1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /**************************************************************************
3  *
4  * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25  * USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  **************************************************************************/
28 /*
29  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
30  */
31 
32 #include <drm/ttm/ttm_bo_driver.h>
33 #include <drm/ttm/ttm_placement.h>
34 #include <drm/drm_vma_manager.h>
35 #include <linux/io.h>
36 #include <linux/highmem.h>
37 #include <linux/wait.h>
38 #include <linux/slab.h>
39 #include <linux/vmalloc.h>
40 #include <linux/module.h>
41 #include <linux/reservation.h>
42 
43 struct ttm_transfer_obj {
44 	struct ttm_buffer_object base;
45 	struct ttm_buffer_object *bo;
46 };
47 
ttm_bo_free_old_node(struct ttm_buffer_object * bo)48 void ttm_bo_free_old_node(struct ttm_buffer_object *bo)
49 {
50 	ttm_bo_mem_put(bo, &bo->mem);
51 }
52 
ttm_bo_move_ttm(struct ttm_buffer_object * bo,struct ttm_operation_ctx * ctx,struct ttm_mem_reg * new_mem)53 int ttm_bo_move_ttm(struct ttm_buffer_object *bo,
54 		   struct ttm_operation_ctx *ctx,
55 		    struct ttm_mem_reg *new_mem)
56 {
57 	struct ttm_tt *ttm = bo->ttm;
58 	struct ttm_mem_reg *old_mem = &bo->mem;
59 	int ret;
60 
61 	if (old_mem->mem_type != TTM_PL_SYSTEM) {
62 		ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
63 
64 		if (unlikely(ret != 0)) {
65 			if (ret != -ERESTARTSYS)
66 				pr_err("Failed to expire sync object before unbinding TTM\n");
67 			return ret;
68 		}
69 
70 		ttm_tt_unbind(ttm);
71 		ttm_bo_free_old_node(bo);
72 		ttm_flag_masked(&old_mem->placement, TTM_PL_FLAG_SYSTEM,
73 				TTM_PL_MASK_MEM);
74 		old_mem->mem_type = TTM_PL_SYSTEM;
75 	}
76 
77 	ret = ttm_tt_set_placement_caching(ttm, new_mem->placement);
78 	if (unlikely(ret != 0))
79 		return ret;
80 
81 	if (new_mem->mem_type != TTM_PL_SYSTEM) {
82 		ret = ttm_tt_bind(ttm, new_mem, ctx);
83 		if (unlikely(ret != 0))
84 			return ret;
85 	}
86 
87 	*old_mem = *new_mem;
88 	new_mem->mm_node = NULL;
89 
90 	return 0;
91 }
92 EXPORT_SYMBOL(ttm_bo_move_ttm);
93 
ttm_mem_io_lock(struct ttm_mem_type_manager * man,bool interruptible)94 int ttm_mem_io_lock(struct ttm_mem_type_manager *man, bool interruptible)
95 {
96 	if (likely(man->io_reserve_fastpath))
97 		return 0;
98 
99 	if (interruptible)
100 		return mutex_lock_interruptible(&man->io_reserve_mutex);
101 
102 	mutex_lock(&man->io_reserve_mutex);
103 	return 0;
104 }
105 EXPORT_SYMBOL(ttm_mem_io_lock);
106 
ttm_mem_io_unlock(struct ttm_mem_type_manager * man)107 void ttm_mem_io_unlock(struct ttm_mem_type_manager *man)
108 {
109 	if (likely(man->io_reserve_fastpath))
110 		return;
111 
112 	mutex_unlock(&man->io_reserve_mutex);
113 }
114 EXPORT_SYMBOL(ttm_mem_io_unlock);
115 
ttm_mem_io_evict(struct ttm_mem_type_manager * man)116 static int ttm_mem_io_evict(struct ttm_mem_type_manager *man)
117 {
