMBOL(tty_vhangup);
698
699
700 /**
701 * tty_vhangup_self - process vhangup for own ctty
702 *
703 * Perform a vhangup on the current controlling tty
704 */
705
tty_vhangup_self(void)706 void tty_vhangup_self(void)
707 {
708 struct tty_struct *tty;
709
710 tty = get_current_tty();
711 if (tty) {
712 tty_vhangup(tty);
713 tty_kref_put(tty);
714 }
715 }
716
717 /**
718 * tty_vhangup_session - hangup session leader exit
719 * @tty: tty to hangup
720 *
721 * The session leader is exiting and hanging up its controlling terminal.
722 * Every process in the foreground process group is signalled SIGHUP.
723 *
724 * We do this synchronously so that when the syscall returns the process
725 * is complete. That guarantee is necessary for security reasons.
726 */
727
tty_vhangup_session(struct tty_struct * tty)728 void tty_vhangup_session(struct tty_struct *tty)
729 {
730 tty_debug_hangup(tty, "session hangup\n");
731 __tty_hangup(tty, 1);
732 }
733
734 /**
735 * tty_hung_up_p - was tty hung up
736 * @filp: file pointer of tty
737 *
738 * Return true if the tty has been subject to a vhangup or a carrier
739 * loss
740 */
741
tty_hung_up_p(struct file * filp)742 int tty_hung_up_p(struct file *filp)
743 {
744 return (filp && filp->f_op == &hung_up_tty_fops);
745 }
746
747 EXPORT_SYMBOL(tty_hung_up_p);
748
749 /**
750 * stop_tty - propagate flow control
751 * @tty: tty to stop
752 *
753 * Perform flow control to the driver. May be called
754 * on an already stopped device and will not re-call the driver
755 * method.
756 *
757 * This functionality is used by both the line disciplines for
758 * halting incoming flow and by the driver. It may therefore be
759 * called from any context, may be under the tty atomic_write_lock
760 * but not always.
761 *
762 * Locking:
763 * flow_lock
764 */
765
__stop_tty(struct tty_struct * tty)766 void __stop_tty(struct tty_struct *tty)
767 {
768 if (tty->stopped)
769 return;
770 tty->stopped = 1;
771 if (tty->ops->stop)
772 tty->ops->stop(tty);
773 }
774
stop_tty(struct tty_struct * tty)775 void stop_tty(struct tty_struct *tty)
776 {
777 unsigned long flags;
778
779 spin_lock_irqsave(&tty->flow_lock, flags);
780 __stop_tty(tty);
781 spin_unlock_irqrestore(&tty->flow_lock, flags);
782 }
783 EXPORT_SYMBOL(stop_tty);
784
785 /**
786 * start_tty - propagate flow control
787 * @tty: tty to start
788 *
789 * Start a tty that has been stopped if at all possible. If this
790 * tty was previous stopped and is now being started, the driver
791 * start method is invoked and the line discipline woken.
792 *
793 * Locking:
794 * flow_lock
795 */
796
__start_tty(struct tty_struct * tty)797 void __start_tty(struct tty_struct *tty)
798 {
799 if (!tty->stopped || tty->flow_stopped)
800 return;
801 tty->stopped = 0;
802 if (tty->ops->start)
803 tty->ops->start(tty);
804 tty_wakeup(tty);
805 }
806
start_tty(struct tty_struct * tty)807 void start_tty(struct tty_struct *tty)
808 {
809 unsigned long flags;
810
811 spin_lock_irqsave(&tty->flow_lock, flags);
812 __start_tty(tty);
813 spin_unlock_irqrestore(&tty->flow_lock, flags);
814 }
815 EXPORT_SYMBOL(start_tty);
816
tty_update_time(struct timespec64 * time)817 static void tty_update_time(struct timespec64 *time)
818 {
819 time64_t sec = ktime_get_real_seconds();
820
821 /*
822 * We only care if the two values differ in anything other than the
823 * lower three bits (i.e every 8 seconds). If so, then we can update
824 * the time of the tty device, otherwise it could be construded as a
825 * security leak to let userspace know the exact timing of the tty.
826 */
827 if ((sec ^ time->tv_sec) & ~7)
828 time->tv_sec = sec;
829 }
830
831 /**
832 * tty_read - read method for tty device files
833 * @file: pointer to tty file
834 * @buf: user buffer
835 * @count: size of user buffer
836 * @ppos: unused
837 *
838 * Perform the read system call function on this terminal device. Checks
839 * for hung up devices before calling the line discipline method.
840 *
841 * Locking:
842 * Locks the line discipline internally while needed. Multiple
843 * read calls may be outstanding in parallel.
844 */
845
tty_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)846 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
847 loff_t *ppos)
848 {
849 int i;
850 struct inode *inode = file_inode(file);
851 struct tty_struct *tty = file_tty(file);
852 struct tty_ldisc *ld;
853
854 if (tty_paranoia_check(tty, inode, "tty_read"))
855 return -EIO;
856 if (!tty || tty_io_error(tty))
857 return -EIO;
858
859 /* We want to wait for the line discipline to sort out in this
860 situation */
861 ld = tty_ldisc_ref_wait(tty);
862 if (!ld)
863 return hung_up_tty_read(file, buf, count, ppos);
864 if (ld->ops->read)
865 i = ld->ops->read(tty, file, buf, count);
866 else
867 i = -EIO;
868 tty_ldisc_deref(ld);
869
870 if (i > 0)
871 tty_update_time(&inode->i_atime);
872
873 return i;
874 }
875
tty_write_unlock(struct tty_struct * tty)876 static void tty_write_unlock(struct tty_struct *tty)
877 {
878 mutex_unlock(&tty->atomic_write_lock);
879 wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
880 }
881
tty_write_lock(struct tty_struct * tty,int ndelay)882 static int tty_write_lock(struct tty_struct *tty, int ndelay)
883 {
884 if (!mutex_trylock(&tty->atomic_write_lock)) {
885 if (ndelay)
886 return -EAGAIN;
887 if (mutex_lock_interruptible(&tty->atomic_write_lock))
888 return -ERESTARTSYS;
889 }
890 return 0;
891 }
892
893 /*
894 * Split writes up in sane blocksizes to avoid
895 * denial-of-service type attacks
896 */
do_tty_write(ssize_t (* write)(struct tty_struct *,struct file *,const unsigned char *,size_t),struct tty_struct * tty,struct file * file,const char __user * buf,size_t count)897 static inline ssize_t do_tty_write(
898 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
899 struct tty_struct *tty,
900 struct file *file,
901 const char __user *buf,
902 size_t count)
903 {
904 ssize_t ret, written = 0;
905 unsigned int chunk;
906
907 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
908 if (ret < 0)
909 return ret;
910
911 /*
912 * We chunk up writes into a temporary buffer. This
913 * simplifies low-level drivers immensely, since they
914 * don't have locking issues and user mode accesses.
915 *
916 * But if TTY_NO_WRITE_SPLIT is set, we should use a
917 * big chunk-size..
918 *
919 * The default chunk-size is 2kB, because the NTTY
920 * layer has problems with bigger chunks. It will
921 * claim to be able to handle more characters than
922 * it actually does.
923 *
924 * FIXME: This can probably go away now except that 64K chunks
925 * are too likely to fail unless switched to vmalloc...
926 */
927 chunk = 2048;
928 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
929 chunk = 65536;
930 if (count < chunk)
931 chunk = count;
932
933 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
934 if (tty->write_cnt < chunk) {
935 unsigned char *buf_chunk;
936
937 if (chunk < 1024)
938 chunk = 1024;
939
940 buf_chunk = kmalloc(chunk, GFP_KERNEL);
941 if (!buf_chunk) {
942 ret = -ENOMEM;
943 goto out;
944 }
945 kfree(tty->write_buf);
946 tty->write_cnt = chunk;
947 tty->write_buf = buf_chunk;
948 }
949
950 /* Do the write .. */
951 for (;;) {
952 size_t size = count;
953 if (size > chunk)
954 size = chunk;
955 ret = -EFAULT;
956 if (copy_from_user(tty->write_buf, buf, size))
957 break;
958 ret = write(tty, file, tty->write_buf, size);
959 if (ret <= 0)
960 break;
961 written += ret;
962 buf += ret;
963 count -= ret;
964 if (!count)
965 break;
966 ret = -ERESTARTSYS;
967 if (signal_pending(current))
968 break;
969 cond_resched();
970 }
971 if (written) {
972 tty_update_time(&file_inode(file)->i_mtime);
973 ret = written;
974 }
975 out:
976 tty_write_unlock(tty);
977 return ret;
978 }
979
980 /**
981 * tty_write_message - write a message to a certain tty, not just the console.
982 * @tty: the destination tty_struct
983 * @msg: the message to write
984 *
985 * This is used for messages that need to be redirected to a specific tty.
986 * We don't put it into the syslog queue right now maybe in the future if
987 * really needed.
988 *
989 * We must still hold the BTM and test the CLOSING flag for the moment.
990 */
991
tty_write_message(struct tty_struct * tty,char * msg)992 void tty_write_message(struct tty_struct *tty, char *msg)
993 {
994 if (tty) {
995 mutex_lock(&tty->atomic_write_lock);
996 tty_lock(tty);
997 if (tty->ops->write && tty->count > 0)
998 tty->ops->write(tty, msg, strlen(msg));
999 tty_unlock(tty);
1000 tty_write_unlock(tty);
1001 }
1002 return;
1003 }
1004
1005
1006 /**
1007 * tty_write - write method for tty device file
1008 * @file: tty file pointer
1009 * @buf: user data to write
1010 * @count: bytes to write
1011 * @ppos: unused
1012 *
1013 * Write data to a tty device via the line discipline.
1014 *
1015 * Locking:
1016 * Locks the line discipline as required
1017 * Writes to the tty driver are serialized by the atomic_write_lock
1018 * and are then processed in chunks to the device. The line discipline
1019 * write method will not be invoked in parallel for each device.
1020 */
1021
tty_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1022 static ssize_t tty_write(struct file *file, const char __user *buf,
1023 size_t count, loff_t *ppos)
1024 {
1025 struct tty_struct *tty = file_tty(file);
1026 struct tty_ldisc *ld;
1027 ssize_t ret;
1028
1029 if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1030 return -EIO;
1031 if (!tty || !tty->ops->write || tty_io_error(tty))
1032 return -EIO;
1033 /* Short term debug to catch buggy drivers */
1034 if (tty->ops->write_room == NULL)
1035 tty_err(tty, "missing write_room method\n");
1036 ld = tty_ldisc_ref_wait(tty);
1037 if (!ld)
1038 return hung_up_tty_write(file, buf, count, ppos);
1039 if (!ld->ops->write)
1040 ret = -EIO;
1041 else
1042 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1043 tty_ldisc_deref(ld);
1044 return ret;
1045 }
1046
redirected_tty_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1047 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1048 size_t count, loff_t *ppos)
1049 {
1050 struct file *p = NULL;
1051
1052 spin_lock(&redirect_lock);
1053 if (redirect)
1054 p = get_file(redirect);
1055 spin_unlock(&redirect_lock);
1056
1057 if (p) {
1058 ssize_t res;
1059 res = vfs_write(p, buf, count, &p->f_pos);
1060 fput(p);
1061 return res;
1062 }
1063 return tty_write(file, buf, count, ppos);
1064 }
1065
1066 /**
1067 * tty_send_xchar - send priority character
1068 *
1069 * Send a high priority character to the tty even if stopped
1070 *
1071 * Locking: none for xchar method, write ordering for write method.
