1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include "cgroup-internal.h"
32
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/fs_parser.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/psi.h>
60 #include <net/sock.h>
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/cgroup.h>
64
65 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
66 MAX_CFTYPE_NAME + 2)
67 /* let's not notify more than 100 times per second */
68 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
69
70 /*
71 * To avoid confusing the compiler (and generating warnings) with code
72 * that attempts to access what would be a 0-element array (i.e. sized
73 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
74 * constant expression can be added.
75 */
76 #define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0)
77
78 /*
79 * cgroup_mutex is the master lock. Any modification to cgroup or its
80 * hierarchy must be performed while holding it.
81 *
82 * css_set_lock protects task->cgroups pointer, the list of css_set
83 * objects, and the chain of tasks off each css_set.
84 *
85 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
86 * cgroup.h can use them for lockdep annotations.
87 */
88 DEFINE_MUTEX(cgroup_mutex);
89 DEFINE_SPINLOCK(css_set_lock);
90
91 #ifdef CONFIG_PROVE_RCU
92 EXPORT_SYMBOL_GPL(cgroup_mutex);
93 EXPORT_SYMBOL_GPL(css_set_lock);
94 #endif
95
96 DEFINE_SPINLOCK(trace_cgroup_path_lock);
97 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
98 bool cgroup_debug __read_mostly;
99
100 /*
101 * Protects cgroup_idr and css_idr so that IDs can be released without
102 * grabbing cgroup_mutex.
103 */
104 static DEFINE_SPINLOCK(cgroup_idr_lock);
105
106 /*
107 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
108 * against file removal/re-creation across css hiding.
109 */
110 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
111
112 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
113
114 #define cgroup_assert_mutex_or_rcu_locked() \
115 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
116 !lockdep_is_held(&cgroup_mutex), \
117 "cgroup_mutex or RCU read lock required");
118
119 /*
120 * cgroup destruction makes heavy use of work items and there can be a lot
121 * of concurrent destructions. Use a separate workqueue so that cgroup
122 * destruction work items don't end up filling up max_active of system_wq
123 * which may lead to deadlock.
124 */
125 static struct workqueue_struct *cgroup_destroy_wq;
126
127 /* generate an array of cgroup subsystem pointers */
128 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
129 struct cgroup_subsys *cgroup_subsys[] = {
130 #include <linux/cgroup_subsys.h>
131 };
132 #undef SUBSYS
133
134 /* array of cgroup subsystem names */
135 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
136 static const char *cgroup_subsys_name[] = {
137 #include <linux/cgroup_subsys.h>
138 };
139 #undef SUBSYS
140
141 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
142 #define SUBSYS(_x) \
143 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
145 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
147 #include <linux/cgroup_subsys.h>
148 #undef SUBSYS
149
150 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
151 static struct static_key_true *cgroup_subsys_enabled_key[] = {
152 #include <linux/cgroup_subsys.h>
153 };
154 #undef SUBSYS
155
156 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
157 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
158 #include <linux/cgroup_subsys.h>
159 };
160 #undef SUBSYS
161
162 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
163
164 /* the default hierarchy */
165 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
166 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
167
168 /*
169 * The default hierarchy always exists but is hidden until mounted for the
170 * first time. This is for backward compatibility.
171 */
172 static bool cgrp_dfl_visible;
173
174 /* some controllers are not supported in the default hierarchy */
175 static u16 cgrp_dfl_inhibit_ss_mask;
176
177 /* some controllers are implicitly enabled on the default hierarchy */
178 static u16 cgrp_dfl_implicit_ss_mask;
179
180 /* some controllers can be threaded on the default hierarchy */
181 static u16 cgrp_dfl_threaded_ss_mask;
182
183 /* The list of hierarchy roots */
184 LIST_HEAD(cgroup_roots);
185 static int cgroup_root_count;
186
187 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
188 static DEFINE_IDR(cgroup_hierarchy_idr);
189
190 /*
191 * Assign a monotonically increasing serial number to csses. It guarantees
192 * cgroups with bigger numbers are newer than those with smaller numbers.
193 * Also, as csses are always appended to the parent's ->children list, it
194 * guarantees that sibling csses are always sorted in the ascending serial
195 * number order on the list. Protected by cgroup_mutex.
196 */
197 static u64 css_serial_nr_next = 1;
198
199 /*
200 * These bitmasks identify subsystems with specific features to avoid
201 * having to do iterative checks repeatedly.
202 */
203 static u16 have_fork_callback __read_mostly;
204 static u16 have_exit_callback __read_mostly;
205 static u16 have_release_callback __read_mostly;
206 static u16 have_canfork_callback __read_mostly;
207
208 /* cgroup namespace for init task */
209 struct cgroup_namespace init_cgroup_ns = {
210 .ns.count = REFCOUNT_INIT(2),
211 .user_ns = &init_user_ns,
212 .ns.ops = &cgroupns_operations,
213 .ns.inum = PROC_CGROUP_INIT_INO,
214 .root_cset = &init_css_set,
215 };
216
217 static struct file_system_type cgroup2_fs_type;
218 static struct cftype cgroup_base_files[];
219
220 /* cgroup optional features */
221 enum cgroup_opt_features {
222 #ifdef CONFIG_PSI
223 OPT_FEATURE_PRESSURE,
224 #endif
225 OPT_FEATURE_COUNT
226 };
227
228 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
229 #ifdef CONFIG_PSI
230 "pressure",
231 #endif
232 };
233
234 static u16 cgroup_feature_disable_mask __read_mostly;
235
236 static int cgroup_apply_control(struct cgroup *cgrp);
237 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
238 static void css_task_iter_skip(struct css_task_iter *it,
239 struct task_struct *task);
240 static int cgroup_destroy_locked(struct cgroup *cgrp);
241 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
242 struct cgroup_subsys *ss);
243 static void css_release(struct percpu_ref *ref);
244 static void kill_css(struct cgroup_subsys_state *css);
245 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
246 struct cgroup *cgrp, struct cftype cfts[],
247 bool is_add);
248
249 /**
250 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
251 * @ssid: subsys ID of interest
252 *
253 * cgroup_subsys_enabled() can only be used with literal subsys names which
254 * is fine for individual subsystems but unsuitable for cgroup core. This
255 * is slower static_key_enabled() based test indexed by @ssid.
256 */
cgroup_ssid_enabled(int ssid)257 bool cgroup_ssid_enabled(int ssid)
258 {
259 if (!CGROUP_HAS_SUBSYS_CONFIG)
260 return false;
261
262 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
263 }
264
265 /**
266 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
267 * @cgrp: the cgroup of interest
268 *
269 * The default hierarchy is the v2 interface of cgroup and this function
270 * can be used to test whether a cgroup is on the default hierarchy for
271 * cases where a subsystem should behave differently depending on the
272 * interface version.
273 *
274 * List of changed behaviors:
275 *
276 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
277 * and "name" are disallowed.
278 *
279 * - When mounting an existing superblock, mount options should match.
280 *
281 * - Remount is disallowed.
282 *
283 * - rename(2) is disallowed.
284 *
285 * - "tasks" is removed. Everything should be at process granularity. Use
286 * "cgroup.procs" instead.
287 *
288 * - "cgroup.procs" is not sorted. pids will be unique unless they got
289 * recycled in-between reads.
290 *
291 * - "release_agent" and "notify_on_release" are removed. Replacement
292 * notification mechanism will be implemented.
293 *
294 * - "cgroup.clone_children" is removed.
295 *
296 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
297 * and its descendants contain no task; otherwise, 1. The file also
298 * generates kernfs notification which can be monitored through poll and
299 * [di]notify when the value of the file changes.
300 *
301 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
302 * take masks of ancestors with non-empty cpus/mems, instead of being
303 * moved to an ancestor.
304 *
305 * - cpuset: a task can be moved into an empty cpuset, and again it takes
306 * masks of ancestors.
307 *
308 * - blkcg: blk-throttle becomes properly hierarchical.
309 *
310 * - debug: disallowed on the default hierarchy.
311 */
cgroup_on_dfl(const struct cgroup * cgrp)312 bool cgroup_on_dfl(const struct cgroup *cgrp)
313 {
314 return cgrp->root == &cgrp_dfl_root;
315 }
316
317 /* IDR wrappers which synchronize using cgroup_idr_lock */
cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)318 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
319 gfp_t gfp_mask)
320 {
321 int ret;
322
323 idr_preload(gfp_mask);
324 spin_lock_bh(&cgroup_idr_lock);
325 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
326 spin_unlock_bh(&cgroup_idr_lock);
327 idr_preload_end();
328 return ret;
329 }
330
cgroup_idr_replace(struct idr * idr,void * ptr,int id)331 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
332 {
333 void *ret;
334
335 spin_lock_bh(&cgroup_idr_lock);
336 ret = idr_replace(idr, ptr, id);
337 spin_unlock_bh(&cgroup_idr_lock);
338 return ret;
339 }
340
cgroup_idr_remove(struct idr * idr,int id)341 static void cgroup_idr_remove(struct idr *idr, int id)
342 {
343 spin_lock_bh(&cgroup_idr_lock);
344 idr_remove(idr, id);
345 spin_unlock_bh(&cgroup_idr_lock);
346 }
347
cgroup_has_tasks(struct cgroup * cgrp)348 static bool cgroup_has_tasks(struct cgroup *cgrp)
349 {
350 return cgrp->nr_populated_csets;
351 }
352
cgroup_is_threaded(struct cgroup * cgrp)353 bool cgroup_is_threaded(struct cgroup *cgrp)
354 {
355 return cgrp->dom_cgrp != cgrp;
356 }
357
358 /* can @cgrp host both domain and threaded children? */
cgroup_is_mixable(struct cgroup * cgrp)359 static bool cgroup_is_mixable(struct cgroup *cgrp)
360 {
361 /*
362 * Root isn't under domain level resource control exempting it from
363 * the no-internal-process constraint, so it can serve as a thread
364 * root and a parent of resource domains at the same time.
365 */
366 return !cgroup_parent(cgrp);
367 }
368
369 /* can @cgrp become a thread root? Should always be true for a thread root */
cgroup_can_be_thread_root(struct cgroup * cgrp)370 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
371 {
372 /* mixables don't care */
373 if (cgroup_is_mixable(cgrp))
374 return true;
375
376 /* domain roots can't be nested under threaded */
377 if (cgroup_is_threaded(cgrp))
378 return false;
379
380 /* can only have either domain or threaded children */
381 if (cgrp->nr_populated_domain_children)
382 return false;
383
384 /* and no domain controllers can be enabled */
385 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
386 return false;
387
388 return true;
389 }
390
391 /* is @cgrp root of a threaded subtree? */
cgroup_is_thread_root(struct cgroup * cgrp)392 bool cgroup_is_thread_root(struct cgroup *cgrp)
393 {
394 /* thread root should be a domain */
395 if (cgroup_is_threaded(cgrp))
396 return false;
397
398 /* a domain w/ threaded children is a thread root */
399 if (cgrp->nr_threaded_children)
400 return true;
401
402 /*
403 * A domain which has tasks and explicit threaded controllers
404 * enabled is a thread root.
405 */
406 if (cgroup_has_tasks(cgrp) &&
407 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
408 return true;
409
410 return false;
411 }
412
413 /* a domain which isn't connected to the root w/o brekage can't be used */
cgroup_is_valid_domain(struct cgroup * cgrp)414 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
415 {
416 /* the cgroup itself can be a thread root */
417 if (cgroup_is_threaded(cgrp))
418 return false;
419
420 /* but the ancestors can't be unless mixable */
421 while ((cgrp = cgroup_parent(cgrp))) {
422 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
423 return false;
424 if (cgroup_is_threaded(cgrp))
425 return false;
426 }
427
428 return true;
429 }
430
431 /* subsystems visibly enabled on a cgroup */
cgroup_control(struct cgroup * cgrp)432 static u16 cgroup_control(struct cgroup *cgrp)
433 {
434 struct cgroup *parent = cgroup_parent(cgrp);
435 u16 root_ss_mask = cgrp->root->subsys_mask;
436
437 if (parent) {
438 u16 ss_mask = parent->subtree_control;
439
440 /* threaded cgroups can only have threaded controllers */
441 if (cgroup_is_threaded(cgrp))
442 ss_mask &= cgrp_dfl_threaded_ss_mask;
443 return ss_mask;
444 }
445
446 if (cgroup_on_dfl(cgrp))
447 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
448 cgrp_dfl_implicit_ss_mask);
449 return root_ss_mask;
450 }
451
452 /* subsystems enabled on a cgroup */
cgroup_ss_mask(struct cgroup * cgrp)453 static u16 cgroup_ss_mask(struct cgroup *cgrp)
454 {
455 struct cgroup *parent = cgroup_parent(cgrp);
456
457 if (parent) {
458 u16 ss_mask = parent->subtree_ss_mask;
459
460 /* threaded cgroups can only have threaded controllers */
461 if (cgroup_is_threaded(cgrp))
462 ss_mask &= cgrp_dfl_threaded_ss_mask;
463 return ss_mask;
464 }
465
466 return cgrp->root->subsys_mask;
467 }
468
469 /**
470 * cgroup_css - obtain a cgroup's css for the specified subsystem
471 * @cgrp: the cgroup of interest
472 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
473 *
474 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
475 * function must be called either under cgroup_mutex or rcu_read_lock() and
476 * the caller is responsible for pinning the returned css if it wants to
477 * keep accessing it outside the said locks. This function may return
478 * %NULL if @cgrp doesn't have @subsys_id enabled.
479 */
cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)480 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
481 struct cgroup_subsys *ss)
482 {
483 if (CGROUP_HAS_SUBSYS_CONFIG && ss)
484 return rcu_dereference_check(cgrp->subsys[ss->id],
485 lockdep_is_held(&cgroup_mutex));
486 else
487 return &cgrp->self;
488 }
489
490 /**
491 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
492 * @cgrp: the cgroup of interest
493 * @ss: the subsystem of interest
494 *
495 * Find and get @cgrp's css associated with @ss. If the css doesn't exist
496 * or is offline, %NULL is returned.
497 */
cgroup_tryget_css(struct cgroup * cgrp,struct cgroup_subsys * ss)498 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
499 struct cgroup_subsys *ss)
500 {
501 struct cgroup_subsys_state *css;
502
503 rcu_read_lock();
504 css = cgroup_css(cgrp, ss);
505 if (css && !css_tryget_online(css))
506 css = NULL;
507 rcu_read_unlock();
508
509 return css;
510 }
511
512 /**
513 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
514 * @cgrp: the cgroup of interest
515 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
516 *
517 * Similar to cgroup_css() but returns the effective css, which is defined
518 * as the matching css of the nearest ancestor including self which has @ss
519 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
520 * function is guaranteed to return non-NULL css.
521 */
cgroup_e_css_by_mask(struct cgroup * cgrp,struct cgroup_subsys * ss)522 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
523 struct cgroup_subsys *ss)
524 {
525 lockdep_assert_held(&cgroup_mutex);
526
527 if (!ss)
528 return &cgrp->self;
529
530 /*
531 * This function is used while updating css associations and thus
532 * can't test the csses directly. Test ss_mask.
533 */
534 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
535 cgrp = cgroup_parent(cgrp);
536 if (!cgrp)
537 return NULL;
538 }
539
540 return cgroup_css(cgrp, ss);
541 }
542
543 /**
544 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
545 * @cgrp: the cgroup of interest
546 * @ss: the subsystem of interest
547 *
548 * Find and get the effective css of @cgrp for @ss. The effective css is
549 * defined as the matching css of the nearest ancestor including self which
550 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
551 * the root css is returned, so this function always returns a valid css.
552 *
553 * The returned css is not guaranteed to be online, and therefore it is the
554 * callers responsibility to try get a reference for it.
555 */
cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)556 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
557 struct cgroup_subsys *ss)
558 {
559 struct cgroup_subsys_state *css;
560
561 if (!CGROUP_HAS_SUBSYS_CONFIG)
562 return NULL;
563
564 do {
565 css = cgroup_css(cgrp, ss);
566
567 if (css)
568 return css;
569 cgrp = cgroup_parent(cgrp);
570 } while (cgrp);
571
572 return init_css_set.subsys[ss->id];
573 }
574
575 /**
576 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
577 * @cgrp: the cgroup of interest
578 * @ss: the subsystem of interest
579 *
580 * Find and get the effective css of @cgrp for @ss. The effective css is
581 * defined as the matching css of the nearest ancestor including self which
582 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
583 * the root css is returned, so this function always returns a valid css.
584 * The returned css must be put using css_put().
585 */
cgroup_get_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)586 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
587 struct cgroup_subsys *ss)
588 {
589 struct cgroup_subsys_state *css;
590
591 if (!CGROUP_HAS_SUBSYS_CONFIG)
592 return NULL;
593
594 rcu_read_lock();
595
596 do {
597 css = cgroup_css(cgrp, ss);
598
599 if (css && css_tryget_online(css))
600 goto out_unlock;
601 cgrp = cgroup_parent(cgrp);
602 } while (cgrp);
603
604 css = init_css_set.subsys[ss->id];
605 css_get(css);
606 out_unlock:
607 rcu_read_unlock();
608 return css;
609 }
610 EXPORT_SYMBOL_GPL(cgroup_get_e_css);
611
cgroup_get_live(struct cgroup * cgrp)612 static void cgroup_get_live(struct cgroup *cgrp)
613 {
614 WARN_ON_ONCE(cgroup_is_dead(cgrp));
615 css_get(&cgrp->self);
616 }
617
618 /**
619 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
620 * is responsible for taking the css_set_lock.
621 * @cgrp: the cgroup in question
622 */
__cgroup_task_count(const struct cgroup * cgrp)623 int __cgroup_task_count(const struct cgroup *cgrp)
624 {
625 int count = 0;
626 struct cgrp_cset_link *link;
627
628 lockdep_assert_held(&css_set_lock);
629
630 list_for_each_entry(link, &cgrp->cset_links, cset_link)
631 count += link->cset->nr_tasks;
632
633 return count;
634 }
635
636 /**
637 * cgroup_task_count - count the number of tasks in a cgroup.
638 * @cgrp: the cgroup in question
639 */
cgroup_task_count(const struct cgroup * cgrp)640 int cgroup_task_count(const struct cgroup *cgrp)
641 {
642 int count;
643
644 spin_lock_irq(&css_set_lock);
645 count = __cgroup_task_count(cgrp);
646 spin_unlock_irq(&css_set_lock);
647
648 return count;
649 }
650
of_css(struct kernfs_open_file * of)651 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
652 {
653 struct cgroup *cgrp = of->kn->parent->priv;
654 struct cftype *cft = of_cft(of);
655
656 /*
657 * This is open and unprotected implementation of cgroup_css().
658 * seq_css() is only called from a kernfs file operation which has
659 * an active reference on the file. Because all the subsystem
660 * files are drained before a css is disassociated with a cgroup,
661 * the matching css from the cgroup's subsys table is guaranteed to
662 * be and stay valid until the enclosing operation is complete.
663 */
664 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
665 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
666 else
667 return &cgrp->self;
668 }
669 EXPORT_SYMBOL_GPL(of_css);
670
671 /**
672 * for_each_css - iterate all css's of a cgroup
673 * @css: the iteration cursor
674 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
675 * @cgrp: the target cgroup to iterate css's of
676 *
677 * Should be called under cgroup_[tree_]mutex.
678 */
679 #define for_each_css(css, ssid, cgrp) \
680 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
681 if (!((css) = rcu_dereference_check( \
682 (cgrp)->subsys[(ssid)], \
683 lockdep_is_held(&cgroup_mutex)))) { } \
684 else
685
686 /**
687 * for_each_e_css - iterate all effective css's of a cgroup
688 * @css: the iteration cursor
689 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
690 * @cgrp: the target cgroup to iterate css's of
691 *
692 * Should be called under cgroup_[tree_]mutex.
693 */
694 #define for_each_e_css(css, ssid, cgrp) \
695 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
696 if (!((css) = cgroup_e_css_by_mask(cgrp, \
697 cgroup_subsys[(ssid)]))) \
698 ; \
699 else
700
701 /**
702 * do_each_subsys_mask - filter for_each_subsys with a bitmask
703 * @ss: the iteration cursor
704 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
705 * @ss_mask: the bitmask
706 *
707 * The block will only run for cases where the ssid-th bit (1 << ssid) of
708 * @ss_mask is set.
709 */
710 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
711 unsigned long __ss_mask = (ss_mask); \
712 if (!CGROUP_HAS_SUBSYS_CONFIG) { \
713 (ssid) = 0; \
714 break; \
715 } \
716 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
717 (ss) = cgroup_subsys[ssid]; \
718 {
719
720 #define while_each_subsys_mask() \
721 } \
722 } \
723 } while (false)
724
725 /* iterate over child cgrps, lock should be held throughout iteration */
726 #define cgroup_for_each_live_child(child, cgrp) \
727 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
728 if (({ lockdep_assert_held(&cgroup_mutex); \
729 cgroup_is_dead(child); })) \
730 ; \
731 else
732
733 /* walk live descendants in pre order */
734 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
735 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
736 if (({ lockdep_assert_held(&cgroup_mutex); \
737 (dsct) = (d_css)->cgroup; \
738 cgroup_is_dead(dsct); })) \
739 ; \
740 else
741
742 /* walk live descendants in postorder */
743 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
744 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
745 if (({ lockdep_assert_held(&cgroup_mutex); \
746 (dsct) = (d_css)->cgroup; \
747 cgroup_is_dead(dsct); })) \
748 ; \
749 else
750
751 /*
752 * The default css_set - used by init and its children prior to any
753 * hierarchies being mounted. It contains a pointer to the root state
754 * for each subsystem. Also used to anchor the list of css_sets. Not
755 * reference-counted, to improve performance when child cgroups
756 * haven't been created.
757 */
758 struct css_set init_css_set = {
759 .refcount = REFCOUNT_INIT(1),
760 .dom_cset = &init_css_set,
761 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
762 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
763 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks),
764 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
765 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
766 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
767 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
768 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
769
770 /*
771 * The following field is re-initialized when this cset gets linked
772 * in cgroup_init(). However, let's initialize the field
773 * statically too so that the default cgroup can be accessed safely
774 * early during boot.
775 */
776 .dfl_cgrp = &cgrp_dfl_root.cgrp,
777 };
778
779 static int css_set_count = 1; /* 1 for init_css_set */
780
css_set_threaded(struct css_set * cset)781 static bool css_set_threaded(struct css_set *cset)
782 {
783 return cset->dom_cset != cset;
784 }
785
786 /**
787 * css_set_populated - does a css_set contain any tasks?
788 * @cset: target css_set
789 *
790 * css_set_populated() should be the same as !!cset->nr_tasks at steady
791 * state. However, css_set_populated() can be called while a task is being
792 * added to or removed from the linked list before the nr_tasks is
793 * properly updated. Hence, we can't just look at ->nr_tasks here.
794 */
css_set_populated(struct css_set * cset)795 static bool css_set_populated(struct css_set *cset)
796 {
797 lockdep_assert_held(&css_set_lock);
798
799 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
800 }
801
802 /**
803 * cgroup_update_populated - update the populated count of a cgroup
804 * @cgrp: the target cgroup
805 * @populated: inc or dec populated count
806 *
807 * One of the css_sets associated with @cgrp is either getting its first
808 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
809 * count is propagated towards root so that a given cgroup's
810 * nr_populated_children is zero iff none of its descendants contain any
811 * tasks.
812 *
813 * @cgrp's interface file "cgroup.populated" is zero if both
814 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
815 * 1 otherwise. When the sum changes from or to zero, userland is notified
816 * that the content of the interface file has changed. This can be used to
817 * detect when @cgrp and its descendants become populated or empty.
818 */
cgroup_update_populated(struct cgroup * cgrp,bool populated)819 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
820 {
821 struct cgroup *child = NULL;
822 int adj = populated ? 1 : -1;
823
824 lockdep_assert_held(&css_set_lock);
825
826 do {
827 bool was_populated = cgroup_is_populated(cgrp);
828
829 if (!child) {
830 cgrp->nr_populated_csets += adj;
831 } else {
832 if (cgroup_is_threaded(child))
833 cgrp->nr_populated_threaded_children += adj;
834 else
835 cgrp->nr_populated_domain_children += adj;
836 }
837
838 if (was_populated == cgroup_is_populated(cgrp))
839 break;
840
841 cgroup1_check_for_release(cgrp);
842 TRACE_CGROUP_PATH(notify_populated, cgrp,
843 cgroup_is_populated(cgrp));
844 cgroup_file_notify(&cgrp->events_file);
845
846 child = cgrp;
847 cgrp = cgroup_parent(cgrp);
848 } while (cgrp);
849 }
850
851 /**
852 * css_set_update_populated - update populated state of a css_set
853 * @cset: target css_set
854 * @populated: whether @cset is populated or depopulated
855 *
856 * @cset is either getting the first task or losing the last. Update the
857 * populated counters of all associated cgroups accordingly.
858 */
css_set_update_populated(struct css_set * cset,bool populated)859 static void css_set_update_populated(struct css_set *cset, bool populated)
860 {
861 struct cgrp_cset_link *link;
862
863 lockdep_assert_held(&css_set_lock);
864
865 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
866 cgroup_update_populated(link->cgrp, populated);
867 }
868
869 /*
870 * @task is leaving, advance task iterators which are pointing to it so
871 * that they can resume at the next position. Advancing an iterator might
872 * remove it from the list, use safe walk. See css_task_iter_skip() for
873 * details.
874 */
css_set_skip_task_iters(struct css_set * cset,struct task_struct * task)875 static void css_set_skip_task_iters(struct css_set *cset,
876 struct task_struct *task)
877 {
878 struct css_task_iter *it, *pos;
879
880 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
881 css_task_iter_skip(it, task);
882 }
883
884 /**
885 * css_set_move_task - move a task from one css_set to another
886 * @task: task being moved
887 * @from_cset: css_set @task currently belongs to (may be NULL)
888 * @to_cset: new css_set @task is being moved to (may be NULL)
889 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
890 *
891 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
892 * css_set, @from_cset can be NULL. If @task is being disassociated
893 * instead of moved, @to_cset can be NULL.
894 *
895 * This function automatically handles populated counter updates and
896 * css_task_iter adjustments but the caller is responsible for managing
897 * @from_cset and @to_cset's reference counts.