118 	struct ttm_buffer_object *bo;
119 
120 	if (!man->use_io_reserve_lru || list_empty(&man->io_reserve_lru))
121 		return -EAGAIN;
122 
123 	bo = list_first_entry(&man->io_reserve_lru,
124 			      struct ttm_buffer_object,
125 			      io_reserve_lru);
126 	list_del_init(&bo->io_reserve_lru);
127 	ttm_bo_unmap_virtual_locked(bo);
128 
129 	return 0;
130 }
131 
132 
ttm_mem_io_reserve(struct ttm_bo_device * bdev,struct ttm_mem_reg * mem)133 int ttm_mem_io_reserve(struct ttm_bo_device *bdev,
134 		       struct ttm_mem_reg *mem)
135 {
136 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
137 	int ret = 0;
138 
139 	if (!bdev->driver->io_mem_reserve)
140 		return 0;
141 	if (likely(man->io_reserve_fastpath))
142 		return bdev->driver->io_mem_reserve(bdev, mem);
143 
144 	if (bdev->driver->io_mem_reserve &&
145 	    mem->bus.io_reserved_count++ == 0) {
146 retry:
147 		ret = bdev->driver->io_mem_reserve(bdev, mem);
148 		if (ret == -EAGAIN) {
149 			ret = ttm_mem_io_evict(man);
150 			if (ret == 0)
151 				goto retry;
152 		}
153 	}
154 	return ret;
155 }
156 EXPORT_SYMBOL(ttm_mem_io_reserve);
157 
ttm_mem_io_free(struct ttm_bo_device * bdev,struct ttm_mem_reg * mem)158 void ttm_mem_io_free(struct ttm_bo_device *bdev,
159 		     struct ttm_mem_reg *mem)
160 {
161 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
162 
163 	if (likely(man->io_reserve_fastpath))
164 		return;
165 
166 	if (bdev->driver->io_mem_reserve &&
167 	    --mem->bus.io_reserved_count == 0 &&
168 	    bdev->driver->io_mem_free)
169 		bdev->driver->io_mem_free(bdev, mem);
170 
171 }
172 EXPORT_SYMBOL(ttm_mem_io_free);
173 
ttm_mem_io_reserve_vm(struct ttm_buffer_object * bo)174 int ttm_mem_io_reserve_vm(struct ttm_buffer_object *bo)
175 {
176 	struct ttm_mem_reg *mem = &bo->mem;
177 	int ret;
178 
179 	if (!mem->bus.io_reserved_vm) {
180 		struct ttm_mem_type_manager *man =
181 			&bo->bdev->man[mem->mem_type];
182 
183 		ret = ttm_mem_io_reserve(bo->bdev, mem);
184 		if (unlikely(ret != 0))
185 			return ret;
186 		mem->bus.io_reserved_vm = true;
187 		if (man->use_io_reserve_lru)
188 			list_add_tail(&bo->io_reserve_lru,
189 				      &man->io_reserve_lru);
190 	}
191 	return 0;
192 }
193 
ttm_mem_io_free_vm(struct ttm_buffer_object * bo)194 void ttm_mem_io_free_vm(struct ttm_buffer_object *bo)
195 {
196 	struct ttm_mem_reg *mem = &bo->mem;
197 
198 	if (mem->bus.io_reserved_vm) {
199 		mem->bus.io_reserved_vm = false;
200 		list_del_init(&bo->io_reserve_lru);
201 		ttm_mem_io_free(bo->bdev, mem);
202 	}
203 }
204 
ttm_mem_reg_ioremap(struct ttm_bo_device * bdev,struct ttm_mem_reg * mem,void ** virtual)205 static int ttm_mem_reg_ioremap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
206 			void **virtual)
207 {
208 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
209 	int ret;
210 	void *addr;
211 
212 	*virtual = NULL;
213 	(void) ttm_mem_io_lock(man, false);
214 	ret = ttm_mem_io_reserve(bdev, mem);
215 	ttm_mem_io_unlock(man);