1072 */
1073
tty_send_xchar(struct tty_struct * tty,char ch)1074 int tty_send_xchar(struct tty_struct *tty, char ch)
1075 {
1076 int was_stopped = tty->stopped;
1077
1078 if (tty->ops->send_xchar) {
1079 down_read(&tty->termios_rwsem);
1080 tty->ops->send_xchar(tty, ch);
1081 up_read(&tty->termios_rwsem);
1082 return 0;
1083 }
1084
1085 if (tty_write_lock(tty, 0) < 0)
1086 return -ERESTARTSYS;
1087
1088 down_read(&tty->termios_rwsem);
1089 if (was_stopped)
1090 start_tty(tty);
1091 tty->ops->write(tty, &ch, 1);
1092 if (was_stopped)
1093 stop_tty(tty);
1094 up_read(&tty->termios_rwsem);
1095 tty_write_unlock(tty);
1096 return 0;
1097 }
1098
1099 static char ptychar[] = "pqrstuvwxyzabcde";
1100
1101 /**
1102 * pty_line_name - generate name for a pty
1103 * @driver: the tty driver in use
1104 * @index: the minor number
1105 * @p: output buffer of at least 6 bytes
1106 *
1107 * Generate a name from a driver reference and write it to the output
1108 * buffer.
1109 *
1110 * Locking: None
1111 */
pty_line_name(struct tty_driver * driver,int index,char * p)1112 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1113 {
1114 int i = index + driver->name_base;
1115 /* ->name is initialized to "ttyp", but "tty" is expected */
1116 sprintf(p, "%s%c%x",
1117 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1118 ptychar[i >> 4 & 0xf], i & 0xf);
1119 }
1120
1121 /**
1122 * tty_line_name - generate name for a tty
1123 * @driver: the tty driver in use
1124 * @index: the minor number
1125 * @p: output buffer of at least 7 bytes
1126 *
1127 * Generate a name from a driver reference and write it to the output
1128 * buffer.
1129 *
1130 * Locking: None
1131 */
tty_line_name(struct tty_driver * driver,int index,char * p)1132 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1133 {
1134 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1135 return sprintf(p, "%s", driver->name);
1136 else
1137 return sprintf(p, "%s%d", driver->name,
1138 index + driver->name_base);
1139 }
1140
1141 /**
1142 * tty_driver_lookup_tty() - find an existing tty, if any
1143 * @driver: the driver for the tty
1144 * @idx: the minor number
1145 *
1146 * Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1147 * driver lookup() method returns an error.
1148 *
1149 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1150 */
tty_driver_lookup_tty(struct tty_driver * driver,struct file * file,int idx)1151 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1152 struct file *file, int idx)
1153 {
1154 struct tty_struct *tty;
1155
1156 if (driver->ops->lookup)
1157 if (!file)
1158 tty = ERR_PTR(-EIO);
1159 else
1160 tty = driver->ops->lookup(driver, file, idx);
1161 else
1162 tty = driver->ttys[idx];
1163
1164 if (!IS_ERR(tty))
1165 tty_kref_get(tty);
1166 return tty;
1167 }
1168
1169 /**
1170 * tty_init_termios - helper for termios setup
1171 * @tty: the tty to set up
1172 *
1173 * Initialise the termios structures for this tty. Thus runs under
1174 * the tty_mutex currently so we can be relaxed about ordering.
1175 */
1176
tty_init_termios(struct tty_struct * tty)1177 void tty_init_termios(struct tty_struct *tty)
1178 {
1179 struct ktermios *tp;
1180 int idx = tty->index;
1181
1182 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1183 tty->termios = tty->driver->init_termios;
1184 else {
1185 /* Check for lazy saved data */
1186 tp = tty->driver->termios[idx];
1187 if (tp != NULL) {
1188 tty->termios = *tp;
1189 tty->termios.c_line = tty->driver->init_termios.c_line;
1190 } else
1191 tty->termios = tty->driver->init_termios;
1192 }
1193 /* Compatibility until drivers always set this */
1194 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1195 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1196 }
1197 EXPORT_SYMBOL_GPL(tty_init_termios);
1198
tty_standard_install(struct tty_driver * driver,struct tty_struct * tty)1199 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1200 {
1201 tty_init_termios(tty);
1202 tty_driver_kref_get(driver);
1203 tty->count++;
1204 driver->ttys[tty->index] = tty;
1205 return 0;
1206 }
1207 EXPORT_SYMBOL_GPL(tty_standard_install);
1208
1209 /**
1210 * tty_driver_install_tty() - install a tty entry in the driver
1211 * @driver: the driver for the tty
1212 * @tty: the tty
1213 *
1214 * Install a tty object into the driver tables. The tty->index field
1215 * will be set by the time this is called. This method is responsible
1216 * for ensuring any need additional structures are allocated and
1217 * configured.
1218 *
1219 * Locking: tty_mutex for now
1220 */
tty_driver_install_tty(struct tty_driver * driver,struct tty_struct * tty)1221 static int tty_driver_install_tty(struct tty_driver *driver,
1222 struct tty_struct *tty)
1223 {
1224 return driver->ops->install ? driver->ops->install(driver, tty) :
1225 tty_standard_install(driver, tty);
1226 }
1227
1228 /**
1229 * tty_driver_remove_tty() - remove a tty from the driver tables
1230 * @driver: the driver for the tty
1231 * @idx: the minor number
1232 *
1233 * Remvoe a tty object from the driver tables. The tty->index field
1234 * will be set by the time this is called.
1235 *
1236 * Locking: tty_mutex for now
1237 */
tty_driver_remove_tty(struct tty_driver * driver,struct tty_struct * tty)1238 static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1239 {
1240 if (driver->ops->remove)
1241 driver->ops->remove(driver, tty);
1242 else
1243 driver->ttys[tty->index] = NULL;
1244 }
1245
1246 /*
1247 * tty_reopen() - fast re-open of an open tty
1248 * @tty - the tty to open
1249 *
1250 * Return 0 on success, -errno on error.
1251 * Re-opens on master ptys are not allowed and return -EIO.
1252 *
1253 * Locking: Caller must hold tty_lock
1254 */
tty_reopen(struct tty_struct * tty)1255 static int tty_reopen(struct tty_struct *tty)
1256 {
1257 struct tty_driver *driver = tty->driver;
1258 int retval;
1259
1260 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1261 driver->subtype == PTY_TYPE_MASTER)
1262 return -EIO;
1263
1264 if (!tty->count)
1265 return -EAGAIN;
1266
1267 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1268 return -EBUSY;
1269
1270 tty->count++;
1271
1272 if (tty->ldisc)
1273 return 0;
1274
1275 retval = tty_ldisc_reinit(tty, tty->termios.c_line);
1276 if (retval)
1277 tty->count--;
1278
1279 return retval;
1280 }
1281
1282 /**
1283 * tty_init_dev - initialise a tty device
1284 * @driver: tty driver we are opening a device on
1285 * @idx: device index
1286 * @ret_tty: returned tty structure
1287 *
1288 * Prepare a tty device. This may not be a "new" clean device but
1289 * could also be an active device. The pty drivers require special
1290 * handling because of this.
1291 *
1292 * Locking:
1293 * The function is called under the tty_mutex, which
1294 * protects us from the tty struct or driver itself going away.
1295 *
1296 * On exit the tty device has the line discipline attached and
1297 * a reference count of 1. If a pair was created for pty/tty use
1298 * and the other was a pty master then it too has a reference count of 1.
1299 *
1300 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1301 * failed open. The new code protects the open with a mutex, so it's
1302 * really quite straightforward. The mutex locking can probably be
1303 * relaxed for the (most common) case of reopening a tty.
1304 */
1305
tty_init_dev(struct tty_driver * driver,int idx)1306 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1307 {
1308 struct tty_struct *tty;
1309 int retval;
1310
1311 /*
1312 * First time open is complex, especially for PTY devices.
1313 * This code guarantees that either everything succeeds and the
1314 * TTY is ready for operation, or else the table slots are vacated
1315 * and the allocated memory released. (Except that the termios
1316 * may be retained.)
1317 */
1318
1319 if (!try_module_get(driver->owner))
1320 return ERR_PTR(-ENODEV);
1321
1322 tty = alloc_tty_struct(driver, idx);
1323 if (!tty) {
1324 retval = -ENOMEM;
1325 goto err_module_put;
1326 }
1327
1328 tty_lock(tty);
1329 retval = tty_driver_install_tty(driver, tty);
1330 if (retval < 0)
1331 goto err_free_tty;
1332
1333 if (!tty->port)
1334 tty->port = driver->ports[idx];
1335
1336 WARN_RATELIMIT(!tty->port,
1337 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1338 __func__, tty->driver->name);
1339
1340 retval = tty_ldisc_lock(tty, 5 * HZ);
1341 if (retval)
1342 goto err_release_lock;
1343 tty->port->itty = tty;
1344
1345 /*
1346 * Structures all installed ... call the ldisc open routines.
1347 * If we fail here just call release_tty to clean up. No need
1348 * to decrement the use counts, as release_tty doesn't care.
1349 */
1350 retval = tty_ldisc_setup(tty, tty->link);
1351 if (retval)
1352 goto err_release_tty;
1353 tty_ldisc_unlock(tty);
1354 /* Return the tty locked so that it cannot vanish under the caller */
1355 return tty;
1356
1357 err_free_tty:
1358 tty_unlock(tty);
1359 free_tty_struct(tty);
1360 err_module_put:
1361 module_put(driver->owner);
1362 return ERR_PTR(retval);
1363
1364 /* call the tty release_tty routine to clean out this slot */
1365 err_release_tty:
1366 tty_ldisc_unlock(tty);
1367 tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1368 retval, idx);
1369 err_release_lock:
1370 tty_unlock(tty);
1371 release_tty(tty, idx);
1372 return ERR_PTR(retval);
1373 }
1374
tty_free_termios(struct tty_struct * tty)1375 static void tty_free_termios(struct tty_struct *tty)
1376 {
1377 struct ktermios *tp;
1378 int idx = tty->index;
1379
1380 /* If the port is going to reset then it has no termios to save */
1381 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1382 return;
1383
1384 /* Stash the termios data */
1385 tp = tty->driver->termios[idx];
1386 if (tp == NULL) {
1387 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1388 if (tp == NULL)
1389 return;
1390 tty->driver->termios[idx] = tp;
1391 }
1392 *tp = tty->termios;
1393 }
1394
1395 /**
1396 * tty_flush_works - flush all works of a tty/pty pair
1397 * @tty: tty device to flush works for (or either end of a pty pair)
1398 *
1399 * Sync flush all works belonging to @tty (and the 'other' tty).
