1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/pipe.c
4  *
5  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 #include <linux/watch_queue.h>
28 #include <linux/sysctl.h>
29 
30 #include <linux/uaccess.h>
31 #include <asm/ioctls.h>
32 
33 #include "internal.h"
34 
35 /*
36  * New pipe buffers will be restricted to this size while the user is exceeding
37  * their pipe buffer quota. The general pipe use case needs at least two
38  * buffers: one for data yet to be read, and one for new data. If this is less
39  * than two, then a write to a non-empty pipe may block even if the pipe is not
40  * full. This can occur with GNU make jobserver or similar uses of pipes as
41  * semaphores: multiple processes may be waiting to write tokens back to the
42  * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
43  *
44  * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
45  * own risk, namely: pipe writes to non-full pipes may block until the pipe is
46  * emptied.
47  */
48 #define PIPE_MIN_DEF_BUFFERS 2
49 
50 /*
51  * The max size that a non-root user is allowed to grow the pipe. Can
52  * be set by root in /proc/sys/fs/pipe-max-size
53  */
54 static unsigned int pipe_max_size = 1048576;
55 
56 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
57  * matches default values.
58  */
59 static unsigned long pipe_user_pages_hard;
60 static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
61 
62 /*
63  * We use head and tail indices that aren't masked off, except at the point of
64  * dereference, but rather they're allowed to wrap naturally.  This means there
65  * isn't a dead spot in the buffer, but the ring has to be a power of two and
66  * <= 2^31.
67  * -- David Howells 2019-09-23.
68  *
69  * Reads with count = 0 should always return 0.
70  * -- Julian Bradfield 1999-06-07.
71  *
72  * FIFOs and Pipes now generate SIGIO for both readers and writers.
73  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
74  *
75  * pipe_read & write cleanup
76  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
77  */
78 
pipe_lock_nested(struct pipe_inode_info * pipe,int subclass)79 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
80 {
81 	if (pipe->files)
82 		mutex_lock_nested(&pipe->mutex, subclass);
83 }
84 
pipe_lock(struct pipe_inode_info * pipe)85 void pipe_lock(struct pipe_inode_info *pipe)
86 {
87 	/*
88 	 * pipe_lock() nests non-pipe inode locks (for writing to a file)
89 	 */
90 	pipe_lock_nested(pipe, I_MUTEX_PARENT);
91 }
92 EXPORT_SYMBOL(pipe_lock);
93 
pipe_unlock(struct pipe_inode_info * pipe)94 void pipe_unlock(struct pipe_inode_info *pipe)
95 {
96 	if (pipe->files)
97 		mutex_unlock(&pipe->mutex);
98 }
99 EXPORT_SYMBOL(pipe_unlock);
100 
__pipe_lock(struct pipe_inode_info * pipe)101 static inline void __pipe_lock(struct pipe_inode_info *pipe)
102 {
103 	mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
104 }
105 
__pipe_unlock(struct pipe_inode_info * pipe)106 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
107 {
108 	mutex_unlock(&pipe->mutex);
109 }
110 
pipe_double_lock(struct pipe_inode_info * pipe1,struct pipe_inode_info * pipe2)111 void pipe_double_lock(struct pipe_inode_info *pipe1,
112 		      struct pipe_inode_info *pipe2)
113 {
114 	BUG_ON(pipe1 == pipe2);
115 
116 	if (pipe1 < pipe2) {
117 		pipe_lock_nested(pipe1, I_MUTEX_PARENT);
118 		pipe_lock_nested(pipe2, I_MUTEX_CHILD);
119 	} else {
120 		pipe_lock_nested(pipe2, I_MUTEX_PARENT);
121 		pipe_lock_nested(pipe1, I_MUTEX_CHILD);
122 	}
123 }
124 
anon_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)125 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
126 				  struct pipe_buffer *buf)
127 {
128 	struct page *page = buf->page;
129 
130 	/*
131 	 * If nobody else uses this page, and we don't already have a
132 	 * temporary page, let's keep track of it as a one-deep
133 	 * allocation cache. (Otherwise just release our reference to it)
134 	 */
135 	if (page_count(page) == 1 && !pipe->tmp_page)
136 		pipe->tmp_page = page;
137 	else
138 		put_page(page);
139 }
140 
anon_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)141 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
142 		struct pipe_buffer *buf)
143 {
144 	struct page *page = buf->page;
145 
146 	if (page_count(page) != 1)
147 		return false;
148 	memcg_kmem_uncharge_page(page, 0);
149 	__SetPageLocked(page);
150 	return true;
151 }
152 
153 /**
154  * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
155  * @pipe:	the pipe that the buffer belongs to
156  * @buf:	the buffer to attempt to steal
157  *
158  * Description:
159  *	This function attempts to steal the &struct page attached to
160  *	@buf. If successful, this function returns 0 and returns with
161  *	the page locked. The caller may then reuse the page for whatever
162  *	he wishes; the typical use is insertion into a different file
163  *	page cache.
