1 /*
2 * Copyright (c) Red Hat Inc.
3
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sub license,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the
12 * next paragraph) shall be included in all copies or substantial portions
13 * of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors: Dave Airlie <airlied@redhat.com>
24 * Jerome Glisse <jglisse@redhat.com>
25 * Pauli Nieminen <suokkos@gmail.com>
26 */
27
28 /* simple list based uncached page pool
29 * - Pool collects resently freed pages for reuse
30 * - Use page->lru to keep a free list
31 * - doesn't track currently in use pages
32 */
33
34 #define pr_fmt(fmt) "[TTM] " fmt
35
36 #include <linux/list.h>
37 #include <linux/spinlock.h>
38 #include <linux/highmem.h>
39 #include <linux/mm_types.h>
40 #include <linux/module.h>
41 #include <linux/mm.h>
42 #include <linux/seq_file.h> /* for seq_printf */
43 #include <linux/slab.h>
44 #include <linux/dma-mapping.h>
45
46 #include <linux/atomic.h>
47
48 #include <drm/ttm/ttm_bo_driver.h>
49 #include <drm/ttm/ttm_page_alloc.h>
50 #include <drm/ttm/ttm_set_memory.h>
51
52 #define NUM_PAGES_TO_ALLOC (PAGE_SIZE/sizeof(struct page *))
53 #define SMALL_ALLOCATION 16
54 #define FREE_ALL_PAGES (~0U)
55 /* times are in msecs */
56 #define PAGE_FREE_INTERVAL 1000
57
58 /**
59 * struct ttm_page_pool - Pool to reuse recently allocated uc/wc pages.
60 *
61 * @lock: Protects the shared pool from concurrnet access. Must be used with
62 * irqsave/irqrestore variants because pool allocator maybe called from
63 * delayed work.
64 * @fill_lock: Prevent concurrent calls to fill.
65 * @list: Pool of free uc/wc pages for fast reuse.
66 * @gfp_flags: Flags to pass for alloc_page.
67 * @npages: Number of pages in pool.
68 */
69 struct ttm_page_pool {
70 spinlock_t lock;
71 bool fill_lock;
72 struct list_head list;
73 gfp_t gfp_flags;
74 unsigned npages;
75 char *name;
76 unsigned long nfrees;
77 unsigned long nrefills;
78 unsigned int order;
79 };
80
81 /**
82 * Limits for the pool. They are handled without locks because only place where
83 * they may change is in sysfs store. They won't have immediate effect anyway
84 * so forcing serialization to access them is pointless.
85 */
86
87 struct ttm_pool_opts {
88 unsigned alloc_size;
89 unsigned max_size;
90 unsigned small;
91 };
92
93 #define NUM_POOLS 6
94
95 /**
96 * struct ttm_pool_manager - Holds memory pools for fst allocation
97 *
98 * Manager is read only object for pool code so it doesn't need locking.
99 *
100 * @free_interval: minimum number of jiffies between freeing pages from pool.
101 * @page_alloc_inited: reference counting for pool allocation.
102 * @work: Work that is used to shrink the pool. Work is only run when there is
103 * some pages to free.
104 * @small_allocation: Limit in number of pages what is small allocation.
105 *
106 * @pools: All pool objects in use.
107 **/
108 struct ttm_pool_manager {
109 struct kobject kobj;
110 struct shrinker mm_shrink;
111 struct ttm_pool_opts options;
112
113 union {
114 struct ttm_page_pool pools[NUM_POOLS];
115 struct {
116 struct ttm_page_pool wc_pool;
117 struct ttm_page_pool uc_pool;
118 struct ttm_page_pool wc_pool_dma32;
119 struct ttm_page_pool uc_pool_dma32;
120 struct ttm_page_pool wc_pool_huge;
121 struct ttm_page_pool uc_pool_huge;
122 } ;
123 };
124 };
125
126 static struct attribute ttm_page_pool_max = {
127 .name = "pool_max_size",
128 .mode = S_IRUGO | S_IWUSR
129 };
130 static struct attribute ttm_page_pool_small = {
131 .name = "pool_small_allocation",
132 .mode = S_IRUGO | S_IWUSR
133 };
134 static struct attribute ttm_page_pool_alloc_size = {
135 .name = "pool_allocation_size",
136 .mode = S_IRUGO | S_IWUSR
137 };
138
139 static struct attribute *ttm_pool_attrs[] = {
140 &ttm_page_pool_max,
141 &ttm_page_pool_small,
142 &ttm_page_pool_alloc_size,
143 NULL
144 };
145
ttm_pool_kobj_release(struct kobject * kobj)146 static void ttm_pool_kobj_release(struct kobject *kobj)
147 {
148 struct ttm_pool_manager *m =
149 container_of(kobj, struct ttm_pool_manager, kobj);
150 kfree(m);
151 }
152
ttm_pool_store(struct kobject * kobj,struct attribute * attr,const char * buffer,size_t size)153 static ssize_t ttm_pool_store(struct kobject *kobj,
154 struct attribute *attr, const char *buffer, size_t size)
155 {
156 struct ttm_pool_manager *m =
157 container_of(kobj, struct ttm_pool_manager, kobj);
158 int chars;
159 unsigned val;
160 chars = sscanf(buffer, "%u", &val);
161 if (chars == 0)
162 return size;
163
164 /* Convert kb to number of pages */
165 val = val / (PAGE_SIZE >> 10);
166
167 if (attr == &ttm_page_pool_max)
168 m->options.max_size = val;
