1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Arch specific cpu topology information
4 *
5 * Copyright (C) 2016, ARM Ltd.
6 * Written by: Juri Lelli, ARM Ltd.
7 */
8
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/device.h>
13 #include <linux/of.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 #include <linux/sched/topology.h>
17 #include <linux/cpuset.h>
18 #include <linux/cpumask.h>
19 #include <linux/init.h>
20 #include <linux/percpu.h>
21 #include <linux/sched.h>
22 #include <linux/smp.h>
23
topology_scale_freq_invariant(void)24 bool topology_scale_freq_invariant(void)
25 {
26 return cpufreq_supports_freq_invariance() ||
27 arch_freq_counters_available(cpu_online_mask);
28 }
29
arch_freq_counters_available(const struct cpumask * cpus)30 __weak bool arch_freq_counters_available(const struct cpumask *cpus)
31 {
32 return false;
33 }
34 DEFINE_PER_CPU(unsigned long, freq_scale) = SCHED_CAPACITY_SCALE;
35
topology_set_freq_scale(const struct cpumask * cpus,unsigned long cur_freq,unsigned long max_freq)36 void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
37 unsigned long max_freq)
38 {
39 unsigned long scale;
40 int i;
41
42 if (WARN_ON_ONCE(!cur_freq || !max_freq))
43 return;
44
45 /*
46 * If the use of counters for FIE is enabled, just return as we don't
47 * want to update the scale factor with information from CPUFREQ.
48 * Instead the scale factor will be updated from arch_scale_freq_tick.
49 */
50 if (arch_freq_counters_available(cpus))
51 return;
52
53 scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
54
55 for_each_cpu(i, cpus)
56 per_cpu(freq_scale, i) = scale;
57 }
58
59 DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
60
topology_set_cpu_scale(unsigned int cpu,unsigned long capacity)61 void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
62 {
63 per_cpu(cpu_scale, cpu) = capacity;
64 }
65
66 DEFINE_PER_CPU(unsigned long, thermal_pressure);
67
topology_set_thermal_pressure(const struct cpumask * cpus,unsigned long th_pressure)68 void topology_set_thermal_pressure(const struct cpumask *cpus,
69 unsigned long th_pressure)
70 {
71 int cpu;
72
73 for_each_cpu(cpu, cpus)
74 WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
75 }
76
cpu_capacity_show(struct device * dev,struct device_attribute * attr,char * buf)77 static ssize_t cpu_capacity_show(struct device *dev,
78 struct device_attribute *attr,
79 char *buf)
80 {
81 struct cpu *cpu = container_of(dev, struct cpu, dev);
82
83 return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
84 }
85
86 static void update_topology_flags_workfn(struct work_struct *work);
87 static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
88
89 static DEVICE_ATTR_RO(cpu_capacity);
90
register_cpu_capacity_sysctl(void)91 static int register_cpu_capacity_sysctl(void)
92 {
93 int i;
94 struct device *cpu;
95
96 for_each_possible_cpu(i) {
97 cpu = get_cpu_device(i);
98 if (!cpu) {
99 pr_err("%s: too early to get CPU%d device!\n",
100 __func__, i);
101 continue;
102 }
103 device_create_file(cpu, &dev_attr_cpu_capacity);
104 }
105
106 return 0;
107 }
108 subsys_initcall(register_cpu_capacity_sysctl);
109
110 static int update_topology;
111
topology_update_cpu_topology(void)112 int topology_update_cpu_topology(void)
113 {
114 return update_topology;
115 }
116
117 /*
118 * Updating the sched_domains can't be done directly from cpufreq callbacks
119 * due to locking, so queue the work for later.