1400 */
tty_flush_works(struct tty_struct * tty)1401 static void tty_flush_works(struct tty_struct *tty)
1402 {
1403 flush_work(&tty->SAK_work);
1404 flush_work(&tty->hangup_work);
1405 if (tty->link) {
1406 flush_work(&tty->link->SAK_work);
1407 flush_work(&tty->link->hangup_work);
1408 }
1409 }
1410
1411 /**
1412 * release_one_tty - release tty structure memory
1413 * @kref: kref of tty we are obliterating
1414 *
1415 * Releases memory associated with a tty structure, and clears out the
1416 * driver table slots. This function is called when a device is no longer
1417 * in use. It also gets called when setup of a device fails.
1418 *
1419 * Locking:
1420 * takes the file list lock internally when working on the list
1421 * of ttys that the driver keeps.
1422 *
1423 * This method gets called from a work queue so that the driver private
1424 * cleanup ops can sleep (needed for USB at least)
1425 */
release_one_tty(struct work_struct * work)1426 static void release_one_tty(struct work_struct *work)
1427 {
1428 struct tty_struct *tty =
1429 container_of(work, struct tty_struct, hangup_work);
1430 struct tty_driver *driver = tty->driver;
1431 struct module *owner = driver->owner;
1432
1433 if (tty->ops->cleanup)
1434 tty->ops->cleanup(tty);
1435
1436 tty->magic = 0;
1437 tty_driver_kref_put(driver);
1438 module_put(owner);
1439
1440 spin_lock(&tty->files_lock);
1441 list_del_init(&tty->tty_files);
1442 spin_unlock(&tty->files_lock);
1443
1444 put_pid(tty->pgrp);
1445 put_pid(tty->session);
1446 free_tty_struct(tty);
1447 }
1448
queue_release_one_tty(struct kref * kref)1449 static void queue_release_one_tty(struct kref *kref)
1450 {
1451 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1452
1453 /* The hangup queue is now free so we can reuse it rather than
1454 waste a chunk of memory for each port */
1455 INIT_WORK(&tty->hangup_work, release_one_tty);
1456 schedule_work(&tty->hangup_work);
1457 }
1458
1459 /**
1460 * tty_kref_put - release a tty kref
1461 * @tty: tty device
1462 *
1463 * Release a reference to a tty device and if need be let the kref
1464 * layer destruct the object for us
1465 */
1466
tty_kref_put(struct tty_struct * tty)1467 void tty_kref_put(struct tty_struct *tty)
1468 {
1469 if (tty)
1470 kref_put(&tty->kref, queue_release_one_tty);
1471 }
1472 EXPORT_SYMBOL(tty_kref_put);
1473
1474 /**
1475 * release_tty - release tty structure memory
1476 *
1477 * Release both @tty and a possible linked partner (think pty pair),
1478 * and decrement the refcount of the backing module.
1479 *
1480 * Locking:
1481 * tty_mutex
1482 * takes the file list lock internally when working on the list
1483 * of ttys that the driver keeps.
1484 *
1485 */
release_tty(struct tty_struct * tty,int idx)1486 static void release_tty(struct tty_struct *tty, int idx)
1487 {
1488 /* This should always be true but check for the moment */
1489 WARN_ON(tty->index != idx);
1490 WARN_ON(!mutex_is_locked(&tty_mutex));
1491 if (tty->ops->shutdown)
1492 tty->ops->shutdown(tty);
1493 tty_free_termios(tty);
1494 tty_driver_remove_tty(tty->driver, tty);
1495 tty->port->itty = NULL;
1496 if (tty->link)
1497 tty->link->port->itty = NULL;
1498 tty_buffer_cancel_work(tty->port);
1499 if (tty->link)
1500 tty_buffer_cancel_work(tty->link->port);
1501
1502 tty_kref_put(tty->link);
1503 tty_kref_put(tty);
1504 }
1505
1506 /**
1507 * tty_release_checks - check a tty before real release
1508 * @tty: tty to check
1509 * @o_tty: link of @tty (if any)
1510 * @idx: index of the tty
1511 *
1512 * Performs some paranoid checking before true release of the @tty.
1513 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1514 */
tty_release_checks(struct tty_struct * tty,int idx)1515 static int tty_release_checks(struct tty_struct *tty, int idx)
1516 {
1517 #ifdef TTY_PARANOIA_CHECK
1518 if (idx < 0 || idx >= tty->driver->num) {
1519 tty_debug(tty, "bad idx %d\n", idx);
1520 return -1;
1521 }
1522
1523 /* not much to check for devpts */
1524 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1525 return 0;
1526
1527 if (tty != tty->driver->ttys[idx]) {
1528 tty_debug(tty, "bad driver table[%d] = %p\n",
1529 idx, tty->driver->ttys[idx]);
1530 return -1;
1531 }
1532 if (tty->driver->other) {
1533 struct tty_struct *o_tty = tty->link;
1534
1535 if (o_tty != tty->driver->other->ttys[idx]) {
1536 tty_debug(tty, "bad other table[%d] = %p\n",
1537 idx, tty->driver->other->ttys[idx]);
1538 return -1;
1539 }
1540 if (o_tty->link != tty) {
1541 tty_debug(tty, "bad link = %p\n", o_tty->link);
1542 return -1;
1543 }
1544 }
1545 #endif
1546 return 0;
1547 }
1548
1549 /**
1550 * tty_kclose - closes tty opened by tty_kopen
1551 * @tty: tty device
1552 *
1553 * Performs the final steps to release and free a tty device. It is the
1554 * same as tty_release_struct except that it also resets TTY_PORT_KOPENED
1555 * flag on tty->port.
1556 */
tty_kclose(struct tty_struct * tty)1557 void tty_kclose(struct tty_struct *tty)
1558 {
1559 /*
1560 * Ask the line discipline code to release its structures
1561 */
1562 tty_ldisc_release(tty);
1563
1564 /* Wait for pending work before tty destruction commmences */
1565 tty_flush_works(tty);
1566
1567 tty_debug_hangup(tty, "freeing structure\n");
1568 /*
1569 * The release_tty function takes care of the details of clearing
1570 * the slots and preserving the termios structure. The tty_unlock_pair
1571 * should be safe as we keep a kref while the tty is locked (so the
1572 * unlock never unlocks a freed tty).
1573 */
1574 mutex_lock(&tty_mutex);
1575 tty_port_set_kopened(tty->port, 0);
1576 release_tty(tty, tty->index);
1577 mutex_unlock(&tty_mutex);
1578 }
1579 EXPORT_SYMBOL_GPL(tty_kclose);
1580
1581 /**
1582 * tty_release_struct - release a tty struct
1583 * @tty: tty device
1584 * @idx: index of the tty
1585 *
1586 * Performs the final steps to release and free a tty device. It is
1587 * roughly the reverse of tty_init_dev.
1588 */
tty_release_struct(struct tty_struct * tty,int idx)1589 void tty_release_struct(struct tty_struct *tty, int idx)
1590 {
1591 /*
1592 * Ask the line discipline code to release its structures
1593 */
1594 tty_ldisc_release(tty);
1595
1596 /* Wait for pending work before tty destruction commmences */
1597 tty_flush_works(tty);
1598
1599 tty_debug_hangup(tty, "freeing structure\n");
1600 /*
1601 * The release_tty function takes care of the details of clearing
1602 * the slots and preserving the termios structure. The tty_unlock_pair
1603 * should be safe as we keep a kref while the tty is locked (so the
1604 * unlock never unlocks a freed tty).
1605 */
1606 mutex_lock(&tty_mutex);
1607 release_tty(tty, idx);
1608 mutex_unlock(&tty_mutex);
1609 }
1610 EXPORT_SYMBOL_GPL(tty_release_struct);
1611
1612 /**
1613 * tty_release - vfs callback for close
1614 * @inode: inode of tty
1615 * @filp: file pointer for handle to tty
1616 *
1617 * Called the last time each file handle is closed that references
1618 * this tty. There may however be several such references.
1619 *
1620 * Locking:
1621 * Takes bkl. See tty_release_dev
1622 *
1623 * Even releasing the tty structures is a tricky business.. We have
1624 * to be very careful that the structures are all released at the
1625 * same time, as interrupts might otherwise get the wrong pointers.
1626 *
1627 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1628 * lead to double frees or releasing memory still in use.
1629 */
1630
tty_release(struct inode * inode,struct file * filp)1631 int tty_release(struct inode *inode, struct file *filp)
1632 {
1633 struct tty_struct *tty = file_tty(filp);
1634 struct tty_struct *o_tty = NULL;
1635 int do_sleep, final;
1636 int idx;
1637 long timeout = 0;
1638 int once = 1;
1639
1640 if (tty_paranoia_check(tty, inode, __func__))
1641 return 0;
1642
1643 tty_lock(tty);
1644 check_tty_count(tty, __func__);
1645
1646 __tty_fasync(-1, filp, 0);
1647
1648 idx = tty->index;
1649 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1650 tty->driver->subtype == PTY_TYPE_MASTER)
1651 o_tty = tty->link;
1652
1653 if (tty_release_checks(tty, idx)) {
1654 tty_unlock(tty);
1655 return 0;
1656 }
1657
1658 tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1659
1660 if (tty->ops->close)
1661 tty->ops->close(tty, filp);
1662
1663 /* If tty is pty master, lock the slave pty (stable lock order) */
1664 tty_lock_slave(o_tty);
1665
1666 /*
1667 * Sanity check: if tty->count is going to zero, there shouldn't be
1668 * any waiters on tty->read_wait or tty->write_wait. We test the
1669 * wait queues and kick everyone out _before_ actually starting to
1670 * close. This ensures that we won't block while releasing the tty
1671 * structure.
1672 *
1673 * The test for the o_tty closing is necessary, since the master and
1674 * slave sides may close in any order. If the slave side closes out
1675 * first, its count will be one, since the master side holds an open.
1676 * Thus this test wouldn't be triggered at the time the slave closed,
1677 * so we do it now.