169 else if (attr == &ttm_page_pool_small)
170 m->options.small = val;
171 else if (attr == &ttm_page_pool_alloc_size) {
172 if (val > NUM_PAGES_TO_ALLOC*8) {
173 pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
174 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
175 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
176 return size;
177 } else if (val > NUM_PAGES_TO_ALLOC) {
178 pr_warn("Setting allocation size to larger than %lu is not recommended\n",
179 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
180 }
181 m->options.alloc_size = val;
182 }
183
184 return size;
185 }
186
ttm_pool_show(struct kobject * kobj,struct attribute * attr,char * buffer)187 static ssize_t ttm_pool_show(struct kobject *kobj,
188 struct attribute *attr, char *buffer)
189 {
190 struct ttm_pool_manager *m =
191 container_of(kobj, struct ttm_pool_manager, kobj);
192 unsigned val = 0;
193
194 if (attr == &ttm_page_pool_max)
195 val = m->options.max_size;
196 else if (attr == &ttm_page_pool_small)
197 val = m->options.small;
198 else if (attr == &ttm_page_pool_alloc_size)
199 val = m->options.alloc_size;
200
201 val = val * (PAGE_SIZE >> 10);
202
203 return snprintf(buffer, PAGE_SIZE, "%u\n", val);
204 }
205
206 static const struct sysfs_ops ttm_pool_sysfs_ops = {
207 .show = &ttm_pool_show,
208 .store = &ttm_pool_store,
209 };
210
211 static struct kobj_type ttm_pool_kobj_type = {
212 .release = &ttm_pool_kobj_release,
213 .sysfs_ops = &ttm_pool_sysfs_ops,
214 .default_attrs = ttm_pool_attrs,
215 };
216
217 static struct ttm_pool_manager *_manager;
218
219 /**
220 * Select the right pool or requested caching state and ttm flags. */
ttm_get_pool(int flags,bool huge,enum ttm_caching_state cstate)221 static struct ttm_page_pool *ttm_get_pool(int flags, bool huge,
222 enum ttm_caching_state cstate)
223 {
224 int pool_index;
225
226 if (cstate == tt_cached)
227 return NULL;
228
229 if (cstate == tt_wc)
230 pool_index = 0x0;
231 else
232 pool_index = 0x1;
233
234 if (flags & TTM_PAGE_FLAG_DMA32) {
235 if (huge)
236 return NULL;
237 pool_index |= 0x2;
238
239 } else if (huge) {
240 pool_index |= 0x4;
241 }
242
243 return &_manager->pools[pool_index];
244 }
245
246 /* set memory back to wb and free the pages. */
ttm_pages_put(struct page * pages[],unsigned npages,unsigned int order)247 static void ttm_pages_put(struct page *pages[], unsigned npages,
248 unsigned int order)
249 {
250 unsigned int i, pages_nr = (1 << order);
251
252 if (order == 0) {
253 if (ttm_set_pages_array_wb(pages, npages))
254 pr_err("Failed to set %d pages to wb!\n", npages);
255 }
256
257 for (i = 0; i < npages; ++i) {
258 if (order > 0) {
259 if (ttm_set_pages_wb(pages[i], pages_nr))
260 pr_err("Failed to set %d pages to wb!\n", pages_nr);
261 }
262 __free_pages(pages[i], order);
263 }
264 }
265
ttm_pool_update_free_locked(struct ttm_page_pool * pool,unsigned freed_pages)266 static void ttm_pool_update_free_locked(struct ttm_page_pool *pool,
267 unsigned freed_pages)
268 {
269 pool->npages -= freed_pages;
270 pool->nfrees += freed_pages;
271 }
272
273 /**
274 * Free pages from pool.
275 *
276 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
277 * number of pages in one go.
278 *
279 * @pool: to free the pages from
280 * @free_all: If set to true will free all pages in pool
281 * @use_static: Safe to use static buffer
282 **/
ttm_page_pool_free(struct ttm_page_pool * pool,unsigned nr_free,bool use_static)283 static int ttm_page_pool_free(struct ttm_page_pool *pool, unsigned nr_free,
284 bool use_static)
285 {
286 static struct page *static_buf[NUM_PAGES_TO_ALLOC];
287 unsigned long irq_flags;
288 struct page *p;
289 struct page **pages_to_free;
290 unsigned freed_pages = 0,
291 npages_to_free = nr_free;
292
293 if (NUM_PAGES_TO_ALLOC < nr_free)
294 npages_to_free = NUM_PAGES_TO_ALLOC;
295
296 if (use_static)
297 pages_to_free = static_buf;
298 else
299 pages_to_free = kmalloc_array(npages_to_free,
300 sizeof(struct page *),
301 GFP_KERNEL);
302 if (!pages_to_free) {
303 pr_debug("Failed to allocate memory for pool free operation\n");
304 return 0;
305 }
306
307 restart:
308 spin_lock_irqsave(&pool->lock, irq_flags);
309
310 list_for_each_entry_reverse(p, &pool->list, lru) {
311 if (freed_pages >= npages_to_free)
312 break;
313
314 pages_to_free[freed_pages++] = p;
315 /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
316 if (freed_pages >= NUM_PAGES_TO_ALLOC) {
317 /* remove range of pages from the pool */
318 __list_del(p->lru.prev, &pool->list);
319
320 ttm_pool_update_free_locked(pool, freed_pages);
321 /**
322 * Because changing page caching is costly
323 * we unlock the pool to prevent stalling.