216 	if (ret || !mem->bus.is_iomem)
217 		return ret;
218 
219 	if (mem->bus.addr) {
220 		addr = mem->bus.addr;
221 	} else {
222 		if (mem->placement & TTM_PL_FLAG_WC)
223 			addr = ioremap_wc(mem->bus.base + mem->bus.offset, mem->bus.size);
224 		else
225 			addr = ioremap_nocache(mem->bus.base + mem->bus.offset, mem->bus.size);
226 		if (!addr) {
227 			(void) ttm_mem_io_lock(man, false);
228 			ttm_mem_io_free(bdev, mem);
229 			ttm_mem_io_unlock(man);
230 			return -ENOMEM;
231 		}
232 	}
233 	*virtual = addr;
234 	return 0;
235 }
236 
ttm_mem_reg_iounmap(struct ttm_bo_device * bdev,struct ttm_mem_reg * mem,void * virtual)237 static void ttm_mem_reg_iounmap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
238 			 void *virtual)
239 {
240 	struct ttm_mem_type_manager *man;
241 
242 	man = &bdev->man[mem->mem_type];
243 
244 	if (virtual && mem->bus.addr == NULL)
245 		iounmap(virtual);
246 	(void) ttm_mem_io_lock(man, false);
247 	ttm_mem_io_free(bdev, mem);
248 	ttm_mem_io_unlock(man);
249 }
250 
ttm_copy_io_page(void * dst,void * src,unsigned long page)251 static int ttm_copy_io_page(void *dst, void *src, unsigned long page)
252 {
253 	uint32_t *dstP =
254 	    (uint32_t *) ((unsigned long)dst + (page << PAGE_SHIFT));
255 	uint32_t *srcP =
256 	    (uint32_t *) ((unsigned long)src + (page << PAGE_SHIFT));
257 
258 	int i;
259 	for (i = 0; i < PAGE_SIZE / sizeof(uint32_t); ++i)
260 		iowrite32(ioread32(srcP++), dstP++);
261 	return 0;
262 }
263 
264 #ifdef CONFIG_X86
265 #define __ttm_kmap_atomic_prot(__page, __prot) kmap_atomic_prot(__page, __prot)
266 #define __ttm_kunmap_atomic(__addr) kunmap_atomic(__addr)
267 #else
268 #define __ttm_kmap_atomic_prot(__page, __prot) vmap(&__page, 1, 0,  __prot)
269 #define __ttm_kunmap_atomic(__addr) vunmap(__addr)
270 #endif
271 
272 
273 /**
274  * ttm_kmap_atomic_prot - Efficient kernel map of a single page with
275  * specified page protection.
276  *
277  * @page: The page to map.
278  * @prot: The page protection.
279  *
280  * This function maps a TTM page using the kmap_atomic api if available,
281  * otherwise falls back to vmap. The user must make sure that the
282  * specified page does not have an aliased mapping with a different caching
283  * policy unless the architecture explicitly allows it. Also mapping and
284  * unmapping using this api must be correctly nested. Unmapping should
285  * occur in the reverse order of mapping.
286  */
ttm_kmap_atomic_prot(struct page * page,pgprot_t prot)287 void *ttm_kmap_atomic_prot(struct page *page, pgprot_t prot)
288 {
289 	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL))
290 		return kmap_atomic(page);
291 	else
292 		return __ttm_kmap_atomic_prot(page, prot);
293 }
294 EXPORT_SYMBOL(ttm_kmap_atomic_prot);
295 
296 /**
297  * ttm_kunmap_atomic_prot - Unmap a page that was mapped using
298  * ttm_kmap_atomic_prot.
299  *
300  * @addr: The virtual address from the map.
301  * @prot: The page protection.