898 */
css_set_move_task(struct task_struct * task,struct css_set * from_cset,struct css_set * to_cset,bool use_mg_tasks)899 static void css_set_move_task(struct task_struct *task,
900 struct css_set *from_cset, struct css_set *to_cset,
901 bool use_mg_tasks)
902 {
903 lockdep_assert_held(&css_set_lock);
904
905 if (to_cset && !css_set_populated(to_cset))
906 css_set_update_populated(to_cset, true);
907
908 if (from_cset) {
909 WARN_ON_ONCE(list_empty(&task->cg_list));
910
911 css_set_skip_task_iters(from_cset, task);
912 list_del_init(&task->cg_list);
913 if (!css_set_populated(from_cset))
914 css_set_update_populated(from_cset, false);
915 } else {
916 WARN_ON_ONCE(!list_empty(&task->cg_list));
917 }
918
919 if (to_cset) {
920 /*
921 * We are synchronized through cgroup_threadgroup_rwsem
922 * against PF_EXITING setting such that we can't race
923 * against cgroup_exit()/cgroup_free() dropping the css_set.
924 */
925 WARN_ON_ONCE(task->flags & PF_EXITING);
926
927 cgroup_move_task(task, to_cset);
928 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
929 &to_cset->tasks);
930 }
931 }
932
933 /*
934 * hash table for cgroup groups. This improves the performance to find
935 * an existing css_set. This hash doesn't (currently) take into
936 * account cgroups in empty hierarchies.
937 */
938 #define CSS_SET_HASH_BITS 7
939 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
940
css_set_hash(struct cgroup_subsys_state * css[])941 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
942 {
943 unsigned long key = 0UL;
944 struct cgroup_subsys *ss;
945 int i;
946
947 for_each_subsys(ss, i)
948 key += (unsigned long)css[i];
949 key = (key >> 16) ^ key;
950
951 return key;
952 }
953
put_css_set_locked(struct css_set * cset)954 void put_css_set_locked(struct css_set *cset)
955 {
956 struct cgrp_cset_link *link, *tmp_link;
957 struct cgroup_subsys *ss;
958 int ssid;
959
960 lockdep_assert_held(&css_set_lock);
961
962 if (!refcount_dec_and_test(&cset->refcount))
963 return;
964
965 WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
966
967 /* This css_set is dead. Unlink it and release cgroup and css refs */
968 for_each_subsys(ss, ssid) {
969 list_del(&cset->e_cset_node[ssid]);
970 css_put(cset->subsys[ssid]);
971 }
972 hash_del(&cset->hlist);
973 css_set_count--;
974
975 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
976 list_del(&link->cset_link);
977 list_del(&link->cgrp_link);
978 if (cgroup_parent(link->cgrp))
979 cgroup_put(link->cgrp);
980 kfree(link);
981 }
982
983 if (css_set_threaded(cset)) {
984 list_del(&cset->threaded_csets_node);
985 put_css_set_locked(cset->dom_cset);
986 }
987
988 kfree_rcu(cset, rcu_head);
989 }
990
991 /**
992 * compare_css_sets - helper function for find_existing_css_set().
993 * @cset: candidate css_set being tested
994 * @old_cset: existing css_set for a task
995 * @new_cgrp: cgroup that's being entered by the task
996 * @template: desired set of css pointers in css_set (pre-calculated)
997 *
998 * Returns true if "cset" matches "old_cset" except for the hierarchy
999 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
1000 */
compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])1001 static bool compare_css_sets(struct css_set *cset,
1002 struct css_set *old_cset,
1003 struct cgroup *new_cgrp,
1004 struct cgroup_subsys_state *template[])
1005 {
1006 struct cgroup *new_dfl_cgrp;
1007 struct list_head *l1, *l2;
1008
1009 /*
1010 * On the default hierarchy, there can be csets which are
1011 * associated with the same set of cgroups but different csses.
1012 * Let's first ensure that csses match.
1013 */
1014 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
1015 return false;
1016
1017
1018 /* @cset's domain should match the default cgroup's */
1019 if (cgroup_on_dfl(new_cgrp))
1020 new_dfl_cgrp = new_cgrp;
1021 else
1022 new_dfl_cgrp = old_cset->dfl_cgrp;
1023
1024 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1025 return false;
1026
1027 /*
1028 * Compare cgroup pointers in order to distinguish between
1029 * different cgroups in hierarchies. As different cgroups may
1030 * share the same effective css, this comparison is always
1031 * necessary.
1032 */
1033 l1 = &cset->cgrp_links;
1034 l2 = &old_cset->cgrp_links;
1035 while (1) {
1036 struct cgrp_cset_link *link1, *link2;
1037 struct cgroup *cgrp1, *cgrp2;
1038
1039 l1 = l1->next;
1040 l2 = l2->next;
1041 /* See if we reached the end - both lists are equal length. */
1042 if (l1 == &cset->cgrp_links) {
1043 BUG_ON(l2 != &old_cset->cgrp_links);
1044 break;
1045 } else {
1046 BUG_ON(l2 == &old_cset->cgrp_links);
1047 }
1048 /* Locate the cgroups associated with these links. */
1049 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1050 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1051 cgrp1 = link1->cgrp;
1052 cgrp2 = link2->cgrp;
1053 /* Hierarchies should be linked in the same order. */
1054 BUG_ON(cgrp1->root != cgrp2->root);
1055
1056 /*
1057 * If this hierarchy is the hierarchy of the cgroup
1058 * that's changing, then we need to check that this
1059 * css_set points to the new cgroup; if it's any other
1060 * hierarchy, then this css_set should point to the
1061 * same cgroup as the old css_set.
1062 */
1063 if (cgrp1->root == new_cgrp->root) {
1064 if (cgrp1 != new_cgrp)
1065 return false;
1066 } else {
1067 if (cgrp1 != cgrp2)
1068 return false;
1069 }
1070 }
1071 return true;
1072 }
1073
1074 /**
1075 * find_existing_css_set - init css array and find the matching css_set
1076 * @old_cset: the css_set that we're using before the cgroup transition
1077 * @cgrp: the cgroup that we're moving into
1078 * @template: out param for the new set of csses, should be clear on entry
1079 */
find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state * template[])1080 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1081 struct cgroup *cgrp,
1082 struct cgroup_subsys_state *template[])
1083 {
1084 struct cgroup_root *root = cgrp->root;
1085 struct cgroup_subsys *ss;
1086 struct css_set *cset;
1087 unsigned long key;
1088 int i;
1089
1090 /*
1091 * Build the set of subsystem state objects that we want to see in the
1092 * new css_set. While subsystems can change globally, the entries here
1093 * won't change, so no need for locking.
1094 */
1095 for_each_subsys(ss, i) {
1096 if (root->subsys_mask & (1UL << i)) {
1097 /*
1098 * @ss is in this hierarchy, so we want the
1099 * effective css from @cgrp.
1100 */
1101 template[i] = cgroup_e_css_by_mask(cgrp, ss);
1102 } else {
1103 /*
1104 * @ss is not in this hierarchy, so we don't want
1105 * to change the css.
1106 */
1107 template[i] = old_cset->subsys[i];
1108 }
1109 }
1110
1111 key = css_set_hash(template);
1112 hash_for_each_possible(css_set_table, cset, hlist, key) {
1113 if (!compare_css_sets(cset, old_cset, cgrp, template))
1114 continue;
1115
1116 /* This css_set matches what we need */
1117 return cset;
1118 }
1119
1120 /* No existing cgroup group matched */
1121 return NULL;
1122 }
1123
free_cgrp_cset_links(struct list_head * links_to_free)1124 static void free_cgrp_cset_links(struct list_head *links_to_free)
1125 {
1126 struct cgrp_cset_link *link, *tmp_link;
1127
1128 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1129 list_del(&link->cset_link);
1130 kfree(link);
1131 }
1132 }
1133
1134 /**
1135 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1136 * @count: the number of links to allocate
1137 * @tmp_links: list_head the allocated links are put on
1138 *
1139 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1140 * through ->cset_link. Returns 0 on success or -errno.
1141 */
allocate_cgrp_cset_links(int count,struct list_head * tmp_links)1142 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1143 {
1144 struct cgrp_cset_link *link;
1145 int i;
1146
1147 INIT_LIST_HEAD(tmp_links);
1148
1149 for (i = 0; i < count; i++) {
1150 link = kzalloc(sizeof(*link), GFP_KERNEL);
1151 if (!link) {
1152 free_cgrp_cset_links(tmp_links);
1153 return -ENOMEM;
1154 }
1155 list_add(&link->cset_link, tmp_links);
1156 }
1157 return 0;
1158 }
1159
1160 /**
1161 * link_css_set - a helper function to link a css_set to a cgroup
1162 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1163 * @cset: the css_set to be linked
1164 * @cgrp: the destination cgroup
1165 */
link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)1166 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1167 struct cgroup *cgrp)
1168 {
1169 struct cgrp_cset_link *link;
1170
1171 BUG_ON(list_empty(tmp_links));
1172
1173 if (cgroup_on_dfl(cgrp))
1174 cset->dfl_cgrp = cgrp;
1175
1176 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1177 link->cset = cset;
1178 link->cgrp = cgrp;
1179
1180 /*
1181 * Always add links to the tail of the lists so that the lists are
1182 * in chronological order.
1183 */
1184 list_move_tail(&link->cset_link, &cgrp->cset_links);
1185 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1186
1187 if (cgroup_parent(cgrp))
1188 cgroup_get_live(cgrp);
1189 }
1190
1191 /**
1192 * find_css_set - return a new css_set with one cgroup updated
1193 * @old_cset: the baseline css_set
1194 * @cgrp: the cgroup to be updated
1195 *
1196 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1197 * substituted into the appropriate hierarchy.
1198 */
find_css_set(struct css_set * old_cset,struct cgroup * cgrp)1199 static struct css_set *find_css_set(struct css_set *old_cset,
1200 struct cgroup *cgrp)
1201 {
1202 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1203 struct css_set *cset;
1204 struct list_head tmp_links;
1205 struct cgrp_cset_link *link;
1206 struct cgroup_subsys *ss;
1207 unsigned long key;
1208 int ssid;
1209
1210 lockdep_assert_held(&cgroup_mutex);
1211
1212 /* First see if we already have a cgroup group that matches
1213 * the desired set */
1214 spin_lock_irq(&css_set_lock);
1215 cset = find_existing_css_set(old_cset, cgrp, template);
1216 if (cset)
1217 get_css_set(cset);
1218 spin_unlock_irq(&css_set_lock);
1219
1220 if (cset)
1221 return cset;
1222
1223 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1224 if (!cset)
1225 return NULL;
1226
1227 /* Allocate all the cgrp_cset_link objects that we'll need */
1228 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1229 kfree(cset);
1230 return NULL;
1231 }
1232
1233 refcount_set(&cset->refcount, 1);
1234 cset->dom_cset = cset;
1235 INIT_LIST_HEAD(&cset->tasks);
1236 INIT_LIST_HEAD(&cset->mg_tasks);
1237 INIT_LIST_HEAD(&cset->dying_tasks);
1238 INIT_LIST_HEAD(&cset->task_iters);
1239 INIT_LIST_HEAD(&cset->threaded_csets);
1240 INIT_HLIST_NODE(&cset->hlist);
1241 INIT_LIST_HEAD(&cset->cgrp_links);
1242 INIT_LIST_HEAD(&cset->mg_preload_node);
1243 INIT_LIST_HEAD(&cset->mg_node);
1244
1245 /* Copy the set of subsystem state objects generated in
1246 * find_existing_css_set() */
1247 memcpy(cset->subsys, template, sizeof(cset->subsys));
1248
1249 spin_lock_irq(&css_set_lock);
1250 /* Add reference counts and links from the new css_set. */
1251 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1252 struct cgroup *c = link->cgrp;
1253
1254 if (c->root == cgrp->root)
1255 c = cgrp;
1256 link_css_set(&tmp_links, cset, c);
1257 }
1258
1259 BUG_ON(!list_empty(&tmp_links));
1260
1261 css_set_count++;
1262
1263 /* Add @cset to the hash table */
1264 key = css_set_hash(cset->subsys);
1265 hash_add(css_set_table, &cset->hlist, key);
1266
1267 for_each_subsys(ss, ssid) {
1268 struct cgroup_subsys_state *css = cset->subsys[ssid];
1269
1270 list_add_tail(&cset->e_cset_node[ssid],
1271 &css->cgroup->e_csets[ssid]);
1272 css_get(css);
1273 }
1274
1275 spin_unlock_irq(&css_set_lock);
1276
1277 /*
1278 * If @cset should be threaded, look up the matching dom_cset and
1279 * link them up. We first fully initialize @cset then look for the
1280 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1281 * to stay empty until we return.
1282 */
1283 if (cgroup_is_threaded(cset->dfl_cgrp)) {
1284 struct css_set *dcset;
1285
1286 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1287 if (!dcset) {
1288 put_css_set(cset);
1289 return NULL;
1290 }
1291
1292 spin_lock_irq(&css_set_lock);
1293 cset->dom_cset = dcset;
1294 list_add_tail(&cset->threaded_csets_node,
1295 &dcset->threaded_csets);
1296 spin_unlock_irq(&css_set_lock);
1297 }
1298
1299 return cset;
1300 }
1301
cgroup_root_from_kf(struct kernfs_root * kf_root)1302 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1303 {
1304 struct cgroup *root_cgrp = kf_root->kn->priv;
1305
1306 return root_cgrp->root;
1307 }
1308
cgroup_init_root_id(struct cgroup_root * root)1309 static int cgroup_init_root_id(struct cgroup_root *root)
1310 {
1311 int id;
1312
1313 lockdep_assert_held(&cgroup_mutex);
1314
1315 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1316 if (id < 0)
1317 return id;
1318
1319 root->hierarchy_id = id;
1320 return 0;
1321 }
1322
cgroup_exit_root_id(struct cgroup_root * root)1323 static void cgroup_exit_root_id(struct cgroup_root *root)
1324 {
1325 lockdep_assert_held(&cgroup_mutex);
1326
1327 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1328 }
1329
cgroup_free_root(struct cgroup_root * root)1330 void cgroup_free_root(struct cgroup_root *root)
1331 {
1332 kfree(root);
1333 }
1334
cgroup_destroy_root(struct cgroup_root * root)1335 static void cgroup_destroy_root(struct cgroup_root *root)
1336 {
1337 struct cgroup *cgrp = &root->cgrp;
1338 struct cgrp_cset_link *link, *tmp_link;
1339
1340 trace_cgroup_destroy_root(root);
1341
1342 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1343
1344 BUG_ON(atomic_read(&root->nr_cgrps));
1345 BUG_ON(!list_empty(&cgrp->self.children));
1346
1347 /* Rebind all subsystems back to the default hierarchy */
1348 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1349
1350 /*
1351 * Release all the links from cset_links to this hierarchy's
1352 * root cgroup
1353 */
1354 spin_lock_irq(&css_set_lock);
1355
1356 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1357 list_del(&link->cset_link);
1358 list_del(&link->cgrp_link);
1359 kfree(link);
1360 }
1361
1362 spin_unlock_irq(&css_set_lock);
1363
1364 if (!list_empty(&root->root_list)) {
1365 list_del(&root->root_list);
1366 cgroup_root_count--;
1367 }
1368
1369 cgroup_exit_root_id(root);
1370
1371 mutex_unlock(&cgroup_mutex);
1372
1373 cgroup_rstat_exit(cgrp);
1374 kernfs_destroy_root(root->kf_root);
1375 cgroup_free_root(root);
1376 }
1377
1378 /*
1379 * look up cgroup associated with current task's cgroup namespace on the
1380 * specified hierarchy
1381 */
1382 static struct cgroup *
current_cgns_cgroup_from_root(struct cgroup_root * root)1383 current_cgns_cgroup_from_root(struct cgroup_root *root)
1384 {
1385 struct cgroup *res = NULL;
1386 struct css_set *cset;
1387
1388 lockdep_assert_held(&css_set_lock);
1389
1390 rcu_read_lock();
1391
1392 cset = current->nsproxy->cgroup_ns->root_cset;
1393 if (cset == &init_css_set) {
1394 res = &root->cgrp;
1395 } else if (root == &cgrp_dfl_root) {
1396 res = cset->dfl_cgrp;
1397 } else {
1398 struct cgrp_cset_link *link;
1399
1400 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1401 struct cgroup *c = link->cgrp;
1402
1403 if (c->root == root) {
1404 res = c;
1405 break;
1406 }
1407 }
1408 }
1409 rcu_read_unlock();
1410
1411 BUG_ON(!res);
1412 return res;
1413 }
1414
1415 /* look up cgroup associated with given css_set on the specified hierarchy */
cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1416 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1417 struct cgroup_root *root)
1418 {
1419 struct cgroup *res = NULL;
1420
1421 lockdep_assert_held(&cgroup_mutex);
1422 lockdep_assert_held(&css_set_lock);
1423
1424 if (cset == &init_css_set) {
1425 res = &root->cgrp;
1426 } else if (root == &cgrp_dfl_root) {
1427 res = cset->dfl_cgrp;
1428 } else {
1429 struct cgrp_cset_link *link;
1430
1431 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1432 struct cgroup *c = link->cgrp;
1433
1434 if (c->root == root) {
1435 res = c;
1436 break;
1437 }
1438 }
1439 }
1440
1441 BUG_ON(!res);
1442 return res;
1443 }
1444
1445 /*
1446 * Return the cgroup for "task" from the given hierarchy. Must be
1447 * called with cgroup_mutex and css_set_lock held.
1448 */
task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)1449 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1450 struct cgroup_root *root)
1451 {
1452 /*
1453 * No need to lock the task - since we hold css_set_lock the
1454 * task can't change groups.
1455 */
1456 return cset_cgroup_from_root(task_css_set(task), root);
1457 }
1458
1459 /*
1460 * A task must hold cgroup_mutex to modify cgroups.
1461 *
1462 * Any task can increment and decrement the count field without lock.
1463 * So in general, code holding cgroup_mutex can't rely on the count
1464 * field not changing. However, if the count goes to zero, then only
1465 * cgroup_attach_task() can increment it again. Because a count of zero
1466 * means that no tasks are currently attached, therefore there is no
1467 * way a task attached to that cgroup can fork (the other way to
1468 * increment the count). So code holding cgroup_mutex can safely
1469 * assume that if the count is zero, it will stay zero. Similarly, if
1470 * a task holds cgroup_mutex on a cgroup with zero count, it
1471 * knows that the cgroup won't be removed, as cgroup_rmdir()
1472 * needs that mutex.
1473 *
1474 * A cgroup can only be deleted if both its 'count' of using tasks
1475 * is zero, and its list of 'children' cgroups is empty. Since all
1476 * tasks in the system use _some_ cgroup, and since there is always at
1477 * least one task in the system (init, pid == 1), therefore, root cgroup
1478 * always has either children cgroups and/or using tasks. So we don't
1479 * need a special hack to ensure that root cgroup cannot be deleted.
1480 *
1481 * P.S. One more locking exception. RCU is used to guard the
1482 * update of a tasks cgroup pointer by cgroup_attach_task()
1483 */
1484
1485 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1486
cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)1487 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1488 char *buf)
1489 {
1490 struct cgroup_subsys *ss = cft->ss;
1491
1492 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1493 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1494 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1495
1496 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1497 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1498 cft->name);
1499 } else {
1500 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1501 }
1502 return buf;
1503 }
1504
1505 /**
1506 * cgroup_file_mode - deduce file mode of a control file
1507 * @cft: the control file in question
1508 *
1509 * S_IRUGO for read, S_IWUSR for write.
1510 */
cgroup_file_mode(const struct cftype * cft)1511 static umode_t cgroup_file_mode(const struct cftype *cft)
1512 {
1513 umode_t mode = 0;
1514
1515 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1516 mode |= S_IRUGO;
1517
1518 if (cft->write_u64 || cft->write_s64 || cft->write) {
1519 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1520 mode |= S_IWUGO;
1521 else
1522 mode |= S_IWUSR;
1523 }
1524
1525 return mode;
1526 }
1527
1528 /**
1529 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1530 * @subtree_control: the new subtree_control mask to consider
1531 * @this_ss_mask: available subsystems
1532 *
1533 * On the default hierarchy, a subsystem may request other subsystems to be
1534 * enabled together through its ->depends_on mask. In such cases, more
1535 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1536 *
1537 * This function calculates which subsystems need to be enabled if
1538 * @subtree_control is to be applied while restricted to @this_ss_mask.
1539 */
cgroup_calc_subtree_ss_mask(u16 subtree_control,u16 this_ss_mask)1540 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1541 {
1542 u16 cur_ss_mask = subtree_control;
1543 struct cgroup_subsys *ss;
1544 int ssid;
1545
1546 lockdep_assert_held(&cgroup_mutex);
1547
1548 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1549
1550 while (true) {
1551 u16 new_ss_mask = cur_ss_mask;
1552
1553 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1554 new_ss_mask |= ss->depends_on;
1555 } while_each_subsys_mask();
1556
1557 /*
1558 * Mask out subsystems which aren't available. This can
1559 * happen only if some depended-upon subsystems were bound
1560 * to non-default hierarchies.
1561 */
1562 new_ss_mask &= this_ss_mask;
1563
1564 if (new_ss_mask == cur_ss_mask)
1565 break;
1566 cur_ss_mask = new_ss_mask;
1567 }
1568
1569 return cur_ss_mask;
1570 }
1571
1572 /**
1573 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1574 * @kn: the kernfs_node being serviced
1575 *
1576 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1577 * the method finishes if locking succeeded. Note that once this function
1578 * returns the cgroup returned by cgroup_kn_lock_live() may become
1579 * inaccessible any time. If the caller intends to continue to access the
1580 * cgroup, it should pin it before invoking this function.
1581 */
cgroup_kn_unlock(struct kernfs_node * kn)1582 void cgroup_kn_unlock(struct kernfs_node *kn)
1583 {
1584 struct cgroup *cgrp;
1585
1586 if (kernfs_type(kn) == KERNFS_DIR)
1587 cgrp = kn->priv;
1588 else
1589 cgrp = kn->parent->priv;
1590
1591 mutex_unlock(&cgroup_mutex);
1592
1593 kernfs_unbreak_active_protection(kn);
1594 cgroup_put(cgrp);
1595 }
1596
1597 /**
1598 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1599 * @kn: the kernfs_node being serviced
1600 * @drain_offline: perform offline draining on the cgroup
1601 *
1602 * This helper is to be used by a cgroup kernfs method currently servicing
1603 * @kn. It breaks the active protection, performs cgroup locking and
1604 * verifies that the associated cgroup is alive. Returns the cgroup if
1605 * alive; otherwise, %NULL. A successful return should be undone by a
1606 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1607 * cgroup is drained of offlining csses before return.
1608 *
1609 * Any cgroup kernfs method implementation which requires locking the
1610 * associated cgroup should use this helper. It avoids nesting cgroup
1611 * locking under kernfs active protection and allows all kernfs operations
1612 * including self-removal.
1613 */
cgroup_kn_lock_live(struct kernfs_node * kn,bool drain_offline)1614 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1615 {
1616 struct cgroup *cgrp;
1617
1618 if (kernfs_type(kn) == KERNFS_DIR)
1619 cgrp = kn->priv;
1620 else
1621 cgrp = kn->parent->priv;
1622
1623 /*
1624 * We're gonna grab cgroup_mutex which nests outside kernfs
1625 * active_ref. cgroup liveliness check alone provides enough
1626 * protection against removal. Ensure @cgrp stays accessible and
1627 * break the active_ref protection.
1628 */
1629 if (!cgroup_tryget(cgrp))
1630 return NULL;
1631 kernfs_break_active_protection(kn);
1632
1633 if (drain_offline)
1634 cgroup_lock_and_drain_offline(cgrp);
1635 else
1636 mutex_lock(&cgroup_mutex);
1637
1638 if (!cgroup_is_dead(cgrp))
1639 return cgrp;
1640
1641 cgroup_kn_unlock(kn);
1642 return NULL;
1643 }
1644
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1645 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1646 {
1647 char name[CGROUP_FILE_NAME_MAX];
1648
1649 lockdep_assert_held(&cgroup_mutex);
1650
1651 if (cft->file_offset) {
1652 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1653 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1654
1655 spin_lock_irq(&cgroup_file_kn_lock);
1656 cfile->kn = NULL;
1657 spin_unlock_irq(&cgroup_file_kn_lock);
1658
1659 del_timer_sync(&cfile->notify_timer);
1660 }
1661
1662 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1663 }
1664
1665 /**
1666 * css_clear_dir - remove subsys files in a cgroup directory
1667 * @css: target css
1668 */
css_clear_dir(struct cgroup_subsys_state * css)1669 static void css_clear_dir(struct cgroup_subsys_state *css)
1670 {
1671 struct cgroup *cgrp = css->cgroup;
1672 struct cftype *cfts;
1673
1674 if (!(css->flags & CSS_VISIBLE))
1675 return;
1676
1677 css->flags &= ~CSS_VISIBLE;
1678
1679 if (!css->ss) {
1680 if (cgroup_on_dfl(cgrp))
1681 cfts = cgroup_base_files;
1682 else
1683 cfts = cgroup1_base_files;
1684
1685 cgroup_addrm_files(css, cgrp, cfts, false);
1686 } else {
1687 list_for_each_entry(cfts, &css->ss->cfts, node)
1688 cgroup_addrm_files(css, cgrp, cfts, false);
1689 }
1690 }
1691
1692 /**
1693 * css_populate_dir - create subsys files in a cgroup directory
1694 * @css: target css
1695 *
1696 * On failure, no file is added.
1697 */
css_populate_dir(struct cgroup_subsys_state * css)1698 static int css_populate_dir(struct cgroup_subsys_state *css)
1699 {
1700 struct cgroup *cgrp = css->cgroup;
1701 struct cftype *cfts, *failed_cfts;
1702 int ret;
1703
1704 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1705 return 0;
1706
1707 if (!css->ss) {
1708 if (cgroup_on_dfl(cgrp))
1709 cfts = cgroup_base_files;
1710 else
1711 cfts = cgroup1_base_files;
1712
1713 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1714 if (ret < 0)
1715 return ret;
1716 } else {
1717 list_for_each_entry(cfts, &css->ss->cfts, node) {
1718 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1719 if (ret < 0) {
1720 failed_cfts = cfts;
1721 goto err;
1722 }
1723 }
1724 }
1725
1726 css->flags |= CSS_VISIBLE;
1727
1728 return 0;
1729 err:
1730 list_for_each_entry(cfts, &css->ss->cfts, node) {
1731 if (cfts == failed_cfts)
1732 break;
1733 cgroup_addrm_files(css, cgrp, cfts, false);
1734 }
1735 return ret;
1736 }
1737
rebind_subsystems(struct cgroup_root * dst_root,u16 ss_mask)1738 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1739 {
1740 struct cgroup *dcgrp = &dst_root->cgrp;
1741 struct cgroup_subsys *ss;
1742 int ssid, i, ret;
1743
1744 lockdep_assert_held(&cgroup_mutex);
1745
1746 do_each_subsys_mask(ss, ssid, ss_mask) {
1747 /*
1748 * If @ss has non-root csses attached to it, can't move.