324 */
325 spin_unlock_irqrestore(&pool->lock, irq_flags);
326
327 ttm_pages_put(pages_to_free, freed_pages, pool->order);
328 if (likely(nr_free != FREE_ALL_PAGES))
329 nr_free -= freed_pages;
330
331 if (NUM_PAGES_TO_ALLOC >= nr_free)
332 npages_to_free = nr_free;
333 else
334 npages_to_free = NUM_PAGES_TO_ALLOC;
335
336 freed_pages = 0;
337
338 /* free all so restart the processing */
339 if (nr_free)
340 goto restart;
341
342 /* Not allowed to fall through or break because
343 * following context is inside spinlock while we are
344 * outside here.
345 */
346 goto out;
347
348 }
349 }
350
351 /* remove range of pages from the pool */
352 if (freed_pages) {
353 __list_del(&p->lru, &pool->list);
354
355 ttm_pool_update_free_locked(pool, freed_pages);
356 nr_free -= freed_pages;
357 }
358
359 spin_unlock_irqrestore(&pool->lock, irq_flags);
360
361 if (freed_pages)
362 ttm_pages_put(pages_to_free, freed_pages, pool->order);
363 out:
364 if (pages_to_free != static_buf)
365 kfree(pages_to_free);
366 return nr_free;
367 }
368
369 /**
370 * Callback for mm to request pool to reduce number of page held.
371 *
372 * XXX: (dchinner) Deadlock warning!
373 *
374 * This code is crying out for a shrinker per pool....
375 */
376 static unsigned long
ttm_pool_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)377 ttm_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
378 {
379 static DEFINE_MUTEX(lock);
380 static unsigned start_pool;
381 unsigned i;
382 unsigned pool_offset;
383 struct ttm_page_pool *pool;
384 int shrink_pages = sc->nr_to_scan;
385 unsigned long freed = 0;
386 unsigned int nr_free_pool;
387
388 if (!mutex_trylock(&lock))
389 return SHRINK_STOP;
390 pool_offset = ++start_pool % NUM_POOLS;
391 /* select start pool in round robin fashion */
392 for (i = 0; i < NUM_POOLS; ++i) {
393 unsigned nr_free = shrink_pages;
394 unsigned page_nr;
395
396 if (shrink_pages == 0)
397 break;
398
399 pool = &_manager->pools[(i + pool_offset)%NUM_POOLS];
400 page_nr = (1 << pool->order);
401 /* OK to use static buffer since global mutex is held. */
402 nr_free_pool = roundup(nr_free, page_nr) >> pool->order;
403 shrink_pages = ttm_page_pool_free(pool, nr_free_pool, true);
404 freed += (nr_free_pool - shrink_pages) << pool->order;
405 if (freed >= sc->nr_to_scan)
406 break;
407 shrink_pages <<= pool->order;
408 }
409 mutex_unlock(&lock);
410 return freed;
411 }
412
413
414 static unsigned long
ttm_pool_shrink_count(struct shrinker * shrink,struct shrink_control * sc)415 ttm_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
416 {
417 unsigned i;
418 unsigned long count = 0;
419 struct ttm_page_pool *pool;
420
421 for (i = 0; i < NUM_POOLS; ++i) {
422 pool = &_manager->pools[i];
423 count += (pool->npages << pool->order);
424 }
425
426 return count;
427 }
428
ttm_pool_mm_shrink_init(struct ttm_pool_manager * manager)429 static int ttm_pool_mm_shrink_init(struct ttm_pool_manager *manager)
430 {
431 manager->mm_shrink.count_objects = ttm_pool_shrink_count;
432 manager->mm_shrink.scan_objects = ttm_pool_shrink_scan;
433 manager->mm_shrink.seeks = 1;
434 return register_shrinker(&manager->mm_shrink);
435 }
436
ttm_pool_mm_shrink_fini(struct ttm_pool_manager * manager)437 static void ttm_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
438 {
439 unregister_shrinker(&manager->mm_shrink);
440 }
441
ttm_set_pages_caching(struct page ** pages,enum ttm_caching_state cstate,unsigned cpages)442 static int ttm_set_pages_caching(struct page **pages,
443 enum ttm_caching_state cstate, unsigned cpages)
444 {
445 int r = 0;
446 /* Set page caching */
447 switch (cstate) {
448 case tt_uncached:
449 r = ttm_set_pages_array_uc(pages, cpages);
450 if (r)
451 pr_err("Failed to set %d pages to uc!\n", cpages);
452 break;
453 case tt_wc:
454 r = ttm_set_pages_array_wc(pages, cpages);
455 if (r)
456 pr_err("Failed to set %d pages to wc!\n", cpages);
457 break;
458 default:
459 break;
460 }
461 return r;
462 }
463
464 /**
465 * Free pages the pages that failed to change the caching state. If there is
466 * any pages that have changed their caching state already put them to the
467 * pool.