164  */
generic_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)165 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
166 		struct pipe_buffer *buf)
167 {
168 	struct page *page = buf->page;
169 
170 	/*
171 	 * A reference of one is golden, that means that the owner of this
172 	 * page is the only one holding a reference to it. lock the page
173 	 * and return OK.
174 	 */
175 	if (page_count(page) == 1) {
176 		lock_page(page);
177 		return true;
178 	}
179 	return false;
180 }
181 EXPORT_SYMBOL(generic_pipe_buf_try_steal);
182 
183 /**
184  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
185  * @pipe:	the pipe that the buffer belongs to
186  * @buf:	the buffer to get a reference to
187  *
188  * Description:
189  *	This function grabs an extra reference to @buf. It's used in
190  *	the tee() system call, when we duplicate the buffers in one
191  *	pipe into another.
192  */
generic_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)193 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
194 {
195 	return try_get_page(buf->page);
196 }
197 EXPORT_SYMBOL(generic_pipe_buf_get);
198 
199 /**
200  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
201  * @pipe:	the pipe that the buffer belongs to
202  * @buf:	the buffer to put a reference to
203  *
204  * Description:
205  *	This function releases a reference to @buf.
206  */
generic_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)207 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
208 			      struct pipe_buffer *buf)
209 {
210 	put_page(buf->page);
211 }
212 EXPORT_SYMBOL(generic_pipe_buf_release);
213 
214 static const struct pipe_buf_operations anon_pipe_buf_ops = {
215 	.release	= anon_pipe_buf_release,
216 	.try_steal	= anon_pipe_buf_try_steal,
217 	.get		= generic_pipe_buf_get,
218 };
219 
220 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
pipe_readable(const struct pipe_inode_info * pipe)221 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
222 {
223 	unsigned int head = READ_ONCE(pipe->head);
224 	unsigned int tail = READ_ONCE(pipe->tail);
225 	unsigned int writers = READ_ONCE(pipe->writers);
226 
227 	return !pipe_empty(head, tail) || !writers;
228 }
229 
230 static ssize_t
pipe_read(struct kiocb * iocb,struct iov_iter * to)231 pipe_read(struct kiocb *iocb, struct iov_iter *to)
232 {
233 	size_t total_len = iov_iter_count(to);
234 	struct file *filp = iocb->ki_filp;
235 	struct pipe_inode_info *pipe = filp->private_data;
236 	bool was_full, wake_next_reader = false;
237 	ssize_t ret;
238 
239 	/* Null read succeeds. */
240 	if (unlikely(total_len == 0))
241 		return 0;
242 
243 	ret = 0;
244 	__pipe_lock(pipe);
245 
246 	/*
247 	 * We only wake up writers if the pipe was full when we started
248 	 * reading in order to avoid unnecessary wakeups.
249 	 *
250 	 * But when we do wake up writers, we do so using a sync wakeup
251 	 * (WF_SYNC), because we want them to get going and generate more
252 	 * data for us.