1678 */
1679 while (1) {
1680 do_sleep = 0;
1681
1682 if (tty->count <= 1) {
1683 if (waitqueue_active(&tty->read_wait)) {
1684 wake_up_poll(&tty->read_wait, EPOLLIN);
1685 do_sleep++;
1686 }
1687 if (waitqueue_active(&tty->write_wait)) {
1688 wake_up_poll(&tty->write_wait, EPOLLOUT);
1689 do_sleep++;
1690 }
1691 }
1692 if (o_tty && o_tty->count <= 1) {
1693 if (waitqueue_active(&o_tty->read_wait)) {
1694 wake_up_poll(&o_tty->read_wait, EPOLLIN);
1695 do_sleep++;
1696 }
1697 if (waitqueue_active(&o_tty->write_wait)) {
1698 wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1699 do_sleep++;
1700 }
1701 }
1702 if (!do_sleep)
1703 break;
1704
1705 if (once) {
1706 once = 0;
1707 tty_warn(tty, "read/write wait queue active!\n");
1708 }
1709 schedule_timeout_killable(timeout);
1710 if (timeout < 120 * HZ)
1711 timeout = 2 * timeout + 1;
1712 else
1713 timeout = MAX_SCHEDULE_TIMEOUT;
1714 }
1715
1716 if (o_tty) {
1717 if (--o_tty->count < 0) {
1718 tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1719 o_tty->count = 0;
1720 }
1721 }
1722 if (--tty->count < 0) {
1723 tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1724 tty->count = 0;
1725 }
1726
1727 /*
1728 * We've decremented tty->count, so we need to remove this file
1729 * descriptor off the tty->tty_files list; this serves two
1730 * purposes:
1731 * - check_tty_count sees the correct number of file descriptors
1732 * associated with this tty.
1733 * - do_tty_hangup no longer sees this file descriptor as
1734 * something that needs to be handled for hangups.
1735 */
1736 tty_del_file(filp);
1737
1738 /*
1739 * Perform some housekeeping before deciding whether to return.
1740 *
1741 * If _either_ side is closing, make sure there aren't any
1742 * processes that still think tty or o_tty is their controlling
1743 * tty.
1744 */
1745 if (!tty->count) {
1746 read_lock(&tasklist_lock);
1747 session_clear_tty(tty->session);
1748 if (o_tty)
1749 session_clear_tty(o_tty->session);
1750 read_unlock(&tasklist_lock);
1751 }
1752
1753 /* check whether both sides are closing ... */
1754 final = !tty->count && !(o_tty && o_tty->count);
1755
1756 tty_unlock_slave(o_tty);
1757 tty_unlock(tty);
1758
1759 /* At this point, the tty->count == 0 should ensure a dead tty
1760 cannot be re-opened by a racing opener */
1761
1762 if (!final)
1763 return 0;
1764
1765 tty_debug_hangup(tty, "final close\n");
1766
1767 tty_release_struct(tty, idx);
1768 return 0;
1769 }
1770
1771 /**
1772 * tty_open_current_tty - get locked tty of current task
1773 * @device: device number
1774 * @filp: file pointer to tty
1775 * @return: locked tty of the current task iff @device is /dev/tty
1776 *
1777 * Performs a re-open of the current task's controlling tty.
1778 *
1779 * We cannot return driver and index like for the other nodes because
1780 * devpts will not work then. It expects inodes to be from devpts FS.
1781 */
tty_open_current_tty(dev_t device,struct file * filp)1782 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1783 {
1784 struct tty_struct *tty;
1785 int retval;
1786
1787 if (device != MKDEV(TTYAUX_MAJOR, 0))
1788 return NULL;
1789
1790 tty = get_current_tty();
1791 if (!tty)
1792 return ERR_PTR(-ENXIO);
1793
1794 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1795 /* noctty = 1; */
1796 tty_lock(tty);
1797 tty_kref_put(tty); /* safe to drop the kref now */
1798
1799 retval = tty_reopen(tty);
1800 if (retval < 0) {
1801 tty_unlock(tty);
1802 tty = ERR_PTR(retval);
1803 }
1804 return tty;
1805 }
1806
1807 /**
1808 * tty_lookup_driver - lookup a tty driver for a given device file
1809 * @device: device number
1810 * @filp: file pointer to tty
1811 * @index: index for the device in the @return driver
1812 * @return: driver for this inode (with increased refcount)
1813 *
1814 * If @return is not erroneous, the caller is responsible to decrement the
1815 * refcount by tty_driver_kref_put.
1816 *
1817 * Locking: tty_mutex protects get_tty_driver
1818 */
tty_lookup_driver(dev_t device,struct file * filp,int * index)1819 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1820 int *index)
1821 {
1822 struct tty_driver *driver;
1823
1824 switch (device) {
1825 #ifdef CONFIG_VT
1826 case MKDEV(TTY_MAJOR, 0): {
1827 extern struct tty_driver *console_driver;
1828 driver = tty_driver_kref_get(console_driver);
1829 *index = fg_console;
1830 break;
1831 }
1832 #endif
1833 case MKDEV(TTYAUX_MAJOR, 1): {
1834 struct tty_driver *console_driver = console_device(index);
1835 if (console_driver) {
1836 driver = tty_driver_kref_get(console_driver);
1837 if (driver && filp) {
1838 /* Don't let /dev/console block */
1839 filp->f_flags |= O_NONBLOCK;
1840 break;
1841 }
1842 }
1843 return ERR_PTR(-ENODEV);
1844 }
1845 default:
1846 driver = get_tty_driver(device, index);
1847 if (!driver)
1848 return ERR_PTR(-ENODEV);
1849 break;
1850 }
1851 return driver;
1852 }
1853
1854 /**
1855 * tty_kopen - open a tty device for kernel
1856 * @device: dev_t of device to open
1857 *
1858 * Opens tty exclusively for kernel. Performs the driver lookup,
1859 * makes sure it's not already opened and performs the first-time
1860 * tty initialization.
1861 *
1862 * Returns the locked initialized &tty_struct
1863 *
1864 * Claims the global tty_mutex to serialize:
1865 * - concurrent first-time tty initialization
1866 * - concurrent tty driver removal w/ lookup
1867 * - concurrent tty removal from driver table
1868 */
tty_kopen(dev_t device)1869 struct tty_struct *tty_kopen(dev_t device)
1870 {
1871 struct tty_struct *tty;
1872 struct tty_driver *driver = NULL;
1873 int index = -1;
1874
1875 mutex_lock(&tty_mutex);
1876 driver = tty_lookup_driver(device, NULL, &index);
1877 if (IS_ERR(driver)) {
1878 mutex_unlock(&tty_mutex);
1879 return ERR_CAST(driver);
1880 }
1881
1882 /* check whether we're reopening an existing tty */
1883 tty = tty_driver_lookup_tty(driver, NULL, index);
1884 if (IS_ERR(tty))
1885 goto out;
1886
1887 if (tty) {
1888 /* drop kref from tty_driver_lookup_tty() */
1889 tty_kref_put(tty);
1890 tty = ERR_PTR(-EBUSY);
1891 } else { /* tty_init_dev returns tty with the tty_lock held */
1892 tty = tty_init_dev(driver, index);
1893 if (IS_ERR(tty))
1894 goto out;
1895 tty_port_set_kopened(tty->port, 1);
1896 }
1897 out:
1898 mutex_unlock(&tty_mutex);
1899 tty_driver_kref_put(driver);
1900 return tty;
1901 }
1902 EXPORT_SYMBOL_GPL(tty_kopen);
1903
1904 /**
1905 * tty_open_by_driver - open a tty device
1906 * @device: dev_t of device to open
1907 * @inode: inode of device file
1908 * @filp: file pointer to tty
1909 *
1910 * Performs the driver lookup, checks for a reopen, or otherwise
1911 * performs the first-time tty initialization.
1912 *
1913 * Returns the locked initialized or re-opened &tty_struct
1914 *
1915 * Claims the global tty_mutex to serialize:
1916 * - concurrent first-time tty initialization
1917 * - concurrent tty driver removal w/ lookup
1918 * - concurrent tty removal from driver table
1919 */
tty_open_by_driver(dev_t device,struct inode * inode,struct file * filp)1920 static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode,
1921 struct file *filp)
1922 {
1923 struct tty_struct *tty;
1924 struct tty_driver *driver = NULL;
1925 int index = -1;
1926 int retval;
1927
1928 mutex_lock(&tty_mutex);
1929 driver = tty_lookup_driver(device, filp, &index);
1930 if (IS_ERR(driver)) {
1931 mutex_unlock(&tty_mutex);
1932 return ERR_CAST(driver);
1933 }
1934
1935 /* check whether we're reopening an existing tty */
1936 tty = tty_driver_lookup_tty(driver, filp, index);
1937 if (IS_ERR(tty)) {
1938 mutex_unlock(&tty_mutex);
1939 goto out;
1940 }
1941
1942 if (tty) {
1943 if (tty_port_kopened(tty->port)) {
1944 tty_kref_put(tty);
1945 mutex_unlock(&tty_mutex);
1946 tty = ERR_PTR(-EBUSY);
1947 goto out;
1948 }
1949 mutex_unlock(&tty_mutex);
1950 retval = tty_lock_interruptible(tty);
1951 tty_kref_put(tty); /* drop kref from tty_driver_lookup_tty() */
1952 if (retval) {
1953 if (retval == -EINTR)
1954 retval = -ERESTARTSYS;
1955 tty = ERR_PTR(retval);
1956 goto out;
1957 }
1958 retval = tty_reopen(tty);
1959 if (retval < 0) {
1960 tty_unlock(tty);
1961 tty = ERR_PTR(retval);
1962 }
1963 } else { /* Returns with the tty_lock held for now */
1964 tty = tty_init_dev(driver, index);
1965 mutex_unlock(&tty_mutex);
1966 }
1967 out:
1968 tty_driver_kref_put(driver);
1969 return tty;
1970 }
1971
1972 /**
1973 * tty_open - open a tty device
1974 * @inode: inode of device file
1975 * @filp: file pointer to tty
1976 *
1977 * tty_open and tty_release keep up the tty count that contains the
1978 * number of opens done on a tty. We cannot use the inode-count, as
1979 * different inodes might point to the same tty.
1980 *
1981 * Open-counting is needed for pty masters, as well as for keeping
1982 * track of serial lines: DTR is dropped when the last close happens.
1983 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1984 *
1985 * The termios state of a pty is reset on first open so that
1986 * settings don't persist across reuse.
1987 *
1988 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1989 * tty->count should protect the rest.