468 */
ttm_handle_caching_state_failure(struct list_head * pages,int ttm_flags,enum ttm_caching_state cstate,struct page ** failed_pages,unsigned cpages)469 static void ttm_handle_caching_state_failure(struct list_head *pages,
470 int ttm_flags, enum ttm_caching_state cstate,
471 struct page **failed_pages, unsigned cpages)
472 {
473 unsigned i;
474 /* Failed pages have to be freed */
475 for (i = 0; i < cpages; ++i) {
476 list_del(&failed_pages[i]->lru);
477 __free_page(failed_pages[i]);
478 }
479 }
480
481 /**
482 * Allocate new pages with correct caching.
483 *
484 * This function is reentrant if caller updates count depending on number of
485 * pages returned in pages array.
486 */
ttm_alloc_new_pages(struct list_head * pages,gfp_t gfp_flags,int ttm_flags,enum ttm_caching_state cstate,unsigned count,unsigned order)487 static int ttm_alloc_new_pages(struct list_head *pages, gfp_t gfp_flags,
488 int ttm_flags, enum ttm_caching_state cstate,
489 unsigned count, unsigned order)
490 {
491 struct page **caching_array;
492 struct page *p;
493 int r = 0;
494 unsigned i, j, cpages;
495 unsigned npages = 1 << order;
496 unsigned max_cpages = min(count << order, (unsigned)NUM_PAGES_TO_ALLOC);
497
498 /* allocate array for page caching change */
499 caching_array = kmalloc_array(max_cpages, sizeof(struct page *),
500 GFP_KERNEL);
501
502 if (!caching_array) {
503 pr_debug("Unable to allocate table for new pages\n");
504 return -ENOMEM;
505 }
506
507 for (i = 0, cpages = 0; i < count; ++i) {
508 p = alloc_pages(gfp_flags, order);
509
510 if (!p) {
511 pr_debug("Unable to get page %u\n", i);
512
513 /* store already allocated pages in the pool after
514 * setting the caching state */
515 if (cpages) {
516 r = ttm_set_pages_caching(caching_array,
517 cstate, cpages);
518 if (r)
519 ttm_handle_caching_state_failure(pages,
520 ttm_flags, cstate,
521 caching_array, cpages);
522 }
523 r = -ENOMEM;
524 goto out;
525 }
526
527 list_add(&p->lru, pages);
528
529 #ifdef CONFIG_HIGHMEM
530 /* gfp flags of highmem page should never be dma32 so we
531 * we should be fine in such case
532 */
533 if (PageHighMem(p))
534 continue;
535
536 #endif
537 for (j = 0; j < npages; ++j) {
538 caching_array[cpages++] = p++;
539 if (cpages == max_cpages) {
540
541 r = ttm_set_pages_caching(caching_array,
542 cstate, cpages);
543 if (r) {
544 ttm_handle_caching_state_failure(pages,
545 ttm_flags, cstate,
546 caching_array, cpages);
547 goto out;
548 }
549 cpages = 0;
550 }
551 }
552 }
553
554 if (cpages) {
555 r = ttm_set_pages_caching(caching_array, cstate, cpages);
556 if (r)
557 ttm_handle_caching_state_failure(pages,
558 ttm_flags, cstate,
559 caching_array, cpages);
560 }
561 out:
562 kfree(caching_array);
563
564 return r;
565 }
566
567 /**
568 * Fill the given pool if there aren't enough pages and the requested number of
569 * pages is small.
570 */
ttm_page_pool_fill_locked(struct ttm_page_pool * pool,int ttm_flags,enum ttm_caching_state cstate,unsigned count,unsigned long * irq_flags)571 static void ttm_page_pool_fill_locked(struct ttm_page_pool *pool, int ttm_flags,
572 enum ttm_caching_state cstate,
573 unsigned count, unsigned long *irq_flags)
574 {
575 struct page *p;
576 int r;
577 unsigned cpages = 0;
578 /**
579 * Only allow one pool fill operation at a time.
580 * If pool doesn't have enough pages for the allocation new pages are
581 * allocated from outside of pool.
582 */
583 if (pool->fill_lock)
584 return;
585
586 pool->fill_lock = true;
587
588 /* If allocation request is small and there are not enough
589 * pages in a pool we fill the pool up first. */
590 if (count < _manager->options.small
591 && count > pool->npages) {
592 struct list_head new_pages;
593 unsigned alloc_size = _manager->options.alloc_size;
594
595 /**
596 * Can't change page caching if in irqsave context. We have to
597 * drop the pool->lock.
