1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /**************************************************************************
3 *
4 * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28 /*
29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
30 */
31
32 #include <drm/ttm/ttm_bo_driver.h>
33 #include <drm/ttm/ttm_placement.h>
34 #include <drm/drm_vma_manager.h>
35 #include <linux/io.h>
36 #include <linux/highmem.h>
37 #include <linux/wait.h>
38 #include <linux/slab.h>
39 #include <linux/vmalloc.h>
40 #include <linux/module.h>
41 #include <linux/reservation.h>
42
43 struct ttm_transfer_obj {
44 struct ttm_buffer_object base;
45 struct ttm_buffer_object *bo;
46 };
47
ttm_bo_free_old_node(struct ttm_buffer_object * bo)48 void ttm_bo_free_old_node(struct ttm_buffer_object *bo)
49 {
50 ttm_bo_mem_put(bo, &bo->mem);
51 }
52
ttm_bo_move_ttm(struct ttm_buffer_object * bo,struct ttm_operation_ctx * ctx,struct ttm_mem_reg * new_mem)53 int ttm_bo_move_ttm(struct ttm_buffer_object *bo,
54 struct ttm_operation_ctx *ctx,
55 struct ttm_mem_reg *new_mem)
56 {
57 struct ttm_tt *ttm = bo->ttm;
58 struct ttm_mem_reg *old_mem = &bo->mem;
59 int ret;
60
61 if (old_mem->mem_type != TTM_PL_SYSTEM) {
62 ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
63
64 if (unlikely(ret != 0)) {
65 if (ret != -ERESTARTSYS)
66 pr_err("Failed to expire sync object before unbinding TTM\n");
67 return ret;
68 }
69
70 ttm_tt_unbind(ttm);
71 ttm_bo_free_old_node(bo);
72 ttm_flag_masked(&old_mem->placement, TTM_PL_FLAG_SYSTEM,
73 TTM_PL_MASK_MEM);
74 old_mem->mem_type = TTM_PL_SYSTEM;
75 }
76
77 ret = ttm_tt_set_placement_caching(ttm, new_mem->placement);
78 if (unlikely(ret != 0))
79 return ret;
80
81 if (new_mem->mem_type != TTM_PL_SYSTEM) {
82 ret = ttm_tt_bind(ttm, new_mem, ctx);
83 if (unlikely(ret != 0))
84 return ret;
85 }
86
87 *old_mem = *new_mem;
88 new_mem->mm_node = NULL;
89
90 return 0;
91 }
92 EXPORT_SYMBOL(ttm_bo_move_ttm);
93
ttm_mem_io_lock(struct ttm_mem_type_manager * man,bool interruptible)94 int ttm_mem_io_lock(struct ttm_mem_type_manager *man, bool interruptible)
95 {
96 if (likely(man->io_reserve_fastpath))
97 return 0;
98
99 if (interruptible)
100 return mutex_lock_interruptible(&man->io_reserve_mutex);
101
102 mutex_lock(&man->io_reserve_mutex);
103 return 0;
104 }
105 EXPORT_SYMBOL(ttm_mem_io_lock);
106
ttm_mem_io_unlock(struct ttm_mem_type_manager * man)107 void ttm_mem_io_unlock(struct ttm_mem_type_manager *man)
108 {
109 if (likely(man->io_reserve_fastpath))
110 return;
111
112 mutex_unlock(&man->io_reserve_mutex);
113 }
114 EXPORT_SYMBOL(ttm_mem_io_unlock);
115
ttm_mem_io_evict(struct ttm_mem_type_manager * man)116 static int ttm_mem_io_evict(struct ttm_mem_type_manager *man)
117 {
118 struct ttm_buffer_object *bo;
119
120 if (!man->use_io_reserve_lru || list_empty(&man->io_reserve_lru))
121 return -EAGAIN;
122
123 bo = list_first_entry(&man->io_reserve_lru,
124 struct ttm_buffer_object,
125 io_reserve_lru);
126 list_del_init(&bo->io_reserve_lru);
127 ttm_bo_unmap_virtual_locked(bo);
128
129 return 0;
130 }
131
132
ttm_mem_io_reserve(struct ttm_bo_device * bdev,struct ttm_mem_reg * mem)133 int ttm_mem_io_reserve(struct ttm_bo_device *bdev,
134 struct ttm_mem_reg *mem)
135 {
136 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
137 int ret = 0;
138
139 if (!bdev->driver->io_mem_reserve)
140 return 0;
141 if (likely(man->io_reserve_fastpath))
142 return bdev->driver->io_mem_reserve(bdev, mem);
143
144 if (bdev->driver->io_mem_reserve &&
145 mem->bus.io_reserved_count++ == 0) {
146 retry:
147 ret = bdev->driver->io_mem_reserve(bdev, mem);
148 if (ret == -EAGAIN) {
149 ret = ttm_mem_io_evict(man);
150 if (ret == 0)
151 goto retry;