1749 * If @ss is an implicit controller, it is exempt from this
1750 * rule and can be stolen.
1751 */
1752 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1753 !ss->implicit_on_dfl)
1754 return -EBUSY;
1755
1756 /* can't move between two non-dummy roots either */
1757 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1758 return -EBUSY;
1759 } while_each_subsys_mask();
1760
1761 do_each_subsys_mask(ss, ssid, ss_mask) {
1762 struct cgroup_root *src_root = ss->root;
1763 struct cgroup *scgrp = &src_root->cgrp;
1764 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1765 struct css_set *cset;
1766
1767 WARN_ON(!css || cgroup_css(dcgrp, ss));
1768
1769 /* disable from the source */
1770 src_root->subsys_mask &= ~(1 << ssid);
1771 WARN_ON(cgroup_apply_control(scgrp));
1772 cgroup_finalize_control(scgrp, 0);
1773
1774 /* rebind */
1775 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1776 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1777 ss->root = dst_root;
1778 css->cgroup = dcgrp;
1779
1780 spin_lock_irq(&css_set_lock);
1781 hash_for_each(css_set_table, i, cset, hlist)
1782 list_move_tail(&cset->e_cset_node[ss->id],
1783 &dcgrp->e_csets[ss->id]);
1784 spin_unlock_irq(&css_set_lock);
1785
1786 if (ss->css_rstat_flush) {
1787 list_del_rcu(&css->rstat_css_node);
1788 list_add_rcu(&css->rstat_css_node,
1789 &dcgrp->rstat_css_list);
1790 }
1791
1792 /* default hierarchy doesn't enable controllers by default */
1793 dst_root->subsys_mask |= 1 << ssid;
1794 if (dst_root == &cgrp_dfl_root) {
1795 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1796 } else {
1797 dcgrp->subtree_control |= 1 << ssid;
1798 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1799 }
1800
1801 ret = cgroup_apply_control(dcgrp);
1802 if (ret)
1803 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1804 ss->name, ret);
1805
1806 if (ss->bind)
1807 ss->bind(css);
1808 } while_each_subsys_mask();
1809
1810 kernfs_activate(dcgrp->kn);
1811 return 0;
1812 }
1813
cgroup_show_path(struct seq_file * sf,struct kernfs_node * kf_node,struct kernfs_root * kf_root)1814 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1815 struct kernfs_root *kf_root)
1816 {
1817 int len = 0;
1818 char *buf = NULL;
1819 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1820 struct cgroup *ns_cgroup;
1821
1822 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1823 if (!buf)
1824 return -ENOMEM;
1825
1826 spin_lock_irq(&css_set_lock);
1827 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1828 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1829 spin_unlock_irq(&css_set_lock);
1830
1831 if (len >= PATH_MAX)
1832 len = -ERANGE;
1833 else if (len > 0) {
1834 seq_escape(sf, buf, " \t\n\\");
1835 len = 0;
1836 }
1837 kfree(buf);
1838 return len;
1839 }
1840
1841 enum cgroup2_param {
1842 Opt_nsdelegate,
1843 Opt_memory_localevents,
1844 Opt_memory_recursiveprot,
1845 nr__cgroup2_params
1846 };
1847
1848 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1849 fsparam_flag("nsdelegate", Opt_nsdelegate),
1850 fsparam_flag("memory_localevents", Opt_memory_localevents),
1851 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot),
1852 {}
1853 };
1854
cgroup2_parse_param(struct fs_context * fc,struct fs_parameter * param)1855 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1856 {
1857 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1858 struct fs_parse_result result;
1859 int opt;
1860
1861 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1862 if (opt < 0)
1863 return opt;
1864
1865 switch (opt) {
1866 case Opt_nsdelegate:
1867 ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1868 return 0;
1869 case Opt_memory_localevents:
1870 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1871 return 0;
1872 case Opt_memory_recursiveprot:
1873 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1874 return 0;
1875 }
1876 return -EINVAL;
1877 }
1878
apply_cgroup_root_flags(unsigned int root_flags)1879 static void apply_cgroup_root_flags(unsigned int root_flags)
1880 {
1881 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1882 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1883 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1884 else
1885 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1886
1887 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1888 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1889 else
1890 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1891
1892 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1893 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1894 else
1895 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1896 }
1897 }
1898
cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)1899 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1900 {
1901 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1902 seq_puts(seq, ",nsdelegate");
1903 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1904 seq_puts(seq, ",memory_localevents");
1905 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1906 seq_puts(seq, ",memory_recursiveprot");
1907 return 0;
1908 }
1909
cgroup_reconfigure(struct fs_context * fc)1910 static int cgroup_reconfigure(struct fs_context *fc)
1911 {
1912 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1913
1914 apply_cgroup_root_flags(ctx->flags);
1915 return 0;
1916 }
1917
init_cgroup_housekeeping(struct cgroup * cgrp)1918 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1919 {
1920 struct cgroup_subsys *ss;
1921 int ssid;
1922
1923 INIT_LIST_HEAD(&cgrp->self.sibling);
1924 INIT_LIST_HEAD(&cgrp->self.children);
1925 INIT_LIST_HEAD(&cgrp->cset_links);
1926 INIT_LIST_HEAD(&cgrp->pidlists);
1927 mutex_init(&cgrp->pidlist_mutex);
1928 cgrp->self.cgroup = cgrp;
1929 cgrp->self.flags |= CSS_ONLINE;
1930 cgrp->dom_cgrp = cgrp;
1931 cgrp->max_descendants = INT_MAX;
1932 cgrp->max_depth = INT_MAX;
1933 INIT_LIST_HEAD(&cgrp->rstat_css_list);
1934 prev_cputime_init(&cgrp->prev_cputime);
1935
1936 for_each_subsys(ss, ssid)
1937 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1938
1939 init_waitqueue_head(&cgrp->offline_waitq);
1940 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1941 }
1942
init_cgroup_root(struct cgroup_fs_context * ctx)1943 void init_cgroup_root(struct cgroup_fs_context *ctx)
1944 {
1945 struct cgroup_root *root = ctx->root;
1946 struct cgroup *cgrp = &root->cgrp;
1947
1948 INIT_LIST_HEAD(&root->root_list);
1949 atomic_set(&root->nr_cgrps, 1);
1950 cgrp->root = root;
1951 init_cgroup_housekeeping(cgrp);
1952
1953 root->flags = ctx->flags;
1954 if (ctx->release_agent)
1955 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1956 if (ctx->name)
1957 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1958 if (ctx->cpuset_clone_children)
1959 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1960 }
1961
cgroup_setup_root(struct cgroup_root * root,u16 ss_mask)1962 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1963 {
1964 LIST_HEAD(tmp_links);
1965 struct cgroup *root_cgrp = &root->cgrp;
1966 struct kernfs_syscall_ops *kf_sops;
1967 struct css_set *cset;
1968 int i, ret;
1969
1970 lockdep_assert_held(&cgroup_mutex);
1971
1972 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1973 0, GFP_KERNEL);
1974 if (ret)
1975 goto out;
1976
1977 /*
1978 * We're accessing css_set_count without locking css_set_lock here,
1979 * but that's OK - it can only be increased by someone holding
1980 * cgroup_lock, and that's us. Later rebinding may disable
1981 * controllers on the default hierarchy and thus create new csets,
1982 * which can't be more than the existing ones. Allocate 2x.
1983 */
1984 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1985 if (ret)
1986 goto cancel_ref;
1987
1988 ret = cgroup_init_root_id(root);
1989 if (ret)
1990 goto cancel_ref;
1991
1992 kf_sops = root == &cgrp_dfl_root ?
1993 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1994
1995 root->kf_root = kernfs_create_root(kf_sops,
1996 KERNFS_ROOT_CREATE_DEACTIVATED |
1997 KERNFS_ROOT_SUPPORT_EXPORTOP |
1998 KERNFS_ROOT_SUPPORT_USER_XATTR,
1999 root_cgrp);
2000 if (IS_ERR(root->kf_root)) {
2001 ret = PTR_ERR(root->kf_root);
2002 goto exit_root_id;
2003 }
2004 root_cgrp->kn = root->kf_root->kn;
2005 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2006 root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
2007
2008 ret = css_populate_dir(&root_cgrp->self);
2009 if (ret)
2010 goto destroy_root;
2011
2012 ret = cgroup_rstat_init(root_cgrp);
2013 if (ret)
2014 goto destroy_root;
2015
2016 ret = rebind_subsystems(root, ss_mask);
2017 if (ret)
2018 goto exit_stats;
2019
2020 ret = cgroup_bpf_inherit(root_cgrp);
2021 WARN_ON_ONCE(ret);
2022
2023 trace_cgroup_setup_root(root);
2024
2025 /*
2026 * There must be no failure case after here, since rebinding takes
2027 * care of subsystems' refcounts, which are explicitly dropped in
2028 * the failure exit path.
2029 */
2030 list_add(&root->root_list, &cgroup_roots);
2031 cgroup_root_count++;
2032
2033 /*
2034 * Link the root cgroup in this hierarchy into all the css_set
2035 * objects.
2036 */
2037 spin_lock_irq(&css_set_lock);
2038 hash_for_each(css_set_table, i, cset, hlist) {
2039 link_css_set(&tmp_links, cset, root_cgrp);
2040 if (css_set_populated(cset))
2041 cgroup_update_populated(root_cgrp, true);
2042 }
2043 spin_unlock_irq(&css_set_lock);
2044
2045 BUG_ON(!list_empty(&root_cgrp->self.children));
2046 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2047
2048 ret = 0;
2049 goto out;
2050
2051 exit_stats:
2052 cgroup_rstat_exit(root_cgrp);
2053 destroy_root:
2054 kernfs_destroy_root(root->kf_root);
2055 root->kf_root = NULL;
2056 exit_root_id:
2057 cgroup_exit_root_id(root);
2058 cancel_ref:
2059 percpu_ref_exit(&root_cgrp->self.refcnt);
2060 out:
2061 free_cgrp_cset_links(&tmp_links);
2062 return ret;
2063 }
2064
cgroup_do_get_tree(struct fs_context * fc)2065 int cgroup_do_get_tree(struct fs_context *fc)
2066 {
2067 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2068 int ret;
2069
2070 ctx->kfc.root = ctx->root->kf_root;
2071 if (fc->fs_type == &cgroup2_fs_type)
2072 ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2073 else
2074 ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2075 ret = kernfs_get_tree(fc);
2076
2077 /*
2078 * In non-init cgroup namespace, instead of root cgroup's dentry,
2079 * we return the dentry corresponding to the cgroupns->root_cgrp.
2080 */
2081 if (!ret && ctx->ns != &init_cgroup_ns) {
2082 struct dentry *nsdentry;
2083 struct super_block *sb = fc->root->d_sb;
2084 struct cgroup *cgrp;
2085
2086 mutex_lock(&cgroup_mutex);
2087 spin_lock_irq(&css_set_lock);
2088
2089 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2090
2091 spin_unlock_irq(&css_set_lock);
2092 mutex_unlock(&cgroup_mutex);
2093
2094 nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2095 dput(fc->root);
2096 if (IS_ERR(nsdentry)) {
2097 deactivate_locked_super(sb);
2098 ret = PTR_ERR(nsdentry);
2099 nsdentry = NULL;
2100 }
2101 fc->root = nsdentry;
2102 }
2103
2104 if (!ctx->kfc.new_sb_created)
2105 cgroup_put(&ctx->root->cgrp);
2106
2107 return ret;
2108 }
2109
2110 /*
2111 * Destroy a cgroup filesystem context.
2112 */
cgroup_fs_context_free(struct fs_context * fc)2113 static void cgroup_fs_context_free(struct fs_context *fc)
2114 {
2115 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2116
2117 kfree(ctx->name);
2118 kfree(ctx->release_agent);
2119 put_cgroup_ns(ctx->ns);
2120 kernfs_free_fs_context(fc);
2121 kfree(ctx);
2122 }
2123
cgroup_get_tree(struct fs_context * fc)2124 static int cgroup_get_tree(struct fs_context *fc)
2125 {
2126 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2127 int ret;
2128
2129 cgrp_dfl_visible = true;
2130 cgroup_get_live(&cgrp_dfl_root.cgrp);
2131 ctx->root = &cgrp_dfl_root;
2132
2133 ret = cgroup_do_get_tree(fc);
2134 if (!ret)
2135 apply_cgroup_root_flags(ctx->flags);
2136 return ret;
2137 }
2138
2139 static const struct fs_context_operations cgroup_fs_context_ops = {
2140 .free = cgroup_fs_context_free,
2141 .parse_param = cgroup2_parse_param,
2142 .get_tree = cgroup_get_tree,
2143 .reconfigure = cgroup_reconfigure,
2144 };
2145
2146 static const struct fs_context_operations cgroup1_fs_context_ops = {
2147 .free = cgroup_fs_context_free,
2148 .parse_param = cgroup1_parse_param,
2149 .get_tree = cgroup1_get_tree,
2150 .reconfigure = cgroup1_reconfigure,
2151 };
2152
2153 /*
2154 * Initialise the cgroup filesystem creation/reconfiguration context. Notably,
2155 * we select the namespace we're going to use.
2156 */
cgroup_init_fs_context(struct fs_context * fc)2157 static int cgroup_init_fs_context(struct fs_context *fc)
2158 {
2159 struct cgroup_fs_context *ctx;
2160
2161 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2162 if (!ctx)
2163 return -ENOMEM;
2164
2165 ctx->ns = current->nsproxy->cgroup_ns;
2166 get_cgroup_ns(ctx->ns);
2167 fc->fs_private = &ctx->kfc;
2168 if (fc->fs_type == &cgroup2_fs_type)
2169 fc->ops = &cgroup_fs_context_ops;
2170 else
2171 fc->ops = &cgroup1_fs_context_ops;
2172 put_user_ns(fc->user_ns);
2173 fc->user_ns = get_user_ns(ctx->ns->user_ns);
2174 fc->global = true;
2175 return 0;
2176 }
2177
cgroup_kill_sb(struct super_block * sb)2178 static void cgroup_kill_sb(struct super_block *sb)
2179 {
2180 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2181 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2182
2183 /*
2184 * If @root doesn't have any children, start killing it.
2185 * This prevents new mounts by disabling percpu_ref_tryget_live().
2186 *
2187 * And don't kill the default root.
2188 */
2189 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2190 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
2191 cgroup_bpf_offline(&root->cgrp);
2192 percpu_ref_kill(&root->cgrp.self.refcnt);
2193 }
2194 cgroup_put(&root->cgrp);
2195 kernfs_kill_sb(sb);
2196 }
2197
2198 struct file_system_type cgroup_fs_type = {
2199 .name = "cgroup",
2200 .init_fs_context = cgroup_init_fs_context,
2201 .parameters = cgroup1_fs_parameters,
2202 .kill_sb = cgroup_kill_sb,
2203 .fs_flags = FS_USERNS_MOUNT,
2204 };
2205
2206 static struct file_system_type cgroup2_fs_type = {
2207 .name = "cgroup2",
2208 .init_fs_context = cgroup_init_fs_context,
2209 .parameters = cgroup2_fs_parameters,
2210 .kill_sb = cgroup_kill_sb,
2211 .fs_flags = FS_USERNS_MOUNT,
2212 };
2213
2214 #ifdef CONFIG_CPUSETS
2215 static const struct fs_context_operations cpuset_fs_context_ops = {
2216 .get_tree = cgroup1_get_tree,
2217 .free = cgroup_fs_context_free,
2218 };
2219
2220 /*
2221 * This is ugly, but preserves the userspace API for existing cpuset
2222 * users. If someone tries to mount the "cpuset" filesystem, we
2223 * silently switch it to mount "cgroup" instead
2224 */
cpuset_init_fs_context(struct fs_context * fc)2225 static int cpuset_init_fs_context(struct fs_context *fc)
2226 {
2227 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2228 struct cgroup_fs_context *ctx;
2229 int err;
2230
2231 err = cgroup_init_fs_context(fc);
2232 if (err) {
2233 kfree(agent);
2234 return err;
2235 }
2236
2237 fc->ops = &cpuset_fs_context_ops;
2238
2239 ctx = cgroup_fc2context(fc);
2240 ctx->subsys_mask = 1 << cpuset_cgrp_id;
2241 ctx->flags |= CGRP_ROOT_NOPREFIX;
2242 ctx->release_agent = agent;
2243
2244 get_filesystem(&cgroup_fs_type);
2245 put_filesystem(fc->fs_type);
2246 fc->fs_type = &cgroup_fs_type;
2247
2248 return 0;
2249 }
2250
2251 static struct file_system_type cpuset_fs_type = {
2252 .name = "cpuset",
2253 .init_fs_context = cpuset_init_fs_context,
2254 .fs_flags = FS_USERNS_MOUNT,
2255 };
2256 #endif
2257
cgroup_path_ns_locked(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2258 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2259 struct cgroup_namespace *ns)
2260 {
2261 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2262
2263 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2264 }
2265
cgroup_path_ns(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2266 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2267 struct cgroup_namespace *ns)
2268 {
2269 int ret;
2270
2271 mutex_lock(&cgroup_mutex);
2272 spin_lock_irq(&css_set_lock);
2273
2274 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2275
2276 spin_unlock_irq(&css_set_lock);
2277 mutex_unlock(&cgroup_mutex);
2278
2279 return ret;
2280 }
2281 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2282
2283 /**
2284 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2285 * @task: target task
2286 * @buf: the buffer to write the path into
2287 * @buflen: the length of the buffer
2288 *
2289 * Determine @task's cgroup on the first (the one with the lowest non-zero
2290 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2291 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2292 * cgroup controller callbacks.
2293 *
2294 * Return value is the same as kernfs_path().
2295 */
task_cgroup_path(struct task_struct * task,char * buf,size_t buflen)2296 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2297 {
2298 struct cgroup_root *root;
2299 struct cgroup *cgrp;
2300 int hierarchy_id = 1;
2301 int ret;
2302
2303 mutex_lock(&cgroup_mutex);
2304 spin_lock_irq(&css_set_lock);
2305
2306 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2307
2308 if (root) {
2309 cgrp = task_cgroup_from_root(task, root);
2310 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2311 } else {
2312 /* if no hierarchy exists, everyone is in "/" */
2313 ret = strlcpy(buf, "/", buflen);
2314 }
2315
2316 spin_unlock_irq(&css_set_lock);
2317 mutex_unlock(&cgroup_mutex);
2318 return ret;
2319 }
2320 EXPORT_SYMBOL_GPL(task_cgroup_path);
2321
2322 /**
2323 * cgroup_migrate_add_task - add a migration target task to a migration context
2324 * @task: target task
2325 * @mgctx: target migration context
2326 *
2327 * Add @task, which is a migration target, to @mgctx->tset. This function
2328 * becomes noop if @task doesn't need to be migrated. @task's css_set
2329 * should have been added as a migration source and @task->cg_list will be
2330 * moved from the css_set's tasks list to mg_tasks one.
2331 */
cgroup_migrate_add_task(struct task_struct * task,struct cgroup_mgctx * mgctx)2332 static void cgroup_migrate_add_task(struct task_struct *task,
2333 struct cgroup_mgctx *mgctx)
2334 {
2335 struct css_set *cset;
2336
2337 lockdep_assert_held(&css_set_lock);
2338
2339 /* @task either already exited or can't exit until the end */
2340 if (task->flags & PF_EXITING)
2341 return;
2342
2343 /* cgroup_threadgroup_rwsem protects racing against forks */
2344 WARN_ON_ONCE(list_empty(&task->cg_list));
2345
2346 cset = task_css_set(task);
2347 if (!cset->mg_src_cgrp)
2348 return;
2349
2350 mgctx->tset.nr_tasks++;
2351
2352 list_move_tail(&task->cg_list, &cset->mg_tasks);
2353 if (list_empty(&cset->mg_node))
2354 list_add_tail(&cset->mg_node,
2355 &mgctx->tset.src_csets);
2356 if (list_empty(&cset->mg_dst_cset->mg_node))
2357 list_add_tail(&cset->mg_dst_cset->mg_node,
2358 &mgctx->tset.dst_csets);
2359 }
2360
2361 /**
2362 * cgroup_taskset_first - reset taskset and return the first task
2363 * @tset: taskset of interest
2364 * @dst_cssp: output variable for the destination css
2365 *
2366 * @tset iteration is initialized and the first task is returned.
2367 */
cgroup_taskset_first(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2368 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2369 struct cgroup_subsys_state **dst_cssp)
2370 {
2371 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2372 tset->cur_task = NULL;
2373
2374 return cgroup_taskset_next(tset, dst_cssp);
2375 }
2376
2377 /**
2378 * cgroup_taskset_next - iterate to the next task in taskset
2379 * @tset: taskset of interest
2380 * @dst_cssp: output variable for the destination css
2381 *
2382 * Return the next task in @tset. Iteration must have been initialized
2383 * with cgroup_taskset_first().
2384 */
cgroup_taskset_next(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2385 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2386 struct cgroup_subsys_state **dst_cssp)
2387 {
2388 struct css_set *cset = tset->cur_cset;
2389 struct task_struct *task = tset->cur_task;
2390
2391 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
2392 if (!task)
2393 task = list_first_entry(&cset->mg_tasks,
2394 struct task_struct, cg_list);
2395 else
2396 task = list_next_entry(task, cg_list);
2397
2398 if (&task->cg_list != &cset->mg_tasks) {
2399 tset->cur_cset = cset;
2400 tset->cur_task = task;
2401
2402 /*
2403 * This function may be called both before and
2404 * after cgroup_taskset_migrate(). The two cases
2405 * can be distinguished by looking at whether @cset
2406 * has its ->mg_dst_cset set.
2407 */
2408 if (cset->mg_dst_cset)
2409 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2410 else
2411 *dst_cssp = cset->subsys[tset->ssid];
2412
2413 return task;
2414 }
2415
2416 cset = list_next_entry(cset, mg_node);
2417 task = NULL;
2418 }
2419
2420 return NULL;
2421 }
2422
2423 /**
2424 * cgroup_migrate_execute - migrate a taskset
2425 * @mgctx: migration context
2426 *
2427 * Migrate tasks in @mgctx as setup by migration preparation functions.
2428 * This function fails iff one of the ->can_attach callbacks fails and
2429 * guarantees that either all or none of the tasks in @mgctx are migrated.
2430 * @mgctx is consumed regardless of success.
2431 */
cgroup_migrate_execute(struct cgroup_mgctx * mgctx)2432 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2433 {
2434 struct cgroup_taskset *tset = &mgctx->tset;
2435 struct cgroup_subsys *ss;
2436 struct task_struct *task, *tmp_task;
2437 struct css_set *cset, *tmp_cset;
2438 int ssid, failed_ssid, ret;
2439
2440 /* check that we can legitimately attach to the cgroup */
2441 if (tset->nr_tasks) {
2442 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2443 if (ss->can_attach) {
2444 tset->ssid = ssid;
2445 ret = ss->can_attach(tset);
2446 if (ret) {
2447 failed_ssid = ssid;
2448 goto out_cancel_attach;
2449 }
2450 }
2451 } while_each_subsys_mask();
2452 }
2453
2454 /*
2455 * Now that we're guaranteed success, proceed to move all tasks to
2456 * the new cgroup. There are no failure cases after here, so this
2457 * is the commit point.
2458 */
2459 spin_lock_irq(&css_set_lock);
2460 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2461 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2462 struct css_set *from_cset = task_css_set(task);
2463 struct css_set *to_cset = cset->mg_dst_cset;
2464
2465 get_css_set(to_cset);
2466 to_cset->nr_tasks++;
2467 css_set_move_task(task, from_cset, to_cset, true);
2468 from_cset->nr_tasks--;
2469 /*
2470 * If the source or destination cgroup is frozen,
2471 * the task might require to change its state.
2472 */
2473 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2474 to_cset->dfl_cgrp);
2475 put_css_set_locked(from_cset);
2476
2477 }
2478 }
2479 spin_unlock_irq(&css_set_lock);
2480
2481 /*
2482 * Migration is committed, all target tasks are now on dst_csets.
2483 * Nothing is sensitive to fork() after this point. Notify
2484 * controllers that migration is complete.
2485 */
2486 tset->csets = &tset->dst_csets;
2487
2488 if (tset->nr_tasks) {
2489 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2490 if (ss->attach) {
2491 tset->ssid = ssid;
2492 ss->attach(tset);
2493 }
2494 } while_each_subsys_mask();
2495 }
2496
2497 ret = 0;
2498 goto out_release_tset;
2499
2500 out_cancel_attach:
2501 if (tset->nr_tasks) {
2502 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2503 if (ssid == failed_ssid)
2504 break;
2505 if (ss->cancel_attach) {
2506 tset->ssid = ssid;
2507 ss->cancel_attach(tset);
2508 }
2509 } while_each_subsys_mask();
2510 }
2511 out_release_tset:
2512 spin_lock_irq(&css_set_lock);
2513 list_splice_init(&tset->dst_csets, &tset->src_csets);
2514 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2515 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2516 list_del_init(&cset->mg_node);
2517 }
2518 spin_unlock_irq(&css_set_lock);
2519
2520 /*
2521 * Re-initialize the cgroup_taskset structure in case it is reused
2522 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2523 * iteration.
2524 */
2525 tset->nr_tasks = 0;
2526 tset->csets = &tset->src_csets;
2527 return ret;
2528 }
2529
2530 /**
2531 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2532 * @dst_cgrp: destination cgroup to test
2533 *
2534 * On the default hierarchy, except for the mixable, (possible) thread root
2535 * and threaded cgroups, subtree_control must be zero for migration
2536 * destination cgroups with tasks so that child cgroups don't compete
2537 * against tasks.
2538 */
cgroup_migrate_vet_dst(struct cgroup * dst_cgrp)2539 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2540 {
2541 /* v1 doesn't have any restriction */
2542 if (!cgroup_on_dfl(dst_cgrp))
2543 return 0;
2544
2545 /* verify @dst_cgrp can host resources */
2546 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2547 return -EOPNOTSUPP;
2548
2549 /* mixables don't care */
2550 if (cgroup_is_mixable(dst_cgrp))
2551 return 0;
2552
2553 /*
2554 * If @dst_cgrp is already or can become a thread root or is
2555 * threaded, it doesn't matter.
2556 */
2557 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2558 return 0;
2559
2560 /* apply no-internal-process constraint */
2561 if (dst_cgrp->subtree_control)
2562 return -EBUSY;
2563
2564 return 0;
2565 }
2566
2567 /**
2568 * cgroup_migrate_finish - cleanup after attach
2569 * @mgctx: migration context
2570 *
2571 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2572 * those functions for details.