120 */
update_topology_flags_workfn(struct work_struct * work)121 static void update_topology_flags_workfn(struct work_struct *work)
122 {
123 update_topology = 1;
124 rebuild_sched_domains();
125 pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
126 update_topology = 0;
127 }
128
129 static DEFINE_PER_CPU(u32, freq_factor) = 1;
130 static u32 *raw_capacity;
131
free_raw_capacity(void)132 static int free_raw_capacity(void)
133 {
134 kfree(raw_capacity);
135 raw_capacity = NULL;
136
137 return 0;
138 }
139
topology_normalize_cpu_scale(void)140 void topology_normalize_cpu_scale(void)
141 {
142 u64 capacity;
143 u64 capacity_scale;
144 int cpu;
145
146 if (!raw_capacity)
147 return;
148
149 capacity_scale = 1;
150 for_each_possible_cpu(cpu) {
151 capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
152 capacity_scale = max(capacity, capacity_scale);
153 }
154
155 pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
156 for_each_possible_cpu(cpu) {
157 capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
158 capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
159 capacity_scale);
160 topology_set_cpu_scale(cpu, capacity);
161 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
162 cpu, topology_get_cpu_scale(cpu));
163 }
164 }
165
topology_parse_cpu_capacity(struct device_node * cpu_node,int cpu)166 bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
167 {
168 struct clk *cpu_clk;
169 static bool cap_parsing_failed;
170 int ret;
171 u32 cpu_capacity;
172
173 if (cap_parsing_failed)
174 return false;
175
176 ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
177 &cpu_capacity);
178 if (!ret) {
179 if (!raw_capacity) {
180 raw_capacity = kcalloc(num_possible_cpus(),
181 sizeof(*raw_capacity),
182 GFP_KERNEL);
183 if (!raw_capacity) {
184 cap_parsing_failed = true;
185 return false;
186 }
187 }
188 raw_capacity[cpu] = cpu_capacity;
189 pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
190 cpu_node, raw_capacity[cpu]);
191
192 /*
193 * Update freq_factor for calculating early boot cpu capacities.
194 * For non-clk CPU DVFS mechanism, there's no way to get the
195 * frequency value now, assuming they are running at the same
196 * frequency (by keeping the initial freq_factor value).
197 */
198 cpu_clk = of_clk_get(cpu_node, 0);
199 if (!PTR_ERR_OR_ZERO(cpu_clk)) {
200 per_cpu(freq_factor, cpu) =
201 clk_get_rate(cpu_clk) / 1000;
202 clk_put(cpu_clk);
203 }
204 } else {
205 if (raw_capacity) {
206 pr_err("cpu_capacity: missing %pOF raw capacity\n",
207 cpu_node);
208 pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
209 }
210 cap_parsing_failed = true;
211 free_raw_capacity();
212 }
213
214 return !ret;
215 }
216
217 #ifdef CONFIG_CPU_FREQ
218 static cpumask_var_t cpus_to_visit;
219 static void parsing_done_workfn(struct work_struct *work);
220 static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
221
222 static int
init_cpu_capacity_callback(struct notifier_block * nb,unsigned long val,void * data)223 init_cpu_capacity_callback(struct notifier_block *nb,
224 unsigned long val,
225 void *data)
226 {
227 struct cpufreq_policy *policy = data;
228 int cpu;
229
230 if (!raw_capacity)
231 return 0;
232
233 if (val != CPUFREQ_CREATE_POLICY)
234 return 0;
235
236 pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
237 cpumask_pr_args(policy->related_cpus),
238 cpumask_pr_args(cpus_to_visit));
239
240 cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
241
242 for_each_cpu(cpu, policy->related_cpus)
243 per_cpu(freq_factor, cpu) = policy->cpuinfo.max_freq / 1000;
244
245 if (cpumask_empty(cpus_to_visit)) {
246 topology_normalize_cpu_scale();
247 schedule_work(&update_topology_flags_work);
248 free_raw_capacity();
249 pr_debug("cpu_capacity: parsing done\n");
250 schedule_work(&parsing_done_work);
251 }
252
253 return 0;
254 }
255
256 static struct notifier_block init_cpu_capacity_notifier = {
257 .notifier_call = init_cpu_capacity_callback,
258 };
259
register_cpufreq_notifier(void)260 static int __init register_cpufreq_notifier(void)
261 {
262 int ret;
263
264 /*
265 * on ACPI-based systems we need to use the default cpu capacity
266 * until we have the necessary code to parse the cpu capacity, so
267 * skip registering cpufreq notifier.
268 */
269 if (!acpi_disabled || !raw_capacity)
270 return -EINVAL;
271
272 if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
273 return -ENOMEM;
274
275 cpumask_copy(cpus_to_visit, cpu_possible_mask);
276
277 ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
278 CPUFREQ_POLICY_NOTIFIER);
279
280 if (ret)
281 free_cpumask_var(cpus_to_visit);
282
283 return ret;
284 }
285 core_initcall(register_cpufreq_notifier);
286
parsing_done_workfn(struct work_struct * work)287 static void parsing_done_workfn(struct work_struct *work)
288 {
289 cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
290 CPUFREQ_POLICY_NOTIFIER);
291 free_cpumask_var(cpus_to_visit);
292 }
293
294 #else
295 core_initcall(free_raw_capacity);
296 #endif
297
298 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
299 /*
300 * This function returns the logic cpu number of the node.