152 }
153 }
154 return ret;
155 }
156 EXPORT_SYMBOL(ttm_mem_io_reserve);
157
ttm_mem_io_free(struct ttm_bo_device * bdev,struct ttm_mem_reg * mem)158 void ttm_mem_io_free(struct ttm_bo_device *bdev,
159 struct ttm_mem_reg *mem)
160 {
161 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
162
163 if (likely(man->io_reserve_fastpath))
164 return;
165
166 if (bdev->driver->io_mem_reserve &&
167 --mem->bus.io_reserved_count == 0 &&
168 bdev->driver->io_mem_free)
169 bdev->driver->io_mem_free(bdev, mem);
170
171 }
172 EXPORT_SYMBOL(ttm_mem_io_free);
173
ttm_mem_io_reserve_vm(struct ttm_buffer_object * bo)174 int ttm_mem_io_reserve_vm(struct ttm_buffer_object *bo)
175 {
176 struct ttm_mem_reg *mem = &bo->mem;
177 int ret;
178
179 if (!mem->bus.io_reserved_vm) {
180 struct ttm_mem_type_manager *man =
181 &bo->bdev->man[mem->mem_type];
182
183 ret = ttm_mem_io_reserve(bo->bdev, mem);
184 if (unlikely(ret != 0))
185 return ret;
186 mem->bus.io_reserved_vm = true;
187 if (man->use_io_reserve_lru)
188 list_add_tail(&bo->io_reserve_lru,
189 &man->io_reserve_lru);
190 }
191 return 0;
192 }
193
ttm_mem_io_free_vm(struct ttm_buffer_object * bo)194 void ttm_mem_io_free_vm(struct ttm_buffer_object *bo)
195 {
196 struct ttm_mem_reg *mem = &bo->mem;
197
198 if (mem->bus.io_reserved_vm) {
199 mem->bus.io_reserved_vm = false;
200 list_del_init(&bo->io_reserve_lru);
201 ttm_mem_io_free(bo->bdev, mem);
202 }
203 }
204
ttm_mem_reg_ioremap(struct ttm_bo_device * bdev,struct ttm_mem_reg * mem,void ** virtual)205 static int ttm_mem_reg_ioremap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
206 void **virtual)
207 {
208 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
209 int ret;
210 void *addr;
211
212 *virtual = NULL;
213 (void) ttm_mem_io_lock(man, false);
214 ret = ttm_mem_io_reserve(bdev, mem);
215 ttm_mem_io_unlock(man);
216 if (ret || !mem->bus.is_iomem)
217 return ret;
218
219 if (mem->bus.addr) {
220 addr = mem->bus.addr;
221 } else {
222 if (mem->placement & TTM_PL_FLAG_WC)
223 addr = ioremap_wc(mem->bus.base + mem->bus.offset, mem->bus.size);
224 else
225 addr = ioremap_nocache(mem->bus.base + mem->bus.offset, mem->bus.size);
226 if (!addr) {
227 (void) ttm_mem_io_lock(man, false);
228 ttm_mem_io_free(bdev, mem);
229 ttm_mem_io_unlock(man);
230 return -ENOMEM;
231 }
232 }
233 *virtual = addr;
234 return 0;
235 }
236
ttm_mem_reg_iounmap(struct ttm_bo_device * bdev,struct ttm_mem_reg * mem,void * virtual)237 static void ttm_mem_reg_iounmap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
238 void *virtual)
239 {
240 struct ttm_mem_type_manager *man;
241
242 man = &bdev->man[mem->mem_type];
243
244 if (virtual && mem->bus.addr == NULL)
245 iounmap(virtual);
246 (void) ttm_mem_io_lock(man, false);
247 ttm_mem_io_free(bdev, mem);
248 ttm_mem_io_unlock(man);
249 }
250
ttm_copy_io_page(void * dst,void * src,unsigned long page)251 static int ttm_copy_io_page(void *dst, void *src, unsigned long page)
252 {
253 uint32_t *dstP =
254 (uint32_t *) ((unsigned long)dst + (page << PAGE_SHIFT));
255 uint32_t *srcP =
256 (uint32_t *) ((unsigned long)src + (page << PAGE_SHIFT));
257
258 int i;
259 for (i = 0; i < PAGE_SIZE / sizeof(uint32_t); ++i)
260 iowrite32(ioread32(srcP++), dstP++);
261 return 0;
262 }
263
264 #ifdef CONFIG_X86
265 #define __ttm_kmap_atomic_prot(__page, __prot) kmap_atomic_prot(__page, __prot)
266 #define __ttm_kunmap_atomic(__addr) kunmap_atomic(__addr)
267 #else
268 #define __ttm_kmap_atomic_prot(__page, __prot) vmap(&__page, 1, 0, __prot)
269 #define __ttm_kunmap_atomic(__addr) vunmap(__addr)
270 #endif
271
272
273 /**
274 * ttm_kmap_atomic_prot - Efficient kernel map of a single page with
275 * specified page protection.