2573 */
cgroup_migrate_finish(struct cgroup_mgctx * mgctx)2574 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2575 {
2576 LIST_HEAD(preloaded);
2577 struct css_set *cset, *tmp_cset;
2578
2579 lockdep_assert_held(&cgroup_mutex);
2580
2581 spin_lock_irq(&css_set_lock);
2582
2583 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2584 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2585
2586 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2587 cset->mg_src_cgrp = NULL;
2588 cset->mg_dst_cgrp = NULL;
2589 cset->mg_dst_cset = NULL;
2590 list_del_init(&cset->mg_preload_node);
2591 put_css_set_locked(cset);
2592 }
2593
2594 spin_unlock_irq(&css_set_lock);
2595 }
2596
2597 /**
2598 * cgroup_migrate_add_src - add a migration source css_set
2599 * @src_cset: the source css_set to add
2600 * @dst_cgrp: the destination cgroup
2601 * @mgctx: migration context
2602 *
2603 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2604 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2605 * up by cgroup_migrate_finish().
2606 *
2607 * This function may be called without holding cgroup_threadgroup_rwsem
2608 * even if the target is a process. Threads may be created and destroyed
2609 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2610 * into play and the preloaded css_sets are guaranteed to cover all
2611 * migrations.
2612 */
cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct cgroup_mgctx * mgctx)2613 void cgroup_migrate_add_src(struct css_set *src_cset,
2614 struct cgroup *dst_cgrp,
2615 struct cgroup_mgctx *mgctx)
2616 {
2617 struct cgroup *src_cgrp;
2618
2619 lockdep_assert_held(&cgroup_mutex);
2620 lockdep_assert_held(&css_set_lock);
2621
2622 /*
2623 * If ->dead, @src_set is associated with one or more dead cgroups
2624 * and doesn't contain any migratable tasks. Ignore it early so
2625 * that the rest of migration path doesn't get confused by it.
2626 */
2627 if (src_cset->dead)
2628 return;
2629
2630 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2631
2632 if (!list_empty(&src_cset->mg_preload_node))
2633 return;
2634
2635 WARN_ON(src_cset->mg_src_cgrp);
2636 WARN_ON(src_cset->mg_dst_cgrp);
2637 WARN_ON(!list_empty(&src_cset->mg_tasks));
2638 WARN_ON(!list_empty(&src_cset->mg_node));
2639
2640 src_cset->mg_src_cgrp = src_cgrp;
2641 src_cset->mg_dst_cgrp = dst_cgrp;
2642 get_css_set(src_cset);
2643 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2644 }
2645
2646 /**
2647 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2648 * @mgctx: migration context
2649 *
2650 * Tasks are about to be moved and all the source css_sets have been
2651 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2652 * pins all destination css_sets, links each to its source, and append them
2653 * to @mgctx->preloaded_dst_csets.
2654 *
2655 * This function must be called after cgroup_migrate_add_src() has been
2656 * called on each migration source css_set. After migration is performed
2657 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2658 * @mgctx.
2659 */
cgroup_migrate_prepare_dst(struct cgroup_mgctx * mgctx)2660 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2661 {
2662 struct css_set *src_cset, *tmp_cset;
2663
2664 lockdep_assert_held(&cgroup_mutex);
2665
2666 /* look up the dst cset for each src cset and link it to src */
2667 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2668 mg_preload_node) {
2669 struct css_set *dst_cset;
2670 struct cgroup_subsys *ss;
2671 int ssid;
2672
2673 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2674 if (!dst_cset)
2675 return -ENOMEM;
2676
2677 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2678
2679 /*
2680 * If src cset equals dst, it's noop. Drop the src.
2681 * cgroup_migrate() will skip the cset too. Note that we
2682 * can't handle src == dst as some nodes are used by both.
2683 */
2684 if (src_cset == dst_cset) {
2685 src_cset->mg_src_cgrp = NULL;
2686 src_cset->mg_dst_cgrp = NULL;
2687 list_del_init(&src_cset->mg_preload_node);
2688 put_css_set(src_cset);
2689 put_css_set(dst_cset);
2690 continue;
2691 }
2692
2693 src_cset->mg_dst_cset = dst_cset;
2694
2695 if (list_empty(&dst_cset->mg_preload_node))
2696 list_add_tail(&dst_cset->mg_preload_node,
2697 &mgctx->preloaded_dst_csets);
2698 else
2699 put_css_set(dst_cset);
2700
2701 for_each_subsys(ss, ssid)
2702 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2703 mgctx->ss_mask |= 1 << ssid;
2704 }
2705
2706 return 0;
2707 }
2708
2709 /**
2710 * cgroup_migrate - migrate a process or task to a cgroup
2711 * @leader: the leader of the process or the task to migrate
2712 * @threadgroup: whether @leader points to the whole process or a single task
2713 * @mgctx: migration context
2714 *
2715 * Migrate a process or task denoted by @leader. If migrating a process,
2716 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2717 * responsible for invoking cgroup_migrate_add_src() and
2718 * cgroup_migrate_prepare_dst() on the targets before invoking this
2719 * function and following up with cgroup_migrate_finish().
2720 *
2721 * As long as a controller's ->can_attach() doesn't fail, this function is
2722 * guaranteed to succeed. This means that, excluding ->can_attach()
2723 * failure, when migrating multiple targets, the success or failure can be
2724 * decided for all targets by invoking group_migrate_prepare_dst() before
2725 * actually starting migrating.
2726 */
cgroup_migrate(struct task_struct * leader,bool threadgroup,struct cgroup_mgctx * mgctx)2727 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2728 struct cgroup_mgctx *mgctx)
2729 {
2730 struct task_struct *task;
2731
2732 /*
2733 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2734 * already PF_EXITING could be freed from underneath us unless we
2735 * take an rcu_read_lock.
2736 */
2737 spin_lock_irq(&css_set_lock);
2738 rcu_read_lock();
2739 task = leader;
2740 do {
2741 cgroup_migrate_add_task(task, mgctx);
2742 if (!threadgroup)
2743 break;
2744 } while_each_thread(leader, task);
2745 rcu_read_unlock();
2746 spin_unlock_irq(&css_set_lock);
2747
2748 return cgroup_migrate_execute(mgctx);
2749 }
2750
2751 /**
2752 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2753 * @dst_cgrp: the cgroup to attach to
2754 * @leader: the task or the leader of the threadgroup to be attached
2755 * @threadgroup: attach the whole threadgroup?
2756 *
2757 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2758 */
cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)2759 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2760 bool threadgroup)
2761 {
2762 DEFINE_CGROUP_MGCTX(mgctx);
2763 struct task_struct *task;
2764 int ret = 0;
2765
2766 /* look up all src csets */
2767 spin_lock_irq(&css_set_lock);
2768 rcu_read_lock();
2769 task = leader;
2770 do {
2771 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2772 if (!threadgroup)
2773 break;
2774 } while_each_thread(leader, task);
2775 rcu_read_unlock();
2776 spin_unlock_irq(&css_set_lock);
2777
2778 /* prepare dst csets and commit */
2779 ret = cgroup_migrate_prepare_dst(&mgctx);
2780 if (!ret)
2781 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2782
2783 cgroup_migrate_finish(&mgctx);
2784
2785 if (!ret)
2786 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2787
2788 return ret;
2789 }
2790
cgroup_procs_write_start(char * buf,bool threadgroup,bool * locked)2791 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2792 bool *locked)
2793 __acquires(&cgroup_threadgroup_rwsem)
2794 {
2795 struct task_struct *tsk;
2796 pid_t pid;
2797
2798 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2799 return ERR_PTR(-EINVAL);
2800
2801 /*
2802 * If we migrate a single thread, we don't care about threadgroup
2803 * stability. If the thread is `current`, it won't exit(2) under our
2804 * hands or change PID through exec(2). We exclude
2805 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2806 * callers by cgroup_mutex.
2807 * Therefore, we can skip the global lock.
2808 */
2809 lockdep_assert_held(&cgroup_mutex);
2810 if (pid || threadgroup) {
2811 percpu_down_write(&cgroup_threadgroup_rwsem);
2812 *locked = true;
2813 } else {
2814 *locked = false;
2815 }
2816
2817 rcu_read_lock();
2818 if (pid) {
2819 tsk = find_task_by_vpid(pid);
2820 if (!tsk) {
2821 tsk = ERR_PTR(-ESRCH);
2822 goto out_unlock_threadgroup;
2823 }
2824 } else {
2825 tsk = current;
2826 }
2827
2828 if (threadgroup)
2829 tsk = tsk->group_leader;
2830
2831 /*
2832 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2833 * If userland migrates such a kthread to a non-root cgroup, it can
2834 * become trapped in a cpuset, or RT kthread may be born in a
2835 * cgroup with no rt_runtime allocated. Just say no.
2836 */
2837 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2838 tsk = ERR_PTR(-EINVAL);
2839 goto out_unlock_threadgroup;
2840 }
2841
2842 get_task_struct(tsk);
2843 goto out_unlock_rcu;
2844
2845 out_unlock_threadgroup:
2846 if (*locked) {
2847 percpu_up_write(&cgroup_threadgroup_rwsem);
2848 *locked = false;
2849 }
2850 out_unlock_rcu:
2851 rcu_read_unlock();
2852 return tsk;
2853 }
2854
cgroup_procs_write_finish(struct task_struct * task,bool locked)2855 void cgroup_procs_write_finish(struct task_struct *task, bool locked)
2856 __releases(&cgroup_threadgroup_rwsem)
2857 {
2858 struct cgroup_subsys *ss;
2859 int ssid;
2860
2861 /* release reference from cgroup_procs_write_start() */
2862 put_task_struct(task);
2863
2864 if (locked)
2865 percpu_up_write(&cgroup_threadgroup_rwsem);
2866 for_each_subsys(ss, ssid)
2867 if (ss->post_attach)
2868 ss->post_attach();
2869 }
2870
cgroup_print_ss_mask(struct seq_file * seq,u16 ss_mask)2871 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2872 {
2873 struct cgroup_subsys *ss;
2874 bool printed = false;
2875 int ssid;
2876
2877 do_each_subsys_mask(ss, ssid, ss_mask) {
2878 if (printed)
2879 seq_putc(seq, ' ');
2880 seq_puts(seq, ss->name);
2881 printed = true;
2882 } while_each_subsys_mask();
2883 if (printed)
2884 seq_putc(seq, '\n');
2885 }
2886
2887 /* show controllers which are enabled from the parent */
cgroup_controllers_show(struct seq_file * seq,void * v)2888 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2889 {
2890 struct cgroup *cgrp = seq_css(seq)->cgroup;
2891
2892 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2893 return 0;
2894 }
2895
2896 /* show controllers which are enabled for a given cgroup's children */
cgroup_subtree_control_show(struct seq_file * seq,void * v)2897 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2898 {
2899 struct cgroup *cgrp = seq_css(seq)->cgroup;
2900
2901 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2902 return 0;
2903 }
2904
2905 /**
2906 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2907 * @cgrp: root of the subtree to update csses for
2908 *
2909 * @cgrp's control masks have changed and its subtree's css associations
2910 * need to be updated accordingly. This function looks up all css_sets
2911 * which are attached to the subtree, creates the matching updated css_sets
2912 * and migrates the tasks to the new ones.
2913 */
cgroup_update_dfl_csses(struct cgroup * cgrp)2914 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2915 {
2916 DEFINE_CGROUP_MGCTX(mgctx);
2917 struct cgroup_subsys_state *d_css;
2918 struct cgroup *dsct;
2919 struct css_set *src_cset;
2920 int ret;
2921
2922 lockdep_assert_held(&cgroup_mutex);
2923
2924 percpu_down_write(&cgroup_threadgroup_rwsem);
2925
2926 /* look up all csses currently attached to @cgrp's subtree */
2927 spin_lock_irq(&css_set_lock);
2928 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2929 struct cgrp_cset_link *link;
2930
2931 list_for_each_entry(link, &dsct->cset_links, cset_link)
2932 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2933 }
2934 spin_unlock_irq(&css_set_lock);
2935
2936 /* NULL dst indicates self on default hierarchy */
2937 ret = cgroup_migrate_prepare_dst(&mgctx);
2938 if (ret)
2939 goto out_finish;
2940
2941 spin_lock_irq(&css_set_lock);
2942 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2943 struct task_struct *task, *ntask;
2944
2945 /* all tasks in src_csets need to be migrated */
2946 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2947 cgroup_migrate_add_task(task, &mgctx);
2948 }
2949 spin_unlock_irq(&css_set_lock);
2950
2951 ret = cgroup_migrate_execute(&mgctx);
2952 out_finish:
2953 cgroup_migrate_finish(&mgctx);
2954 percpu_up_write(&cgroup_threadgroup_rwsem);
2955 return ret;
2956 }
2957
2958 /**
2959 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2960 * @cgrp: root of the target subtree
2961 *
2962 * Because css offlining is asynchronous, userland may try to re-enable a
2963 * controller while the previous css is still around. This function grabs
2964 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2965 */
cgroup_lock_and_drain_offline(struct cgroup * cgrp)2966 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2967 __acquires(&cgroup_mutex)
2968 {
2969 struct cgroup *dsct;
2970 struct cgroup_subsys_state *d_css;
2971 struct cgroup_subsys *ss;
2972 int ssid;
2973
2974 restart:
2975 mutex_lock(&cgroup_mutex);
2976
2977 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2978 for_each_subsys(ss, ssid) {
2979 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2980 DEFINE_WAIT(wait);
2981
2982 if (!css || !percpu_ref_is_dying(&css->refcnt))
2983 continue;
2984
2985 cgroup_get_live(dsct);
2986 prepare_to_wait(&dsct->offline_waitq, &wait,
2987 TASK_UNINTERRUPTIBLE);
2988
2989 mutex_unlock(&cgroup_mutex);
2990 schedule();
2991 finish_wait(&dsct->offline_waitq, &wait);
2992
2993 cgroup_put(dsct);
2994 goto restart;
2995 }
2996 }
2997 }
2998
2999 /**
3000 * cgroup_save_control - save control masks and dom_cgrp of a subtree
3001 * @cgrp: root of the target subtree
3002 *
3003 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3004 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3005 * itself.
3006 */
cgroup_save_control(struct cgroup * cgrp)3007 static void cgroup_save_control(struct cgroup *cgrp)
3008 {
3009 struct cgroup *dsct;
3010 struct cgroup_subsys_state *d_css;
3011
3012 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3013 dsct->old_subtree_control = dsct->subtree_control;
3014 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3015 dsct->old_dom_cgrp = dsct->dom_cgrp;
3016 }
3017 }
3018
3019 /**
3020 * cgroup_propagate_control - refresh control masks of a subtree
3021 * @cgrp: root of the target subtree
3022 *
3023 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3024 * ->subtree_control and propagate controller availability through the
3025 * subtree so that descendants don't have unavailable controllers enabled.
3026 */
cgroup_propagate_control(struct cgroup * cgrp)3027 static void cgroup_propagate_control(struct cgroup *cgrp)
3028 {
3029 struct cgroup *dsct;
3030 struct cgroup_subsys_state *d_css;
3031
3032 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3033 dsct->subtree_control &= cgroup_control(dsct);
3034 dsct->subtree_ss_mask =
3035 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3036 cgroup_ss_mask(dsct));
3037 }
3038 }
3039
3040 /**
3041 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3042 * @cgrp: root of the target subtree
3043 *
3044 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3045 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3046 * itself.
3047 */
cgroup_restore_control(struct cgroup * cgrp)3048 static void cgroup_restore_control(struct cgroup *cgrp)
3049 {
3050 struct cgroup *dsct;
3051 struct cgroup_subsys_state *d_css;
3052
3053 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3054 dsct->subtree_control = dsct->old_subtree_control;
3055 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3056 dsct->dom_cgrp = dsct->old_dom_cgrp;
3057 }
3058 }
3059
css_visible(struct cgroup_subsys_state * css)3060 static bool css_visible(struct cgroup_subsys_state *css)
3061 {
3062 struct cgroup_subsys *ss = css->ss;
3063 struct cgroup *cgrp = css->cgroup;
3064
3065 if (cgroup_control(cgrp) & (1 << ss->id))
3066 return true;
3067 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3068 return false;
3069 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3070 }
3071
3072 /**
3073 * cgroup_apply_control_enable - enable or show csses according to control
3074 * @cgrp: root of the target subtree
3075 *
3076 * Walk @cgrp's subtree and create new csses or make the existing ones
3077 * visible. A css is created invisible if it's being implicitly enabled
3078 * through dependency. An invisible css is made visible when the userland
3079 * explicitly enables it.
3080 *
3081 * Returns 0 on success, -errno on failure. On failure, csses which have
3082 * been processed already aren't cleaned up. The caller is responsible for
3083 * cleaning up with cgroup_apply_control_disable().
3084 */
cgroup_apply_control_enable(struct cgroup * cgrp)3085 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3086 {
3087 struct cgroup *dsct;
3088 struct cgroup_subsys_state *d_css;
3089 struct cgroup_subsys *ss;
3090 int ssid, ret;
3091
3092 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3093 for_each_subsys(ss, ssid) {
3094 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3095
3096 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3097 continue;
3098
3099 if (!css) {
3100 css = css_create(dsct, ss);
3101 if (IS_ERR(css))
3102 return PTR_ERR(css);
3103 }
3104
3105 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3106
3107 if (css_visible(css)) {
3108 ret = css_populate_dir(css);
3109 if (ret)
3110 return ret;
3111 }
3112 }
3113 }
3114
3115 return 0;
3116 }
3117
3118 /**
3119 * cgroup_apply_control_disable - kill or hide csses according to control
3120 * @cgrp: root of the target subtree
3121 *
3122 * Walk @cgrp's subtree and kill and hide csses so that they match
3123 * cgroup_ss_mask() and cgroup_visible_mask().
3124 *
3125 * A css is hidden when the userland requests it to be disabled while other
3126 * subsystems are still depending on it. The css must not actively control
3127 * resources and be in the vanilla state if it's made visible again later.
3128 * Controllers which may be depended upon should provide ->css_reset() for
3129 * this purpose.
3130 */
cgroup_apply_control_disable(struct cgroup * cgrp)3131 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3132 {
3133 struct cgroup *dsct;
3134 struct cgroup_subsys_state *d_css;
3135 struct cgroup_subsys *ss;
3136 int ssid;
3137
3138 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3139 for_each_subsys(ss, ssid) {
3140 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3141
3142 if (!css)
3143 continue;
3144
3145 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3146
3147 if (css->parent &&
3148 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3149 kill_css(css);
3150 } else if (!css_visible(css)) {
3151 css_clear_dir(css);
3152 if (ss->css_reset)
3153 ss->css_reset(css);
3154 }
3155 }
3156 }
3157 }
3158
3159 /**
3160 * cgroup_apply_control - apply control mask updates to the subtree
3161 * @cgrp: root of the target subtree
3162 *
3163 * subsystems can be enabled and disabled in a subtree using the following
3164 * steps.
3165 *
3166 * 1. Call cgroup_save_control() to stash the current state.
3167 * 2. Update ->subtree_control masks in the subtree as desired.
3168 * 3. Call cgroup_apply_control() to apply the changes.
3169 * 4. Optionally perform other related operations.
3170 * 5. Call cgroup_finalize_control() to finish up.
3171 *
3172 * This function implements step 3 and propagates the mask changes
3173 * throughout @cgrp's subtree, updates csses accordingly and perform
3174 * process migrations.
3175 */
cgroup_apply_control(struct cgroup * cgrp)3176 static int cgroup_apply_control(struct cgroup *cgrp)
3177 {
3178 int ret;
3179
3180 cgroup_propagate_control(cgrp);
3181
3182 ret = cgroup_apply_control_enable(cgrp);
3183 if (ret)
3184 return ret;
3185
3186 /*
3187 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3188 * making the following cgroup_update_dfl_csses() properly update
3189 * css associations of all tasks in the subtree.
3190 */
3191 ret = cgroup_update_dfl_csses(cgrp);
3192 if (ret)
3193 return ret;
3194
3195 return 0;
3196 }
3197
3198 /**
3199 * cgroup_finalize_control - finalize control mask update
3200 * @cgrp: root of the target subtree
3201 * @ret: the result of the update
3202 *
3203 * Finalize control mask update. See cgroup_apply_control() for more info.
3204 */
cgroup_finalize_control(struct cgroup * cgrp,int ret)3205 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3206 {
3207 if (ret) {
3208 cgroup_restore_control(cgrp);
3209 cgroup_propagate_control(cgrp);
3210 }
3211
3212 cgroup_apply_control_disable(cgrp);
3213 }
3214
cgroup_vet_subtree_control_enable(struct cgroup * cgrp,u16 enable)3215 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3216 {
3217 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3218
3219 /* if nothing is getting enabled, nothing to worry about */
3220 if (!enable)
3221 return 0;
3222
3223 /* can @cgrp host any resources? */
3224 if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3225 return -EOPNOTSUPP;
3226
3227 /* mixables don't care */
3228 if (cgroup_is_mixable(cgrp))
3229 return 0;
3230
3231 if (domain_enable) {
3232 /* can't enable domain controllers inside a thread subtree */
3233 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3234 return -EOPNOTSUPP;
3235 } else {
3236 /*
3237 * Threaded controllers can handle internal competitions
3238 * and are always allowed inside a (prospective) thread
3239 * subtree.
3240 */
3241 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3242 return 0;
3243 }
3244
3245 /*
3246 * Controllers can't be enabled for a cgroup with tasks to avoid
3247 * child cgroups competing against tasks.
3248 */
3249 if (cgroup_has_tasks(cgrp))
3250 return -EBUSY;
3251
3252 return 0;
3253 }
3254
3255 /* change the enabled child controllers for a cgroup in the default hierarchy */
cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3256 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3257 char *buf, size_t nbytes,
3258 loff_t off)
3259 {
3260 u16 enable = 0, disable = 0;
3261 struct cgroup *cgrp, *child;
3262 struct cgroup_subsys *ss;
3263 char *tok;
3264 int ssid, ret;
3265
3266 /*
3267 * Parse input - space separated list of subsystem names prefixed
3268 * with either + or -.
3269 */
3270 buf = strstrip(buf);
3271 while ((tok = strsep(&buf, " "))) {
3272 if (tok[0] == '\0')
3273 continue;
3274 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3275 if (!cgroup_ssid_enabled(ssid) ||
3276 strcmp(tok + 1, ss->name))
3277 continue;
3278
3279 if (*tok == '+') {
3280 enable |= 1 << ssid;
3281 disable &= ~(1 << ssid);
3282 } else if (*tok == '-') {
3283 disable |= 1 << ssid;
3284 enable &= ~(1 << ssid);
3285 } else {
3286 return -EINVAL;
3287 }
3288 break;
3289 } while_each_subsys_mask();
3290 if (ssid == CGROUP_SUBSYS_COUNT)
3291 return -EINVAL;
3292 }
3293
3294 cgrp = cgroup_kn_lock_live(of->kn, true);
3295 if (!cgrp)
3296 return -ENODEV;
3297
3298 for_each_subsys(ss, ssid) {
3299 if (enable & (1 << ssid)) {
3300 if (cgrp->subtree_control & (1 << ssid)) {
3301 enable &= ~(1 << ssid);
3302 continue;
3303 }
3304
3305 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3306 ret = -ENOENT;
3307 goto out_unlock;
3308 }
3309 } else if (disable & (1 << ssid)) {
3310 if (!(cgrp->subtree_control & (1 << ssid))) {
3311 disable &= ~(1 << ssid);
3312 continue;
3313 }
3314
3315 /* a child has it enabled? */
3316 cgroup_for_each_live_child(child, cgrp) {
3317 if (child->subtree_control & (1 << ssid)) {
3318 ret = -EBUSY;
3319 goto out_unlock;
3320 }
3321 }
3322 }
3323 }
3324
3325 if (!enable && !disable) {
3326 ret = 0;
3327 goto out_unlock;
3328 }
3329
3330 ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3331 if (ret)
3332 goto out_unlock;
3333
3334 /* save and update control masks and prepare csses */
3335 cgroup_save_control(cgrp);
3336
3337 cgrp->subtree_control |= enable;
3338 cgrp->subtree_control &= ~disable;
3339
3340 ret = cgroup_apply_control(cgrp);
3341 cgroup_finalize_control(cgrp, ret);
3342 if (ret)
3343 goto out_unlock;
3344
3345 kernfs_activate(cgrp->kn);
3346 out_unlock:
3347 cgroup_kn_unlock(of->kn);
3348 return ret ?: nbytes;
3349 }
3350
3351 /**
3352 * cgroup_enable_threaded - make @cgrp threaded
3353 * @cgrp: the target cgroup
3354 *
3355 * Called when "threaded" is written to the cgroup.type interface file and
3356 * tries to make @cgrp threaded and join the parent's resource domain.
3357 * This function is never called on the root cgroup as cgroup.type doesn't
3358 * exist on it.
3359 */
cgroup_enable_threaded(struct cgroup * cgrp)3360 static int cgroup_enable_threaded(struct cgroup *cgrp)
3361 {
3362 struct cgroup *parent = cgroup_parent(cgrp);
3363 struct cgroup *dom_cgrp = parent->dom_cgrp;
3364 struct cgroup *dsct;
3365 struct cgroup_subsys_state *d_css;
3366 int ret;
3367
3368 lockdep_assert_held(&cgroup_mutex);
3369
3370 /* noop if already threaded */
3371 if (cgroup_is_threaded(cgrp))
3372 return 0;
3373
3374 /*
3375 * If @cgroup is populated or has domain controllers enabled, it
3376 * can't be switched. While the below cgroup_can_be_thread_root()
3377 * test can catch the same conditions, that's only when @parent is
3378 * not mixable, so let's check it explicitly.
3379 */
3380 if (cgroup_is_populated(cgrp) ||
3381 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3382 return -EOPNOTSUPP;
3383
3384 /* we're joining the parent's domain, ensure its validity */
3385 if (!cgroup_is_valid_domain(dom_cgrp) ||
3386 !cgroup_can_be_thread_root(dom_cgrp))
3387 return -EOPNOTSUPP;
3388
3389 /*
3390 * The following shouldn't cause actual migrations and should
3391 * always succeed.