253 	 */
254 	was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
255 	for (;;) {
256 		/* Read ->head with a barrier vs post_one_notification() */
257 		unsigned int head = smp_load_acquire(&pipe->head);
258 		unsigned int tail = pipe->tail;
259 		unsigned int mask = pipe->ring_size - 1;
260 
261 #ifdef CONFIG_WATCH_QUEUE
262 		if (pipe->note_loss) {
263 			struct watch_notification n;
264 
265 			if (total_len < 8) {
266 				if (ret == 0)
267 					ret = -ENOBUFS;
268 				break;
269 			}
270 
271 			n.type = WATCH_TYPE_META;
272 			n.subtype = WATCH_META_LOSS_NOTIFICATION;
273 			n.info = watch_sizeof(n);
274 			if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
275 				if (ret == 0)
276 					ret = -EFAULT;
277 				break;
278 			}
279 			ret += sizeof(n);
280 			total_len -= sizeof(n);
281 			pipe->note_loss = false;
282 		}
283 #endif
284 
285 		if (!pipe_empty(head, tail)) {
286 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
287 			size_t chars = buf->len;
288 			size_t written;
289 			int error;
290 
291 			if (chars > total_len) {
292 				if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
293 					if (ret == 0)
294 						ret = -ENOBUFS;
295 					break;
296 				}
297 				chars = total_len;
298 			}
299 
300 			error = pipe_buf_confirm(pipe, buf);
301 			if (error) {
302 				if (!ret)
303 					ret = error;
304 				break;
305 			}
306 
307 			written = copy_page_to_iter(buf->page, buf->offset, chars, to);
308 			if (unlikely(written < chars)) {
309 				if (!ret)
310 					ret = -EFAULT;
311 				break;
312 			}
313 			ret += chars;
314 			buf->offset += chars;
315 			buf->len -= chars;
316 
317 			/* Was it a packet buffer? Clean up and exit */
318 			if (buf->flags & PIPE_BUF_FLAG_PACKET) {
319 				total_len = chars;
320 				buf->len = 0;
321 			}
322 
323 			if (!buf->len) {
324 				pipe_buf_release(pipe, buf);
325 				spin_lock_irq(&pipe->rd_wait.lock);
326 #ifdef CONFIG_WATCH_QUEUE
327 				if (buf->flags & PIPE_BUF_FLAG_LOSS)
328 					pipe->note_loss = true;
329 #endif
330 				tail++;
331 				pipe->tail = tail;
332 				spin_unlock_irq(&pipe->rd_wait.lock);
333 			}
334 			total_len -= chars;
335 			if (!total_len)
336 				break;	/* common path: read succeeded */
337 			if (!pipe_empty(head, tail))	/* More to do? */
338 				continue;
339 		}
340 
341 		if (!pipe->writers)
342 			break;
343 		if (ret)
344 			break;
345 		if ((filp->f_flags & O_NONBLOCK) ||
346 		    (iocb->ki_flags & IOCB_NOWAIT)) {
347 			ret = -EAGAIN;
348 			break;
349 		}
350 		__pipe_unlock(pipe);
351 
352 		/*
353 		 * We only get here if we didn't actually read anything.
354 		 *
355 		 * However, we could have seen (and removed) a zero-sized
356 		 * pipe buffer, and might have made space in the buffers
357 		 * that way.
358 		 *
359 		 * You can't make zero-sized pipe buffers by doing an empty
360 		 * write (not even in packet mode), but they can happen if
361 		 * the writer gets an EFAULT when trying to fill a buffer
362 		 * that already got allocated and inserted in the buffer
363 		 * array.
364 		 *
365 		 * So we still need to wake up any pending writers in the
366 		 * _very_ unlikely case that the pipe was full, but we got
367 		 * no data.
368 		 */
369 		if (unlikely(was_full))
370 			wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
371 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
372 
373 		/*
374 		 * But because we didn't read anything, at this point we can
375 		 * just return directly with -ERESTARTSYS if we're interrupted,
376 		 * since we've done any required wakeups and there's no need
377 		 * to mark anything accessed. And we've dropped the lock.