276 *
277 * @page: The page to map.
278 * @prot: The page protection.
279 *
280 * This function maps a TTM page using the kmap_atomic api if available,
281 * otherwise falls back to vmap. The user must make sure that the
282 * specified page does not have an aliased mapping with a different caching
283 * policy unless the architecture explicitly allows it. Also mapping and
284 * unmapping using this api must be correctly nested. Unmapping should
285 * occur in the reverse order of mapping.
286 */
ttm_kmap_atomic_prot(struct page * page,pgprot_t prot)287 void *ttm_kmap_atomic_prot(struct page *page, pgprot_t prot)
288 {
289 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL))
290 return kmap_atomic(page);
291 else
292 return __ttm_kmap_atomic_prot(page, prot);
293 }
294 EXPORT_SYMBOL(ttm_kmap_atomic_prot);
295
296 /**
297 * ttm_kunmap_atomic_prot - Unmap a page that was mapped using
298 * ttm_kmap_atomic_prot.
299 *
300 * @addr: The virtual address from the map.
301 * @prot: The page protection.
302 */
ttm_kunmap_atomic_prot(void * addr,pgprot_t prot)303 void ttm_kunmap_atomic_prot(void *addr, pgprot_t prot)
304 {
305 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL))
306 kunmap_atomic(addr);
307 else
308 __ttm_kunmap_atomic(addr);
309 }
310 EXPORT_SYMBOL(ttm_kunmap_atomic_prot);
311
ttm_copy_io_ttm_page(struct ttm_tt * ttm,void * src,unsigned long page,pgprot_t prot)312 static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src,
313 unsigned long page,
314 pgprot_t prot)
315 {
316 struct page *d = ttm->pages[page];
317 void *dst;
318
319 if (!d)
320 return -ENOMEM;
321
322 src = (void *)((unsigned long)src + (page << PAGE_SHIFT));
323 dst = ttm_kmap_atomic_prot(d, prot);
324 if (!dst)
325 return -ENOMEM;
326
327 memcpy_fromio(dst, src, PAGE_SIZE);
328
329 ttm_kunmap_atomic_prot(dst, prot);
330
331 return 0;
332 }
333
ttm_copy_ttm_io_page(struct ttm_tt * ttm,void * dst,unsigned long page,pgprot_t prot)334 static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst,
335 unsigned long page,
336 pgprot_t prot)
337 {
338 struct page *s = ttm->pages[page];
339 void *src;
340
341 if (!s)
342 return -ENOMEM;
343
344 dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT));
345 src = ttm_kmap_atomic_prot(s, prot);
346 if (!src)
347 return -ENOMEM;
348
349 memcpy_toio(dst, src, PAGE_SIZE);
350
351 ttm_kunmap_atomic_prot(src, prot);
352
353 return 0;
354 }
355
ttm_bo_move_memcpy(struct ttm_buffer_object * bo,struct ttm_operation_ctx * ctx,struct ttm_mem_reg * new_mem)356 int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
357 struct ttm_operation_ctx *ctx,
358 struct ttm_mem_reg *new_mem)
359 {
360 struct ttm_bo_device *bdev = bo->bdev;
361 struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
362 struct ttm_tt *ttm = bo->ttm;
363 struct ttm_mem_reg *old_mem = &bo->mem;
364 struct ttm_mem_reg old_copy = *old_mem;
365 void *old_iomap;
366 void *new_iomap;
367 int ret;
368 unsigned long i;
369 unsigned long page;
370 unsigned long add = 0;
371 int dir;
372
373 ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
374 if (ret)
375 return ret;
376
377 ret = ttm_mem_reg_ioremap(bdev, old_mem, &old_iomap);
378 if (ret)
379 return ret;
380 ret = ttm_mem_reg_ioremap(bdev, new_mem, &new_iomap);
381 if (ret)
382 goto out;
383
384 /*
385 * Single TTM move. NOP.