302  */
ttm_kunmap_atomic_prot(void * addr,pgprot_t prot)303 void ttm_kunmap_atomic_prot(void *addr, pgprot_t prot)
304 {
305 	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL))
306 		kunmap_atomic(addr);
307 	else
308 		__ttm_kunmap_atomic(addr);
309 }
310 EXPORT_SYMBOL(ttm_kunmap_atomic_prot);
311 
ttm_copy_io_ttm_page(struct ttm_tt * ttm,void * src,unsigned long page,pgprot_t prot)312 static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src,
313 				unsigned long page,
314 				pgprot_t prot)
315 {
316 	struct page *d = ttm->pages[page];
317 	void *dst;
318 
319 	if (!d)
320 		return -ENOMEM;
321 
322 	src = (void *)((unsigned long)src + (page << PAGE_SHIFT));
323 	dst = ttm_kmap_atomic_prot(d, prot);
324 	if (!dst)
325 		return -ENOMEM;
326 
327 	memcpy_fromio(dst, src, PAGE_SIZE);
328 
329 	ttm_kunmap_atomic_prot(dst, prot);
330 
331 	return 0;
332 }
333 
ttm_copy_ttm_io_page(struct ttm_tt * ttm,void * dst,unsigned long page,pgprot_t prot)334 static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst,
335 				unsigned long page,
336 				pgprot_t prot)
337 {
338 	struct page *s = ttm->pages[page];
339 	void *src;
340 
341 	if (!s)
342 		return -ENOMEM;
343 
344 	dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT));
345 	src = ttm_kmap_atomic_prot(s, prot);
346 	if (!src)
347 		return -ENOMEM;
348 
349 	memcpy_toio(dst, src, PAGE_SIZE);
350 
351 	ttm_kunmap_atomic_prot(src, prot);
352 
353 	return 0;
354 }
355 
ttm_bo_move_memcpy(struct ttm_buffer_object * bo,struct ttm_operation_ctx * ctx,struct ttm_mem_reg * new_mem)356 int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
357 		       struct ttm_operation_ctx *ctx,
358 		       struct ttm_mem_reg *new_mem)
359 {
360 	struct ttm_bo_device *bdev = bo->bdev;
361 	struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
362 	struct ttm_tt *ttm = bo->ttm;
363 	struct ttm_mem_reg *old_mem = &bo->mem;
364 	struct ttm_mem_reg old_copy = *old_mem;
365 	void *old_iomap;
366 	void *new_iomap;
367 	int ret;
368 	unsigned long i;
369 	unsigned long page;
370 	unsigned long add = 0;
371 	int dir;
372 
373 	ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
374 	if (ret)
375 		return ret;
376 
377 	ret = ttm_mem_reg_ioremap(bdev, old_mem, &old_iomap);
378 	if (ret)
379 		return ret;
380 	ret = ttm_mem_reg_ioremap(bdev, new_mem, &new_iomap);
381 	if (ret)
382 		goto out;
383 
384 	/*
385 	 * Single TTM move. NOP.
386 	 */
387 	if (old_iomap == NULL && new_iomap == NULL)
388 		goto out2;
389 
390 	/*
391 	 * Don't move nonexistent data. Clear destination instead.
392 	 */
393 	if (old_iomap == NULL &&
394 	    (ttm == NULL || (ttm->state == tt_unpopulated &&
395 			     !(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)))) {
396 		memset_io(new_iomap, 0, new_mem->num_pages*PAGE_SIZE);
397 		goto out2;
398 	}
399 
400 	/*
401 	 * TTM might be null for moves within the same region.
402 	 */
403 	if (ttm) {
404 		ret = ttm_tt_populate(ttm, ctx);
405 		if (ret)
406 			goto out1;
407 	}
408 
409 	add = 0;
410 	dir = 1;
411 
412 	if ((old_mem->mem_type == new_mem->mem_type) &&
413 	    (new_mem->start < old_mem->start + old_mem->size)) {
414 		dir = -1;
415 		add = new_mem->num_pages - 1;
416 	}
417 
418 	for (i = 0; i < new_mem->num_pages; ++i) {
419 		page = i * dir + add;
420 		if (old_iomap == NULL) {
421 			pgprot_t prot = ttm_io_prot(old_mem->placement,
422 						    PAGE_KERNEL);
423 			ret = ttm_copy_ttm_io_page(ttm, new_iomap, page,
424 						   prot);
425 		} else if (new_iomap == NULL) {
426 			pgprot_t prot = ttm_io_prot(new_mem->placement,
427 						    PAGE_KERNEL);
428 			ret = ttm_copy_io_ttm_page(ttm, old_iomap, page,
429 						   prot);
430 		} else {
431 			ret = ttm_copy_io_page(new_iomap, old_iomap, page);
432 		}
433 		if (ret)
434 			goto out1;
435 	}
436 	mb();
437 out2:
438 	old_copy = *old_mem;
439 	*old_mem = *new_mem;
440 	new_mem->mm_node = NULL;
441 
442 	if (man->flags & TTM_MEMTYPE_FLAG_FIXED) {
443 		ttm_tt_destroy(ttm);
444 		bo->ttm = NULL;
445 	}
446 
447 out1:
448 	ttm_mem_reg_iounmap(bdev, old_mem, new_iomap);
449 out:
450 	ttm_mem_reg_iounmap(bdev, &old_copy, old_iomap);
451 
452 	/*
453 	 * On error, keep the mm node!