3392 */
3393 cgroup_save_control(cgrp);
3394
3395 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3396 if (dsct == cgrp || cgroup_is_threaded(dsct))
3397 dsct->dom_cgrp = dom_cgrp;
3398
3399 ret = cgroup_apply_control(cgrp);
3400 if (!ret)
3401 parent->nr_threaded_children++;
3402
3403 cgroup_finalize_control(cgrp, ret);
3404 return ret;
3405 }
3406
cgroup_type_show(struct seq_file * seq,void * v)3407 static int cgroup_type_show(struct seq_file *seq, void *v)
3408 {
3409 struct cgroup *cgrp = seq_css(seq)->cgroup;
3410
3411 if (cgroup_is_threaded(cgrp))
3412 seq_puts(seq, "threaded\n");
3413 else if (!cgroup_is_valid_domain(cgrp))
3414 seq_puts(seq, "domain invalid\n");
3415 else if (cgroup_is_thread_root(cgrp))
3416 seq_puts(seq, "domain threaded\n");
3417 else
3418 seq_puts(seq, "domain\n");
3419
3420 return 0;
3421 }
3422
cgroup_type_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3423 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3424 size_t nbytes, loff_t off)
3425 {
3426 struct cgroup *cgrp;
3427 int ret;
3428
3429 /* only switching to threaded mode is supported */
3430 if (strcmp(strstrip(buf), "threaded"))
3431 return -EINVAL;
3432
3433 /* drain dying csses before we re-apply (threaded) subtree control */
3434 cgrp = cgroup_kn_lock_live(of->kn, true);
3435 if (!cgrp)
3436 return -ENOENT;
3437
3438 /* threaded can only be enabled */
3439 ret = cgroup_enable_threaded(cgrp);
3440
3441 cgroup_kn_unlock(of->kn);
3442 return ret ?: nbytes;
3443 }
3444
cgroup_max_descendants_show(struct seq_file * seq,void * v)3445 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3446 {
3447 struct cgroup *cgrp = seq_css(seq)->cgroup;
3448 int descendants = READ_ONCE(cgrp->max_descendants);
3449
3450 if (descendants == INT_MAX)
3451 seq_puts(seq, "max\n");
3452 else
3453 seq_printf(seq, "%d\n", descendants);
3454
3455 return 0;
3456 }
3457
cgroup_max_descendants_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3458 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3459 char *buf, size_t nbytes, loff_t off)
3460 {
3461 struct cgroup *cgrp;
3462 int descendants;
3463 ssize_t ret;
3464
3465 buf = strstrip(buf);
3466 if (!strcmp(buf, "max")) {
3467 descendants = INT_MAX;
3468 } else {
3469 ret = kstrtoint(buf, 0, &descendants);
3470 if (ret)
3471 return ret;
3472 }
3473
3474 if (descendants < 0)
3475 return -ERANGE;
3476
3477 cgrp = cgroup_kn_lock_live(of->kn, false);
3478 if (!cgrp)
3479 return -ENOENT;
3480
3481 cgrp->max_descendants = descendants;
3482
3483 cgroup_kn_unlock(of->kn);
3484
3485 return nbytes;
3486 }
3487
cgroup_max_depth_show(struct seq_file * seq,void * v)3488 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3489 {
3490 struct cgroup *cgrp = seq_css(seq)->cgroup;
3491 int depth = READ_ONCE(cgrp->max_depth);
3492
3493 if (depth == INT_MAX)
3494 seq_puts(seq, "max\n");
3495 else
3496 seq_printf(seq, "%d\n", depth);
3497
3498 return 0;
3499 }
3500
cgroup_max_depth_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3501 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3502 char *buf, size_t nbytes, loff_t off)
3503 {
3504 struct cgroup *cgrp;
3505 ssize_t ret;
3506 int depth;
3507
3508 buf = strstrip(buf);
3509 if (!strcmp(buf, "max")) {
3510 depth = INT_MAX;
3511 } else {
3512 ret = kstrtoint(buf, 0, &depth);
3513 if (ret)
3514 return ret;
3515 }
3516
3517 if (depth < 0)
3518 return -ERANGE;
3519
3520 cgrp = cgroup_kn_lock_live(of->kn, false);
3521 if (!cgrp)
3522 return -ENOENT;
3523
3524 cgrp->max_depth = depth;
3525
3526 cgroup_kn_unlock(of->kn);
3527
3528 return nbytes;
3529 }
3530
cgroup_events_show(struct seq_file * seq,void * v)3531 static int cgroup_events_show(struct seq_file *seq, void *v)
3532 {
3533 struct cgroup *cgrp = seq_css(seq)->cgroup;
3534
3535 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3536 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3537
3538 return 0;
3539 }
3540
cgroup_stat_show(struct seq_file * seq,void * v)3541 static int cgroup_stat_show(struct seq_file *seq, void *v)
3542 {
3543 struct cgroup *cgroup = seq_css(seq)->cgroup;
3544
3545 seq_printf(seq, "nr_descendants %d\n",
3546 cgroup->nr_descendants);
3547 seq_printf(seq, "nr_dying_descendants %d\n",
3548 cgroup->nr_dying_descendants);
3549
3550 return 0;
3551 }
3552
cgroup_extra_stat_show(struct seq_file * seq,struct cgroup * cgrp,int ssid)3553 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3554 struct cgroup *cgrp, int ssid)
3555 {
3556 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3557 struct cgroup_subsys_state *css;
3558 int ret;
3559
3560 if (!ss->css_extra_stat_show)
3561 return 0;
3562
3563 css = cgroup_tryget_css(cgrp, ss);
3564 if (!css)
3565 return 0;
3566
3567 ret = ss->css_extra_stat_show(seq, css);
3568 css_put(css);
3569 return ret;
3570 }
3571
cpu_stat_show(struct seq_file * seq,void * v)3572 static int cpu_stat_show(struct seq_file *seq, void *v)
3573 {
3574 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3575 int ret = 0;
3576
3577 cgroup_base_stat_cputime_show(seq);
3578 #ifdef CONFIG_CGROUP_SCHED
3579 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3580 #endif
3581 return ret;
3582 }
3583
3584 #ifdef CONFIG_PSI
cgroup_io_pressure_show(struct seq_file * seq,void * v)3585 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3586 {
3587 struct cgroup *cgrp = seq_css(seq)->cgroup;
3588 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3589
3590 return psi_show(seq, psi, PSI_IO);
3591 }
cgroup_memory_pressure_show(struct seq_file * seq,void * v)3592 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3593 {
3594 struct cgroup *cgrp = seq_css(seq)->cgroup;
3595 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3596
3597 return psi_show(seq, psi, PSI_MEM);
3598 }
cgroup_cpu_pressure_show(struct seq_file * seq,void * v)3599 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3600 {
3601 struct cgroup *cgrp = seq_css(seq)->cgroup;
3602 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3603
3604 return psi_show(seq, psi, PSI_CPU);
3605 }
3606
cgroup_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,enum psi_res res)3607 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3608 size_t nbytes, enum psi_res res)
3609 {
3610 struct psi_trigger *new;
3611 struct cgroup *cgrp;
3612 struct psi_group *psi;
3613
3614 cgrp = cgroup_kn_lock_live(of->kn, false);
3615 if (!cgrp)
3616 return -ENODEV;
3617
3618 cgroup_get(cgrp);
3619 cgroup_kn_unlock(of->kn);
3620
3621 psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3622 new = psi_trigger_create(psi, buf, nbytes, res);
3623 if (IS_ERR(new)) {
3624 cgroup_put(cgrp);
3625 return PTR_ERR(new);
3626 }
3627
3628 psi_trigger_replace(&of->priv, new);
3629
3630 cgroup_put(cgrp);
3631
3632 return nbytes;
3633 }
3634
cgroup_io_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3635 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3636 char *buf, size_t nbytes,
3637 loff_t off)
3638 {
3639 return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3640 }
3641
cgroup_memory_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3642 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3643 char *buf, size_t nbytes,
3644 loff_t off)
3645 {
3646 return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3647 }
3648
cgroup_cpu_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3649 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3650 char *buf, size_t nbytes,
3651 loff_t off)
3652 {
3653 return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3654 }
3655
cgroup_pressure_poll(struct kernfs_open_file * of,poll_table * pt)3656 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3657 poll_table *pt)
3658 {
3659 return psi_trigger_poll(&of->priv, of->file, pt);
3660 }
3661
cgroup_pressure_release(struct kernfs_open_file * of)3662 static void cgroup_pressure_release(struct kernfs_open_file *of)
3663 {
3664 psi_trigger_replace(&of->priv, NULL);
3665 }
3666
cgroup_psi_enabled(void)3667 bool cgroup_psi_enabled(void)
3668 {
3669 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
3670 }
3671
3672 #else /* CONFIG_PSI */
cgroup_psi_enabled(void)3673 bool cgroup_psi_enabled(void)
3674 {
3675 return false;
3676 }
3677
3678 #endif /* CONFIG_PSI */
3679
cgroup_freeze_show(struct seq_file * seq,void * v)3680 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3681 {
3682 struct cgroup *cgrp = seq_css(seq)->cgroup;
3683
3684 seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3685
3686 return 0;
3687 }
3688
cgroup_freeze_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3689 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3690 char *buf, size_t nbytes, loff_t off)
3691 {
3692 struct cgroup *cgrp;
3693 ssize_t ret;
3694 int freeze;
3695
3696 ret = kstrtoint(strstrip(buf), 0, &freeze);
3697 if (ret)
3698 return ret;
3699
3700 if (freeze < 0 || freeze > 1)
3701 return -ERANGE;
3702
3703 cgrp = cgroup_kn_lock_live(of->kn, false);
3704 if (!cgrp)
3705 return -ENOENT;
3706
3707 cgroup_freeze(cgrp, freeze);
3708
3709 cgroup_kn_unlock(of->kn);
3710
3711 return nbytes;
3712 }
3713
__cgroup_kill(struct cgroup * cgrp)3714 static void __cgroup_kill(struct cgroup *cgrp)
3715 {
3716 struct css_task_iter it;
3717 struct task_struct *task;
3718
3719 lockdep_assert_held(&cgroup_mutex);
3720
3721 spin_lock_irq(&css_set_lock);
3722 set_bit(CGRP_KILL, &cgrp->flags);
3723 spin_unlock_irq(&css_set_lock);
3724
3725 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
3726 while ((task = css_task_iter_next(&it))) {
3727 /* Ignore kernel threads here. */
3728 if (task->flags & PF_KTHREAD)
3729 continue;
3730
3731 /* Skip tasks that are already dying. */
3732 if (__fatal_signal_pending(task))
3733 continue;
3734
3735 send_sig(SIGKILL, task, 0);
3736 }
3737 css_task_iter_end(&it);
3738
3739 spin_lock_irq(&css_set_lock);
3740 clear_bit(CGRP_KILL, &cgrp->flags);
3741 spin_unlock_irq(&css_set_lock);
3742 }
3743
cgroup_kill(struct cgroup * cgrp)3744 static void cgroup_kill(struct cgroup *cgrp)
3745 {
3746 struct cgroup_subsys_state *css;
3747 struct cgroup *dsct;
3748
3749 lockdep_assert_held(&cgroup_mutex);
3750
3751 cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
3752 __cgroup_kill(dsct);
3753 }
3754
cgroup_kill_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3755 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
3756 size_t nbytes, loff_t off)
3757 {
3758 ssize_t ret = 0;
3759 int kill;
3760 struct cgroup *cgrp;
3761
3762 ret = kstrtoint(strstrip(buf), 0, &kill);
3763 if (ret)
3764 return ret;
3765
3766 if (kill != 1)
3767 return -ERANGE;
3768
3769 cgrp = cgroup_kn_lock_live(of->kn, false);
3770 if (!cgrp)
3771 return -ENOENT;
3772
3773 /*
3774 * Killing is a process directed operation, i.e. the whole thread-group
3775 * is taken down so act like we do for cgroup.procs and only make this
3776 * writable in non-threaded cgroups.
3777 */
3778 if (cgroup_is_threaded(cgrp))
3779 ret = -EOPNOTSUPP;
3780 else
3781 cgroup_kill(cgrp);
3782
3783 cgroup_kn_unlock(of->kn);
3784
3785 return ret ?: nbytes;
3786 }
3787
cgroup_file_open(struct kernfs_open_file * of)3788 static int cgroup_file_open(struct kernfs_open_file *of)
3789 {
3790 struct cftype *cft = of_cft(of);
3791
3792 if (cft->open)
3793 return cft->open(of);
3794 return 0;
3795 }
3796
cgroup_file_release(struct kernfs_open_file * of)3797 static void cgroup_file_release(struct kernfs_open_file *of)
3798 {
3799 struct cftype *cft = of_cft(of);
3800
3801 if (cft->release)
3802 cft->release(of);
3803 }
3804
cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3805 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3806 size_t nbytes, loff_t off)
3807 {
3808 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3809 struct cgroup *cgrp = of->kn->parent->priv;
3810 struct cftype *cft = of_cft(of);
3811 struct cgroup_subsys_state *css;
3812 int ret;
3813
3814 if (!nbytes)
3815 return 0;
3816
3817 /*
3818 * If namespaces are delegation boundaries, disallow writes to
3819 * files in an non-init namespace root from inside the namespace
3820 * except for the files explicitly marked delegatable -
3821 * cgroup.procs and cgroup.subtree_control.
3822 */
3823 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3824 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3825 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3826 return -EPERM;
3827
3828 if (cft->write)
3829 return cft->write(of, buf, nbytes, off);
3830
3831 /*
3832 * kernfs guarantees that a file isn't deleted with operations in
3833 * flight, which means that the matching css is and stays alive and
3834 * doesn't need to be pinned. The RCU locking is not necessary
3835 * either. It's just for the convenience of using cgroup_css().
3836 */
3837 rcu_read_lock();
3838 css = cgroup_css(cgrp, cft->ss);
3839 rcu_read_unlock();
3840
3841 if (cft->write_u64) {
3842 unsigned long long v;
3843 ret = kstrtoull(buf, 0, &v);
3844 if (!ret)
3845 ret = cft->write_u64(css, cft, v);
3846 } else if (cft->write_s64) {
3847 long long v;
3848 ret = kstrtoll(buf, 0, &v);
3849 if (!ret)
3850 ret = cft->write_s64(css, cft, v);
3851 } else {
3852 ret = -EINVAL;
3853 }
3854
3855 return ret ?: nbytes;
3856 }
3857
cgroup_file_poll(struct kernfs_open_file * of,poll_table * pt)3858 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3859 {
3860 struct cftype *cft = of_cft(of);
3861
3862 if (cft->poll)
3863 return cft->poll(of, pt);
3864
3865 return kernfs_generic_poll(of, pt);
3866 }
3867
cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)3868 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3869 {
3870 return seq_cft(seq)->seq_start(seq, ppos);
3871 }
3872
cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)3873 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3874 {
3875 return seq_cft(seq)->seq_next(seq, v, ppos);
3876 }
3877
cgroup_seqfile_stop(struct seq_file * seq,void * v)3878 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3879 {
3880 if (seq_cft(seq)->seq_stop)
3881 seq_cft(seq)->seq_stop(seq, v);
3882 }
3883
cgroup_seqfile_show(struct seq_file * m,void * arg)3884 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3885 {
3886 struct cftype *cft = seq_cft(m);
3887 struct cgroup_subsys_state *css = seq_css(m);
3888
3889 if (cft->seq_show)
3890 return cft->seq_show(m, arg);
3891
3892 if (cft->read_u64)
3893 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3894 else if (cft->read_s64)
3895 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3896 else
3897 return -EINVAL;
3898 return 0;
3899 }
3900
3901 static struct kernfs_ops cgroup_kf_single_ops = {
3902 .atomic_write_len = PAGE_SIZE,
3903 .open = cgroup_file_open,
3904 .release = cgroup_file_release,
3905 .write = cgroup_file_write,
3906 .poll = cgroup_file_poll,
3907 .seq_show = cgroup_seqfile_show,
3908 };
3909
3910 static struct kernfs_ops cgroup_kf_ops = {
3911 .atomic_write_len = PAGE_SIZE,
3912 .open = cgroup_file_open,
3913 .release = cgroup_file_release,
3914 .write = cgroup_file_write,
3915 .poll = cgroup_file_poll,
3916 .seq_start = cgroup_seqfile_start,
3917 .seq_next = cgroup_seqfile_next,
3918 .seq_stop = cgroup_seqfile_stop,
3919 .seq_show = cgroup_seqfile_show,
3920 };
3921
3922 /* set uid and gid of cgroup dirs and files to that of the creator */
cgroup_kn_set_ugid(struct kernfs_node * kn)3923 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3924 {
3925 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3926 .ia_uid = current_fsuid(),
3927 .ia_gid = current_fsgid(), };
3928
3929 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3930 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3931 return 0;
3932
3933 return kernfs_setattr(kn, &iattr);
3934 }
3935
cgroup_file_notify_timer(struct timer_list * timer)3936 static void cgroup_file_notify_timer(struct timer_list *timer)
3937 {
3938 cgroup_file_notify(container_of(timer, struct cgroup_file,
3939 notify_timer));
3940 }
3941
cgroup_add_file(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype * cft)3942 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3943 struct cftype *cft)
3944 {
3945 char name[CGROUP_FILE_NAME_MAX];
3946 struct kernfs_node *kn;
3947 struct lock_class_key *key = NULL;
3948 int ret;
3949
3950 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3951 key = &cft->lockdep_key;
3952 #endif
3953 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3954 cgroup_file_mode(cft),
3955 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3956 0, cft->kf_ops, cft,
3957 NULL, key);
3958 if (IS_ERR(kn))
3959 return PTR_ERR(kn);
3960
3961 ret = cgroup_kn_set_ugid(kn);
3962 if (ret) {
3963 kernfs_remove(kn);
3964 return ret;
3965 }
3966
3967 if (cft->file_offset) {
3968 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3969
3970 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3971
3972 spin_lock_irq(&cgroup_file_kn_lock);
3973 cfile->kn = kn;
3974 spin_unlock_irq(&cgroup_file_kn_lock);
3975 }
3976
3977 return 0;
3978 }
3979
3980 /**
3981 * cgroup_addrm_files - add or remove files to a cgroup directory
3982 * @css: the target css
3983 * @cgrp: the target cgroup (usually css->cgroup)
3984 * @cfts: array of cftypes to be added
3985 * @is_add: whether to add or remove
3986 *
3987 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3988 * For removals, this function never fails.
3989 */
cgroup_addrm_files(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype cfts[],bool is_add)3990 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3991 struct cgroup *cgrp, struct cftype cfts[],
3992 bool is_add)
3993 {
3994 struct cftype *cft, *cft_end = NULL;
3995 int ret = 0;
3996
3997 lockdep_assert_held(&cgroup_mutex);
3998
3999 restart:
4000 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4001 /* does cft->flags tell us to skip this file on @cgrp? */
4002 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
4003 continue;
4004 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4005 continue;
4006 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4007 continue;
4008 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4009 continue;
4010 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4011 continue;
4012 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4013 continue;
4014 if (is_add) {
4015 ret = cgroup_add_file(css, cgrp, cft);
4016 if (ret) {
4017 pr_warn("%s: failed to add %s, err=%d\n",
4018 __func__, cft->name, ret);
4019 cft_end = cft;
4020 is_add = false;
4021 goto restart;
4022 }
4023 } else {
4024 cgroup_rm_file(cgrp, cft);
4025 }
4026 }
4027 return ret;
4028 }
4029
cgroup_apply_cftypes(struct cftype * cfts,bool is_add)4030 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4031 {
4032 struct cgroup_subsys *ss = cfts[0].ss;
4033 struct cgroup *root = &ss->root->cgrp;
4034 struct cgroup_subsys_state *css;
4035 int ret = 0;
4036
4037 lockdep_assert_held(&cgroup_mutex);
4038
4039 /* add/rm files for all cgroups created before */
4040 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4041 struct cgroup *cgrp = css->cgroup;
4042
4043 if (!(css->flags & CSS_VISIBLE))
4044 continue;
4045
4046 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4047 if (ret)
4048 break;
4049 }
4050
4051 if (is_add && !ret)
4052 kernfs_activate(root->kn);
4053 return ret;
4054 }
4055
cgroup_exit_cftypes(struct cftype * cfts)4056 static void cgroup_exit_cftypes(struct cftype *cfts)
4057 {
4058 struct cftype *cft;
4059
4060 for (cft = cfts; cft->name[0] != '\0'; cft++) {
4061 /* free copy for custom atomic_write_len, see init_cftypes() */
4062 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4063 kfree(cft->kf_ops);
4064 cft->kf_ops = NULL;
4065 cft->ss = NULL;
4066
4067 /* revert flags set by cgroup core while adding @cfts */
4068 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
4069 }
4070 }
4071
cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4072 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4073 {
4074 struct cftype *cft;
4075
4076 for (cft = cfts; cft->name[0] != '\0'; cft++) {
4077 struct kernfs_ops *kf_ops;
4078
4079 WARN_ON(cft->ss || cft->kf_ops);
4080
4081 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
4082 continue;
4083
4084 if (cft->seq_start)
4085 kf_ops = &cgroup_kf_ops;
4086 else
4087 kf_ops = &cgroup_kf_single_ops;
4088
4089 /*
4090 * Ugh... if @cft wants a custom max_write_len, we need to
4091 * make a copy of kf_ops to set its atomic_write_len.
4092 */
4093 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4094 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4095 if (!kf_ops) {
4096 cgroup_exit_cftypes(cfts);
4097 return -ENOMEM;
4098 }
4099 kf_ops->atomic_write_len = cft->max_write_len;
4100 }
4101
4102 cft->kf_ops = kf_ops;
4103 cft->ss = ss;
4104 }
4105
4106 return 0;
4107 }
4108
cgroup_rm_cftypes_locked(struct cftype * cfts)4109 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
4110 {
4111 lockdep_assert_held(&cgroup_mutex);
4112
4113 if (!cfts || !cfts[0].ss)
4114 return -ENOENT;
4115
4116 list_del(&cfts->node);
4117 cgroup_apply_cftypes(cfts, false);
4118 cgroup_exit_cftypes(cfts);
4119 return 0;
4120 }
4121
4122 /**
4123 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4124 * @cfts: zero-length name terminated array of cftypes
4125 *
4126 * Unregister @cfts. Files described by @cfts are removed from all
4127 * existing cgroups and all future cgroups won't have them either. This
4128 * function can be called anytime whether @cfts' subsys is attached or not.
4129 *
4130 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4131 * registered.
4132 */
cgroup_rm_cftypes(struct cftype * cfts)4133 int cgroup_rm_cftypes(struct cftype *cfts)
4134 {
4135 int ret;
4136
4137 mutex_lock(&cgroup_mutex);
4138 ret = cgroup_rm_cftypes_locked(cfts);
4139 mutex_unlock(&cgroup_mutex);
4140 return ret;
4141 }
4142
4143 /**
4144 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4145 * @ss: target cgroup subsystem
4146 * @cfts: zero-length name terminated array of cftypes
4147 *
4148 * Register @cfts to @ss. Files described by @cfts are created for all
4149 * existing cgroups to which @ss is attached and all future cgroups will
4150 * have them too. This function can be called anytime whether @ss is
4151 * attached or not.
4152 *
4153 * Returns 0 on successful registration, -errno on failure. Note that this
4154 * function currently returns 0 as long as @cfts registration is successful
4155 * even if some file creation attempts on existing cgroups fail.
4156 */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4157 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4158 {
4159 int ret;
4160
4161 if (!cgroup_ssid_enabled(ss->id))
4162 return 0;
4163
4164 if (!cfts || cfts[0].name[0] == '\0')
4165 return 0;
4166
4167 ret = cgroup_init_cftypes(ss, cfts);
4168 if (ret)
4169 return ret;
4170
4171 mutex_lock(&cgroup_mutex);
4172
4173 list_add_tail(&cfts->node, &ss->cfts);
4174 ret = cgroup_apply_cftypes(cfts, true);
4175 if (ret)
4176 cgroup_rm_cftypes_locked(cfts);
4177
4178 mutex_unlock(&cgroup_mutex);
4179 return ret;
4180 }
4181
4182 /**
4183 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4184 * @ss: target cgroup subsystem
4185 * @cfts: zero-length name terminated array of cftypes
4186 *
4187 * Similar to cgroup_add_cftypes() but the added files are only used for
4188 * the default hierarchy.
4189 */
cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4190 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4191 {
4192 struct cftype *cft;
4193
4194 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4195 cft->flags |= __CFTYPE_ONLY_ON_DFL;
4196 return cgroup_add_cftypes(ss, cfts);
4197 }
4198
4199 /**
4200 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4201 * @ss: target cgroup subsystem
4202 * @cfts: zero-length name terminated array of cftypes
4203 *
4204 * Similar to cgroup_add_cftypes() but the added files are only used for
4205 * the legacy hierarchies.
4206 */
cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4207 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4208 {
4209 struct cftype *cft;
4210
4211 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4212 cft->flags |= __CFTYPE_NOT_ON_DFL;
4213 return cgroup_add_cftypes(ss, cfts);
4214 }
4215
4216 /**
4217 * cgroup_file_notify - generate a file modified event for a cgroup_file
4218 * @cfile: target cgroup_file
4219 *
4220 * @cfile must have been obtained by setting cftype->file_offset.
4221 */
cgroup_file_notify(struct cgroup_file * cfile)4222 void cgroup_file_notify(struct cgroup_file *cfile)
4223 {
4224 unsigned long flags;
4225
4226 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4227 if (cfile->kn) {
4228 unsigned long last = cfile->notified_at;
4229 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4230
4231 if (time_in_range(jiffies, last, next)) {
4232 timer_reduce(&cfile->notify_timer, next);
4233 } else {
4234 kernfs_notify(cfile->kn);
4235 cfile->notified_at = jiffies;
4236 }
4237 }
4238 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4239 }
4240
4241 /**
4242 * css_next_child - find the next child of a given css
4243 * @pos: the current position (%NULL to initiate traversal)
4244 * @parent: css whose children to walk
4245 *
4246 * This function returns the next child of @parent and should be called
4247 * under either cgroup_mutex or RCU read lock. The only requirement is
4248 * that @parent and @pos are accessible. The next sibling is guaranteed to
4249 * be returned regardless of their states.
4250 *
4251 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4252 * css which finished ->css_online() is guaranteed to be visible in the
4253 * future iterations and will stay visible until the last reference is put.
4254 * A css which hasn't finished ->css_online() or already finished
4255 * ->css_offline() may show up during traversal. It's each subsystem's
4256 * responsibility to synchronize against on/offlining.
4257 */
css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)4258 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4259 struct cgroup_subsys_state *parent)
4260 {
4261 struct cgroup_subsys_state *next;
4262
4263 cgroup_assert_mutex_or_rcu_locked();
4264
4265 /*
4266 * @pos could already have been unlinked from the sibling list.
4267 * Once a cgroup is removed, its ->sibling.next is no longer
4268 * updated when its next sibling changes. CSS_RELEASED is set when
4269 * @pos is taken off list, at which time its next pointer is valid,
4270 * and, as releases are serialized, the one pointed to by the next
4271 * pointer is guaranteed to not have started release yet. This
4272 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4273 * critical section, the one pointed to by its next pointer is
4274 * guaranteed to not have finished its RCU grace period even if we
4275 * have dropped rcu_read_lock() in-between iterations.