386 */
387 if (old_iomap == NULL && new_iomap == NULL)
388 goto out2;
389
390 /*
391 * Don't move nonexistent data. Clear destination instead.
392 */
393 if (old_iomap == NULL &&
394 (ttm == NULL || (ttm->state == tt_unpopulated &&
395 !(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)))) {
396 memset_io(new_iomap, 0, new_mem->num_pages*PAGE_SIZE);
397 goto out2;
398 }
399
400 /*
401 * TTM might be null for moves within the same region.
402 */
403 if (ttm) {
404 ret = ttm_tt_populate(ttm, ctx);
405 if (ret)
406 goto out1;
407 }
408
409 add = 0;
410 dir = 1;
411
412 if ((old_mem->mem_type == new_mem->mem_type) &&
413 (new_mem->start < old_mem->start + old_mem->size)) {
414 dir = -1;
415 add = new_mem->num_pages - 1;
416 }
417
418 for (i = 0; i < new_mem->num_pages; ++i) {
419 page = i * dir + add;
420 if (old_iomap == NULL) {
421 pgprot_t prot = ttm_io_prot(old_mem->placement,
422 PAGE_KERNEL);
423 ret = ttm_copy_ttm_io_page(ttm, new_iomap, page,
424 prot);
425 } else if (new_iomap == NULL) {
426 pgprot_t prot = ttm_io_prot(new_mem->placement,
427 PAGE_KERNEL);
428 ret = ttm_copy_io_ttm_page(ttm, old_iomap, page,
429 prot);
430 } else {
431 ret = ttm_copy_io_page(new_iomap, old_iomap, page);
432 }
433 if (ret)
434 goto out1;
435 }
436 mb();
437 out2:
438 old_copy = *old_mem;
439 *old_mem = *new_mem;
440 new_mem->mm_node = NULL;
441
442 if (man->flags & TTM_MEMTYPE_FLAG_FIXED) {
443 ttm_tt_destroy(ttm);
444 bo->ttm = NULL;
445 }
446
447 out1:
448 ttm_mem_reg_iounmap(bdev, old_mem, new_iomap);
449 out:
450 ttm_mem_reg_iounmap(bdev, &old_copy, old_iomap);
451
452 /*
453 * On error, keep the mm node!
454 */
455 if (!ret)
456 ttm_bo_mem_put(bo, &old_copy);
457 return ret;
458 }
459 EXPORT_SYMBOL(ttm_bo_move_memcpy);
460
ttm_transfered_destroy(struct ttm_buffer_object * bo)461 static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
462 {
463 struct ttm_transfer_obj *fbo;
464
465 fbo = container_of(bo, struct ttm_transfer_obj, base);
466 ttm_bo_put(fbo->bo);
467 kfree(fbo);
468 }
469
470 /**
471 * ttm_buffer_object_transfer
472 *
473 * @bo: A pointer to a struct ttm_buffer_object.
474 * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
475 * holding the data of @bo with the old placement.
476 *
477 * This is a utility function that may be called after an accelerated move
478 * has been scheduled. A new buffer object is created as a placeholder for
479 * the old data while it's being copied. When that buffer object is idle,
480 * it can be destroyed, releasing the space of the old placement.
481 * Returns:
482 * !0: Failure.
483 */
484
ttm_buffer_object_transfer(struct ttm_buffer_object * bo,struct ttm_buffer_object ** new_obj)485 static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
486 struct ttm_buffer_object **new_obj)
487 {
488 struct ttm_transfer_obj *fbo;
489 int ret;
490
491 fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
492 if (!fbo)
493 return -ENOMEM;
494
495 ttm_bo_get(bo);
496 fbo->base = *bo;
497 fbo->bo = bo;
498
499 /**
500 * Fix up members that we shouldn't copy directly:
501 * TODO: Explicit member copy would probably be better here.