1990 * ->siglock protects ->signal/->sighand
1991 *
1992 * Note: the tty_unlock/lock cases without a ref are only safe due to
1993 * tty_mutex
1994 */
1995
tty_open(struct inode * inode,struct file * filp)1996 static int tty_open(struct inode *inode, struct file *filp)
1997 {
1998 struct tty_struct *tty;
1999 int noctty, retval;
2000 dev_t device = inode->i_rdev;
2001 unsigned saved_flags = filp->f_flags;
2002
2003 nonseekable_open(inode, filp);
2004
2005 retry_open:
2006 retval = tty_alloc_file(filp);
2007 if (retval)
2008 return -ENOMEM;
2009
2010 tty = tty_open_current_tty(device, filp);
2011 if (!tty)
2012 tty = tty_open_by_driver(device, inode, filp);
2013
2014 if (IS_ERR(tty)) {
2015 tty_free_file(filp);
2016 retval = PTR_ERR(tty);
2017 if (retval != -EAGAIN || signal_pending(current))
2018 return retval;
2019 schedule();
2020 goto retry_open;
2021 }
2022
2023 tty_add_file(tty, filp);
2024
2025 check_tty_count(tty, __func__);
2026 tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2027
2028 if (tty->ops->open)
2029 retval = tty->ops->open(tty, filp);
2030 else
2031 retval = -ENODEV;
2032 filp->f_flags = saved_flags;
2033
2034 if (retval) {
2035 tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2036
2037 tty_unlock(tty); /* need to call tty_release without BTM */
2038 tty_release(inode, filp);
2039 if (retval != -ERESTARTSYS)
2040 return retval;
2041
2042 if (signal_pending(current))
2043 return retval;
2044
2045 schedule();
2046 /*
2047 * Need to reset f_op in case a hangup happened.
2048 */
2049 if (tty_hung_up_p(filp))
2050 filp->f_op = &tty_fops;
2051 goto retry_open;
2052 }
2053 clear_bit(TTY_HUPPED, &tty->flags);
2054
2055 noctty = (filp->f_flags & O_NOCTTY) ||
2056 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2057 device == MKDEV(TTYAUX_MAJOR, 1) ||
2058 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2059 tty->driver->subtype == PTY_TYPE_MASTER);
2060 if (!noctty)
2061 tty_open_proc_set_tty(filp, tty);
2062 tty_unlock(tty);
2063 return 0;
2064 }
2065
2066
2067
2068 /**
2069 * tty_poll - check tty status
2070 * @filp: file being polled
2071 * @wait: poll wait structures to update
2072 *
2073 * Call the line discipline polling method to obtain the poll
2074 * status of the device.
2075 *
2076 * Locking: locks called line discipline but ldisc poll method
2077 * may be re-entered freely by other callers.
2078 */
2079
tty_poll(struct file * filp,poll_table * wait)2080 static __poll_t tty_poll(struct file *filp, poll_table *wait)
2081 {
2082 struct tty_struct *tty = file_tty(filp);
2083 struct tty_ldisc *ld;
2084 __poll_t ret = 0;
2085
2086 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2087 return 0;
2088
2089 ld = tty_ldisc_ref_wait(tty);
2090 if (!ld)
2091 return hung_up_tty_poll(filp, wait);
2092 if (ld->ops->poll)
2093 ret = ld->ops->poll(tty, filp, wait);
2094 tty_ldisc_deref(ld);
2095 return ret;
2096 }
2097
__tty_fasync(int fd,struct file * filp,int on)2098 static int __tty_fasync(int fd, struct file *filp, int on)
2099 {
2100 struct tty_struct *tty = file_tty(filp);
2101 unsigned long flags;
2102 int retval = 0;
2103
2104 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2105 goto out;
2106
2107 retval = fasync_helper(fd, filp, on, &tty->fasync);
2108 if (retval <= 0)
2109 goto out;
2110
2111 if (on) {
2112 enum pid_type type;
2113 struct pid *pid;
2114
2115 spin_lock_irqsave(&tty->ctrl_lock, flags);
2116 if (tty->pgrp) {
2117 pid = tty->pgrp;
2118 type = PIDTYPE_PGID;
2119 } else {
2120 pid = task_pid(current);
2121 type = PIDTYPE_TGID;
2122 }
2123 get_pid(pid);
2124 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2125 __f_setown(filp, pid, type, 0);
2126 put_pid(pid);
2127 retval = 0;
2128 }
2129 out:
2130 return retval;
2131 }
2132
tty_fasync(int fd,struct file * filp,int on)2133 static int tty_fasync(int fd, struct file *filp, int on)
2134 {
2135 struct tty_struct *tty = file_tty(filp);
2136 int retval = -ENOTTY;
2137
2138 tty_lock(tty);
2139 if (!tty_hung_up_p(filp))
2140 retval = __tty_fasync(fd, filp, on);
2141 tty_unlock(tty);
2142
2143 return retval;
2144 }
2145
2146 /**
2147 * tiocsti - fake input character
2148 * @tty: tty to fake input into
2149 * @p: pointer to character
2150 *
2151 * Fake input to a tty device. Does the necessary locking and
2152 * input management.
2153 *
2154 * FIXME: does not honour flow control ??
2155 *
2156 * Locking:
2157 * Called functions take tty_ldiscs_lock
2158 * current->signal->tty check is safe without locks
2159 *
2160 * FIXME: may race normal receive processing
2161 */
2162
tiocsti(struct tty_struct * tty,char __user * p)2163 static int tiocsti(struct tty_struct *tty, char __user *p)
2164 {
2165 char ch, mbz = 0;
2166 struct tty_ldisc *ld;
2167
2168 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2169 return -EPERM;
2170 if (get_user(ch, p))
2171 return -EFAULT;
2172 tty_audit_tiocsti(tty, ch);
2173 ld = tty_ldisc_ref_wait(tty);
2174 if (!ld)
2175 return -EIO;
2176 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2177 tty_ldisc_deref(ld);
2178 return 0;
2179 }
2180
2181 /**
2182 * tiocgwinsz - implement window query ioctl
2183 * @tty; tty
2184 * @arg: user buffer for result
2185 *
2186 * Copies the kernel idea of the window size into the user buffer.
2187 *
2188 * Locking: tty->winsize_mutex is taken to ensure the winsize data
2189 * is consistent.
2190 */
2191
tiocgwinsz(struct tty_struct * tty,struct winsize __user * arg)2192 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2193 {
2194 int err;
2195
2196 mutex_lock(&tty->winsize_mutex);
2197 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2198 mutex_unlock(&tty->winsize_mutex);
2199
2200 return err ? -EFAULT: 0;
2201 }
2202
2203 /**
2204 * tty_do_resize - resize event
2205 * @tty: tty being resized
2206 * @rows: rows (character)
2207 * @cols: cols (character)
2208 *
2209 * Update the termios variables and send the necessary signals to
2210 * peform a terminal resize correctly
2211 */
2212
tty_do_resize(struct tty_struct * tty,struct winsize * ws)2213 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2214 {
2215 struct pid *pgrp;
2216
2217 /* Lock the tty */
2218 mutex_lock(&tty->winsize_mutex);
2219 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2220 goto done;
2221
2222 /* Signal the foreground process group */
2223 pgrp = tty_get_pgrp(tty);
2224 if (pgrp)
2225 kill_pgrp(pgrp, SIGWINCH, 1);
2226 put_pid(pgrp);
2227
2228 tty->winsize = *ws;
2229 done:
2230 mutex_unlock(&tty->winsize_mutex);
2231 return 0;
2232 }
2233 EXPORT_SYMBOL(tty_do_resize);
2234
2235 /**
2236 * tiocswinsz - implement window size set ioctl
2237 * @tty; tty side of tty
2238 * @arg: user buffer for result
2239 *
2240 * Copies the user idea of the window size to the kernel. Traditionally
2241 * this is just advisory information but for the Linux console it
2242 * actually has driver level meaning and triggers a VC resize.
2243 *
2244 * Locking:
2245 * Driver dependent. The default do_resize method takes the
2246 * tty termios mutex and ctrl_lock. The console takes its own lock
2247 * then calls into the default method.
2248 */
2249
tiocswinsz(struct tty_struct * tty,struct winsize __user * arg)2250 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2251 {
2252 struct winsize tmp_ws;
2253 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2254 return -EFAULT;
2255
2256 if (tty->ops->resize)
2257 return tty->ops->resize(tty, &tmp_ws);
2258 else
2259 return tty_do_resize(tty, &tmp_ws);
2260 }
2261
2262 /**
2263 * tioccons - allow admin to move logical console
2264 * @file: the file to become console
2265 *
2266 * Allow the administrator to move the redirected console device
2267 *
2268 * Locking: uses redirect_lock to guard the redirect information
2269 */
2270
tioccons(struct file * file)2271 static int tioccons(struct file *file)
2272 {
2273 if (!capable(CAP_SYS_ADMIN))
2274 return -EPERM;
2275 if (file->f_op->write == redirected_tty_write) {
2276 struct file *f;
2277 spin_lock(&redirect_lock);
2278 f = redirect;
2279 redirect = NULL;
2280 spin_unlock(&redirect_lock);
2281 if (f)
2282 fput(f);
2283 return 0;
2284 }
2285 spin_lock(&redirect_lock);
2286 if (redirect) {
2287 spin_unlock(&redirect_lock);
2288 return -EBUSY;
2289 }
2290 redirect = get_file(file);
2291 spin_unlock(&redirect_lock);
2292 return 0;
2293 }
2294
2295 /**
2296 * fionbio - non blocking ioctl
2297 * @file: file to set blocking value
2298 * @p: user parameter
2299 *
2300 * Historical tty interfaces had a blocking control ioctl before
2301 * the generic functionality existed. This piece of history is preserved
2302 * in the expected tty API of posix OS's.
2303 *
2304 * Locking: none, the open file handle ensures it won't go away.
2305 */
2306
fionbio(struct file * file,int __user * p)2307 static int fionbio(struct file *file, int __user *p)
2308 {
2309 int nonblock;
2310
2311 if (get_user(nonblock, p))
2312 return -EFAULT;
2313
2314 spin_lock(&file->f_lock);
2315 if (nonblock)
2316 file->f_flags |= O_NONBLOCK;
2317 else
2318 file->f_flags &= ~O_NONBLOCK;
2319 spin_unlock(&file->f_lock);
2320 return 0;
2321 }
2322
2323 /**
2324 * tiocsetd - set line discipline
2325 * @tty: tty device
2326 * @p: pointer to user data
2327 *
2328 * Set the line discipline according to user request.
2329 *
2330 * Locking: see tty_set_ldisc, this function is just a helper
2331 */
2332
tiocsetd(struct tty_struct * tty,int __user * p)2333 static int tiocsetd(struct tty_struct *tty, int __user *p)
2334 {
2335 int disc;
2336 int ret;
2337
2338 if (get_user(disc, p))
2339 return -EFAULT;
2340
2341 ret = tty_set_ldisc(tty, disc);
2342
2343 return ret;
2344 }
2345
2346 /**
2347 * tiocgetd - get line discipline
2348 * @tty: tty device
2349 * @p: pointer to user data
2350 *
2351 * Retrieves the line discipline id directly from the ldisc.