4276 *
4277 * If @pos has CSS_RELEASED set, its next pointer can't be
4278 * dereferenced; however, as each css is given a monotonically
4279 * increasing unique serial number and always appended to the
4280 * sibling list, the next one can be found by walking the parent's
4281 * children until the first css with higher serial number than
4282 * @pos's. While this path can be slower, it happens iff iteration
4283 * races against release and the race window is very small.
4284 */
4285 if (!pos) {
4286 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4287 } else if (likely(!(pos->flags & CSS_RELEASED))) {
4288 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4289 } else {
4290 list_for_each_entry_rcu(next, &parent->children, sibling,
4291 lockdep_is_held(&cgroup_mutex))
4292 if (next->serial_nr > pos->serial_nr)
4293 break;
4294 }
4295
4296 /*
4297 * @next, if not pointing to the head, can be dereferenced and is
4298 * the next sibling.
4299 */
4300 if (&next->sibling != &parent->children)
4301 return next;
4302 return NULL;
4303 }
4304
4305 /**
4306 * css_next_descendant_pre - find the next descendant for pre-order walk
4307 * @pos: the current position (%NULL to initiate traversal)
4308 * @root: css whose descendants to walk
4309 *
4310 * To be used by css_for_each_descendant_pre(). Find the next descendant
4311 * to visit for pre-order traversal of @root's descendants. @root is
4312 * included in the iteration and the first node to be visited.
4313 *
4314 * While this function requires cgroup_mutex or RCU read locking, it
4315 * doesn't require the whole traversal to be contained in a single critical
4316 * section. This function will return the correct next descendant as long
4317 * as both @pos and @root are accessible and @pos is a descendant of @root.
4318 *
4319 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4320 * css which finished ->css_online() is guaranteed to be visible in the
4321 * future iterations and will stay visible until the last reference is put.
4322 * A css which hasn't finished ->css_online() or already finished
4323 * ->css_offline() may show up during traversal. It's each subsystem's
4324 * responsibility to synchronize against on/offlining.
4325 */
4326 struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4327 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4328 struct cgroup_subsys_state *root)
4329 {
4330 struct cgroup_subsys_state *next;
4331
4332 cgroup_assert_mutex_or_rcu_locked();
4333
4334 /* if first iteration, visit @root */
4335 if (!pos)
4336 return root;
4337
4338 /* visit the first child if exists */
4339 next = css_next_child(NULL, pos);
4340 if (next)
4341 return next;
4342
4343 /* no child, visit my or the closest ancestor's next sibling */
4344 while (pos != root) {
4345 next = css_next_child(pos, pos->parent);
4346 if (next)
4347 return next;
4348 pos = pos->parent;
4349 }
4350
4351 return NULL;
4352 }
4353 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4354
4355 /**
4356 * css_rightmost_descendant - return the rightmost descendant of a css
4357 * @pos: css of interest
4358 *
4359 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4360 * is returned. This can be used during pre-order traversal to skip
4361 * subtree of @pos.
4362 *
4363 * While this function requires cgroup_mutex or RCU read locking, it
4364 * doesn't require the whole traversal to be contained in a single critical
4365 * section. This function will return the correct rightmost descendant as
4366 * long as @pos is accessible.
4367 */
4368 struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state * pos)4369 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4370 {
4371 struct cgroup_subsys_state *last, *tmp;
4372
4373 cgroup_assert_mutex_or_rcu_locked();
4374
4375 do {
4376 last = pos;
4377 /* ->prev isn't RCU safe, walk ->next till the end */
4378 pos = NULL;
4379 css_for_each_child(tmp, last)
4380 pos = tmp;
4381 } while (pos);
4382
4383 return last;
4384 }
4385
4386 static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state * pos)4387 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4388 {
4389 struct cgroup_subsys_state *last;
4390
4391 do {
4392 last = pos;
4393 pos = css_next_child(NULL, pos);
4394 } while (pos);
4395
4396 return last;
4397 }
4398
4399 /**
4400 * css_next_descendant_post - find the next descendant for post-order walk
4401 * @pos: the current position (%NULL to initiate traversal)
4402 * @root: css whose descendants to walk
4403 *
4404 * To be used by css_for_each_descendant_post(). Find the next descendant
4405 * to visit for post-order traversal of @root's descendants. @root is
4406 * included in the iteration and the last node to be visited.
4407 *
4408 * While this function requires cgroup_mutex or RCU read locking, it
4409 * doesn't require the whole traversal to be contained in a single critical
4410 * section. This function will return the correct next descendant as long
4411 * as both @pos and @cgroup are accessible and @pos is a descendant of
4412 * @cgroup.
4413 *
4414 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4415 * css which finished ->css_online() is guaranteed to be visible in the
4416 * future iterations and will stay visible until the last reference is put.
4417 * A css which hasn't finished ->css_online() or already finished
4418 * ->css_offline() may show up during traversal. It's each subsystem's
4419 * responsibility to synchronize against on/offlining.
4420 */
4421 struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4422 css_next_descendant_post(struct cgroup_subsys_state *pos,
4423 struct cgroup_subsys_state *root)
4424 {
4425 struct cgroup_subsys_state *next;
4426
4427 cgroup_assert_mutex_or_rcu_locked();
4428
4429 /* if first iteration, visit leftmost descendant which may be @root */
4430 if (!pos)
4431 return css_leftmost_descendant(root);
4432
4433 /* if we visited @root, we're done */
4434 if (pos == root)
4435 return NULL;
4436
4437 /* if there's an unvisited sibling, visit its leftmost descendant */
4438 next = css_next_child(pos, pos->parent);
4439 if (next)
4440 return css_leftmost_descendant(next);
4441
4442 /* no sibling left, visit parent */
4443 return pos->parent;
4444 }
4445
4446 /**
4447 * css_has_online_children - does a css have online children
4448 * @css: the target css
4449 *
4450 * Returns %true if @css has any online children; otherwise, %false. This
4451 * function can be called from any context but the caller is responsible
4452 * for synchronizing against on/offlining as necessary.
4453 */
css_has_online_children(struct cgroup_subsys_state * css)4454 bool css_has_online_children(struct cgroup_subsys_state *css)
4455 {
4456 struct cgroup_subsys_state *child;
4457 bool ret = false;
4458
4459 rcu_read_lock();
4460 css_for_each_child(child, css) {
4461 if (child->flags & CSS_ONLINE) {
4462 ret = true;
4463 break;
4464 }
4465 }
4466 rcu_read_unlock();
4467 return ret;
4468 }
4469
css_task_iter_next_css_set(struct css_task_iter * it)4470 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4471 {
4472 struct list_head *l;
4473 struct cgrp_cset_link *link;
4474 struct css_set *cset;
4475
4476 lockdep_assert_held(&css_set_lock);
4477
4478 /* find the next threaded cset */
4479 if (it->tcset_pos) {
4480 l = it->tcset_pos->next;
4481
4482 if (l != it->tcset_head) {
4483 it->tcset_pos = l;
4484 return container_of(l, struct css_set,
4485 threaded_csets_node);
4486 }
4487
4488 it->tcset_pos = NULL;
4489 }
4490
4491 /* find the next cset */
4492 l = it->cset_pos;
4493 l = l->next;
4494 if (l == it->cset_head) {
4495 it->cset_pos = NULL;
4496 return NULL;
4497 }
4498
4499 if (it->ss) {
4500 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4501 } else {
4502 link = list_entry(l, struct cgrp_cset_link, cset_link);
4503 cset = link->cset;
4504 }
4505
4506 it->cset_pos = l;
4507
4508 /* initialize threaded css_set walking */
4509 if (it->flags & CSS_TASK_ITER_THREADED) {
4510 if (it->cur_dcset)
4511 put_css_set_locked(it->cur_dcset);
4512 it->cur_dcset = cset;
4513 get_css_set(cset);
4514
4515 it->tcset_head = &cset->threaded_csets;
4516 it->tcset_pos = &cset->threaded_csets;
4517 }
4518
4519 return cset;
4520 }
4521
4522 /**
4523 * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4524 * @it: the iterator to advance
4525 *
4526 * Advance @it to the next css_set to walk.
4527 */
css_task_iter_advance_css_set(struct css_task_iter * it)4528 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4529 {
4530 struct css_set *cset;
4531
4532 lockdep_assert_held(&css_set_lock);
4533
4534 /* Advance to the next non-empty css_set and find first non-empty tasks list*/
4535 while ((cset = css_task_iter_next_css_set(it))) {
4536 if (!list_empty(&cset->tasks)) {
4537 it->cur_tasks_head = &cset->tasks;
4538 break;
4539 } else if (!list_empty(&cset->mg_tasks)) {
4540 it->cur_tasks_head = &cset->mg_tasks;
4541 break;
4542 } else if (!list_empty(&cset->dying_tasks)) {
4543 it->cur_tasks_head = &cset->dying_tasks;
4544 break;
4545 }
4546 }
4547 if (!cset) {
4548 it->task_pos = NULL;
4549 return;
4550 }
4551 it->task_pos = it->cur_tasks_head->next;
4552
4553 /*
4554 * We don't keep css_sets locked across iteration steps and thus
4555 * need to take steps to ensure that iteration can be resumed after
4556 * the lock is re-acquired. Iteration is performed at two levels -
4557 * css_sets and tasks in them.
4558 *
4559 * Once created, a css_set never leaves its cgroup lists, so a
4560 * pinned css_set is guaranteed to stay put and we can resume
4561 * iteration afterwards.
4562 *
4563 * Tasks may leave @cset across iteration steps. This is resolved
4564 * by registering each iterator with the css_set currently being
4565 * walked and making css_set_move_task() advance iterators whose
4566 * next task is leaving.
4567 */
4568 if (it->cur_cset) {
4569 list_del(&it->iters_node);
4570 put_css_set_locked(it->cur_cset);
4571 }
4572 get_css_set(cset);
4573 it->cur_cset = cset;
4574 list_add(&it->iters_node, &cset->task_iters);
4575 }
4576
css_task_iter_skip(struct css_task_iter * it,struct task_struct * task)4577 static void css_task_iter_skip(struct css_task_iter *it,
4578 struct task_struct *task)
4579 {
4580 lockdep_assert_held(&css_set_lock);
4581
4582 if (it->task_pos == &task->cg_list) {
4583 it->task_pos = it->task_pos->next;
4584 it->flags |= CSS_TASK_ITER_SKIPPED;
4585 }
4586 }
4587
css_task_iter_advance(struct css_task_iter * it)4588 static void css_task_iter_advance(struct css_task_iter *it)
4589 {
4590 struct task_struct *task;
4591
4592 lockdep_assert_held(&css_set_lock);
4593 repeat:
4594 if (it->task_pos) {
4595 /*
4596 * Advance iterator to find next entry. We go through cset
4597 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4598 * the next cset.
4599 */
4600 if (it->flags & CSS_TASK_ITER_SKIPPED)
4601 it->flags &= ~CSS_TASK_ITER_SKIPPED;
4602 else
4603 it->task_pos = it->task_pos->next;
4604
4605 if (it->task_pos == &it->cur_cset->tasks) {
4606 it->cur_tasks_head = &it->cur_cset->mg_tasks;
4607 it->task_pos = it->cur_tasks_head->next;
4608 }
4609 if (it->task_pos == &it->cur_cset->mg_tasks) {
4610 it->cur_tasks_head = &it->cur_cset->dying_tasks;
4611 it->task_pos = it->cur_tasks_head->next;
4612 }
4613 if (it->task_pos == &it->cur_cset->dying_tasks)
4614 css_task_iter_advance_css_set(it);
4615 } else {
4616 /* called from start, proceed to the first cset */
4617 css_task_iter_advance_css_set(it);
4618 }
4619
4620 if (!it->task_pos)
4621 return;
4622
4623 task = list_entry(it->task_pos, struct task_struct, cg_list);
4624
4625 if (it->flags & CSS_TASK_ITER_PROCS) {
4626 /* if PROCS, skip over tasks which aren't group leaders */
4627 if (!thread_group_leader(task))
4628 goto repeat;
4629
4630 /* and dying leaders w/o live member threads */
4631 if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4632 !atomic_read(&task->signal->live))
4633 goto repeat;
4634 } else {
4635 /* skip all dying ones */
4636 if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4637 goto repeat;
4638 }
4639 }
4640
4641 /**
4642 * css_task_iter_start - initiate task iteration
4643 * @css: the css to walk tasks of
4644 * @flags: CSS_TASK_ITER_* flags
4645 * @it: the task iterator to use
4646 *
4647 * Initiate iteration through the tasks of @css. The caller can call
4648 * css_task_iter_next() to walk through the tasks until the function
4649 * returns NULL. On completion of iteration, css_task_iter_end() must be
4650 * called.
4651 */
css_task_iter_start(struct cgroup_subsys_state * css,unsigned int flags,struct css_task_iter * it)4652 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4653 struct css_task_iter *it)
4654 {
4655 memset(it, 0, sizeof(*it));
4656
4657 spin_lock_irq(&css_set_lock);
4658
4659 it->ss = css->ss;
4660 it->flags = flags;
4661
4662 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
4663 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4664 else
4665 it->cset_pos = &css->cgroup->cset_links;
4666
4667 it->cset_head = it->cset_pos;
4668
4669 css_task_iter_advance(it);
4670
4671 spin_unlock_irq(&css_set_lock);
4672 }
4673
4674 /**
4675 * css_task_iter_next - return the next task for the iterator
4676 * @it: the task iterator being iterated
4677 *
4678 * The "next" function for task iteration. @it should have been
4679 * initialized via css_task_iter_start(). Returns NULL when the iteration
4680 * reaches the end.
4681 */
css_task_iter_next(struct css_task_iter * it)4682 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4683 {
4684 if (it->cur_task) {
4685 put_task_struct(it->cur_task);
4686 it->cur_task = NULL;
4687 }
4688
4689 spin_lock_irq(&css_set_lock);
4690
4691 /* @it may be half-advanced by skips, finish advancing */
4692 if (it->flags & CSS_TASK_ITER_SKIPPED)
4693 css_task_iter_advance(it);
4694
4695 if (it->task_pos) {
4696 it->cur_task = list_entry(it->task_pos, struct task_struct,
4697 cg_list);
4698 get_task_struct(it->cur_task);
4699 css_task_iter_advance(it);
4700 }
4701
4702 spin_unlock_irq(&css_set_lock);
4703
4704 return it->cur_task;
4705 }
4706
4707 /**
4708 * css_task_iter_end - finish task iteration
4709 * @it: the task iterator to finish
4710 *
4711 * Finish task iteration started by css_task_iter_start().
4712 */
css_task_iter_end(struct css_task_iter * it)4713 void css_task_iter_end(struct css_task_iter *it)
4714 {
4715 if (it->cur_cset) {
4716 spin_lock_irq(&css_set_lock);
4717 list_del(&it->iters_node);
4718 put_css_set_locked(it->cur_cset);
4719 spin_unlock_irq(&css_set_lock);
4720 }
4721
4722 if (it->cur_dcset)
4723 put_css_set(it->cur_dcset);
4724
4725 if (it->cur_task)
4726 put_task_struct(it->cur_task);
4727 }
4728
cgroup_procs_release(struct kernfs_open_file * of)4729 static void cgroup_procs_release(struct kernfs_open_file *of)
4730 {
4731 if (of->priv) {
4732 css_task_iter_end(of->priv);
4733 kfree(of->priv);
4734 }
4735 }
4736
cgroup_procs_next(struct seq_file * s,void * v,loff_t * pos)4737 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4738 {
4739 struct kernfs_open_file *of = s->private;
4740 struct css_task_iter *it = of->priv;
4741
4742 if (pos)
4743 (*pos)++;
4744
4745 return css_task_iter_next(it);
4746 }
4747
__cgroup_procs_start(struct seq_file * s,loff_t * pos,unsigned int iter_flags)4748 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4749 unsigned int iter_flags)
4750 {
4751 struct kernfs_open_file *of = s->private;
4752 struct cgroup *cgrp = seq_css(s)->cgroup;
4753 struct css_task_iter *it = of->priv;
4754
4755 /*
4756 * When a seq_file is seeked, it's always traversed sequentially
4757 * from position 0, so we can simply keep iterating on !0 *pos.
4758 */
4759 if (!it) {
4760 if (WARN_ON_ONCE((*pos)))
4761 return ERR_PTR(-EINVAL);
4762
4763 it = kzalloc(sizeof(*it), GFP_KERNEL);
4764 if (!it)
4765 return ERR_PTR(-ENOMEM);
4766 of->priv = it;
4767 css_task_iter_start(&cgrp->self, iter_flags, it);
4768 } else if (!(*pos)) {
4769 css_task_iter_end(it);
4770 css_task_iter_start(&cgrp->self, iter_flags, it);
4771 } else
4772 return it->cur_task;
4773
4774 return cgroup_procs_next(s, NULL, NULL);
4775 }
4776
cgroup_procs_start(struct seq_file * s,loff_t * pos)4777 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4778 {
4779 struct cgroup *cgrp = seq_css(s)->cgroup;
4780
4781 /*
4782 * All processes of a threaded subtree belong to the domain cgroup
4783 * of the subtree. Only threads can be distributed across the
4784 * subtree. Reject reads on cgroup.procs in the subtree proper.
4785 * They're always empty anyway.
4786 */
4787 if (cgroup_is_threaded(cgrp))
4788 return ERR_PTR(-EOPNOTSUPP);
4789
4790 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4791 CSS_TASK_ITER_THREADED);
4792 }
4793
cgroup_procs_show(struct seq_file * s,void * v)4794 static int cgroup_procs_show(struct seq_file *s, void *v)
4795 {
4796 seq_printf(s, "%d\n", task_pid_vnr(v));
4797 return 0;
4798 }
4799
cgroup_may_write(const struct cgroup * cgrp,struct super_block * sb)4800 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4801 {
4802 int ret;
4803 struct inode *inode;
4804
4805 lockdep_assert_held(&cgroup_mutex);
4806
4807 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4808 if (!inode)
4809 return -ENOMEM;
4810
4811 ret = inode_permission(&init_user_ns, inode, MAY_WRITE);
4812 iput(inode);
4813 return ret;
4814 }
4815
cgroup_procs_write_permission(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb)4816 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4817 struct cgroup *dst_cgrp,
4818 struct super_block *sb)
4819 {
4820 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4821 struct cgroup *com_cgrp = src_cgrp;
4822 int ret;
4823
4824 lockdep_assert_held(&cgroup_mutex);
4825
4826 /* find the common ancestor */
4827 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4828 com_cgrp = cgroup_parent(com_cgrp);
4829
4830 /* %current should be authorized to migrate to the common ancestor */
4831 ret = cgroup_may_write(com_cgrp, sb);
4832 if (ret)
4833 return ret;
4834
4835 /*
4836 * If namespaces are delegation boundaries, %current must be able
4837 * to see both source and destination cgroups from its namespace.
4838 */
4839 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4840 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4841 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4842 return -ENOENT;
4843
4844 return 0;
4845 }
4846
cgroup_attach_permissions(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,bool threadgroup)4847 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
4848 struct cgroup *dst_cgrp,
4849 struct super_block *sb, bool threadgroup)
4850 {
4851 int ret = 0;
4852
4853 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb);
4854 if (ret)
4855 return ret;
4856
4857 ret = cgroup_migrate_vet_dst(dst_cgrp);
4858 if (ret)
4859 return ret;
4860
4861 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
4862 ret = -EOPNOTSUPP;
4863
4864 return ret;
4865 }
4866
__cgroup_procs_write(struct kernfs_open_file * of,char * buf,bool threadgroup)4867 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
4868 bool threadgroup)
4869 {
4870 struct cgroup *src_cgrp, *dst_cgrp;
4871 struct task_struct *task;
4872 ssize_t ret;
4873 bool locked;
4874
4875 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4876 if (!dst_cgrp)
4877 return -ENODEV;
4878
4879 task = cgroup_procs_write_start(buf, threadgroup, &locked);
4880 ret = PTR_ERR_OR_ZERO(task);
4881 if (ret)
4882 goto out_unlock;
4883
4884 /* find the source cgroup */
4885 spin_lock_irq(&css_set_lock);
4886 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4887 spin_unlock_irq(&css_set_lock);
4888
4889 /* process and thread migrations follow same delegation rule */
4890 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4891 of->file->f_path.dentry->d_sb, threadgroup);
4892 if (ret)
4893 goto out_finish;
4894
4895 ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
4896
4897 out_finish:
4898 cgroup_procs_write_finish(task, locked);
4899 out_unlock:
4900 cgroup_kn_unlock(of->kn);
4901
4902 return ret;
4903 }
4904
cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4905 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4906 char *buf, size_t nbytes, loff_t off)
4907 {
4908 return __cgroup_procs_write(of, buf, true) ?: nbytes;
4909 }
4910
cgroup_threads_start(struct seq_file * s,loff_t * pos)4911 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4912 {
4913 return __cgroup_procs_start(s, pos, 0);
4914 }
4915
cgroup_threads_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4916 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4917 char *buf, size_t nbytes, loff_t off)
4918 {
4919 return __cgroup_procs_write(of, buf, false) ?: nbytes;
4920 }
4921
4922 /* cgroup core interface files for the default hierarchy */
4923 static struct cftype cgroup_base_files[] = {
4924 {
4925 .name = "cgroup.type",
4926 .flags = CFTYPE_NOT_ON_ROOT,
4927 .seq_show = cgroup_type_show,
4928 .write = cgroup_type_write,
4929 },
4930 {
4931 .name = "cgroup.procs",
4932 .flags = CFTYPE_NS_DELEGATABLE,
4933 .file_offset = offsetof(struct cgroup, procs_file),
4934 .release = cgroup_procs_release,
4935 .seq_start = cgroup_procs_start,
4936 .seq_next = cgroup_procs_next,
4937 .seq_show = cgroup_procs_show,
4938 .write = cgroup_procs_write,
4939 },
4940 {
4941 .name = "cgroup.threads",
4942 .flags = CFTYPE_NS_DELEGATABLE,
4943 .release = cgroup_procs_release,
4944 .seq_start = cgroup_threads_start,
4945 .seq_next = cgroup_procs_next,
4946 .seq_show = cgroup_procs_show,
4947 .write = cgroup_threads_write,
4948 },
4949 {
4950 .name = "cgroup.controllers",
4951 .seq_show = cgroup_controllers_show,
4952 },
4953 {
4954 .name = "cgroup.subtree_control",
4955 .flags = CFTYPE_NS_DELEGATABLE,
4956 .seq_show = cgroup_subtree_control_show,
4957 .write = cgroup_subtree_control_write,
4958 },
4959 {
4960 .name = "cgroup.events",
4961 .flags = CFTYPE_NOT_ON_ROOT,
4962 .file_offset = offsetof(struct cgroup, events_file),
4963 .seq_show = cgroup_events_show,
4964 },
4965 {
4966 .name = "cgroup.max.descendants",
4967 .seq_show = cgroup_max_descendants_show,
4968 .write = cgroup_max_descendants_write,
4969 },
4970 {
4971 .name = "cgroup.max.depth",
4972 .seq_show = cgroup_max_depth_show,
4973 .write = cgroup_max_depth_write,
4974 },
4975 {
4976 .name = "cgroup.stat",
4977 .seq_show = cgroup_stat_show,
4978 },
4979 {
4980 .name = "cgroup.freeze",
4981 .flags = CFTYPE_NOT_ON_ROOT,
4982 .seq_show = cgroup_freeze_show,
4983 .write = cgroup_freeze_write,
4984 },
4985 {
4986 .name = "cgroup.kill",
4987 .flags = CFTYPE_NOT_ON_ROOT,
4988 .write = cgroup_kill_write,
4989 },
4990 {
4991 .name = "cpu.stat",
4992 .seq_show = cpu_stat_show,
4993 },
4994 #ifdef CONFIG_PSI
4995 {
4996 .name = "io.pressure",
4997 .flags = CFTYPE_PRESSURE,
4998 .seq_show = cgroup_io_pressure_show,
4999 .write = cgroup_io_pressure_write,
5000 .poll = cgroup_pressure_poll,
5001 .release = cgroup_pressure_release,
5002 },
5003 {
5004 .name = "memory.pressure",
5005 .flags = CFTYPE_PRESSURE,
5006 .seq_show = cgroup_memory_pressure_show,
5007 .write = cgroup_memory_pressure_write,
5008 .poll = cgroup_pressure_poll,
5009 .release = cgroup_pressure_release,
5010 },
5011 {
5012 .name = "cpu.pressure",
5013 .flags = CFTYPE_PRESSURE,
5014 .seq_show = cgroup_cpu_pressure_show,
5015 .write = cgroup_cpu_pressure_write,
5016 .poll = cgroup_pressure_poll,
5017 .release = cgroup_pressure_release,
5018 },
5019 #endif /* CONFIG_PSI */
5020 { } /* terminate */
5021 };
5022
5023 /*
5024 * css destruction is four-stage process.
5025 *
5026 * 1. Destruction starts. Killing of the percpu_ref is initiated.
5027 * Implemented in kill_css().
5028 *
5029 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5030 * and thus css_tryget_online() is guaranteed to fail, the css can be
5031 * offlined by invoking offline_css(). After offlining, the base ref is
5032 * put. Implemented in css_killed_work_fn().
5033 *
5034 * 3. When the percpu_ref reaches zero, the only possible remaining
5035 * accessors are inside RCU read sections. css_release() schedules the
5036 * RCU callback.
5037 *
5038 * 4. After the grace period, the css can be freed. Implemented in
5039 * css_free_work_fn().
5040 *
5041 * It is actually hairier because both step 2 and 4 require process context
5042 * and thus involve punting to css->destroy_work adding two additional
5043 * steps to the already complex sequence.
5044 */
css_free_rwork_fn(struct work_struct * work)5045 static void css_free_rwork_fn(struct work_struct *work)
5046 {
5047 struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5048 struct cgroup_subsys_state, destroy_rwork);
5049 struct cgroup_subsys *ss = css->ss;
5050 struct cgroup *cgrp = css->cgroup;
5051
5052 percpu_ref_exit(&css->refcnt);
5053
5054 if (ss) {
5055 /* css free path */
5056 struct cgroup_subsys_state *parent = css->parent;
5057 int id = css->id;
5058
5059 ss->css_free(css);
5060 cgroup_idr_remove(&ss->css_idr, id);
5061 cgroup_put(cgrp);
5062
5063 if (parent)
5064 css_put(parent);
5065 } else {
5066 /* cgroup free path */
5067 atomic_dec(&cgrp->root->nr_cgrps);
5068 cgroup1_pidlist_destroy_all(cgrp);
5069 cancel_work_sync(&cgrp->release_agent_work);
5070
5071 if (cgroup_parent(cgrp)) {
5072 /*
5073 * We get a ref to the parent, and put the ref when
5074 * this cgroup is being freed, so it's guaranteed
5075 * that the parent won't be destroyed before its
5076 * children.