378 		 */
379 		if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
380 			return -ERESTARTSYS;
381 
382 		__pipe_lock(pipe);
383 		was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
384 		wake_next_reader = true;
385 	}
386 	if (pipe_empty(pipe->head, pipe->tail))
387 		wake_next_reader = false;
388 	__pipe_unlock(pipe);
389 
390 	if (was_full)
391 		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
392 	if (wake_next_reader)
393 		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
394 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
395 	if (ret > 0)
396 		file_accessed(filp);
397 	return ret;
398 }
399 
is_packetized(struct file * file)400 static inline int is_packetized(struct file *file)
401 {
402 	return (file->f_flags & O_DIRECT) != 0;
403 }
404 
405 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
pipe_writable(const struct pipe_inode_info * pipe)406 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
407 {
408 	unsigned int head = READ_ONCE(pipe->head);
409 	unsigned int tail = READ_ONCE(pipe->tail);
410 	unsigned int max_usage = READ_ONCE(pipe->max_usage);
411 
412 	return !pipe_full(head, tail, max_usage) ||
413 		!READ_ONCE(pipe->readers);
414 }
415 
416 static ssize_t
pipe_write(struct kiocb * iocb,struct iov_iter * from)417 pipe_write(struct kiocb *iocb, struct iov_iter *from)
418 {
419 	struct file *filp = iocb->ki_filp;
420 	struct pipe_inode_info *pipe = filp->private_data;
421 	unsigned int head;
422 	ssize_t ret = 0;
423 	size_t total_len = iov_iter_count(from);
424 	ssize_t chars;
425 	bool was_empty = false;
426 	bool wake_next_writer = false;
427 
428 	/* Null write succeeds. */
429 	if (unlikely(total_len == 0))
430 		return 0;
431 
432 	__pipe_lock(pipe);
433 
434 	if (!pipe->readers) {
435 		send_sig(SIGPIPE, current, 0);
436 		ret = -EPIPE;
437 		goto out;
438 	}
439 
440 #ifdef CONFIG_WATCH_QUEUE
441 	if (pipe->watch_queue) {
442 		ret = -EXDEV;
443 		goto out;
444 	}
445 #endif
446 
447 	/*
448 	 * If it wasn't empty we try to merge new data into
449 	 * the last buffer.
450 	 *
451 	 * That naturally merges small writes, but it also
452 	 * page-aligns the rest of the writes for large writes
453 	 * spanning multiple pages.
454 	 */
455 	head = pipe->head;
456 	was_empty = pipe_empty(head, pipe->tail);
457 	chars = total_len & (PAGE_SIZE-1);
458 	if (chars && !was_empty) {
459 		unsigned int mask = pipe->ring_size - 1;
460 		struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
461 		int offset = buf->offset + buf->len;
462 
463 		if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
464 		    offset + chars <= PAGE_SIZE) {
465 			ret = pipe_buf_confirm(pipe, buf);
466 			if (ret)
467 				goto out;
468 
469 			ret = copy_page_from_iter(buf->page, offset, chars, from);
470 			if (unlikely(ret < chars)) {
471 				ret = -EFAULT;
472 				goto out;
473 			}
474 
475 			buf->len += ret;
476 			if (!iov_iter_count(from))
477 				goto out;
478 		}
479 	}
480 
481 	for (;;) {
482 		if (!pipe->readers) {
483 			send_sig(SIGPIPE, current, 0);
484 			if (!ret)
485 				ret = -EPIPE;
486 			break;
487 		}
488 
489 		head = pipe->head;
490 		if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
491 			unsigned int mask = pipe->ring_size - 1;
492 			struct pipe_buffer *buf;
493 			struct page *page = pipe->tmp_page;
494 			int copied;
495 
496 			if (!page) {
497 				page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
498 				if (unlikely(!page)) {
499 					ret = ret ? : -ENOMEM;
500 					break;
501 				}
502 				pipe->tmp_page = page;
503 			}
504 
505 			/* Allocate a slot in the ring in advance and attach an
506 			 * empty buffer.  If we fault or otherwise fail to use
507 			 * it, either the reader will consume it or it'll still
508 			 * be there for the next write.