2352 *
2353 * Locking: waits for ldisc reference (in case the line discipline
2354 * is changing or the tty is being hungup)
2355 */
2356
tiocgetd(struct tty_struct * tty,int __user * p)2357 static int tiocgetd(struct tty_struct *tty, int __user *p)
2358 {
2359 struct tty_ldisc *ld;
2360 int ret;
2361
2362 ld = tty_ldisc_ref_wait(tty);
2363 if (!ld)
2364 return -EIO;
2365 ret = put_user(ld->ops->num, p);
2366 tty_ldisc_deref(ld);
2367 return ret;
2368 }
2369
2370 /**
2371 * send_break - performed time break
2372 * @tty: device to break on
2373 * @duration: timeout in mS
2374 *
2375 * Perform a timed break on hardware that lacks its own driver level
2376 * timed break functionality.
2377 *
2378 * Locking:
2379 * atomic_write_lock serializes
2380 *
2381 */
2382
send_break(struct tty_struct * tty,unsigned int duration)2383 static int send_break(struct tty_struct *tty, unsigned int duration)
2384 {
2385 int retval;
2386
2387 if (tty->ops->break_ctl == NULL)
2388 return 0;
2389
2390 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2391 retval = tty->ops->break_ctl(tty, duration);
2392 else {
2393 /* Do the work ourselves */
2394 if (tty_write_lock(tty, 0) < 0)
2395 return -EINTR;
2396 retval = tty->ops->break_ctl(tty, -1);
2397 if (retval)
2398 goto out;
2399 if (!signal_pending(current))
2400 msleep_interruptible(duration);
2401 retval = tty->ops->break_ctl(tty, 0);
2402 out:
2403 tty_write_unlock(tty);
2404 if (signal_pending(current))
2405 retval = -EINTR;
2406 }
2407 return retval;
2408 }
2409
2410 /**
2411 * tty_tiocmget - get modem status
2412 * @tty: tty device
2413 * @file: user file pointer
2414 * @p: pointer to result
2415 *
2416 * Obtain the modem status bits from the tty driver if the feature
2417 * is supported. Return -EINVAL if it is not available.
2418 *
2419 * Locking: none (up to the driver)
2420 */
2421
tty_tiocmget(struct tty_struct * tty,int __user * p)2422 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2423 {
2424 int retval = -EINVAL;
2425
2426 if (tty->ops->tiocmget) {
2427 retval = tty->ops->tiocmget(tty);
2428
2429 if (retval >= 0)
2430 retval = put_user(retval, p);
2431 }
2432 return retval;
2433 }
2434
2435 /**
2436 * tty_tiocmset - set modem status
2437 * @tty: tty device
2438 * @cmd: command - clear bits, set bits or set all
2439 * @p: pointer to desired bits
2440 *
2441 * Set the modem status bits from the tty driver if the feature
2442 * is supported. Return -EINVAL if it is not available.
2443 *
2444 * Locking: none (up to the driver)
2445 */
2446
tty_tiocmset(struct tty_struct * tty,unsigned int cmd,unsigned __user * p)2447 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2448 unsigned __user *p)
2449 {
2450 int retval;
2451 unsigned int set, clear, val;
2452
2453 if (tty->ops->tiocmset == NULL)
2454 return -EINVAL;
2455
2456 retval = get_user(val, p);
2457 if (retval)
2458 return retval;
2459 set = clear = 0;
2460 switch (cmd) {
2461 case TIOCMBIS:
2462 set = val;
2463 break;
2464 case TIOCMBIC:
2465 clear = val;
2466 break;
2467 case TIOCMSET:
2468 set = val;
2469 clear = ~val;
2470 break;
2471 }
2472 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2473 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2474 return tty->ops->tiocmset(tty, set, clear);
2475 }
2476
tty_tiocgicount(struct tty_struct * tty,void __user * arg)2477 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2478 {
2479 int retval = -EINVAL;
2480 struct serial_icounter_struct icount;
2481 memset(&icount, 0, sizeof(icount));
2482 if (tty->ops->get_icount)
2483 retval = tty->ops->get_icount(tty, &icount);
2484 if (retval != 0)
2485 return retval;
2486 if (copy_to_user(arg, &icount, sizeof(icount)))
2487 return -EFAULT;
2488 return 0;
2489 }
2490
tty_warn_deprecated_flags(struct serial_struct __user * ss)2491 static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2492 {
2493 static DEFINE_RATELIMIT_STATE(depr_flags,
2494 DEFAULT_RATELIMIT_INTERVAL,
2495 DEFAULT_RATELIMIT_BURST);
2496 char comm[TASK_COMM_LEN];
2497 int flags;
2498
2499 if (get_user(flags, &ss->flags))
2500 return;
2501
2502 flags &= ASYNC_DEPRECATED;
2503
2504 if (flags && __ratelimit(&depr_flags))
2505 pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2506 __func__, get_task_comm(comm, current), flags);
2507 }
2508
2509 /*
2510 * if pty, return the slave side (real_tty)
2511 * otherwise, return self
2512 */
tty_pair_get_tty(struct tty_struct * tty)2513 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2514 {
2515 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2516 tty->driver->subtype == PTY_TYPE_MASTER)
2517 tty = tty->link;
2518 return tty;
2519 }
2520
2521 /*
2522 * Split this up, as gcc can choke on it otherwise..
2523 */
tty_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2524 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2525 {
2526 struct tty_struct *tty = file_tty(file);
2527 struct tty_struct *real_tty;
2528 void __user *p = (void __user *)arg;
2529 int retval;
2530 struct tty_ldisc *ld;
2531
2532 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2533 return -EINVAL;
2534
2535 real_tty = tty_pair_get_tty(tty);
2536
2537 /*
2538 * Factor out some common prep work
2539 */
2540 switch (cmd) {
2541 case TIOCSETD:
2542 case TIOCSBRK:
2543 case TIOCCBRK:
2544 case TCSBRK:
2545 case TCSBRKP:
2546 retval = tty_check_change(tty);
2547 if (retval)
2548 return retval;
2549 if (cmd != TIOCCBRK) {
2550 tty_wait_until_sent(tty, 0);
2551 if (signal_pending(current))
2552 return -EINTR;
2553 }
2554 break;
2555 }
2556
2557 /*
2558 * Now do the stuff.
2559 */
2560 switch (cmd) {
2561 case TIOCSTI:
2562 return tiocsti(tty, p);
2563 case TIOCGWINSZ:
2564 return tiocgwinsz(real_tty, p);
2565 case TIOCSWINSZ:
2566 return tiocswinsz(real_tty, p);
2567 case TIOCCONS:
2568 return real_tty != tty ? -EINVAL : tioccons(file);
2569 case FIONBIO:
2570 return fionbio(file, p);
2571 case TIOCEXCL:
2572 set_bit(TTY_EXCLUSIVE, &tty->flags);
2573 return 0;
2574 case TIOCNXCL:
2575 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2576 return 0;
2577 case TIOCGEXCL:
2578 {
2579 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2580 return put_user(excl, (int __user *)p);
2581 }
2582 case TIOCGETD:
2583 return tiocgetd(tty, p);
2584 case TIOCSETD:
2585 return tiocsetd(tty, p);
2586 case TIOCVHANGUP:
2587 if (!capable(CAP_SYS_ADMIN))
2588 return -EPERM;
2589 tty_vhangup(tty);
2590 return 0;
2591 case TIOCGDEV:
2592 {
2593 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2594 return put_user(ret, (unsigned int __user *)p);
2595 }
2596 /*
2597 * Break handling
2598 */
2599 case TIOCSBRK: /* Turn break on, unconditionally */
2600 if (tty->ops->break_ctl)
2601 return tty->ops->break_ctl(tty, -1);
2602 return 0;
2603 case TIOCCBRK: /* Turn break off, unconditionally */
2604 if (tty->ops->break_ctl)
2605 return tty->ops->break_ctl(tty, 0);
2606 return 0;
2607 case TCSBRK: /* SVID version: non-zero arg --> no break */
2608 /* non-zero arg means wait for all output data
2609 * to be sent (performed above) but don't send break.
2610 * This is used by the tcdrain() termios function.
2611 */
2612 if (!arg)
2613 return send_break(tty, 250);
2614 return 0;
2615 case TCSBRKP: /* support for POSIX tcsendbreak() */
2616 return send_break(tty, arg ? arg*100 : 250);
2617
2618 case TIOCMGET:
2619 return tty_tiocmget(tty, p);
2620 case TIOCMSET:
2621 case TIOCMBIC:
2622 case TIOCMBIS:
2623 return tty_tiocmset(tty, cmd, p);
2624 case TIOCGICOUNT:
2625 retval = tty_tiocgicount(tty, p);
2626 /* For the moment allow fall through to the old method */
2627 if (retval != -EINVAL)
2628 return retval;
2629 break;
2630 case TCFLSH:
2631 switch (arg) {
2632 case TCIFLUSH:
2633 case TCIOFLUSH:
2634 /* flush tty buffer and allow ldisc to process ioctl */
2635 tty_buffer_flush(tty, NULL);
2636 break;
2637 }
2638 break;
2639 case TIOCSSERIAL:
2640 tty_warn_deprecated_flags(p);
2641 break;
2642 case TIOCGPTPEER:
2643 /* Special because the struct file is needed */
2644 return ptm_open_peer(file, tty, (int)arg);
2645 default:
2646 retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2647 if (retval != -ENOIOCTLCMD)
2648 return retval;
2649 }
2650 if (tty->ops->ioctl) {
2651 retval = tty->ops->ioctl(tty, cmd, arg);
2652 if (retval != -ENOIOCTLCMD)
2653 return retval;
2654 }
2655 ld = tty_ldisc_ref_wait(tty);
2656 if (!ld)
2657 return hung_up_tty_ioctl(file, cmd, arg);
2658 retval = -EINVAL;
2659 if (ld->ops->ioctl) {
2660 retval = ld->ops->ioctl(tty, file, cmd, arg);
2661 if (retval == -ENOIOCTLCMD)
2662 retval = -ENOTTY;
2663 }
2664 tty_ldisc_deref(ld);
2665 return retval;
2666 }
2667
2668 #ifdef CONFIG_COMPAT
tty_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2669 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2670 unsigned long arg)
2671 {
2672 struct tty_struct *tty = file_tty(file);
2673 struct tty_ldisc *ld;
2674 int retval = -ENOIOCTLCMD;
2675
2676 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2677 return -EINVAL;
2678
2679 if (tty->ops->compat_ioctl) {
2680 retval = tty->ops->compat_ioctl(tty, cmd, arg);
2681 if (retval != -ENOIOCTLCMD)
2682 return retval;
2683 }
2684
2685 ld = tty_ldisc_ref_wait(tty);
2686 if (!ld)
2687 return hung_up_tty_compat_ioctl(file, cmd, arg);
2688 if (ld->ops->compat_ioctl)
2689 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2690 else
2691 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2692 tty_ldisc_deref(ld);
2693
2694 return retval;
2695 }
2696 #endif
2697
this_tty(const void * t,struct file * file,unsigned fd)2698 static int this_tty(const void *t, struct file *file, unsigned fd)
2699 {
2700 if (likely(file->f_op->read != tty_read))
2701 return 0;
2702 return file_tty(file) != t ? 0 : fd + 1;
2703 }
2704
2705 /*
2706 * This implements the "Secure Attention Key" --- the idea is to
2707 * prevent trojan horses by killing all processes associated with this
2708 * tty when the user hits the "Secure Attention Key". Required for
2709 * super-paranoid applications --- see the Orange Book for more details.