598 */
599 spin_unlock_irqrestore(&pool->lock, *irq_flags);
600
601 INIT_LIST_HEAD(&new_pages);
602 r = ttm_alloc_new_pages(&new_pages, pool->gfp_flags, ttm_flags,
603 cstate, alloc_size, 0);
604 spin_lock_irqsave(&pool->lock, *irq_flags);
605
606 if (!r) {
607 list_splice(&new_pages, &pool->list);
608 ++pool->nrefills;
609 pool->npages += alloc_size;
610 } else {
611 pr_debug("Failed to fill pool (%p)\n", pool);
612 /* If we have any pages left put them to the pool. */
613 list_for_each_entry(p, &new_pages, lru) {
614 ++cpages;
615 }
616 list_splice(&new_pages, &pool->list);
617 pool->npages += cpages;
618 }
619
620 }
621 pool->fill_lock = false;
622 }
623
624 /**
625 * Allocate pages from the pool and put them on the return list.
626 *
627 * @return zero for success or negative error code.
628 */
ttm_page_pool_get_pages(struct ttm_page_pool * pool,struct list_head * pages,int ttm_flags,enum ttm_caching_state cstate,unsigned count,unsigned order)629 static int ttm_page_pool_get_pages(struct ttm_page_pool *pool,
630 struct list_head *pages,
631 int ttm_flags,
632 enum ttm_caching_state cstate,
633 unsigned count, unsigned order)
634 {
635 unsigned long irq_flags;
636 struct list_head *p;
637 unsigned i;
638 int r = 0;
639
640 spin_lock_irqsave(&pool->lock, irq_flags);
641 if (!order)
642 ttm_page_pool_fill_locked(pool, ttm_flags, cstate, count,
643 &irq_flags);
644
645 if (count >= pool->npages) {
646 /* take all pages from the pool */
647 list_splice_init(&pool->list, pages);
648 count -= pool->npages;
649 pool->npages = 0;
650 goto out;
651 }
652 /* find the last pages to include for requested number of pages. Split
653 * pool to begin and halve it to reduce search space. */
654 if (count <= pool->npages/2) {
655 i = 0;
656 list_for_each(p, &pool->list) {
657 if (++i == count)
658 break;
659 }
660 } else {
661 i = pool->npages + 1;
662 list_for_each_prev(p, &pool->list) {
663 if (--i == count)
664 break;
665 }
666 }
667 /* Cut 'count' number of pages from the pool */
668 list_cut_position(pages, &pool->list, p);
669 pool->npages -= count;
670 count = 0;
671 out:
672 spin_unlock_irqrestore(&pool->lock, irq_flags);
673
674 /* clear the pages coming from the pool if requested */
675 if (ttm_flags & TTM_PAGE_FLAG_ZERO_ALLOC) {
676 struct page *page;
677
678 list_for_each_entry(page, pages, lru) {
679 if (PageHighMem(page))
680 clear_highpage(page);
681 else
682 clear_page(page_address(page));
683 }
684 }
685
686 /* If pool didn't have enough pages allocate new one. */
687 if (count) {
688 gfp_t gfp_flags = pool->gfp_flags;
689
690 /* set zero flag for page allocation if required */
691 if (ttm_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
692 gfp_flags |= __GFP_ZERO;
693
694 if (ttm_flags & TTM_PAGE_FLAG_NO_RETRY)
695 gfp_flags |= __GFP_RETRY_MAYFAIL;
696
697 /* ttm_alloc_new_pages doesn't reference pool so we can run
698 * multiple requests in parallel.
699 **/
700 r = ttm_alloc_new_pages(pages, gfp_flags, ttm_flags, cstate,
701 count, order);
702 }
703
704 return r;
705 }
706
707 /* Put all pages in pages list to correct pool to wait for reuse */
ttm_put_pages(struct page ** pages,unsigned npages,int flags,enum ttm_caching_state cstate)708 static void ttm_put_pages(struct page **pages, unsigned npages, int flags,
709 enum ttm_caching_state cstate)
710 {
711 struct ttm_page_pool *pool = ttm_get_pool(flags, false, cstate);
712 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
713 struct ttm_page_pool *huge = ttm_get_pool(flags, true, cstate);
714 #endif
715 unsigned long irq_flags;
716 unsigned i;
717
718 if (pool == NULL) {
719 /* No pool for this memory type so free the pages */
720 i = 0;
721 while (i < npages) {
722 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
723 struct page *p = pages[i];
724 #endif
725 unsigned order = 0, j;
726
727 if (!pages[i]) {
728 ++i;
729 continue;
730 }
731
732 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
733 if (!(flags & TTM_PAGE_FLAG_DMA32)) {
734 for (j = 0; j < HPAGE_PMD_NR; ++j)
735 if (p++ != pages[i + j])
736 break;
737
738 if (j == HPAGE_PMD_NR)
739 order = HPAGE_PMD_ORDER;
740 }
741 #endif
742
743 if (page_count(pages[i]) != 1)
744 pr_err("Erroneous page count. Leaking pages.\n");
745 __free_pages(pages[i], order);
746
747 j = 1 << order;
748 while (j) {
749 pages[i++] = NULL;
750 --j;
751 }
752 }
753 return;
754 }
755
756 i = 0;
757 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
758 if (huge) {