454 	 */
455 	if (!ret)
456 		ttm_bo_mem_put(bo, &old_copy);
457 	return ret;
458 }
459 EXPORT_SYMBOL(ttm_bo_move_memcpy);
460 
ttm_transfered_destroy(struct ttm_buffer_object * bo)461 static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
462 {
463 	struct ttm_transfer_obj *fbo;
464 
465 	fbo = container_of(bo, struct ttm_transfer_obj, base);
466 	ttm_bo_put(fbo->bo);
467 	kfree(fbo);
468 }
469 
470 /**
471  * ttm_buffer_object_transfer
472  *
473  * @bo: A pointer to a struct ttm_buffer_object.
474  * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
475  * holding the data of @bo with the old placement.
476  *
477  * This is a utility function that may be called after an accelerated move
478  * has been scheduled. A new buffer object is created as a placeholder for
479  * the old data while it's being copied. When that buffer object is idle,
480  * it can be destroyed, releasing the space of the old placement.
481  * Returns:
482  * !0: Failure.
483  */
484 
ttm_buffer_object_transfer(struct ttm_buffer_object * bo,struct ttm_buffer_object ** new_obj)485 static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
486 				      struct ttm_buffer_object **new_obj)
487 {
488 	struct ttm_transfer_obj *fbo;
489 	int ret;
490 
491 	fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
492 	if (!fbo)
493 		return -ENOMEM;
494 
495 	ttm_bo_get(bo);
496 	fbo->base = *bo;
497 	fbo->bo = bo;
498 
499 	/**
500 	 * Fix up members that we shouldn't copy directly:
501 	 * TODO: Explicit member copy would probably be better here.
502 	 */
503 
504 	atomic_inc(&bo->bdev->glob->bo_count);
505 	INIT_LIST_HEAD(&fbo->base.ddestroy);
506 	INIT_LIST_HEAD(&fbo->base.lru);
507 	INIT_LIST_HEAD(&fbo->base.swap);
508 	INIT_LIST_HEAD(&fbo->base.io_reserve_lru);
509 	mutex_init(&fbo->base.wu_mutex);
510 	fbo->base.moving = NULL;
511 	drm_vma_node_reset(&fbo->base.vma_node);
512 	atomic_set(&fbo->base.cpu_writers, 0);
513 
514 	kref_init(&fbo->base.list_kref);
515 	kref_init(&fbo->base.kref);
516 	fbo->base.destroy = &ttm_transfered_destroy;
517 	fbo->base.acc_size = 0;
518 	fbo->base.resv = &fbo->base.ttm_resv;
519 	reservation_object_init(fbo->base.resv);
520 	ret = reservation_object_trylock(fbo->base.resv);
521 	WARN_ON(!ret);
522 
523 	*new_obj = &fbo->base;
524 	return 0;
525 }
526 
ttm_io_prot(uint32_t caching_flags,pgprot_t tmp)527 pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp)
528 {
529 	/* Cached mappings need no adjustment */
530 	if (caching_flags & TTM_PL_FLAG_CACHED)
531 		return tmp;
532 
533 #if defined(__i386__) || defined(__x86_64__)
534 	if (caching_flags & TTM_PL_FLAG_WC)
535 		tmp = pgprot_writecombine(tmp);
536 	else if (boot_cpu_data.x86 > 3)
537 		tmp = pgprot_noncached(tmp);
538 #endif
539 #if defined(__ia64__) || defined(__arm__) || defined(__aarch64__) || \
540     defined(__powerpc__)
541 	if (caching_flags & TTM_PL_FLAG_WC)