502 */
503
504 atomic_inc(&bo->bdev->glob->bo_count);
505 INIT_LIST_HEAD(&fbo->base.ddestroy);
506 INIT_LIST_HEAD(&fbo->base.lru);
507 INIT_LIST_HEAD(&fbo->base.swap);
508 INIT_LIST_HEAD(&fbo->base.io_reserve_lru);
509 mutex_init(&fbo->base.wu_mutex);
510 fbo->base.moving = NULL;
511 drm_vma_node_reset(&fbo->base.vma_node);
512 atomic_set(&fbo->base.cpu_writers, 0);
513
514 kref_init(&fbo->base.list_kref);
515 kref_init(&fbo->base.kref);
516 fbo->base.destroy = &ttm_transfered_destroy;
517 fbo->base.acc_size = 0;
518 fbo->base.resv = &fbo->base.ttm_resv;
519 reservation_object_init(fbo->base.resv);
520 ret = reservation_object_trylock(fbo->base.resv);
521 WARN_ON(!ret);
522
523 *new_obj = &fbo->base;
524 return 0;
525 }
526
ttm_io_prot(uint32_t caching_flags,pgprot_t tmp)527 pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp)
528 {
529 /* Cached mappings need no adjustment */
530 if (caching_flags & TTM_PL_FLAG_CACHED)
531 return tmp;
532
533 #if defined(__i386__) || defined(__x86_64__)
534 if (caching_flags & TTM_PL_FLAG_WC)
535 tmp = pgprot_writecombine(tmp);
536 else if (boot_cpu_data.x86 > 3)
537 tmp = pgprot_noncached(tmp);
538 #endif
539 #if defined(__ia64__) || defined(__arm__) || defined(__aarch64__) || \
540 defined(__powerpc__)
541 if (caching_flags & TTM_PL_FLAG_WC)
542 tmp = pgprot_writecombine(tmp);
543 else
544 tmp = pgprot_noncached(tmp);
545 #endif
546 #if defined(__sparc__) || defined(__mips__)
547 tmp = pgprot_noncached(tmp);
548 #endif
549 return tmp;
550 }
551 EXPORT_SYMBOL(ttm_io_prot);
552
ttm_bo_ioremap(struct ttm_buffer_object * bo,unsigned long offset,unsigned long size,struct ttm_bo_kmap_obj * map)553 static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
554 unsigned long offset,
555 unsigned long size,
556 struct ttm_bo_kmap_obj *map)
557 {
558 struct ttm_mem_reg *mem = &bo->mem;
559
560 if (bo->mem.bus.addr) {
561 map->bo_kmap_type = ttm_bo_map_premapped;
562 map->virtual = (void *)(((u8 *)bo->mem.bus.addr) + offset);
563 } else {
564 map->bo_kmap_type = ttm_bo_map_iomap;
565 if (mem->placement & TTM_PL_FLAG_WC)
566 map->virtual = ioremap_wc(bo->mem.bus.base + bo->mem.bus.offset + offset,
567 size);
568 else
569 map->virtual = ioremap_nocache(bo->mem.bus.base + bo->mem.bus.offset + offset,
570 size);
571 }
572 return (!map->virtual) ? -ENOMEM : 0;
573 }
574
ttm_bo_kmap_ttm(struct ttm_buffer_object * bo,unsigned long start_page,unsigned long num_pages,struct ttm_bo_kmap_obj * map)575 static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
576 unsigned long start_page,
577 unsigned long num_pages,
578 struct ttm_bo_kmap_obj *map)
579 {
580 struct ttm_mem_reg *mem = &bo->mem;
581 struct ttm_operation_ctx ctx = {
582 .interruptible = false,
583 .no_wait_gpu = false
584 };
585 struct ttm_tt *ttm = bo->ttm;
586 pgprot_t prot;
587 int ret;
588
589 BUG_ON(!ttm);
590
591 ret = ttm_tt_populate(ttm, &ctx);
592 if (ret)
593 return ret;
594
595 if (num_pages == 1 && (mem->placement & TTM_PL_FLAG_CACHED)) {
596 /*
597 * We're mapping a single page, and the desired
598 * page protection is consistent with the bo.
599 */
600
601 map->bo_kmap_type = ttm_bo_map_kmap;
602 map->page = ttm->pages[start_page];
603 map->virtual = kmap(map->page);
604 } else {
605 /*
606 * We need to use vmap to get the desired page protection
607 * or to make the buffer object look contiguous.