2710 *
2711 * This code could be nicer; ideally it should send a HUP, wait a few
2712 * seconds, then send a INT, and then a KILL signal. But you then
2713 * have to coordinate with the init process, since all processes associated
2714 * with the current tty must be dead before the new getty is allowed
2715 * to spawn.
2716 *
2717 * Now, if it would be correct ;-/ The current code has a nasty hole -
2718 * it doesn't catch files in flight. We may send the descriptor to ourselves
2719 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2720 *
2721 * Nasty bug: do_SAK is being called in interrupt context. This can
2722 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2723 */
__do_SAK(struct tty_struct * tty)2724 void __do_SAK(struct tty_struct *tty)
2725 {
2726 #ifdef TTY_SOFT_SAK
2727 tty_hangup(tty);
2728 #else
2729 struct task_struct *g, *p;
2730 struct pid *session;
2731 int i;
2732
2733 if (!tty)
2734 return;
2735 session = tty->session;
2736
2737 tty_ldisc_flush(tty);
2738
2739 tty_driver_flush_buffer(tty);
2740
2741 read_lock(&tasklist_lock);
2742 /* Kill the entire session */
2743 do_each_pid_task(session, PIDTYPE_SID, p) {
2744 tty_notice(tty, "SAK: killed process %d (%s): by session\n",
2745 task_pid_nr(p), p->comm);
2746 send_sig(SIGKILL, p, 1);
2747 } while_each_pid_task(session, PIDTYPE_SID, p);
2748
2749 /* Now kill any processes that happen to have the tty open */
2750 do_each_thread(g, p) {
2751 if (p->signal->tty == tty) {
2752 tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
2753 task_pid_nr(p), p->comm);
2754 send_sig(SIGKILL, p, 1);
2755 continue;
2756 }
2757 task_lock(p);
2758 i = iterate_fd(p->files, 0, this_tty, tty);
2759 if (i != 0) {
2760 tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
2761 task_pid_nr(p), p->comm, i - 1);
2762 force_sig(SIGKILL, p);
2763 }
2764 task_unlock(p);
2765 } while_each_thread(g, p);
2766 read_unlock(&tasklist_lock);
2767 #endif
2768 }
2769
do_SAK_work(struct work_struct * work)2770 static void do_SAK_work(struct work_struct *work)
2771 {
2772 struct tty_struct *tty =
2773 container_of(work, struct tty_struct, SAK_work);
2774 __do_SAK(tty);
2775 }
2776
2777 /*
2778 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2779 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2780 * the values which we write to it will be identical to the values which it
2781 * already has. --akpm
2782 */
do_SAK(struct tty_struct * tty)2783 void do_SAK(struct tty_struct *tty)
2784 {
2785 if (!tty)
2786 return;
2787 schedule_work(&tty->SAK_work);
2788 }
2789
2790 EXPORT_SYMBOL(do_SAK);
2791
dev_match_devt(struct device * dev,const void * data)2792 static int dev_match_devt(struct device *dev, const void *data)
2793 {
2794 const dev_t *devt = data;
2795 return dev->devt == *devt;
2796 }
2797
2798 /* Must put_device() after it's unused! */
tty_get_device(struct tty_struct * tty)2799 static struct device *tty_get_device(struct tty_struct *tty)
2800 {
2801 dev_t devt = tty_devnum(tty);
2802 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2803 }
2804
2805
2806 /**
2807 * alloc_tty_struct
2808 *
2809 * This subroutine allocates and initializes a tty structure.
2810 *
2811 * Locking: none - tty in question is not exposed at this point
2812 */
2813
alloc_tty_struct(struct tty_driver * driver,int idx)2814 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
2815 {
2816 struct tty_struct *tty;
2817
2818 tty = kzalloc(sizeof(*tty), GFP_KERNEL);
2819 if (!tty)
2820 return NULL;
2821
2822 kref_init(&tty->kref);
2823 tty->magic = TTY_MAGIC;
2824 if (tty_ldisc_init(tty)) {
2825 kfree(tty);
2826 return NULL;
2827 }
2828 tty->session = NULL;
2829 tty->pgrp = NULL;
2830 mutex_init(&tty->legacy_mutex);
2831 mutex_init(&tty->throttle_mutex);
2832 init_rwsem(&tty->termios_rwsem);
2833 mutex_init(&tty->winsize_mutex);
2834 init_ldsem(&tty->ldisc_sem);
2835 init_waitqueue_head(&tty->write_wait);
2836 init_waitqueue_head(&tty->read_wait);
2837 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2838 mutex_init(&tty->atomic_write_lock);
2839 spin_lock_init(&tty->ctrl_lock);
2840 spin_lock_init(&tty->flow_lock);
2841 spin_lock_init(&tty->files_lock);
2842 INIT_LIST_HEAD(&tty->tty_files);
2843 INIT_WORK(&tty->SAK_work, do_SAK_work);
2844
2845 tty->driver = driver;
2846 tty->ops = driver->ops;
2847 tty->index = idx;
2848 tty_line_name(driver, idx, tty->name);
2849 tty->dev = tty_get_device(tty);
2850
2851 return tty;
2852 }
2853
2854 /**
2855 * tty_put_char - write one character to a tty
2856 * @tty: tty
2857 * @ch: character
2858 *
2859 * Write one byte to the tty using the provided put_char method
2860 * if present. Returns the number of characters successfully output.
2861 *
2862 * Note: the specific put_char operation in the driver layer may go
2863 * away soon. Don't call it directly, use this method
2864 */
2865
tty_put_char(struct tty_struct * tty,unsigned char ch)2866 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2867 {
2868 if (tty->ops->put_char)
2869 return tty->ops->put_char(tty, ch);
2870 return tty->ops->write(tty, &ch, 1);
2871 }
2872 EXPORT_SYMBOL_GPL(tty_put_char);
2873
2874 struct class *tty_class;
2875
tty_cdev_add(struct tty_driver * driver,dev_t dev,unsigned int index,unsigned int count)2876 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
2877 unsigned int index, unsigned int count)
2878 {
2879 int err;
2880
2881 /* init here, since reused cdevs cause crashes */
2882 driver->cdevs[index] = cdev_alloc();
2883 if (!driver->cdevs[index])
2884 return -ENOMEM;
2885 driver->cdevs[index]->ops = &tty_fops;
2886 driver->cdevs[index]->owner = driver->owner;
2887 err = cdev_add(driver->cdevs[index], dev, count);
2888 if (err)
2889 kobject_put(&driver->cdevs[index]->kobj);
2890 return err;
2891 }
2892
2893 /**
2894 * tty_register_device - register a tty device
2895 * @driver: the tty driver that describes the tty device
2896 * @index: the index in the tty driver for this tty device
2897 * @device: a struct device that is associated with this tty device.
2898 * This field is optional, if there is no known struct device
2899 * for this tty device it can be set to NULL safely.
2900 *
2901 * Returns a pointer to the struct device for this tty device
2902 * (or ERR_PTR(-EFOO) on error).
2903 *
2904 * This call is required to be made to register an individual tty device
2905 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2906 * that bit is not set, this function should not be called by a tty
2907 * driver.
2908 *
2909 * Locking: ??
2910 */
2911
tty_register_device(struct tty_driver * driver,unsigned index,struct device * device)2912 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2913 struct device *device)
2914 {
2915 return tty_register_device_attr(driver, index, device, NULL, NULL);
2916 }
2917 EXPORT_SYMBOL(tty_register_device);
2918
tty_device_create_release(struct device * dev)2919 static void tty_device_create_release(struct device *dev)
2920 {
2921 dev_dbg(dev, "releasing...\n");
2922 kfree(dev);
2923 }
2924
2925 /**
2926 * tty_register_device_attr - register a tty device
2927 * @driver: the tty driver that describes the tty device
2928 * @index: the index in the tty driver for this tty device
2929 * @device: a struct device that is associated with this tty device.
2930 * This field is optional, if there is no known struct device
2931 * for this tty device it can be set to NULL safely.
2932 * @drvdata: Driver data to be set to device.
2933 * @attr_grp: Attribute group to be set on device.
2934 *
2935 * Returns a pointer to the struct device for this tty device
2936 * (or ERR_PTR(-EFOO) on error).
2937 *
2938 * This call is required to be made to register an individual tty device
2939 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2940 * that bit is not set, this function should not be called by a tty
2941 * driver.
2942 *
2943 * Locking: ??
2944 */
tty_register_device_attr(struct tty_driver * driver,unsigned index,struct device * device,void * drvdata,const struct attribute_group ** attr_grp)2945 struct device *tty_register_device_attr(struct tty_driver *driver,
2946 unsigned index, struct device *device,
2947 void *drvdata,
2948 const struct attribute_group **attr_grp)
2949 {
2950 char name[64];
2951 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
2952 struct ktermios *tp;
2953 struct device *dev;
2954 int retval;
2955
2956 if (index >= driver->num) {
2957 pr_err("%s: Attempt to register invalid tty line number (%d)\n",
2958 driver->name, index);
2959 return ERR_PTR(-EINVAL);
2960 }
2961
2962 if (driver->type == TTY_DRIVER_TYPE_PTY)
2963 pty_line_name(driver, index, name);
2964 else
2965 tty_line_name(driver, index, name);
2966
2967 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2968 if (!dev)
2969 return ERR_PTR(-ENOMEM);
2970
2971 dev->devt = devt;
2972 dev->class = tty_class;
2973 dev->parent = device;
2974 dev->release = tty_device_create_release;
2975 dev_set_name(dev, "%s", name);
2976 dev->groups = attr_grp;
2977 dev_set_drvdata(dev, drvdata);
2978
2979 dev_set_uevent_suppress(dev, 1);
2980
2981 retval = device_register(dev);
2982 if (retval)
2983 goto err_put;
2984
2985 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
2986 /*
2987 * Free any saved termios data so that the termios state is
2988 * reset when reusing a minor number.