542 		tmp = pgprot_writecombine(tmp);
543 	else
544 		tmp = pgprot_noncached(tmp);
545 #endif
546 #if defined(__sparc__) || defined(__mips__)
547 	tmp = pgprot_noncached(tmp);
548 #endif
549 	return tmp;
550 }
551 EXPORT_SYMBOL(ttm_io_prot);
552 
ttm_bo_ioremap(struct ttm_buffer_object * bo,unsigned long offset,unsigned long size,struct ttm_bo_kmap_obj * map)553 static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
554 			  unsigned long offset,
555 			  unsigned long size,
556 			  struct ttm_bo_kmap_obj *map)
557 {
558 	struct ttm_mem_reg *mem = &bo->mem;
559 
560 	if (bo->mem.bus.addr) {
561 		map->bo_kmap_type = ttm_bo_map_premapped;
562 		map->virtual = (void *)(((u8 *)bo->mem.bus.addr) + offset);
563 	} else {
564 		map->bo_kmap_type = ttm_bo_map_iomap;
565 		if (mem->placement & TTM_PL_FLAG_WC)
566 			map->virtual = ioremap_wc(bo->mem.bus.base + bo->mem.bus.offset + offset,
567 						  size);
568 		else
569 			map->virtual = ioremap_nocache(bo->mem.bus.base + bo->mem.bus.offset + offset,
570 						       size);
571 	}
572 	return (!map->virtual) ? -ENOMEM : 0;
573 }
574 
ttm_bo_kmap_ttm(struct ttm_buffer_object * bo,unsigned long start_page,unsigned long num_pages,struct ttm_bo_kmap_obj * map)575 static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
576 			   unsigned long start_page,
577 			   unsigned long num_pages,
578 			   struct ttm_bo_kmap_obj *map)
579 {
580 	struct ttm_mem_reg *mem = &bo->mem;
581 	struct ttm_operation_ctx ctx = {
582 		.interruptible = false,
583 		.no_wait_gpu = false
584 	};
585 	struct ttm_tt *ttm = bo->ttm;
586 	pgprot_t prot;
587 	int ret;
588 
589 	BUG_ON(!ttm);
590 
591 	ret = ttm_tt_populate(ttm, &ctx);
592 	if (ret)
593 		return ret;
594 
595 	if (num_pages == 1 && (mem->placement & TTM_PL_FLAG_CACHED)) {
596 		/*
597 		 * We're mapping a single page, and the desired
598 		 * page protection is consistent with the bo.
599 		 */
600 
601 		map->bo_kmap_type = ttm_bo_map_kmap;
602 		map->page = ttm->pages[start_page];
603 		map->virtual = kmap(map->page);
604 	} else {
605 		/*
606 		 * We need to use vmap to get the desired page protection
607 		 * or to make the buffer object look contiguous.
608 		 */
609 		prot = ttm_io_prot(mem->placement, PAGE_KERNEL);
610 		map->bo_kmap_type = ttm_bo_map_vmap;
611 		map->virtual = vmap(ttm->pages + start_page, num_pages,
612 				    0, prot);
613 	}
614 	return (!map->virtual) ? -ENOMEM : 0;
615 }
616 
ttm_bo_kmap(struct ttm_buffer_object * bo,unsigned long start_page,unsigned long num_pages,struct ttm_bo_kmap_obj * map)617 int ttm_bo_kmap(struct ttm_buffer_object *bo,
618 		unsigned long start_page, unsigned long num_pages,
619 		struct ttm_bo_kmap_obj *map)
620 {
621 	struct ttm_mem_type_manager *man =
622 		&bo->bdev->man[bo->mem.mem_type];
623 	unsigned long offset, size;
624 	int ret;
625 
626 	map->virtual = NULL;
627 	map->bo = bo;
628 	if (num_pages > bo->num_pages)