608 */
609 prot = ttm_io_prot(mem->placement, PAGE_KERNEL);
610 map->bo_kmap_type = ttm_bo_map_vmap;
611 map->virtual = vmap(ttm->pages + start_page, num_pages,
612 0, prot);
613 }
614 return (!map->virtual) ? -ENOMEM : 0;
615 }
616
ttm_bo_kmap(struct ttm_buffer_object * bo,unsigned long start_page,unsigned long num_pages,struct ttm_bo_kmap_obj * map)617 int ttm_bo_kmap(struct ttm_buffer_object *bo,
618 unsigned long start_page, unsigned long num_pages,
619 struct ttm_bo_kmap_obj *map)
620 {
621 struct ttm_mem_type_manager *man =
622 &bo->bdev->man[bo->mem.mem_type];
623 unsigned long offset, size;
624 int ret;
625
626 map->virtual = NULL;
627 map->bo = bo;
628 if (num_pages > bo->num_pages)
629 return -EINVAL;
630 if (start_page > bo->num_pages)
631 return -EINVAL;
632 #if 0
633 if (num_pages > 1 && !capable(CAP_SYS_ADMIN))
634 return -EPERM;
635 #endif
636 (void) ttm_mem_io_lock(man, false);
637 ret = ttm_mem_io_reserve(bo->bdev, &bo->mem);
638 ttm_mem_io_unlock(man);
639 if (ret)
640 return ret;
641 if (!bo->mem.bus.is_iomem) {
642 return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
643 } else {
644 offset = start_page << PAGE_SHIFT;
645 size = num_pages << PAGE_SHIFT;
646 return ttm_bo_ioremap(bo, offset, size, map);
647 }
648 }
649 EXPORT_SYMBOL(ttm_bo_kmap);
650
ttm_bo_kunmap(struct ttm_bo_kmap_obj * map)651 void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
652 {
653 struct ttm_buffer_object *bo = map->bo;
654 struct ttm_mem_type_manager *man =
655 &bo->bdev->man[bo->mem.mem_type];
656
657 if (!map->virtual)
658 return;
659 switch (map->bo_kmap_type) {
660 case ttm_bo_map_iomap:
661 iounmap(map->virtual);
662 break;
663 case ttm_bo_map_vmap:
664 vunmap(map->virtual);
665 break;
666 case ttm_bo_map_kmap:
667 kunmap(map->page);
668 break;
669 case ttm_bo_map_premapped:
670 break;
671 default:
672 BUG();
673 }
674 (void) ttm_mem_io_lock(man, false);
675 ttm_mem_io_free(map->bo->bdev, &map->bo->mem);
676 ttm_mem_io_unlock(man);
677 map->virtual = NULL;
678 map->page = NULL;
679 }
680 EXPORT_SYMBOL(ttm_bo_kunmap);
681
ttm_bo_move_accel_cleanup(struct ttm_buffer_object * bo,struct dma_fence * fence,bool evict,struct ttm_mem_reg * new_mem)682 int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
683 struct dma_fence *fence,
684 bool evict,
685 struct ttm_mem_reg *new_mem)
686 {
687 struct ttm_bo_device *bdev = bo->bdev;
688 struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
689 struct ttm_mem_reg *old_mem = &bo->mem;
690 int ret;
691 struct ttm_buffer_object *ghost_obj;
692
693 reservation_object_add_excl_fence(bo->resv, fence);
694 if (evict) {
695 ret = ttm_bo_wait(bo, false, false);
696 if (ret)
697 return ret;
698
699 if (man->flags & TTM_MEMTYPE_FLAG_FIXED) {
700 ttm_tt_destroy(bo->ttm);
701 bo->ttm = NULL;
702 }
703 ttm_bo_free_old_node(bo);
704 } else {
705 /**
706 * This should help pipeline ordinary buffer moves.
707 *
708 * Hang old buffer memory on a new buffer object,
709 * and leave it to be released when the GPU
710 * operation has completed.
711 */
712
713 dma_fence_put(bo->moving);
714 bo->moving = dma_fence_get(fence);
715
716 ret = ttm_buffer_object_transfer(bo, &ghost_obj);
717 if (ret)
718 return ret;
719
720 reservation_object_add_excl_fence(ghost_obj->resv, fence);
721
722 /**
723 * If we're not moving to fixed memory, the TTM object
724 * needs to stay alive. Otherwhise hang it on the ghost
725 * bo to be unbound and destroyed.