509 			 */
510 			spin_lock_irq(&pipe->rd_wait.lock);
511 
512 			head = pipe->head;
513 			if (pipe_full(head, pipe->tail, pipe->max_usage)) {
514 				spin_unlock_irq(&pipe->rd_wait.lock);
515 				continue;
516 			}
517 
518 			pipe->head = head + 1;
519 			spin_unlock_irq(&pipe->rd_wait.lock);
520 
521 			/* Insert it into the buffer array */
522 			buf = &pipe->bufs[head & mask];
523 			buf->page = page;
524 			buf->ops = &anon_pipe_buf_ops;
525 			buf->offset = 0;
526 			buf->len = 0;
527 			if (is_packetized(filp))
528 				buf->flags = PIPE_BUF_FLAG_PACKET;
529 			else
530 				buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
531 			pipe->tmp_page = NULL;
532 
533 			copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
534 			if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
535 				if (!ret)
536 					ret = -EFAULT;
537 				break;
538 			}
539 			ret += copied;
540 			buf->len = copied;
541 
542 			if (!iov_iter_count(from))
543 				break;
544 		}
545 
546 		if (!pipe_full(head, pipe->tail, pipe->max_usage))
547 			continue;
548 
549 		/* Wait for buffer space to become available. */
550 		if ((filp->f_flags & O_NONBLOCK) ||
551 		    (iocb->ki_flags & IOCB_NOWAIT)) {
552 			if (!ret)
553 				ret = -EAGAIN;
554 			break;
555 		}
556 		if (signal_pending(current)) {
557 			if (!ret)
558 				ret = -ERESTARTSYS;
559 			break;
560 		}
561 
562 		/*
563 		 * We're going to release the pipe lock and wait for more
564 		 * space. We wake up any readers if necessary, and then
565 		 * after waiting we need to re-check whether the pipe
566 		 * become empty while we dropped the lock.
567 		 */
568 		__pipe_unlock(pipe);
569 		if (was_empty)
570 			wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
571 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
572 		wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
573 		__pipe_lock(pipe);
574 		was_empty = pipe_empty(pipe->head, pipe->tail);
575 		wake_next_writer = true;
576 	}
577 out:
578 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
579 		wake_next_writer = false;
580 	__pipe_unlock(pipe);
581 
582 	/*
583 	 * If we do do a wakeup event, we do a 'sync' wakeup, because we
584 	 * want the reader to start processing things asap, rather than
585 	 * leave the data pending.
586 	 *
587 	 * This is particularly important for small writes, because of
588 	 * how (for example) the GNU make jobserver uses small writes to
589 	 * wake up pending jobs
590 	 *
591 	 * Epoll nonsensically wants a wakeup whether the pipe
592 	 * was already empty or not.
593 	 */
594 	if (was_empty || pipe->poll_usage)
595 		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
596 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
597 	if (wake_next_writer)
598 		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
599 	if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
600 		int err = file_update_time(filp);
601 		if (err)
602 			ret = err;
603 		sb_end_write(file_inode(filp)->i_sb);
604 	}
605 	return ret;
606 }
607 
pipe_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)608 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
609 {
610 	struct pipe_inode_info *pipe = filp->private_data;
611 	unsigned int count, head, tail, mask;
612 
613 	switch (cmd) {
614 	case FIONREAD:
615 		__pipe_lock(pipe);
616 		count = 0;
617 		head = pipe->head;
618 		tail = pipe->tail;
619 		mask = pipe->ring_size - 1;
620 
621 		while (tail != head) {
622 			count += pipe->bufs[tail & mask].len;
623 			tail++;
624 		}
625 		__pipe_unlock(pipe);
626 
627 		return put_user(count, (int __user *)arg);
628 
629 #ifdef CONFIG_WATCH_QUEUE
630 	case IOC_WATCH_QUEUE_SET_SIZE: {
631 		int ret;
632 		__pipe_lock(pipe);
633 		ret = watch_queue_set_size(pipe, arg);
634 		__pipe_unlock(pipe);
635 		return ret;
636 	}
637 
638 	case IOC_WATCH_QUEUE_SET_FILTER:
639 		return watch_queue_set_filter(
640 			pipe, (struct watch_notification_filter __user *)arg);
641 #endif
642 
643 	default:
644 		return -ENOIOCTLCMD;
645 	}
646 }
647 
648 /* No kernel lock held - fine */
649 static __poll_t
pipe_poll(struct file * filp,poll_table * wait)650 pipe_poll(struct file *filp, poll_table *wait)
651 {
652 	__poll_t mask;
653 	struct pipe_inode_info *pipe = filp->private_data;
654 	unsigned int head, tail;
655 
656 	/* Epoll has some historical nasty semantics, this enables them */
657 	WRITE_ONCE(pipe->poll_usage, true);
658 
659 	/*
660 	 * Reading pipe state only -- no need for acquiring the semaphore.
661 	 *
662 	 * But because this is racy, the code has to add the
663 	 * entry to the poll table _first_ ..