629 		return -EINVAL;
630 	if (start_page > bo->num_pages)
631 		return -EINVAL;
632 #if 0
633 	if (num_pages > 1 && !capable(CAP_SYS_ADMIN))
634 		return -EPERM;
635 #endif
636 	(void) ttm_mem_io_lock(man, false);
637 	ret = ttm_mem_io_reserve(bo->bdev, &bo->mem);
638 	ttm_mem_io_unlock(man);
639 	if (ret)
640 		return ret;
641 	if (!bo->mem.bus.is_iomem) {
642 		return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
643 	} else {
644 		offset = start_page << PAGE_SHIFT;
645 		size = num_pages << PAGE_SHIFT;
646 		return ttm_bo_ioremap(bo, offset, size, map);
647 	}
648 }
649 EXPORT_SYMBOL(ttm_bo_kmap);
650 
ttm_bo_kunmap(struct ttm_bo_kmap_obj * map)651 void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
652 {
653 	struct ttm_buffer_object *bo = map->bo;
654 	struct ttm_mem_type_manager *man =
655 		&bo->bdev->man[bo->mem.mem_type];
656 
657 	if (!map->virtual)
658 		return;
659 	switch (map->bo_kmap_type) {
660 	case ttm_bo_map_iomap:
661 		iounmap(map->virtual);
662 		break;
663 	case ttm_bo_map_vmap:
664 		vunmap(map->virtual);
665 		break;
666 	case ttm_bo_map_kmap:
667 		kunmap(map->page);
668 		break;
669 	case ttm_bo_map_premapped:
670 		break;
671 	default:
672 		BUG();
673 	}
674 	(void) ttm_mem_io_lock(man, false);
675 	ttm_mem_io_free(map->bo->bdev, &map->bo->mem);
676 	ttm_mem_io_unlock(man);
677 	map->virtual = NULL;
678 	map->page = NULL;
679 }
680 EXPORT_SYMBOL(ttm_bo_kunmap);
681 
ttm_bo_move_accel_cleanup(struct ttm_buffer_object * bo,struct dma_fence * fence,bool evict,struct ttm_mem_reg * new_mem)682 int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
683 			      struct dma_fence *fence,
684 			      bool evict,
685 			      struct ttm_mem_reg *new_mem)
686 {
687 	struct ttm_bo_device *bdev = bo->bdev;
688 	struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
689 	struct ttm_mem_reg *old_mem = &bo->mem;
690 	int ret;
691 	struct ttm_buffer_object *ghost_obj;
692 
693 	reservation_object_add_excl_fence(bo->resv, fence);
694 	if (evict) {
695 		ret = ttm_bo_wait(bo, false, false);
696 		if (ret)
697 			return ret;
698 
699 		if (man->flags & TTM_MEMTYPE_FLAG_FIXED) {
700 			ttm_tt_destroy(bo->ttm);
701 			bo->ttm = NULL;
702 		}
703 		ttm_bo_free_old_node(bo);
704 	} else {
705 		/**
706 		 * This should help pipeline ordinary buffer moves.
707 		 *
708 		 * Hang old buffer memory on a new buffer object,
709 		 * and leave it to be released when the GPU
710 		 * operation has completed.
711 		 */
712 
713 		dma_fence_put(bo->moving);
714 		bo->moving = dma_fence_get(fence);
715 
716 		ret = ttm_buffer_object_transfer(bo, &ghost_obj);
717 		if (ret)
718 			return ret;
719 
720 		reservation_object_add_excl_fence(ghost_obj->resv, fence);
721 
722 		/**
723 		 * If we're not moving to fixed memory, the TTM object
724 		 * needs to stay alive. Otherwhise hang it on the ghost
725 		 * bo to be unbound and destroyed.