301 * There are basically three kinds of return values:
302 * (1) logic cpu number which is > 0.
303 * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
304 * there is no possible logical CPU in the kernel to match. This happens
305 * when CONFIG_NR_CPUS is configure to be smaller than the number of
306 * CPU nodes in DT. We need to just ignore this case.
307 * (3) -1 if the node does not exist in the device tree
308 */
get_cpu_for_node(struct device_node * node)309 static int __init get_cpu_for_node(struct device_node *node)
310 {
311 struct device_node *cpu_node;
312 int cpu;
313
314 cpu_node = of_parse_phandle(node, "cpu", 0);
315 if (!cpu_node)
316 return -1;
317
318 cpu = of_cpu_node_to_id(cpu_node);
319 if (cpu >= 0)
320 topology_parse_cpu_capacity(cpu_node, cpu);
321 else
322 pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
323 cpu_node, cpumask_pr_args(cpu_possible_mask));
324
325 of_node_put(cpu_node);
326 return cpu;
327 }
328
parse_core(struct device_node * core,int package_id,int core_id)329 static int __init parse_core(struct device_node *core, int package_id,
330 int core_id)
331 {
332 char name[20];
333 bool leaf = true;
334 int i = 0;
335 int cpu;
336 struct device_node *t;
337
338 do {
339 snprintf(name, sizeof(name), "thread%d", i);
340 t = of_get_child_by_name(core, name);
341 if (t) {
342 leaf = false;
343 cpu = get_cpu_for_node(t);
344 if (cpu >= 0) {
345 cpu_topology[cpu].package_id = package_id;
346 cpu_topology[cpu].core_id = core_id;
347 cpu_topology[cpu].thread_id = i;
348 } else if (cpu != -ENODEV) {
349 pr_err("%pOF: Can't get CPU for thread\n", t);
350 of_node_put(t);
351 return -EINVAL;
352 }
353 of_node_put(t);
354 }
355 i++;
356 } while (t);
357
358 cpu = get_cpu_for_node(core);
359 if (cpu >= 0) {
360 if (!leaf) {
361 pr_err("%pOF: Core has both threads and CPU\n",
362 core);
363 return -EINVAL;
364 }
365
366 cpu_topology[cpu].package_id = package_id;
367 cpu_topology[cpu].core_id = core_id;
368 } else if (leaf && cpu != -ENODEV) {
369 pr_err("%pOF: Can't get CPU for leaf core\n", core);
370 return -EINVAL;
371 }
372
373 return 0;
374 }
375
parse_cluster(struct device_node * cluster,int depth)376 static int __init parse_cluster(struct device_node *cluster, int depth)
377 {
378 char name[20];
379 bool leaf = true;
380 bool has_cores = false;
381 struct device_node *c;
382 static int package_id __initdata;
383 int core_id = 0;
384 int i, ret;
385
386 /*
387 * First check for child clusters; we currently ignore any
388 * information about the nesting of clusters and present the
389 * scheduler with a flat list of them.
390 */
391 i = 0;
392 do {
393 snprintf(name, sizeof(name), "cluster%d", i);
394 c = of_get_child_by_name(cluster, name);
395 if (c) {
396 leaf = false;
397 ret = parse_cluster(c, depth + 1);
398 of_node_put(c);
399 if (ret != 0)
400 return ret;
401 }
402 i++;
403 } while (c);
404
405 /* Now check for cores */
406 i = 0;
407 do {
408 snprintf(name, sizeof(name), "core%d", i);
409 c = of_get_child_by_name(cluster, name);
410 if (c) {
411 has_cores = true;
412
413 if (depth == 0) {
414 pr_err("%pOF: cpu-map children should be clusters\n",
415 c);
416 of_node_put(c);
417 return -EINVAL;
418 }
419
420 if (leaf) {
421 ret = parse_core(c, package_id, core_id++);
422 } else {
423 pr_err("%pOF: Non-leaf cluster with core %s\n",
424 cluster, name);
425 ret = -EINVAL;
426 }
427
428 of_node_put(c);
429 if (ret != 0)
430 return ret;
431 }
432 i++;
433 } while (c);
434
435 if (leaf && !has_cores)
436 pr_warn("%pOF: empty cluster\n", cluster);
437
438 if (leaf)
439 package_id++;
440
441 return 0;
442 }
443
parse_dt_topology(void)444 static int __init parse_dt_topology(void)
445 {
446 struct device_node *cn, *map;
447 int ret = 0;
448 int cpu;
449
450 cn = of_find_node_by_path("/cpus");
451 if (!cn) {
452 pr_err("No CPU information found in DT\n");
453 return 0;
454 }
455
456 /*
457 * When topology is provided cpu-map is essentially a root
458 * cluster with restricted subnodes.