759 unsigned max_size, n2free;
760
761 spin_lock_irqsave(&huge->lock, irq_flags);
762 while (i < npages) {
763 struct page *p = pages[i];
764 unsigned j;
765
766 if (!p)
767 break;
768
769 for (j = 0; j < HPAGE_PMD_NR; ++j)
770 if (p++ != pages[i + j])
771 break;
772
773 if (j != HPAGE_PMD_NR)
774 break;
775
776 list_add_tail(&pages[i]->lru, &huge->list);
777
778 for (j = 0; j < HPAGE_PMD_NR; ++j)
779 pages[i++] = NULL;
780 huge->npages++;
781 }
782
783 /* Check that we don't go over the pool limit */
784 max_size = _manager->options.max_size;
785 max_size /= HPAGE_PMD_NR;
786 if (huge->npages > max_size)
787 n2free = huge->npages - max_size;
788 else
789 n2free = 0;
790 spin_unlock_irqrestore(&huge->lock, irq_flags);
791 if (n2free)
792 ttm_page_pool_free(huge, n2free, false);
793 }
794 #endif
795
796 spin_lock_irqsave(&pool->lock, irq_flags);
797 while (i < npages) {
798 if (pages[i]) {
799 if (page_count(pages[i]) != 1)
800 pr_err("Erroneous page count. Leaking pages.\n");
801 list_add_tail(&pages[i]->lru, &pool->list);
802 pages[i] = NULL;
803 pool->npages++;
804 }
805 ++i;
806 }
807 /* Check that we don't go over the pool limit */
808 npages = 0;
809 if (pool->npages > _manager->options.max_size) {
810 npages = pool->npages - _manager->options.max_size;
811 /* free at least NUM_PAGES_TO_ALLOC number of pages
812 * to reduce calls to set_memory_wb */
813 if (npages < NUM_PAGES_TO_ALLOC)
814 npages = NUM_PAGES_TO_ALLOC;
815 }
816 spin_unlock_irqrestore(&pool->lock, irq_flags);
817 if (npages)
818 ttm_page_pool_free(pool, npages, false);
819 }
820
821 /*
822 * On success pages list will hold count number of correctly
823 * cached pages.
824 */
ttm_get_pages(struct page ** pages,unsigned npages,int flags,enum ttm_caching_state cstate)825 static int ttm_get_pages(struct page **pages, unsigned npages, int flags,
826 enum ttm_caching_state cstate)
827 {
828 struct ttm_page_pool *pool = ttm_get_pool(flags, false, cstate);
829 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
830 struct ttm_page_pool *huge = ttm_get_pool(flags, true, cstate);
831 #endif
832 struct list_head plist;
833 struct page *p = NULL;
834 unsigned count, first;
835 int r;
836
837 /* No pool for cached pages */
838 if (pool == NULL) {
839 gfp_t gfp_flags = GFP_USER;
840 unsigned i;
841 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
842 unsigned j;
843 #endif
844
845 /* set zero flag for page allocation if required */
846 if (flags & TTM_PAGE_FLAG_ZERO_ALLOC)
847 gfp_flags |= __GFP_ZERO;
848
849 if (flags & TTM_PAGE_FLAG_NO_RETRY)
850 gfp_flags |= __GFP_RETRY_MAYFAIL;
851
852 if (flags & TTM_PAGE_FLAG_DMA32)
853 gfp_flags |= GFP_DMA32;
854 else
855 gfp_flags |= GFP_HIGHUSER;
856
857 i = 0;
858 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
859 if (!(gfp_flags & GFP_DMA32)) {
860 while (npages >= HPAGE_PMD_NR) {
861 gfp_t huge_flags = gfp_flags;
862
863 huge_flags |= GFP_TRANSHUGE_LIGHT | __GFP_NORETRY |
864 __GFP_KSWAPD_RECLAIM;
865 huge_flags &= ~__GFP_MOVABLE;
866 huge_flags &= ~__GFP_COMP;
867 p = alloc_pages(huge_flags, HPAGE_PMD_ORDER);
868 if (!p)
869 break;
870
871 for (j = 0; j < HPAGE_PMD_NR; ++j)
872 pages[i++] = p++;
873
874 npages -= HPAGE_PMD_NR;
875 }
876 }
877 #endif
878
879 first = i;
880 while (npages) {
881 p = alloc_page(gfp_flags);
882 if (!p) {
883 pr_debug("Unable to allocate page\n");
884 return -ENOMEM;
885 }
886
887 /* Swap the pages if we detect consecutive order */
888 if (i > first && pages[i - 1] == p - 1)
889 swap(p, pages[i - 1]);
890
891 pages[i++] = p;
892 --npages;
893 }
894 return 0;
895 }
896
897 count = 0;
898
899 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
900 if (huge && npages >= HPAGE_PMD_NR) {
901 INIT_LIST_HEAD(&plist);
902 ttm_page_pool_get_pages(huge, &plist, flags, cstate,
903 npages / HPAGE_PMD_NR,
904 HPAGE_PMD_ORDER);
905
906 list_for_each_entry(p, &plist, lru) {
907 unsigned j;
908
909 for (j = 0; j < HPAGE_PMD_NR; ++j)
910 pages[count++] = &p[j];
911 }
912 }
913 #endif
914
915 INIT_LIST_HEAD(&plist);
916 r = ttm_page_pool_get_pages(pool, &plist, flags, cstate,
917 npages - count, 0);
918
919 first = count;
920 list_for_each_entry(p, &plist, lru) {
921 struct page *tmp = p;
922
923 /* Swap the pages if we detect consecutive order */
924 if (count > first && pages[count - 1] == tmp - 1)
925 swap(tmp, pages[count - 1]);
926 pages[count++] = tmp;
927 }
928
929 if (r) {
930 /* If there is any pages in the list put them back to
931 * the pool.