726 		 */
727 
728 		if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED))
729 			ghost_obj->ttm = NULL;
730 		else
731 			bo->ttm = NULL;
732 
733 		ttm_bo_unreserve(ghost_obj);
734 		ttm_bo_put(ghost_obj);
735 	}
736 
737 	*old_mem = *new_mem;
738 	new_mem->mm_node = NULL;
739 
740 	return 0;
741 }
742 EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);
743 
ttm_bo_pipeline_move(struct ttm_buffer_object * bo,struct dma_fence * fence,bool evict,struct ttm_mem_reg * new_mem)744 int ttm_bo_pipeline_move(struct ttm_buffer_object *bo,
745 			 struct dma_fence *fence, bool evict,
746 			 struct ttm_mem_reg *new_mem)
747 {
748 	struct ttm_bo_device *bdev = bo->bdev;
749 	struct ttm_mem_reg *old_mem = &bo->mem;
750 
751 	struct ttm_mem_type_manager *from = &bdev->man[old_mem->mem_type];
752 	struct ttm_mem_type_manager *to = &bdev->man[new_mem->mem_type];
753 
754 	int ret;
755 
756 	reservation_object_add_excl_fence(bo->resv, fence);
757 
758 	if (!evict) {
759 		struct ttm_buffer_object *ghost_obj;
760 
761 		/**
762 		 * This should help pipeline ordinary buffer moves.
763 		 *
764 		 * Hang old buffer memory on a new buffer object,
765 		 * and leave it to be released when the GPU
766 		 * operation has completed.
767 		 */
768 
769 		dma_fence_put(bo->moving);
770 		bo->moving = dma_fence_get(fence);
771 
772 		ret = ttm_buffer_object_transfer(bo, &ghost_obj);
773 		if (ret)
774 			return ret;
775 
776 		reservation_object_add_excl_fence(ghost_obj->resv, fence);
777 
778 		/**
779 		 * If we're not moving to fixed memory, the TTM object
780 		 * needs to stay alive. Otherwhise hang it on the ghost
781 		 * bo to be unbound and destroyed.
782 		 */
783 
784 		if (!(to->flags & TTM_MEMTYPE_FLAG_FIXED))
785 			ghost_obj->ttm = NULL;
786 		else
787 			bo->ttm = NULL;
788 
789 		ttm_bo_unreserve(ghost_obj);
790 		ttm_bo_put(ghost_obj);
791 
792 	} else if (from->flags & TTM_MEMTYPE_FLAG_FIXED) {
793 
794 		/**
795 		 * BO doesn't have a TTM we need to bind/unbind. Just remember
796 		 * this eviction and free up the allocation
797 		 */
798 
799 		spin_lock(&from->move_lock);
800 		if (!from->move || dma_fence_is_later(fence, from->move)) {
801 			dma_fence_put(from->move);
802 			from->move = dma_fence_get(fence);
803 		}
804 		spin_unlock(&from->move_lock);
805 
806 		ttm_bo_free_old_node(bo);
807 
808 		dma_fence_put(bo->moving);
809 		bo->moving = dma_fence_get(fence);
810 
811 	} else {
812 		/**
813 		 * Last resort, wait for the move to be completed.
814 		 *
815 		 * Should never happen in pratice.
816 		 */
817 
818 		ret = ttm_bo_wait(bo, false, false);
819 		if (ret)
820 			return ret;
821 
822 		if (to->flags & TTM_MEMTYPE_FLAG_FIXED) {
823 			ttm_tt_destroy(bo->ttm);
824 			bo->ttm = NULL;
825 		}
826 		ttm_bo_free_old_node(bo);
827 	}
828 
829 	*old_mem = *new_mem;
830 	new_mem->mm_node = NULL;
831 
832 	return 0;
833 }
834 EXPORT_SYMBOL(ttm_bo_pipeline_move);
835 
ttm_bo_pipeline_gutting(struct ttm_buffer_object * bo)836 int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo)
837 {
838 	struct ttm_buffer_object *ghost;
839 	int ret;
840 
841 	ret = ttm_buffer_object_transfer(bo, &ghost);
842 	if (ret)
843 		return ret;
844 
845 	ret = reservation_object_copy_fences(ghost->resv, bo->resv);
846 	/* Last resort, wait for the BO to be idle when we are OOM */
847 	if (ret)
848 		ttm_bo_wait(bo, false, false);
849 
850 	memset(&bo->mem, 0, sizeof(bo->mem));
851 	bo->mem.mem_type = TTM_PL_SYSTEM;
852 	bo->ttm = NULL;
853 
854 	ttm_bo_unreserve(ghost);
855 	ttm_bo_put(ghost);
856 
857 	return 0;
858 }
859