459 */
460 map = of_get_child_by_name(cn, "cpu-map");
461 if (!map)
462 goto out;
463
464 ret = parse_cluster(map, 0);
465 if (ret != 0)
466 goto out_map;
467
468 topology_normalize_cpu_scale();
469
470 /*
471 * Check that all cores are in the topology; the SMP code will
472 * only mark cores described in the DT as possible.
473 */
474 for_each_possible_cpu(cpu)
475 if (cpu_topology[cpu].package_id == -1)
476 ret = -EINVAL;
477
478 out_map:
479 of_node_put(map);
480 out:
481 of_node_put(cn);
482 return ret;
483 }
484 #endif
485
486 /*
487 * cpu topology table
488 */
489 struct cpu_topology cpu_topology[NR_CPUS];
490 EXPORT_SYMBOL_GPL(cpu_topology);
491
cpu_coregroup_mask(int cpu)492 const struct cpumask *cpu_coregroup_mask(int cpu)
493 {
494 const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
495
496 /* Find the smaller of NUMA, core or LLC siblings */
497 if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
498 /* not numa in package, lets use the package siblings */
499 core_mask = &cpu_topology[cpu].core_sibling;
500 }
501 if (cpu_topology[cpu].llc_id != -1) {
502 if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
503 core_mask = &cpu_topology[cpu].llc_sibling;
504 }
505
506 return core_mask;
507 }
508
update_siblings_masks(unsigned int cpuid)509 void update_siblings_masks(unsigned int cpuid)
510 {
511 struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
512 int cpu;
513
514 /* update core and thread sibling masks */
515 for_each_online_cpu(cpu) {
516 cpu_topo = &cpu_topology[cpu];
517
518 if (cpuid_topo->llc_id == cpu_topo->llc_id) {
519 cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
520 cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
521 }
522
523 if (cpuid_topo->package_id != cpu_topo->package_id)
524 continue;
525
526 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
527 cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
528
529 if (cpuid_topo->core_id != cpu_topo->core_id)
530 continue;
531
532 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
533 cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
534 }
535 }
536
clear_cpu_topology(int cpu)537 static void clear_cpu_topology(int cpu)
538 {
539 struct cpu_topology *cpu_topo = &cpu_topology[cpu];
540
541 cpumask_clear(&cpu_topo->llc_sibling);
542 cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
543
544 cpumask_clear(&cpu_topo->core_sibling);
545 cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
546 cpumask_clear(&cpu_topo->thread_sibling);
547 cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
548 }
549
reset_cpu_topology(void)550 void __init reset_cpu_topology(void)
551 {
552 unsigned int cpu;
553
554 for_each_possible_cpu(cpu) {
555 struct cpu_topology *cpu_topo = &cpu_topology[cpu];
556
557 cpu_topo->thread_id = -1;
558 cpu_topo->core_id = -1;
559 cpu_topo->package_id = -1;
560 cpu_topo->llc_id = -1;
561
562 clear_cpu_topology(cpu);
563 }
564 }
565
remove_cpu_topology(unsigned int cpu)566 void remove_cpu_topology(unsigned int cpu)
567 {
568 int sibling;
569
570 for_each_cpu(sibling, topology_core_cpumask(cpu))
571 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
572 for_each_cpu(sibling, topology_sibling_cpumask(cpu))
573 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
574 for_each_cpu(sibling, topology_llc_cpumask(cpu))
575 cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
576
577 clear_cpu_topology(cpu);
578 }
579
parse_acpi_topology(void)580 __weak int __init parse_acpi_topology(void)
581 {
582 return 0;
583 }
584
585 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
init_cpu_topology(void)586 void __init init_cpu_topology(void)
587 {
588 reset_cpu_topology();
589
590 /*
591 * Discard anything that was parsed if we hit an error so we
592 * don't use partial information.
593 */
594 if (parse_acpi_topology())
595 reset_cpu_topology();
596 else if (of_have_populated_dt() && parse_dt_topology())
597 reset_cpu_topology();
598 }
599 #endif
600