5077 */
5078 cgroup_put(cgroup_parent(cgrp));
5079 kernfs_put(cgrp->kn);
5080 psi_cgroup_free(cgrp);
5081 cgroup_rstat_exit(cgrp);
5082 kfree(cgrp);
5083 } else {
5084 /*
5085 * This is root cgroup's refcnt reaching zero,
5086 * which indicates that the root should be
5087 * released.
5088 */
5089 cgroup_destroy_root(cgrp->root);
5090 }
5091 }
5092 }
5093
css_release_work_fn(struct work_struct * work)5094 static void css_release_work_fn(struct work_struct *work)
5095 {
5096 struct cgroup_subsys_state *css =
5097 container_of(work, struct cgroup_subsys_state, destroy_work);
5098 struct cgroup_subsys *ss = css->ss;
5099 struct cgroup *cgrp = css->cgroup;
5100
5101 mutex_lock(&cgroup_mutex);
5102
5103 css->flags |= CSS_RELEASED;
5104 list_del_rcu(&css->sibling);
5105
5106 if (ss) {
5107 /* css release path */
5108 if (!list_empty(&css->rstat_css_node)) {
5109 cgroup_rstat_flush(cgrp);
5110 list_del_rcu(&css->rstat_css_node);
5111 }
5112
5113 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5114 if (ss->css_released)
5115 ss->css_released(css);
5116 } else {
5117 struct cgroup *tcgrp;
5118
5119 /* cgroup release path */
5120 TRACE_CGROUP_PATH(release, cgrp);
5121
5122 cgroup_rstat_flush(cgrp);
5123
5124 spin_lock_irq(&css_set_lock);
5125 for (tcgrp = cgroup_parent(cgrp); tcgrp;
5126 tcgrp = cgroup_parent(tcgrp))
5127 tcgrp->nr_dying_descendants--;
5128 spin_unlock_irq(&css_set_lock);
5129
5130 /*
5131 * There are two control paths which try to determine
5132 * cgroup from dentry without going through kernfs -
5133 * cgroupstats_build() and css_tryget_online_from_dir().
5134 * Those are supported by RCU protecting clearing of
5135 * cgrp->kn->priv backpointer.
5136 */
5137 if (cgrp->kn)
5138 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5139 NULL);
5140 }
5141
5142 mutex_unlock(&cgroup_mutex);
5143
5144 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5145 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5146 }
5147
css_release(struct percpu_ref * ref)5148 static void css_release(struct percpu_ref *ref)
5149 {
5150 struct cgroup_subsys_state *css =
5151 container_of(ref, struct cgroup_subsys_state, refcnt);
5152
5153 INIT_WORK(&css->destroy_work, css_release_work_fn);
5154 queue_work(cgroup_destroy_wq, &css->destroy_work);
5155 }
5156
init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)5157 static void init_and_link_css(struct cgroup_subsys_state *css,
5158 struct cgroup_subsys *ss, struct cgroup *cgrp)
5159 {
5160 lockdep_assert_held(&cgroup_mutex);
5161
5162 cgroup_get_live(cgrp);
5163
5164 memset(css, 0, sizeof(*css));
5165 css->cgroup = cgrp;
5166 css->ss = ss;
5167 css->id = -1;
5168 INIT_LIST_HEAD(&css->sibling);
5169 INIT_LIST_HEAD(&css->children);
5170 INIT_LIST_HEAD(&css->rstat_css_node);
5171 css->serial_nr = css_serial_nr_next++;
5172 atomic_set(&css->online_cnt, 0);
5173
5174 if (cgroup_parent(cgrp)) {
5175 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5176 css_get(css->parent);
5177 }
5178
5179 if (ss->css_rstat_flush)
5180 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5181
5182 BUG_ON(cgroup_css(cgrp, ss));
5183 }
5184
5185 /* invoke ->css_online() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys_state * css)5186 static int online_css(struct cgroup_subsys_state *css)
5187 {
5188 struct cgroup_subsys *ss = css->ss;
5189 int ret = 0;
5190
5191 lockdep_assert_held(&cgroup_mutex);
5192
5193 if (ss->css_online)
5194 ret = ss->css_online(css);
5195 if (!ret) {
5196 css->flags |= CSS_ONLINE;
5197 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5198
5199 atomic_inc(&css->online_cnt);
5200 if (css->parent)
5201 atomic_inc(&css->parent->online_cnt);
5202 }
5203 return ret;
5204 }
5205
5206 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
offline_css(struct cgroup_subsys_state * css)5207 static void offline_css(struct cgroup_subsys_state *css)
5208 {
5209 struct cgroup_subsys *ss = css->ss;
5210
5211 lockdep_assert_held(&cgroup_mutex);
5212
5213 if (!(css->flags & CSS_ONLINE))
5214 return;
5215
5216 if (ss->css_offline)
5217 ss->css_offline(css);
5218
5219 css->flags &= ~CSS_ONLINE;
5220 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5221
5222 wake_up_all(&css->cgroup->offline_waitq);
5223 }
5224
5225 /**
5226 * css_create - create a cgroup_subsys_state
5227 * @cgrp: the cgroup new css will be associated with
5228 * @ss: the subsys of new css
5229 *
5230 * Create a new css associated with @cgrp - @ss pair. On success, the new
5231 * css is online and installed in @cgrp. This function doesn't create the
5232 * interface files. Returns 0 on success, -errno on failure.
5233 */
css_create(struct cgroup * cgrp,struct cgroup_subsys * ss)5234 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5235 struct cgroup_subsys *ss)
5236 {
5237 struct cgroup *parent = cgroup_parent(cgrp);
5238 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5239 struct cgroup_subsys_state *css;
5240 int err;
5241
5242 lockdep_assert_held(&cgroup_mutex);
5243
5244 css = ss->css_alloc(parent_css);
5245 if (!css)
5246 css = ERR_PTR(-ENOMEM);
5247 if (IS_ERR(css))
5248 return css;
5249
5250 init_and_link_css(css, ss, cgrp);
5251
5252 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5253 if (err)
5254 goto err_free_css;
5255
5256 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5257 if (err < 0)
5258 goto err_free_css;
5259 css->id = err;
5260
5261 /* @css is ready to be brought online now, make it visible */
5262 list_add_tail_rcu(&css->sibling, &parent_css->children);
5263 cgroup_idr_replace(&ss->css_idr, css, css->id);
5264
5265 err = online_css(css);
5266 if (err)
5267 goto err_list_del;
5268
5269 return css;
5270
5271 err_list_del:
5272 list_del_rcu(&css->sibling);
5273 err_free_css:
5274 list_del_rcu(&css->rstat_css_node);
5275 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5276 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5277 return ERR_PTR(err);
5278 }
5279
5280 /*
5281 * The returned cgroup is fully initialized including its control mask, but
5282 * it isn't associated with its kernfs_node and doesn't have the control
5283 * mask applied.
5284 */
cgroup_create(struct cgroup * parent,const char * name,umode_t mode)5285 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5286 umode_t mode)
5287 {
5288 struct cgroup_root *root = parent->root;
5289 struct cgroup *cgrp, *tcgrp;
5290 struct kernfs_node *kn;
5291 int level = parent->level + 1;
5292 int ret;
5293
5294 /* allocate the cgroup and its ID, 0 is reserved for the root */
5295 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5296 GFP_KERNEL);
5297 if (!cgrp)
5298 return ERR_PTR(-ENOMEM);
5299
5300 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5301 if (ret)
5302 goto out_free_cgrp;
5303
5304 ret = cgroup_rstat_init(cgrp);
5305 if (ret)
5306 goto out_cancel_ref;
5307
5308 /* create the directory */
5309 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5310 if (IS_ERR(kn)) {
5311 ret = PTR_ERR(kn);
5312 goto out_stat_exit;
5313 }
5314 cgrp->kn = kn;
5315
5316 init_cgroup_housekeeping(cgrp);
5317
5318 cgrp->self.parent = &parent->self;
5319 cgrp->root = root;
5320 cgrp->level = level;
5321
5322 ret = psi_cgroup_alloc(cgrp);
5323 if (ret)
5324 goto out_kernfs_remove;
5325
5326 ret = cgroup_bpf_inherit(cgrp);
5327 if (ret)
5328 goto out_psi_free;
5329
5330 /*
5331 * New cgroup inherits effective freeze counter, and
5332 * if the parent has to be frozen, the child has too.
5333 */
5334 cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5335 if (cgrp->freezer.e_freeze) {
5336 /*
5337 * Set the CGRP_FREEZE flag, so when a process will be
5338 * attached to the child cgroup, it will become frozen.
5339 * At this point the new cgroup is unpopulated, so we can
5340 * consider it frozen immediately.
5341 */
5342 set_bit(CGRP_FREEZE, &cgrp->flags);
5343 set_bit(CGRP_FROZEN, &cgrp->flags);
5344 }
5345
5346 spin_lock_irq(&css_set_lock);
5347 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5348 cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5349
5350 if (tcgrp != cgrp) {
5351 tcgrp->nr_descendants++;
5352
5353 /*
5354 * If the new cgroup is frozen, all ancestor cgroups
5355 * get a new frozen descendant, but their state can't
5356 * change because of this.
5357 */
5358 if (cgrp->freezer.e_freeze)
5359 tcgrp->freezer.nr_frozen_descendants++;
5360 }
5361 }
5362 spin_unlock_irq(&css_set_lock);
5363
5364 if (notify_on_release(parent))
5365 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5366
5367 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5368 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5369
5370 cgrp->self.serial_nr = css_serial_nr_next++;
5371
5372 /* allocation complete, commit to creation */
5373 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5374 atomic_inc(&root->nr_cgrps);
5375 cgroup_get_live(parent);
5376
5377 /*
5378 * On the default hierarchy, a child doesn't automatically inherit
5379 * subtree_control from the parent. Each is configured manually.
5380 */
5381 if (!cgroup_on_dfl(cgrp))
5382 cgrp->subtree_control = cgroup_control(cgrp);
5383
5384 cgroup_propagate_control(cgrp);
5385
5386 return cgrp;
5387
5388 out_psi_free:
5389 psi_cgroup_free(cgrp);
5390 out_kernfs_remove:
5391 kernfs_remove(cgrp->kn);
5392 out_stat_exit:
5393 cgroup_rstat_exit(cgrp);
5394 out_cancel_ref:
5395 percpu_ref_exit(&cgrp->self.refcnt);
5396 out_free_cgrp:
5397 kfree(cgrp);
5398 return ERR_PTR(ret);
5399 }
5400
cgroup_check_hierarchy_limits(struct cgroup * parent)5401 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5402 {
5403 struct cgroup *cgroup;
5404 int ret = false;
5405 int level = 1;
5406
5407 lockdep_assert_held(&cgroup_mutex);
5408
5409 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5410 if (cgroup->nr_descendants >= cgroup->max_descendants)
5411 goto fail;
5412
5413 if (level > cgroup->max_depth)
5414 goto fail;
5415
5416 level++;
5417 }
5418
5419 ret = true;
5420 fail:
5421 return ret;
5422 }
5423
cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)5424 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5425 {
5426 struct cgroup *parent, *cgrp;
5427 int ret;
5428
5429 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5430 if (strchr(name, '\n'))
5431 return -EINVAL;
5432
5433 parent = cgroup_kn_lock_live(parent_kn, false);
5434 if (!parent)
5435 return -ENODEV;
5436
5437 if (!cgroup_check_hierarchy_limits(parent)) {
5438 ret = -EAGAIN;
5439 goto out_unlock;
5440 }
5441
5442 cgrp = cgroup_create(parent, name, mode);
5443 if (IS_ERR(cgrp)) {
5444 ret = PTR_ERR(cgrp);
5445 goto out_unlock;
5446 }
5447
5448 /*
5449 * This extra ref will be put in cgroup_free_fn() and guarantees
5450 * that @cgrp->kn is always accessible.
5451 */
5452 kernfs_get(cgrp->kn);
5453
5454 ret = cgroup_kn_set_ugid(cgrp->kn);
5455 if (ret)
5456 goto out_destroy;
5457
5458 ret = css_populate_dir(&cgrp->self);
5459 if (ret)
5460 goto out_destroy;
5461
5462 ret = cgroup_apply_control_enable(cgrp);
5463 if (ret)
5464 goto out_destroy;
5465
5466 TRACE_CGROUP_PATH(mkdir, cgrp);
5467
5468 /* let's create and online css's */
5469 kernfs_activate(cgrp->kn);
5470
5471 ret = 0;
5472 goto out_unlock;
5473
5474 out_destroy:
5475 cgroup_destroy_locked(cgrp);
5476 out_unlock:
5477 cgroup_kn_unlock(parent_kn);
5478 return ret;
5479 }
5480
5481 /*
5482 * This is called when the refcnt of a css is confirmed to be killed.
5483 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5484 * initiate destruction and put the css ref from kill_css().
5485 */
css_killed_work_fn(struct work_struct * work)5486 static void css_killed_work_fn(struct work_struct *work)
5487 {
5488 struct cgroup_subsys_state *css =
5489 container_of(work, struct cgroup_subsys_state, destroy_work);
5490
5491 mutex_lock(&cgroup_mutex);
5492
5493 do {
5494 offline_css(css);
5495 css_put(css);
5496 /* @css can't go away while we're holding cgroup_mutex */
5497 css = css->parent;
5498 } while (css && atomic_dec_and_test(&css->online_cnt));
5499
5500 mutex_unlock(&cgroup_mutex);
5501 }
5502
5503 /* css kill confirmation processing requires process context, bounce */
css_killed_ref_fn(struct percpu_ref * ref)5504 static void css_killed_ref_fn(struct percpu_ref *ref)
5505 {
5506 struct cgroup_subsys_state *css =
5507 container_of(ref, struct cgroup_subsys_state, refcnt);
5508
5509 if (atomic_dec_and_test(&css->online_cnt)) {
5510 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5511 queue_work(cgroup_destroy_wq, &css->destroy_work);
5512 }
5513 }
5514
5515 /**
5516 * kill_css - destroy a css
5517 * @css: css to destroy
5518 *
5519 * This function initiates destruction of @css by removing cgroup interface
5520 * files and putting its base reference. ->css_offline() will be invoked
5521 * asynchronously once css_tryget_online() is guaranteed to fail and when
5522 * the reference count reaches zero, @css will be released.
5523 */
kill_css(struct cgroup_subsys_state * css)5524 static void kill_css(struct cgroup_subsys_state *css)
5525 {
5526 lockdep_assert_held(&cgroup_mutex);
5527
5528 if (css->flags & CSS_DYING)
5529 return;
5530
5531 css->flags |= CSS_DYING;
5532
5533 /*
5534 * This must happen before css is disassociated with its cgroup.
5535 * See seq_css() for details.
5536 */
5537 css_clear_dir(css);
5538
5539 /*
5540 * Killing would put the base ref, but we need to keep it alive
5541 * until after ->css_offline().
5542 */
5543 css_get(css);
5544
5545 /*
5546 * cgroup core guarantees that, by the time ->css_offline() is
5547 * invoked, no new css reference will be given out via
5548 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5549 * proceed to offlining css's because percpu_ref_kill() doesn't
5550 * guarantee that the ref is seen as killed on all CPUs on return.
5551 *
5552 * Use percpu_ref_kill_and_confirm() to get notifications as each
5553 * css is confirmed to be seen as killed on all CPUs.
5554 */
5555 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5556 }
5557
5558 /**
5559 * cgroup_destroy_locked - the first stage of cgroup destruction
5560 * @cgrp: cgroup to be destroyed
5561 *
5562 * css's make use of percpu refcnts whose killing latency shouldn't be
5563 * exposed to userland and are RCU protected. Also, cgroup core needs to
5564 * guarantee that css_tryget_online() won't succeed by the time
5565 * ->css_offline() is invoked. To satisfy all the requirements,
5566 * destruction is implemented in the following two steps.
5567 *
5568 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5569 * userland visible parts and start killing the percpu refcnts of
5570 * css's. Set up so that the next stage will be kicked off once all
5571 * the percpu refcnts are confirmed to be killed.
5572 *
5573 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5574 * rest of destruction. Once all cgroup references are gone, the
5575 * cgroup is RCU-freed.
5576 *
5577 * This function implements s1. After this step, @cgrp is gone as far as
5578 * the userland is concerned and a new cgroup with the same name may be
5579 * created. As cgroup doesn't care about the names internally, this
5580 * doesn't cause any problem.
5581 */
cgroup_destroy_locked(struct cgroup * cgrp)5582 static int cgroup_destroy_locked(struct cgroup *cgrp)
5583 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5584 {
5585 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5586 struct cgroup_subsys_state *css;
5587 struct cgrp_cset_link *link;
5588 int ssid;
5589
5590 lockdep_assert_held(&cgroup_mutex);
5591
5592 /*
5593 * Only migration can raise populated from zero and we're already
5594 * holding cgroup_mutex.
5595 */
5596 if (cgroup_is_populated(cgrp))
5597 return -EBUSY;
5598
5599 /*
5600 * Make sure there's no live children. We can't test emptiness of
5601 * ->self.children as dead children linger on it while being
5602 * drained; otherwise, "rmdir parent/child parent" may fail.
5603 */
5604 if (css_has_online_children(&cgrp->self))
5605 return -EBUSY;
5606
5607 /*
5608 * Mark @cgrp and the associated csets dead. The former prevents
5609 * further task migration and child creation by disabling
5610 * cgroup_lock_live_group(). The latter makes the csets ignored by
5611 * the migration path.
5612 */
5613 cgrp->self.flags &= ~CSS_ONLINE;
5614
5615 spin_lock_irq(&css_set_lock);
5616 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5617 link->cset->dead = true;
5618 spin_unlock_irq(&css_set_lock);
5619
5620 /* initiate massacre of all css's */
5621 for_each_css(css, ssid, cgrp)
5622 kill_css(css);
5623
5624 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5625 css_clear_dir(&cgrp->self);
5626 kernfs_remove(cgrp->kn);
5627
5628 if (parent && cgroup_is_threaded(cgrp))
5629 parent->nr_threaded_children--;
5630
5631 spin_lock_irq(&css_set_lock);
5632 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5633 tcgrp->nr_descendants--;
5634 tcgrp->nr_dying_descendants++;
5635 /*
5636 * If the dying cgroup is frozen, decrease frozen descendants
5637 * counters of ancestor cgroups.
5638 */
5639 if (test_bit(CGRP_FROZEN, &cgrp->flags))
5640 tcgrp->freezer.nr_frozen_descendants--;
5641 }
5642 spin_unlock_irq(&css_set_lock);
5643
5644 cgroup1_check_for_release(parent);
5645
5646 cgroup_bpf_offline(cgrp);
5647
5648 /* put the base reference */
5649 percpu_ref_kill(&cgrp->self.refcnt);
5650
5651 return 0;
5652 };
5653
cgroup_rmdir(struct kernfs_node * kn)5654 int cgroup_rmdir(struct kernfs_node *kn)
5655 {
5656 struct cgroup *cgrp;
5657 int ret = 0;
5658
5659 cgrp = cgroup_kn_lock_live(kn, false);
5660 if (!cgrp)
5661 return 0;
5662
5663 ret = cgroup_destroy_locked(cgrp);
5664 if (!ret)
5665 TRACE_CGROUP_PATH(rmdir, cgrp);
5666
5667 cgroup_kn_unlock(kn);
5668 return ret;
5669 }
5670
5671 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5672 .show_options = cgroup_show_options,
5673 .mkdir = cgroup_mkdir,
5674 .rmdir = cgroup_rmdir,
5675 .show_path = cgroup_show_path,
5676 };
5677
cgroup_init_subsys(struct cgroup_subsys * ss,bool early)5678 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5679 {
5680 struct cgroup_subsys_state *css;
5681
5682 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5683
5684 mutex_lock(&cgroup_mutex);
5685
5686 idr_init(&ss->css_idr);
5687 INIT_LIST_HEAD(&ss->cfts);
5688
5689 /* Create the root cgroup state for this subsystem */
5690 ss->root = &cgrp_dfl_root;
5691 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5692 /* We don't handle early failures gracefully */
5693 BUG_ON(IS_ERR(css));
5694 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5695
5696 /*
5697 * Root csses are never destroyed and we can't initialize
5698 * percpu_ref during early init. Disable refcnting.
5699 */
5700 css->flags |= CSS_NO_REF;
5701
5702 if (early) {
5703 /* allocation can't be done safely during early init */
5704 css->id = 1;
5705 } else {
5706 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5707 BUG_ON(css->id < 0);
5708 }
5709
5710 /* Update the init_css_set to contain a subsys
5711 * pointer to this state - since the subsystem is
5712 * newly registered, all tasks and hence the
5713 * init_css_set is in the subsystem's root cgroup. */
5714 init_css_set.subsys[ss->id] = css;
5715
5716 have_fork_callback |= (bool)ss->fork << ss->id;
5717 have_exit_callback |= (bool)ss->exit << ss->id;
5718 have_release_callback |= (bool)ss->release << ss->id;
5719 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5720
5721 /* At system boot, before all subsystems have been
5722 * registered, no tasks have been forked, so we don't
5723 * need to invoke fork callbacks here. */
5724 BUG_ON(!list_empty(&init_task.tasks));
5725
5726 BUG_ON(online_css(css));
5727
5728 mutex_unlock(&cgroup_mutex);
5729 }
5730
5731 /**
5732 * cgroup_init_early - cgroup initialization at system boot
5733 *
5734 * Initialize cgroups at system boot, and initialize any
5735 * subsystems that request early init.
5736 */
cgroup_init_early(void)5737 int __init cgroup_init_early(void)
5738 {
5739 static struct cgroup_fs_context __initdata ctx;
5740 struct cgroup_subsys *ss;
5741 int i;
5742
5743 ctx.root = &cgrp_dfl_root;
5744 init_cgroup_root(&ctx);
5745 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5746
5747 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5748
5749 for_each_subsys(ss, i) {
5750 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5751 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5752 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5753 ss->id, ss->name);
5754 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5755 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5756
5757 ss->id = i;
5758 ss->name = cgroup_subsys_name[i];
5759 if (!ss->legacy_name)
5760 ss->legacy_name = cgroup_subsys_name[i];
5761
5762 if (ss->early_init)
5763 cgroup_init_subsys(ss, true);
5764 }
5765 return 0;
5766 }
5767
5768 /**
5769 * cgroup_init - cgroup initialization
5770 *
5771 * Register cgroup filesystem and /proc file, and initialize
5772 * any subsystems that didn't request early init.
5773 */
cgroup_init(void)5774 int __init cgroup_init(void)
5775 {
5776 struct cgroup_subsys *ss;
5777 int ssid;
5778
5779 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5780 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5781 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5782
5783 cgroup_rstat_boot();
5784
5785 /*
5786 * The latency of the synchronize_rcu() is too high for cgroups,
5787 * avoid it at the cost of forcing all readers into the slow path.
5788 */
5789 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5790
5791 get_user_ns(init_cgroup_ns.user_ns);
5792
5793 mutex_lock(&cgroup_mutex);
5794
5795 /*
5796 * Add init_css_set to the hash table so that dfl_root can link to
5797 * it during init.
5798 */
5799 hash_add(css_set_table, &init_css_set.hlist,
5800 css_set_hash(init_css_set.subsys));
5801
5802 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5803
5804 mutex_unlock(&cgroup_mutex);
5805
5806 for_each_subsys(ss, ssid) {
5807 if (ss->early_init) {
5808 struct cgroup_subsys_state *css =
5809 init_css_set.subsys[ss->id];
5810
5811 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5812 GFP_KERNEL);
5813 BUG_ON(css->id < 0);
5814 } else {
5815 cgroup_init_subsys(ss, false);
5816 }
5817
5818 list_add_tail(&init_css_set.e_cset_node[ssid],
5819 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5820
5821 /*
5822 * Setting dfl_root subsys_mask needs to consider the
5823 * disabled flag and cftype registration needs kmalloc,
5824 * both of which aren't available during early_init.
5825 */
5826 if (!cgroup_ssid_enabled(ssid))
5827 continue;
5828
5829 if (cgroup1_ssid_disabled(ssid))
5830 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5831 ss->name);
5832
5833 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5834
5835 /* implicit controllers must be threaded too */
5836 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5837
5838 if (ss->implicit_on_dfl)
5839 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5840 else if (!ss->dfl_cftypes)
5841 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5842
5843 if (ss->threaded)
5844 cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5845
5846 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5847 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5848 } else {
5849 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5850 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5851 }
5852
5853 if (ss->bind)
5854 ss->bind(init_css_set.subsys[ssid]);
5855
5856 mutex_lock(&cgroup_mutex);
5857 css_populate_dir(init_css_set.subsys[ssid]);
5858 mutex_unlock(&cgroup_mutex);
5859 }
5860
5861 /* init_css_set.subsys[] has been updated, re-hash */
5862 hash_del(&init_css_set.hlist);
5863 hash_add(css_set_table, &init_css_set.hlist,
5864 css_set_hash(init_css_set.subsys));
5865
5866 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5867 WARN_ON(register_filesystem(&cgroup_fs_type));
5868 WARN_ON(register_filesystem(&cgroup2_fs_type));
5869 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5870 #ifdef CONFIG_CPUSETS
5871 WARN_ON(register_filesystem(&cpuset_fs_type));
5872 #endif
5873
5874 return 0;
5875 }
5876
cgroup_wq_init(void)5877 static int __init cgroup_wq_init(void)
5878 {
5879 /*
5880 * There isn't much point in executing destruction path in
5881 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5882 * Use 1 for @max_active.
5883 *
5884 * We would prefer to do this in cgroup_init() above, but that
5885 * is called before init_workqueues(): so leave this until after.