664 	 */
665 	if (filp->f_mode & FMODE_READ)
666 		poll_wait(filp, &pipe->rd_wait, wait);
667 	if (filp->f_mode & FMODE_WRITE)
668 		poll_wait(filp, &pipe->wr_wait, wait);
669 
670 	/*
671 	 * .. and only then can you do the racy tests. That way,
672 	 * if something changes and you got it wrong, the poll
673 	 * table entry will wake you up and fix it.
674 	 */
675 	head = READ_ONCE(pipe->head);
676 	tail = READ_ONCE(pipe->tail);
677 
678 	mask = 0;
679 	if (filp->f_mode & FMODE_READ) {
680 		if (!pipe_empty(head, tail))
681 			mask |= EPOLLIN | EPOLLRDNORM;
682 		if (!pipe->writers && filp->f_version != pipe->w_counter)
683 			mask |= EPOLLHUP;
684 	}
685 
686 	if (filp->f_mode & FMODE_WRITE) {
687 		if (!pipe_full(head, tail, pipe->max_usage))
688 			mask |= EPOLLOUT | EPOLLWRNORM;
689 		/*
690 		 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
691 		 * behave exactly like pipes for poll().
692 		 */
693 		if (!pipe->readers)
694 			mask |= EPOLLERR;
695 	}
696 
697 	return mask;
698 }
699 
put_pipe_info(struct inode * inode,struct pipe_inode_info * pipe)700 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
701 {
702 	int kill = 0;
703 
704 	spin_lock(&inode->i_lock);
705 	if (!--pipe->files) {
706 		inode->i_pipe = NULL;
707 		kill = 1;
708 	}
709 	spin_unlock(&inode->i_lock);
710 
711 	if (kill)
712 		free_pipe_info(pipe);
713 }
714 
715 static int
pipe_release(struct inode * inode,struct file * file)716 pipe_release(struct inode *inode, struct file *file)
717 {
718 	struct pipe_inode_info *pipe = file->private_data;
719 
720 	__pipe_lock(pipe);
721 	if (file->f_mode & FMODE_READ)
722 		pipe->readers--;
723 	if (file->f_mode & FMODE_WRITE)
724 		pipe->writers--;
725 
726 	/* Was that the last reader or writer, but not the other side? */
727 	if (!pipe->readers != !pipe->writers) {
728 		wake_up_interruptible_all(&pipe->rd_wait);
729 		wake_up_interruptible_all(&pipe->wr_wait);
730 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
731 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
732 	}
733 	__pipe_unlock(pipe);
734 
735 	put_pipe_info(inode, pipe);
736 	return 0;
737 }
738 
739 static int
pipe_fasync(int fd,struct file * filp,int on)740 pipe_fasync(int fd, struct file *filp, int on)
741 {
742 	struct pipe_inode_info *pipe = filp->private_data;
743 	int retval = 0;
744 
745 	__pipe_lock(pipe);
746 	if (filp->f_mode & FMODE_READ)
747 		retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
748 	if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
749 		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
750 		if (retval < 0 && (filp->f_mode & FMODE_READ))
751 			/* this can happen only if on == T */
752 			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
753 	}
754 	__pipe_unlock(pipe);
755 	return retval;
756 }
757 
account_pipe_buffers(struct user_struct * user,unsigned long old,unsigned long new)758 unsigned long account_pipe_buffers(struct user_struct *user,
759 				   unsigned long old, unsigned long new)
760 {
761 	return atomic_long_add_return(new - old, &user->pipe_bufs);
762 }
763 
too_many_pipe_buffers_soft(unsigned long user_bufs)764 bool too_many_pipe_buffers_soft(unsigned long user_bufs)
765 {
766 	unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
767 
768 	return soft_limit && user_bufs > soft_limit;
769 }
770 
too_many_pipe_buffers_hard(unsigned long user_bufs)771 bool too_many_pipe_buffers_hard(unsigned long user_bufs)
772 {
773 	unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
774 
775 	return hard_limit && user_bufs > hard_limit;
776 }
777 
pipe_is_unprivileged_user(void)778 bool pipe_is_unprivileged_user(void)
779 {
780 	return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
781 }
782 
alloc_pipe_info(void)783 struct pipe_inode_info *alloc_pipe_info(void)