932 */
933 pr_debug("Failed to allocate extra pages for large request\n");
934 ttm_put_pages(pages, count, flags, cstate);
935 return r;
936 }
937
938 return 0;
939 }
940
ttm_page_pool_init_locked(struct ttm_page_pool * pool,gfp_t flags,char * name,unsigned int order)941 static void ttm_page_pool_init_locked(struct ttm_page_pool *pool, gfp_t flags,
942 char *name, unsigned int order)
943 {
944 spin_lock_init(&pool->lock);
945 pool->fill_lock = false;
946 INIT_LIST_HEAD(&pool->list);
947 pool->npages = pool->nfrees = 0;
948 pool->gfp_flags = flags;
949 pool->name = name;
950 pool->order = order;
951 }
952
ttm_page_alloc_init(struct ttm_mem_global * glob,unsigned max_pages)953 int ttm_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
954 {
955 int ret;
956 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
957 unsigned order = HPAGE_PMD_ORDER;
958 #else
959 unsigned order = 0;
960 #endif
961
962 WARN_ON(_manager);
963
964 pr_info("Initializing pool allocator\n");
965
966 _manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
967 if (!_manager)
968 return -ENOMEM;
969
970 ttm_page_pool_init_locked(&_manager->wc_pool, GFP_HIGHUSER, "wc", 0);
971
972 ttm_page_pool_init_locked(&_manager->uc_pool, GFP_HIGHUSER, "uc", 0);
973
974 ttm_page_pool_init_locked(&_manager->wc_pool_dma32,
975 GFP_USER | GFP_DMA32, "wc dma", 0);
976
977 ttm_page_pool_init_locked(&_manager->uc_pool_dma32,
978 GFP_USER | GFP_DMA32, "uc dma", 0);
979
980 ttm_page_pool_init_locked(&_manager->wc_pool_huge,
981 (GFP_TRANSHUGE_LIGHT | __GFP_NORETRY |
982 __GFP_KSWAPD_RECLAIM) &
983 ~(__GFP_MOVABLE | __GFP_COMP),
984 "wc huge", order);
985
986 ttm_page_pool_init_locked(&_manager->uc_pool_huge,
987 (GFP_TRANSHUGE_LIGHT | __GFP_NORETRY |
988 __GFP_KSWAPD_RECLAIM) &
989 ~(__GFP_MOVABLE | __GFP_COMP)
990 , "uc huge", order);
991
992 _manager->options.max_size = max_pages;
993 _manager->options.small = SMALL_ALLOCATION;
994 _manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
995
996 ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
997 &glob->kobj, "pool");
998 if (unlikely(ret != 0))
999 goto error;
1000
1001 ret = ttm_pool_mm_shrink_init(_manager);
1002 if (unlikely(ret != 0))
1003 goto error;
1004 return 0;
1005
1006 error:
1007 kobject_put(&_manager->kobj);
1008 _manager = NULL;
1009 return ret;
1010 }
1011
ttm_page_alloc_fini(void)1012 void ttm_page_alloc_fini(void)
1013 {
1014 int i;
1015
1016 pr_info("Finalizing pool allocator\n");
1017 ttm_pool_mm_shrink_fini(_manager);
1018
1019 /* OK to use static buffer since global mutex is no longer used. */
1020 for (i = 0; i < NUM_POOLS; ++i)
1021 ttm_page_pool_free(&_manager->pools[i], FREE_ALL_PAGES, true);
1022
1023 kobject_put(&_manager->kobj);
1024 _manager = NULL;
1025 }
1026
1027 static void
ttm_pool_unpopulate_helper(struct ttm_tt * ttm,unsigned mem_count_update)1028 ttm_pool_unpopulate_helper(struct ttm_tt *ttm, unsigned mem_count_update)
1029 {
1030 struct ttm_mem_global *mem_glob = ttm->bdev->glob->mem_glob;
1031 unsigned i;
1032
1033 if (mem_count_update == 0)
1034 goto put_pages;
1035
1036 for (i = 0; i < mem_count_update; ++i) {
1037 if (!ttm->pages[i])
1038 continue;
1039
1040 ttm_mem_global_free_page(mem_glob, ttm->pages[i], PAGE_SIZE);
1041 }
1042
1043 put_pages:
1044 ttm_put_pages(ttm->pages, ttm->num_pages, ttm->page_flags,
1045 ttm->caching_state);
1046 ttm->state = tt_unpopulated;
1047 }
1048
ttm_pool_populate(struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)1049 int ttm_pool_populate(struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
1050 {
1051 struct ttm_mem_global *mem_glob = ttm->bdev->glob->mem_glob;
1052 unsigned i;
1053 int ret;