5886 */
5887 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5888 BUG_ON(!cgroup_destroy_wq);
5889 return 0;
5890 }
5891 core_initcall(cgroup_wq_init);
5892
cgroup_path_from_kernfs_id(u64 id,char * buf,size_t buflen)5893 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
5894 {
5895 struct kernfs_node *kn;
5896
5897 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5898 if (!kn)
5899 return;
5900 kernfs_path(kn, buf, buflen);
5901 kernfs_put(kn);
5902 }
5903
5904 /*
5905 * cgroup_get_from_id : get the cgroup associated with cgroup id
5906 * @id: cgroup id
5907 * On success return the cgrp, on failure return NULL
5908 */
cgroup_get_from_id(u64 id)5909 struct cgroup *cgroup_get_from_id(u64 id)
5910 {
5911 struct kernfs_node *kn;
5912 struct cgroup *cgrp = NULL;
5913
5914 mutex_lock(&cgroup_mutex);
5915 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5916 if (!kn)
5917 goto out_unlock;
5918
5919 cgrp = kn->priv;
5920 if (cgroup_is_dead(cgrp) || !cgroup_tryget(cgrp))
5921 cgrp = NULL;
5922 kernfs_put(kn);
5923 out_unlock:
5924 mutex_unlock(&cgroup_mutex);
5925 return cgrp;
5926 }
5927 EXPORT_SYMBOL_GPL(cgroup_get_from_id);
5928
5929 /*
5930 * proc_cgroup_show()
5931 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5932 * - Used for /proc/<pid>/cgroup.
5933 */
proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)5934 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5935 struct pid *pid, struct task_struct *tsk)
5936 {
5937 char *buf;
5938 int retval;
5939 struct cgroup_root *root;
5940
5941 retval = -ENOMEM;
5942 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5943 if (!buf)
5944 goto out;
5945
5946 mutex_lock(&cgroup_mutex);
5947 spin_lock_irq(&css_set_lock);
5948
5949 for_each_root(root) {
5950 struct cgroup_subsys *ss;
5951 struct cgroup *cgrp;
5952 int ssid, count = 0;
5953
5954 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5955 continue;
5956
5957 seq_printf(m, "%d:", root->hierarchy_id);
5958 if (root != &cgrp_dfl_root)
5959 for_each_subsys(ss, ssid)
5960 if (root->subsys_mask & (1 << ssid))
5961 seq_printf(m, "%s%s", count++ ? "," : "",
5962 ss->legacy_name);
5963 if (strlen(root->name))
5964 seq_printf(m, "%sname=%s", count ? "," : "",
5965 root->name);
5966 seq_putc(m, ':');
5967
5968 cgrp = task_cgroup_from_root(tsk, root);
5969
5970 /*
5971 * On traditional hierarchies, all zombie tasks show up as
5972 * belonging to the root cgroup. On the default hierarchy,
5973 * while a zombie doesn't show up in "cgroup.procs" and
5974 * thus can't be migrated, its /proc/PID/cgroup keeps
5975 * reporting the cgroup it belonged to before exiting. If
5976 * the cgroup is removed before the zombie is reaped,
5977 * " (deleted)" is appended to the cgroup path.
5978 */
5979 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5980 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5981 current->nsproxy->cgroup_ns);
5982 if (retval >= PATH_MAX)
5983 retval = -ENAMETOOLONG;
5984 if (retval < 0)
5985 goto out_unlock;
5986
5987 seq_puts(m, buf);
5988 } else {
5989 seq_puts(m, "/");
5990 }
5991
5992 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5993 seq_puts(m, " (deleted)\n");
5994 else
5995 seq_putc(m, '\n');
5996 }
5997
5998 retval = 0;
5999 out_unlock:
6000 spin_unlock_irq(&css_set_lock);
6001 mutex_unlock(&cgroup_mutex);
6002 kfree(buf);
6003 out:
6004 return retval;
6005 }
6006
6007 /**
6008 * cgroup_fork - initialize cgroup related fields during copy_process()
6009 * @child: pointer to task_struct of forking parent process.
6010 *
6011 * A task is associated with the init_css_set until cgroup_post_fork()
6012 * attaches it to the target css_set.
6013 */
cgroup_fork(struct task_struct * child)6014 void cgroup_fork(struct task_struct *child)
6015 {
6016 RCU_INIT_POINTER(child->cgroups, &init_css_set);
6017 INIT_LIST_HEAD(&child->cg_list);
6018 }
6019
cgroup_get_from_file(struct file * f)6020 static struct cgroup *cgroup_get_from_file(struct file *f)
6021 {
6022 struct cgroup_subsys_state *css;
6023 struct cgroup *cgrp;
6024
6025 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6026 if (IS_ERR(css))
6027 return ERR_CAST(css);
6028
6029 cgrp = css->cgroup;
6030 if (!cgroup_on_dfl(cgrp)) {
6031 cgroup_put(cgrp);
6032 return ERR_PTR(-EBADF);
6033 }
6034
6035 return cgrp;
6036 }
6037
6038 /**
6039 * cgroup_css_set_fork - find or create a css_set for a child process
6040 * @kargs: the arguments passed to create the child process
6041 *
6042 * This functions finds or creates a new css_set which the child
6043 * process will be attached to in cgroup_post_fork(). By default,
6044 * the child process will be given the same css_set as its parent.
6045 *
6046 * If CLONE_INTO_CGROUP is specified this function will try to find an
6047 * existing css_set which includes the requested cgroup and if not create
6048 * a new css_set that the child will be attached to later. If this function
6049 * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6050 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6051 * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6052 * to the target cgroup.
6053 */
cgroup_css_set_fork(struct kernel_clone_args * kargs)6054 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6055 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6056 {
6057 int ret;
6058 struct cgroup *dst_cgrp = NULL;
6059 struct css_set *cset;
6060 struct super_block *sb;
6061 struct file *f;
6062
6063 if (kargs->flags & CLONE_INTO_CGROUP)
6064 mutex_lock(&cgroup_mutex);
6065
6066 cgroup_threadgroup_change_begin(current);
6067
6068 spin_lock_irq(&css_set_lock);
6069 cset = task_css_set(current);
6070 get_css_set(cset);
6071 spin_unlock_irq(&css_set_lock);
6072
6073 if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6074 kargs->cset = cset;
6075 return 0;
6076 }
6077
6078 f = fget_raw(kargs->cgroup);
6079 if (!f) {
6080 ret = -EBADF;
6081 goto err;
6082 }
6083 sb = f->f_path.dentry->d_sb;
6084
6085 dst_cgrp = cgroup_get_from_file(f);
6086 if (IS_ERR(dst_cgrp)) {
6087 ret = PTR_ERR(dst_cgrp);
6088 dst_cgrp = NULL;
6089 goto err;
6090 }
6091
6092 if (cgroup_is_dead(dst_cgrp)) {
6093 ret = -ENODEV;
6094 goto err;
6095 }
6096
6097 /*
6098 * Verify that we the target cgroup is writable for us. This is
6099 * usually done by the vfs layer but since we're not going through
6100 * the vfs layer here we need to do it "manually".
6101 */
6102 ret = cgroup_may_write(dst_cgrp, sb);
6103 if (ret)
6104 goto err;
6105
6106 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6107 !(kargs->flags & CLONE_THREAD));
6108 if (ret)
6109 goto err;
6110
6111 kargs->cset = find_css_set(cset, dst_cgrp);
6112 if (!kargs->cset) {
6113 ret = -ENOMEM;
6114 goto err;
6115 }
6116
6117 put_css_set(cset);
6118 fput(f);
6119 kargs->cgrp = dst_cgrp;
6120 return ret;
6121
6122 err:
6123 cgroup_threadgroup_change_end(current);
6124 mutex_unlock(&cgroup_mutex);
6125 if (f)
6126 fput(f);
6127 if (dst_cgrp)
6128 cgroup_put(dst_cgrp);
6129 put_css_set(cset);
6130 if (kargs->cset)
6131 put_css_set(kargs->cset);
6132 return ret;
6133 }
6134
6135 /**
6136 * cgroup_css_set_put_fork - drop references we took during fork
6137 * @kargs: the arguments passed to create the child process
6138 *
6139 * Drop references to the prepared css_set and target cgroup if
6140 * CLONE_INTO_CGROUP was requested.
6141 */
cgroup_css_set_put_fork(struct kernel_clone_args * kargs)6142 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6143 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6144 {
6145 cgroup_threadgroup_change_end(current);
6146
6147 if (kargs->flags & CLONE_INTO_CGROUP) {
6148 struct cgroup *cgrp = kargs->cgrp;
6149 struct css_set *cset = kargs->cset;
6150
6151 mutex_unlock(&cgroup_mutex);
6152
6153 if (cset) {
6154 put_css_set(cset);
6155 kargs->cset = NULL;
6156 }
6157
6158 if (cgrp) {
6159 cgroup_put(cgrp);
6160 kargs->cgrp = NULL;
6161 }
6162 }
6163 }
6164
6165 /**
6166 * cgroup_can_fork - called on a new task before the process is exposed
6167 * @child: the child process
6168 *
6169 * This prepares a new css_set for the child process which the child will
6170 * be attached to in cgroup_post_fork().
6171 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6172 * callback returns an error, the fork aborts with that error code. This
6173 * allows for a cgroup subsystem to conditionally allow or deny new forks.
6174 */
cgroup_can_fork(struct task_struct * child,struct kernel_clone_args * kargs)6175 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6176 {
6177 struct cgroup_subsys *ss;
6178 int i, j, ret;
6179
6180 ret = cgroup_css_set_fork(kargs);
6181 if (ret)
6182 return ret;
6183
6184 do_each_subsys_mask(ss, i, have_canfork_callback) {
6185 ret = ss->can_fork(child, kargs->cset);
6186 if (ret)
6187 goto out_revert;
6188 } while_each_subsys_mask();
6189
6190 return 0;
6191
6192 out_revert:
6193 for_each_subsys(ss, j) {
6194 if (j >= i)
6195 break;
6196 if (ss->cancel_fork)
6197 ss->cancel_fork(child, kargs->cset);
6198 }
6199
6200 cgroup_css_set_put_fork(kargs);
6201
6202 return ret;
6203 }
6204
6205 /**
6206 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6207 * @child: the child process
6208 * @kargs: the arguments passed to create the child process
6209 *
6210 * This calls the cancel_fork() callbacks if a fork failed *after*
6211 * cgroup_can_fork() succeeded and cleans up references we took to
6212 * prepare a new css_set for the child process in cgroup_can_fork().
6213 */
cgroup_cancel_fork(struct task_struct * child,struct kernel_clone_args * kargs)6214 void cgroup_cancel_fork(struct task_struct *child,
6215 struct kernel_clone_args *kargs)
6216 {
6217 struct cgroup_subsys *ss;
6218 int i;
6219
6220 for_each_subsys(ss, i)
6221 if (ss->cancel_fork)
6222 ss->cancel_fork(child, kargs->cset);
6223
6224 cgroup_css_set_put_fork(kargs);
6225 }
6226
6227 /**
6228 * cgroup_post_fork - finalize cgroup setup for the child process
6229 * @child: the child process
6230 *
6231 * Attach the child process to its css_set calling the subsystem fork()
6232 * callbacks.
6233 */
cgroup_post_fork(struct task_struct * child,struct kernel_clone_args * kargs)6234 void cgroup_post_fork(struct task_struct *child,
6235 struct kernel_clone_args *kargs)
6236 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6237 {
6238 unsigned long cgrp_flags = 0;
6239 bool kill = false;
6240 struct cgroup_subsys *ss;
6241 struct css_set *cset;
6242 int i;
6243
6244 cset = kargs->cset;
6245 kargs->cset = NULL;
6246
6247 spin_lock_irq(&css_set_lock);
6248
6249 /* init tasks are special, only link regular threads */
6250 if (likely(child->pid)) {
6251 if (kargs->cgrp)
6252 cgrp_flags = kargs->cgrp->flags;
6253 else
6254 cgrp_flags = cset->dfl_cgrp->flags;
6255
6256 WARN_ON_ONCE(!list_empty(&child->cg_list));
6257 cset->nr_tasks++;
6258 css_set_move_task(child, NULL, cset, false);
6259 } else {
6260 put_css_set(cset);
6261 cset = NULL;
6262 }
6263
6264 if (!(child->flags & PF_KTHREAD)) {
6265 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6266 /*
6267 * If the cgroup has to be frozen, the new task has
6268 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6269 * get the task into the frozen state.
6270 */
6271 spin_lock(&child->sighand->siglock);
6272 WARN_ON_ONCE(child->frozen);
6273 child->jobctl |= JOBCTL_TRAP_FREEZE;
6274 spin_unlock(&child->sighand->siglock);
6275
6276 /*
6277 * Calling cgroup_update_frozen() isn't required here,
6278 * because it will be called anyway a bit later from
6279 * do_freezer_trap(). So we avoid cgroup's transient
6280 * switch from the frozen state and back.
6281 */
6282 }
6283
6284 /*
6285 * If the cgroup is to be killed notice it now and take the
6286 * child down right after we finished preparing it for
6287 * userspace.
6288 */
6289 kill = test_bit(CGRP_KILL, &cgrp_flags);
6290 }
6291
6292 spin_unlock_irq(&css_set_lock);
6293
6294 /*
6295 * Call ss->fork(). This must happen after @child is linked on
6296 * css_set; otherwise, @child might change state between ->fork()
6297 * and addition to css_set.
6298 */
6299 do_each_subsys_mask(ss, i, have_fork_callback) {
6300 ss->fork(child);
6301 } while_each_subsys_mask();
6302
6303 /* Make the new cset the root_cset of the new cgroup namespace. */
6304 if (kargs->flags & CLONE_NEWCGROUP) {
6305 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6306
6307 get_css_set(cset);
6308 child->nsproxy->cgroup_ns->root_cset = cset;
6309 put_css_set(rcset);
6310 }
6311
6312 /* Cgroup has to be killed so take down child immediately. */
6313 if (unlikely(kill))
6314 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6315
6316 cgroup_css_set_put_fork(kargs);
6317 }
6318
6319 /**
6320 * cgroup_exit - detach cgroup from exiting task
6321 * @tsk: pointer to task_struct of exiting process
6322 *
6323 * Description: Detach cgroup from @tsk.
6324 *
6325 */
cgroup_exit(struct task_struct * tsk)6326 void cgroup_exit(struct task_struct *tsk)
6327 {
6328 struct cgroup_subsys *ss;
6329 struct css_set *cset;
6330 int i;
6331
6332 spin_lock_irq(&css_set_lock);
6333
6334 WARN_ON_ONCE(list_empty(&tsk->cg_list));
6335 cset = task_css_set(tsk);
6336 css_set_move_task(tsk, cset, NULL, false);
6337 list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6338 cset->nr_tasks--;
6339
6340 WARN_ON_ONCE(cgroup_task_frozen(tsk));
6341 if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6342 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
6343 cgroup_update_frozen(task_dfl_cgroup(tsk));
6344
6345 spin_unlock_irq(&css_set_lock);
6346
6347 /* see cgroup_post_fork() for details */
6348 do_each_subsys_mask(ss, i, have_exit_callback) {
6349 ss->exit(tsk);
6350 } while_each_subsys_mask();
6351 }
6352
cgroup_release(struct task_struct * task)6353 void cgroup_release(struct task_struct *task)
6354 {
6355 struct cgroup_subsys *ss;
6356 int ssid;
6357
6358 do_each_subsys_mask(ss, ssid, have_release_callback) {
6359 ss->release(task);
6360 } while_each_subsys_mask();
6361
6362 spin_lock_irq(&css_set_lock);
6363 css_set_skip_task_iters(task_css_set(task), task);
6364 list_del_init(&task->cg_list);
6365 spin_unlock_irq(&css_set_lock);
6366 }
6367
cgroup_free(struct task_struct * task)6368 void cgroup_free(struct task_struct *task)
6369 {
6370 struct css_set *cset = task_css_set(task);
6371 put_css_set(cset);
6372 }
6373
cgroup_disable(char * str)6374 static int __init cgroup_disable(char *str)
6375 {
6376 struct cgroup_subsys *ss;
6377 char *token;
6378 int i;
6379
6380 while ((token = strsep(&str, ",")) != NULL) {
6381 if (!*token)
6382 continue;
6383
6384 for_each_subsys(ss, i) {
6385 if (strcmp(token, ss->name) &&
6386 strcmp(token, ss->legacy_name))
6387 continue;
6388
6389 static_branch_disable(cgroup_subsys_enabled_key[i]);
6390 pr_info("Disabling %s control group subsystem\n",
6391 ss->name);
6392 }
6393
6394 for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6395 if (strcmp(token, cgroup_opt_feature_names[i]))
6396 continue;
6397 cgroup_feature_disable_mask |= 1 << i;
6398 pr_info("Disabling %s control group feature\n",
6399 cgroup_opt_feature_names[i]);
6400 break;
6401 }
6402 }
6403 return 1;
6404 }
6405 __setup("cgroup_disable=", cgroup_disable);
6406
enable_debug_cgroup(void)6407 void __init __weak enable_debug_cgroup(void) { }
6408
enable_cgroup_debug(char * str)6409 static int __init enable_cgroup_debug(char *str)
6410 {
6411 cgroup_debug = true;
6412 enable_debug_cgroup();
6413 return 1;
6414 }
6415 __setup("cgroup_debug", enable_cgroup_debug);
6416
6417 /**
6418 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6419 * @dentry: directory dentry of interest
6420 * @ss: subsystem of interest
6421 *
6422 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6423 * to get the corresponding css and return it. If such css doesn't exist
6424 * or can't be pinned, an ERR_PTR value is returned.
6425 */
css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)6426 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6427 struct cgroup_subsys *ss)
6428 {
6429 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6430 struct file_system_type *s_type = dentry->d_sb->s_type;
6431 struct cgroup_subsys_state *css = NULL;
6432 struct cgroup *cgrp;
6433
6434 /* is @dentry a cgroup dir? */
6435 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6436 !kn || kernfs_type(kn) != KERNFS_DIR)
6437 return ERR_PTR(-EBADF);
6438
6439 rcu_read_lock();
6440
6441 /*
6442 * This path doesn't originate from kernfs and @kn could already
6443 * have been or be removed at any point. @kn->priv is RCU
6444 * protected for this access. See css_release_work_fn() for details.
6445 */
6446 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6447 if (cgrp)
6448 css = cgroup_css(cgrp, ss);
6449
6450 if (!css || !css_tryget_online(css))
6451 css = ERR_PTR(-ENOENT);
6452
6453 rcu_read_unlock();
6454 return css;
6455 }
6456
6457 /**
6458 * css_from_id - lookup css by id
6459 * @id: the cgroup id
6460 * @ss: cgroup subsys to be looked into
6461 *
6462 * Returns the css if there's valid one with @id, otherwise returns NULL.
6463 * Should be called under rcu_read_lock().
6464 */
css_from_id(int id,struct cgroup_subsys * ss)6465 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6466 {
6467 WARN_ON_ONCE(!rcu_read_lock_held());
6468 return idr_find(&ss->css_idr, id);
6469 }
6470
6471 /**
6472 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6473 * @path: path on the default hierarchy
6474 *
6475 * Find the cgroup at @path on the default hierarchy, increment its
6476 * reference count and return it. Returns pointer to the found cgroup on
6477 * success, ERR_PTR(-ENOENT) if @path doesn't exist and ERR_PTR(-ENOTDIR)
6478 * if @path points to a non-directory.
6479 */
cgroup_get_from_path(const char * path)6480 struct cgroup *cgroup_get_from_path(const char *path)
6481 {
6482 struct kernfs_node *kn;
6483 struct cgroup *cgrp;
6484
6485 mutex_lock(&cgroup_mutex);
6486
6487 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6488 if (kn) {
6489 if (kernfs_type(kn) == KERNFS_DIR) {
6490 cgrp = kn->priv;
6491 cgroup_get_live(cgrp);
6492 } else {
6493 cgrp = ERR_PTR(-ENOTDIR);
6494 }
6495 kernfs_put(kn);
6496 } else {
6497 cgrp = ERR_PTR(-ENOENT);
6498 }
6499
6500 mutex_unlock(&cgroup_mutex);
6501 return cgrp;
6502 }
6503 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6504
6505 /**
6506 * cgroup_get_from_fd - get a cgroup pointer from a fd
6507 * @fd: fd obtained by open(cgroup2_dir)
6508 *
6509 * Find the cgroup from a fd which should be obtained
6510 * by opening a cgroup directory. Returns a pointer to the
6511 * cgroup on success. ERR_PTR is returned if the cgroup
6512 * cannot be found.
6513 */
cgroup_get_from_fd(int fd)6514 struct cgroup *cgroup_get_from_fd(int fd)
6515 {
6516 struct cgroup *cgrp;
6517 struct file *f;
6518
6519 f = fget_raw(fd);
6520 if (!f)
6521 return ERR_PTR(-EBADF);
6522
6523 cgrp = cgroup_get_from_file(f);
6524 fput(f);
6525 return cgrp;
6526 }
6527 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6528
power_of_ten(int power)6529 static u64 power_of_ten(int power)
6530 {
6531 u64 v = 1;
6532 while (power--)
6533 v *= 10;
6534 return v;
6535 }
6536
6537 /**
6538 * cgroup_parse_float - parse a floating number
6539 * @input: input string
6540 * @dec_shift: number of decimal digits to shift
6541 * @v: output
6542 *
6543 * Parse a decimal floating point number in @input and store the result in
6544 * @v with decimal point right shifted @dec_shift times. For example, if
6545 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6546 * Returns 0 on success, -errno otherwise.
6547 *
6548 * There's nothing cgroup specific about this function except that it's
6549 * currently the only user.
6550 */
cgroup_parse_float(const char * input,unsigned dec_shift,s64 * v)6551 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6552 {
6553 s64 whole, frac = 0;
6554 int fstart = 0, fend = 0, flen;
6555
6556 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6557 return -EINVAL;
6558 if (frac < 0)
6559 return -EINVAL;
6560
6561 flen = fend > fstart ? fend - fstart : 0;
6562 if (flen < dec_shift)
6563 frac *= power_of_ten(dec_shift - flen);
6564 else
6565 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6566
6567 *v = whole * power_of_ten(dec_shift) + frac;
6568 return 0;
6569 }
6570
6571 /*
6572 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6573 * definition in cgroup-defs.h.
6574 */
6575 #ifdef CONFIG_SOCK_CGROUP_DATA
6576
cgroup_sk_alloc(struct sock_cgroup_data * skcd)6577 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6578 {
6579 struct cgroup *cgroup;
6580
6581 rcu_read_lock();
6582 /* Don't associate the sock with unrelated interrupted task's cgroup. */
6583 if (in_interrupt()) {
6584 cgroup = &cgrp_dfl_root.cgrp;
6585 cgroup_get(cgroup);
6586 goto out;
6587 }
6588
6589 while (true) {
6590 struct css_set *cset;
6591
6592 cset = task_css_set(current);
6593 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6594 cgroup = cset->dfl_cgrp;
6595 break;
6596 }
6597 cpu_relax();
6598 }
6599 out:
6600 skcd->cgroup = cgroup;
6601 cgroup_bpf_get(cgroup);
6602 rcu_read_unlock();
6603 }
6604
cgroup_sk_clone(struct sock_cgroup_data * skcd)6605 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6606 {
6607 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6608
6609 /*
6610 * We might be cloning a socket which is left in an empty
6611 * cgroup and the cgroup might have already been rmdir'd.
6612 * Don't use cgroup_get_live().
6613 */
6614 cgroup_get(cgrp);
6615 cgroup_bpf_get(cgrp);
6616 }
6617
cgroup_sk_free(struct sock_cgroup_data * skcd)6618 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6619 {
6620 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6621
6622 cgroup_bpf_put(cgrp);
6623 cgroup_put(cgrp);
6624 }
6625
6626 #endif /* CONFIG_SOCK_CGROUP_DATA */
6627
6628 #ifdef CONFIG_CGROUP_BPF
cgroup_bpf_attach(struct cgroup * cgrp,struct bpf_prog * prog,struct bpf_prog * replace_prog,struct bpf_cgroup_link * link,enum bpf_attach_type type,u32 flags)6629 int cgroup_bpf_attach(struct cgroup *cgrp,
6630 struct bpf_prog *prog, struct bpf_prog *replace_prog,
6631 struct bpf_cgroup_link *link,
6632 enum bpf_attach_type type,
6633 u32 flags)
6634 {
6635 int ret;
6636
6637 mutex_lock(&cgroup_mutex);
6638 ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags);
6639 mutex_unlock(&cgroup_mutex);
6640 return ret;
6641 }
6642
cgroup_bpf_detach(struct cgroup * cgrp,struct bpf_prog * prog,enum bpf_attach_type type)6643 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6644 enum bpf_attach_type type)
6645 {
6646 int ret;
6647
6648 mutex_lock(&cgroup_mutex);
6649 ret = __cgroup_bpf_detach(cgrp, prog, NULL, type);
6650 mutex_unlock(&cgroup_mutex);
6651 return ret;
6652 }
6653
cgroup_bpf_query(struct cgroup * cgrp,const union bpf_attr * attr,union bpf_attr __user * uattr)6654 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6655 union bpf_attr __user *uattr)
6656 {
6657 int ret;
6658
6659 mutex_lock(&cgroup_mutex);
6660 ret = __cgroup_bpf_query(cgrp, attr, uattr);
6661 mutex_unlock(&cgroup_mutex);
6662 return ret;
6663 }
6664 #endif /* CONFIG_CGROUP_BPF */
6665
6666 #ifdef CONFIG_SYSFS
show_delegatable_files(struct cftype * files,char * buf,ssize_t size,const char * prefix)6667 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6668 ssize_t size, const char *prefix)
6669 {
6670 struct cftype *cft;
6671 ssize_t ret = 0;
6672
6673 for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6674 if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6675 continue;
6676
6677 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
6678 continue;
6679
6680 if (prefix)
6681 ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6682
6683 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6684
6685 if (WARN_ON(ret >= size))
6686 break;
6687 }
6688
6689 return ret;
6690 }
6691
delegate_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)6692 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6693 char *buf)
6694 {
6695 struct cgroup_subsys *ss;
6696 int ssid;
6697 ssize_t ret = 0;
6698
6699 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6700 NULL);
6701
6702 for_each_subsys(ss, ssid)
6703 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6704 PAGE_SIZE - ret,
6705 cgroup_subsys_name[ssid]);
6706
6707 return ret;
6708 }
6709 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6710
features_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)6711 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6712 char *buf)
6713 {
6714 return snprintf(buf, PAGE_SIZE,
6715 "nsdelegate\n"
6716 "memory_localevents\n"
6717 "memory_recursiveprot\n");
6718 }
6719 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6720
6721 static struct attribute *cgroup_sysfs_attrs[] = {
6722 &cgroup_delegate_attr.attr,
6723 &cgroup_features_attr.attr,
6724 NULL,
6725 };
6726
6727 static const struct attribute_group cgroup_sysfs_attr_group = {
6728 .attrs = cgroup_sysfs_attrs,
6729 .name = "cgroup",
6730 };
6731
cgroup_sysfs_init(void)6732 static int __init cgroup_sysfs_init(void)
6733 {
6734 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6735 }
6736 subsys_initcall(cgroup_sysfs_init);
6737
6738 #endif /* CONFIG_SYSFS */
6739