726 */
727
728 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED))
729 ghost_obj->ttm = NULL;
730 else
731 bo->ttm = NULL;
732
733 ttm_bo_unreserve(ghost_obj);
734 ttm_bo_put(ghost_obj);
735 }
736
737 *old_mem = *new_mem;
738 new_mem->mm_node = NULL;
739
740 return 0;
741 }
742 EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);
743
ttm_bo_pipeline_move(struct ttm_buffer_object * bo,struct dma_fence * fence,bool evict,struct ttm_mem_reg * new_mem)744 int ttm_bo_pipeline_move(struct ttm_buffer_object *bo,
745 struct dma_fence *fence, bool evict,
746 struct ttm_mem_reg *new_mem)
747 {
748 struct ttm_bo_device *bdev = bo->bdev;
749 struct ttm_mem_reg *old_mem = &bo->mem;
750
751 struct ttm_mem_type_manager *from = &bdev->man[old_mem->mem_type];
752 struct ttm_mem_type_manager *to = &bdev->man[new_mem->mem_type];
753
754 int ret;
755
756 reservation_object_add_excl_fence(bo->resv, fence);
757
758 if (!evict) {
759 struct ttm_buffer_object *ghost_obj;
760
761 /**
762 * This should help pipeline ordinary buffer moves.
763 *
764 * Hang old buffer memory on a new buffer object,
765 * and leave it to be released when the GPU
766 * operation has completed.
767 */
768
769 dma_fence_put(bo->moving);
770 bo->moving = dma_fence_get(fence);
771
772 ret = ttm_buffer_object_transfer(bo, &ghost_obj);
773 if (ret)
774 return ret;
775
776 reservation_object_add_excl_fence(ghost_obj->resv, fence);
777
778 /**
779 * If we're not moving to fixed memory, the TTM object
780 * needs to stay alive. Otherwhise hang it on the ghost
781 * bo to be unbound and destroyed.
782 */
783
784 if (!(to->flags & TTM_MEMTYPE_FLAG_FIXED))
785 ghost_obj->ttm = NULL;
786 else
787 bo->ttm = NULL;
788
789 ttm_bo_unreserve(ghost_obj);
790 ttm_bo_put(ghost_obj);
791
792 } else if (from->flags & TTM_MEMTYPE_FLAG_FIXED) {
793
794 /**
795 * BO doesn't have a TTM we need to bind/unbind. Just remember
796 * this eviction and free up the allocation
797 */
798
799 spin_lock(&from->move_lock);
800 if (!from->move || dma_fence_is_later(fence, from->move)) {
801 dma_fence_put(from->move);
802 from->move = dma_fence_get(fence);
803 }
804 spin_unlock(&from->move_lock);
805
806 ttm_bo_free_old_node(bo);
807
808 dma_fence_put(bo->moving);
809 bo->moving = dma_fence_get(fence);
810
811 } else {
812 /**
813 * Last resort, wait for the move to be completed.
814 *
815 * Should never happen in pratice.
816 */
817
818 ret = ttm_bo_wait(bo, false, false);
819 if (ret)
820 return ret;
821
822 if (to->flags & TTM_MEMTYPE_FLAG_FIXED) {
823 ttm_tt_destroy(bo->ttm);
824 bo->ttm = NULL;
825 }
826 ttm_bo_free_old_node(bo);
827 }
828
829 *old_mem = *new_mem;
830 new_mem->mm_node = NULL;
831
832 return 0;
833 }
834 EXPORT_SYMBOL(ttm_bo_pipeline_move);
835
ttm_bo_pipeline_gutting(struct ttm_buffer_object * bo)836 int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo)
837 {
838 struct ttm_buffer_object *ghost;
839 int ret;
840
841 ret = ttm_buffer_object_transfer(bo, &ghost);
842 if (ret)
843 return ret;
844
845 ret = reservation_object_copy_fences(ghost->resv, bo->resv);
846 /* Last resort, wait for the BO to be idle when we are OOM */
847 if (ret)
848 ttm_bo_wait(bo, false, false);
849
850 memset(&bo->mem, 0, sizeof(bo->mem));
851 bo->mem.mem_type = TTM_PL_SYSTEM;
852 bo->ttm = NULL;
853
854 ttm_bo_unreserve(ghost);
855 ttm_bo_put(ghost);
856
857 return 0;
858 }
859