2989 */
2990 tp = driver->termios[index];
2991 if (tp) {
2992 driver->termios[index] = NULL;
2993 kfree(tp);
2994 }
2995
2996 retval = tty_cdev_add(driver, devt, index, 1);
2997 if (retval)
2998 goto err_del;
2999 }
3000
3001 dev_set_uevent_suppress(dev, 0);
3002 kobject_uevent(&dev->kobj, KOBJ_ADD);
3003
3004 return dev;
3005
3006 err_del:
3007 device_del(dev);
3008 err_put:
3009 put_device(dev);
3010
3011 return ERR_PTR(retval);
3012 }
3013 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3014
3015 /**
3016 * tty_unregister_device - unregister a tty device
3017 * @driver: the tty driver that describes the tty device
3018 * @index: the index in the tty driver for this tty device
3019 *
3020 * If a tty device is registered with a call to tty_register_device() then
3021 * this function must be called when the tty device is gone.
3022 *
3023 * Locking: ??
3024 */
3025
tty_unregister_device(struct tty_driver * driver,unsigned index)3026 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3027 {
3028 device_destroy(tty_class,
3029 MKDEV(driver->major, driver->minor_start) + index);
3030 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3031 cdev_del(driver->cdevs[index]);
3032 driver->cdevs[index] = NULL;
3033 }
3034 }
3035 EXPORT_SYMBOL(tty_unregister_device);
3036
3037 /**
3038 * __tty_alloc_driver -- allocate tty driver
3039 * @lines: count of lines this driver can handle at most
3040 * @owner: module which is responsible for this driver
3041 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3042 *
3043 * This should not be called directly, some of the provided macros should be
3044 * used instead. Use IS_ERR and friends on @retval.
3045 */
__tty_alloc_driver(unsigned int lines,struct module * owner,unsigned long flags)3046 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3047 unsigned long flags)
3048 {
3049 struct tty_driver *driver;
3050 unsigned int cdevs = 1;
3051 int err;
3052
3053 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3054 return ERR_PTR(-EINVAL);
3055
3056 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3057 if (!driver)
3058 return ERR_PTR(-ENOMEM);
3059
3060 kref_init(&driver->kref);
3061 driver->magic = TTY_DRIVER_MAGIC;
3062 driver->num = lines;
3063 driver->owner = owner;
3064 driver->flags = flags;
3065
3066 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3067 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3068 GFP_KERNEL);
3069 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3070 GFP_KERNEL);
3071 if (!driver->ttys || !driver->termios) {
3072 err = -ENOMEM;
3073 goto err_free_all;
3074 }
3075 }
3076
3077 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3078 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3079 GFP_KERNEL);
3080 if (!driver->ports) {
3081 err = -ENOMEM;
3082 goto err_free_all;
3083 }
3084 cdevs = lines;
3085 }
3086
3087 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3088 if (!driver->cdevs) {
3089 err = -ENOMEM;
3090 goto err_free_all;
3091 }
3092
3093 return driver;
3094 err_free_all:
3095 kfree(driver->ports);
3096 kfree(driver->ttys);
3097 kfree(driver->termios);
3098 kfree(driver->cdevs);
3099 kfree(driver);
3100 return ERR_PTR(err);
3101 }
3102 EXPORT_SYMBOL(__tty_alloc_driver);
3103
destruct_tty_driver(struct kref * kref)3104 static void destruct_tty_driver(struct kref *kref)
3105 {
3106 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3107 int i;
3108 struct ktermios *tp;
3109
3110 if (driver->flags & TTY_DRIVER_INSTALLED) {
3111 for (i = 0; i < driver->num; i++) {
3112 tp = driver->termios[i];
3113 if (tp) {
3114 driver->termios[i] = NULL;
3115 kfree(tp);
3116 }
3117 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3118 tty_unregister_device(driver, i);
3119 }
3120 proc_tty_unregister_driver(driver);
3121 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3122 cdev_del(driver->cdevs[0]);
3123 }
3124 kfree(driver->cdevs);
3125 kfree(driver->ports);
3126 kfree(driver->termios);
3127 kfree(driver->ttys);
3128 kfree(driver);
3129 }
3130
tty_driver_kref_put(struct tty_driver * driver)3131 void tty_driver_kref_put(struct tty_driver *driver)
3132 {
3133 kref_put(&driver->kref, destruct_tty_driver);
3134 }
3135 EXPORT_SYMBOL(tty_driver_kref_put);
3136
tty_set_operations(struct tty_driver * driver,const struct tty_operations * op)3137 void tty_set_operations(struct tty_driver *driver,
3138 const struct tty_operations *op)
3139 {
3140 driver->ops = op;
3141 };
3142 EXPORT_SYMBOL(tty_set_operations);
3143
put_tty_driver(struct tty_driver * d)3144 void put_tty_driver(struct tty_driver *d)
3145 {
3146 tty_driver_kref_put(d);
3147 }
3148 EXPORT_SYMBOL(put_tty_driver);
3149
3150 /*
3151 * Called by a tty driver to register itself.
3152 */
tty_register_driver(struct tty_driver * driver)3153 int tty_register_driver(struct tty_driver *driver)
3154 {
3155 int error;
3156 int i;
3157 dev_t dev;
3158 struct device *d;
3159
3160 if (!driver->major) {
3161 error = alloc_chrdev_region(&dev, driver->minor_start,
3162 driver->num, driver->name);
3163 if (!error) {
3164 driver->major = MAJOR(dev);
3165 driver->minor_start = MINOR(dev);
3166 }
3167 } else {
3168 dev = MKDEV(driver->major, driver->minor_start);
3169 error = register_chrdev_region(dev, driver->num, driver->name);
3170 }
3171 if (error < 0)
3172 goto err;
3173
3174 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3175 error = tty_cdev_add(driver, dev, 0, driver->num);
3176 if (error)
3177 goto err_unreg_char;
3178 }
3179
3180 mutex_lock(&tty_mutex);
3181 list_add(&driver->tty_drivers, &tty_drivers);
3182 mutex_unlock(&tty_mutex);
3183
3184 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3185 for (i = 0; i < driver->num; i++) {
3186 d = tty_register_device(driver, i, NULL);
3187 if (IS_ERR(d)) {
3188 error = PTR_ERR(d);
3189 goto err_unreg_devs;
3190 }
3191 }
3192 }
3193 proc_tty_register_driver(driver);
3194 driver->flags |= TTY_DRIVER_INSTALLED;
3195 return 0;
3196
3197 err_unreg_devs:
3198 for (i--; i >= 0; i--)
3199 tty_unregister_device(driver, i);
3200
3201 mutex_lock(&tty_mutex);
3202 list_del(&driver->tty_drivers);
3203 mutex_unlock(&tty_mutex);
3204
3205 err_unreg_char:
3206 unregister_chrdev_region(dev, driver->num);
3207 err:
3208 return error;
3209 }
3210 EXPORT_SYMBOL(tty_register_driver);
3211
3212 /*
3213 * Called by a tty driver to unregister itself.
3214 */
tty_unregister_driver(struct tty_driver * driver)3215 int tty_unregister_driver(struct tty_driver *driver)
3216 {
3217 #if 0
3218 /* FIXME */
3219 if (driver->refcount)
3220 return -EBUSY;
3221 #endif
3222 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3223 driver->num);
3224 mutex_lock(&tty_mutex);
3225 list_del(&driver->tty_drivers);
3226 mutex_unlock(&tty_mutex);
3227 return 0;
3228 }
3229
3230 EXPORT_SYMBOL(tty_unregister_driver);
3231
tty_devnum(struct tty_struct * tty)3232 dev_t tty_devnum(struct tty_struct *tty)
3233 {
3234 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3235 }
3236 EXPORT_SYMBOL(tty_devnum);
3237
tty_default_fops(struct file_operations * fops)3238 void tty_default_fops(struct file_operations *fops)
3239 {
3240 *fops = tty_fops;
3241 }
3242
tty_devnode(struct device * dev,umode_t * mode)3243 static char *tty_devnode(struct device *dev, umode_t *mode)
3244 {
3245 if (!mode)
3246 return NULL;
3247 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3248 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3249 *mode = 0666;
3250 return NULL;
3251 }
3252
tty_class_init(void)3253 static int __init tty_class_init(void)
3254 {
3255 tty_class = class_create(THIS_MODULE, "tty");
3256 if (IS_ERR(tty_class))
3257 return PTR_ERR(tty_class);
3258 tty_class->devnode = tty_devnode;
3259 return 0;
3260 }
3261
3262 postcore_initcall(tty_class_init);
3263
3264 /* 3/2004 jmc: why do these devices exist? */
3265 static struct cdev tty_cdev, console_cdev;
3266
show_cons_active(struct device * dev,struct device_attribute * attr,char * buf)3267 static ssize_t show_cons_active(struct device *dev,
3268 struct device_attribute *attr, char *buf)
3269 {
3270 struct console *cs[16];
3271 int i = 0;
3272 struct console *c;
3273 ssize_t count = 0;
3274
3275 console_lock();
3276 for_each_console(c) {
3277 if (!c->device)
3278 continue;
3279 if (!c->write)
3280 continue;
3281 if ((c->flags & CON_ENABLED) == 0)
3282 continue;
3283 cs[i++] = c;
3284 if (i >= ARRAY_SIZE(cs))
3285 break;
3286 }
3287 while (i--) {
3288 int index = cs[i]->index;
3289 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3290
3291 /* don't resolve tty0 as some programs depend on it */
3292 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3293 count += tty_line_name(drv, index, buf + count);
3294 else
3295 count += sprintf(buf + count, "%s%d",
3296 cs[i]->name, cs[i]->index);
3297
3298 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3299 }
3300 console_unlock();
3301
3302 return count;
3303 }
3304 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3305
3306 static struct attribute *cons_dev_attrs[] = {
3307 &dev_attr_active.attr,
3308 NULL
3309 };
3310
3311 ATTRIBUTE_GROUPS(cons_dev);
3312
3313 static struct device *consdev;
3314
console_sysfs_notify(void)3315 void console_sysfs_notify(void)
3316 {
3317 if (consdev)
3318 sysfs_notify(&consdev->kobj, NULL, "active");
3319 }
3320
3321 /*
3322 * Ok, now we can initialize the rest of the tty devices and can count
3323 * on memory allocations, interrupts etc..
3324 */
tty_init(void)3325 int __init tty_init(void)
3326 {
3327 cdev_init(&tty_cdev, &tty_fops);
3328 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3329 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3330 panic("Couldn't register /dev/tty driver\n");
3331 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3332
3333 cdev_init(&console_cdev, &console_fops);
3334 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3335 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3336 panic("Couldn't register /dev/console driver\n");
3337 consdev = device_create_with_groups(tty_class, NULL,
3338 MKDEV(TTYAUX_MAJOR, 1), NULL,
3339 cons_dev_groups, "console");
3340 if (IS_ERR(consdev))
3341 consdev = NULL;
3342
3343 #ifdef CONFIG_VT
3344 vty_init(&console_fops);
3345 #endif
3346 return 0;
3347 }
3348
3349