1054
1055 if (ttm->state != tt_unpopulated)
1056 return 0;
1057
1058 if (ttm_check_under_lowerlimit(mem_glob, ttm->num_pages, ctx))
1059 return -ENOMEM;
1060
1061 ret = ttm_get_pages(ttm->pages, ttm->num_pages, ttm->page_flags,
1062 ttm->caching_state);
1063 if (unlikely(ret != 0)) {
1064 ttm_pool_unpopulate_helper(ttm, 0);
1065 return ret;
1066 }
1067
1068 for (i = 0; i < ttm->num_pages; ++i) {
1069 ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
1070 PAGE_SIZE, ctx);
1071 if (unlikely(ret != 0)) {
1072 ttm_pool_unpopulate_helper(ttm, i);
1073 return -ENOMEM;
1074 }
1075 }
1076
1077 if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
1078 ret = ttm_tt_swapin(ttm);
1079 if (unlikely(ret != 0)) {
1080 ttm_pool_unpopulate(ttm);
1081 return ret;
1082 }
1083 }
1084
1085 ttm->state = tt_unbound;
1086 return 0;
1087 }
1088 EXPORT_SYMBOL(ttm_pool_populate);
1089
ttm_pool_unpopulate(struct ttm_tt * ttm)1090 void ttm_pool_unpopulate(struct ttm_tt *ttm)
1091 {
1092 ttm_pool_unpopulate_helper(ttm, ttm->num_pages);
1093 }
1094 EXPORT_SYMBOL(ttm_pool_unpopulate);
1095
ttm_populate_and_map_pages(struct device * dev,struct ttm_dma_tt * tt,struct ttm_operation_ctx * ctx)1096 int ttm_populate_and_map_pages(struct device *dev, struct ttm_dma_tt *tt,
1097 struct ttm_operation_ctx *ctx)
1098 {
1099 unsigned i, j;
1100 int r;
1101
1102 r = ttm_pool_populate(&tt->ttm, ctx);
1103 if (r)
1104 return r;
1105
1106 for (i = 0; i < tt->ttm.num_pages; ++i) {
1107 struct page *p = tt->ttm.pages[i];
1108 size_t num_pages = 1;
1109
1110 for (j = i + 1; j < tt->ttm.num_pages; ++j) {
1111 if (++p != tt->ttm.pages[j])
1112 break;
1113
1114 ++num_pages;
1115 }
1116
1117 tt->dma_address[i] = dma_map_page(dev, tt->ttm.pages[i],
1118 0, num_pages * PAGE_SIZE,
1119 DMA_BIDIRECTIONAL);
1120 if (dma_mapping_error(dev, tt->dma_address[i])) {
1121 while (i--) {
1122 dma_unmap_page(dev, tt->dma_address[i],
1123 PAGE_SIZE, DMA_BIDIRECTIONAL);
1124 tt->dma_address[i] = 0;
1125 }
1126 ttm_pool_unpopulate(&tt->ttm);
1127 return -EFAULT;
1128 }
1129
1130 for (j = 1; j < num_pages; ++j) {
1131 tt->dma_address[i + 1] = tt->dma_address[i] + PAGE_SIZE;
1132 ++i;
1133 }
1134 }
1135 return 0;
1136 }
1137 EXPORT_SYMBOL(ttm_populate_and_map_pages);
1138
ttm_unmap_and_unpopulate_pages(struct device * dev,struct ttm_dma_tt * tt)1139 void ttm_unmap_and_unpopulate_pages(struct device *dev, struct ttm_dma_tt *tt)
1140 {
1141 unsigned i, j;
1142
1143 for (i = 0; i < tt->ttm.num_pages;) {
1144 struct page *p = tt->ttm.pages[i];
1145 size_t num_pages = 1;
1146
1147 if (!tt->dma_address[i] || !tt->ttm.pages[i]) {
1148 ++i;
1149 continue;
1150 }
1151
1152 for (j = i + 1; j < tt->ttm.num_pages; ++j) {
1153 if (++p != tt->ttm.pages[j])
1154 break;
1155
1156 ++num_pages;
1157 }
1158
1159 dma_unmap_page(dev, tt->dma_address[i], num_pages * PAGE_SIZE,
1160 DMA_BIDIRECTIONAL);
1161
1162 i += num_pages;
1163 }
1164 ttm_pool_unpopulate(&tt->ttm);
1165 }
1166 EXPORT_SYMBOL(ttm_unmap_and_unpopulate_pages);
1167
ttm_page_alloc_debugfs(struct seq_file * m,void * data)1168 int ttm_page_alloc_debugfs(struct seq_file *m, void *data)
1169 {
1170 struct ttm_page_pool *p;
1171 unsigned i;
1172 char *h[] = {"pool", "refills", "pages freed", "size"};
1173 if (!_manager) {
1174 seq_printf(m, "No pool allocator running.\n");
1175 return 0;
1176 }
1177 seq_printf(m, "%7s %12s %13s %8s\n",
1178 h[0], h[1], h[2], h[3]);
1179 for (i = 0; i < NUM_POOLS; ++i) {
1180 p = &_manager->pools[i];
1181
1182 seq_printf(m, "%7s %12ld %13ld %8d\n",
1183 p->name, p->nrefills,
1184 p->nfrees, p->npages);
1185 }
1186 return 0;
1187 }
1188 EXPORT_SYMBOL(ttm_page_alloc_debugfs);
1189