784 {
785 	struct pipe_inode_info *pipe;
786 	unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
787 	struct user_struct *user = get_current_user();
788 	unsigned long user_bufs;
789 	unsigned int max_size = READ_ONCE(pipe_max_size);
790 
791 	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
792 	if (pipe == NULL)
793 		goto out_free_uid;
794 
795 	if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
796 		pipe_bufs = max_size >> PAGE_SHIFT;
797 
798 	user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
799 
800 	if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
801 		user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
802 		pipe_bufs = PIPE_MIN_DEF_BUFFERS;
803 	}
804 
805 	if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
806 		goto out_revert_acct;
807 
808 	pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
809 			     GFP_KERNEL_ACCOUNT);
810 
811 	if (pipe->bufs) {
812 		init_waitqueue_head(&pipe->rd_wait);
813 		init_waitqueue_head(&pipe->wr_wait);
814 		pipe->r_counter = pipe->w_counter = 1;
815 		pipe->max_usage = pipe_bufs;
816 		pipe->ring_size = pipe_bufs;
817 		pipe->nr_accounted = pipe_bufs;
818 		pipe->user = user;
819 		mutex_init(&pipe->mutex);
820 		return pipe;
821 	}
822 
823 out_revert_acct:
824 	(void) account_pipe_buffers(user, pipe_bufs, 0);
825 	kfree(pipe);
826 out_free_uid:
827 	free_uid(user);
828 	return NULL;
829 }
830 
free_pipe_info(struct pipe_inode_info * pipe)831 void free_pipe_info(struct pipe_inode_info *pipe)
832 {
833 	unsigned int i;
834 
835 #ifdef CONFIG_WATCH_QUEUE
836 	if (pipe->watch_queue)
837 		watch_queue_clear(pipe->watch_queue);
838 #endif
839 
840 	(void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
841 	free_uid(pipe->user);
842 	for (i = 0; i < pipe->ring_size; i++) {
843 		struct pipe_buffer *buf = pipe->bufs + i;
844 		if (buf->ops)
845 			pipe_buf_release(pipe, buf);
846 	}
847 #ifdef CONFIG_WATCH_QUEUE
848 	if (pipe->watch_queue)
849 		put_watch_queue(pipe->watch_queue);
850 #endif
851 	if (pipe->tmp_page)
852 		__free_page(pipe->tmp_page);
853 	kfree(pipe->bufs);
854 	kfree(pipe);
855 }
856 
857 static struct vfsmount *pipe_mnt __read_mostly;
858 
859 /*
860  * pipefs_dname() is called from d_path().
861  */
pipefs_dname(struct dentry * dentry,char * buffer,int buflen)862 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
863 {
864 	return dynamic_dname(buffer, buflen, "pipe:[%lu]",
865 				d_inode(dentry)->i_ino);
866 }
867 
868 static const struct dentry_operations pipefs_dentry_operations = {
869 	.d_dname	= pipefs_dname,
870 };
871 
get_pipe_inode(void)872 static struct inode * get_pipe_inode(void)
873 {
874 	struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
875 	struct pipe_inode_info *pipe;
876 
877 	if (!inode)
878 		goto fail_inode;
879 
880 	inode->i_ino = get_next_ino();
881 
882 	pipe = alloc_pipe_info();
883 	if (!pipe)
884 		goto fail_iput;
885 
886 	inode->i_pipe = pipe;
887 	pipe->files = 2;
888 	pipe->readers = pipe->writers = 1;
889 	inode->i_fop = &pipefifo_fops;
890 
891 	/*
892 	 * Mark the inode dirty from the very beginning,
893 	 * that way it will never be moved to the dirty
894 	 * list because "mark_inode_dirty()" will think
895 	 * that it already _is_ on the dirty list.
896 	 */
897 	inode->i_state = I_DIRTY;
898 	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
899 	inode->i_uid = current_fsuid();
900 	inode->i_gid = current_fsgid();
901 	inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
902 
903 	return inode;
904 
905 fail_iput:
906 	iput(inode);
907 
908 fail_inode:
909 	return NULL;
910 }
911 
create_pipe_files(struct file ** res,int flags)912 int create_pipe_files(struct file **res, int flags)
913 {
914 	struct inode *inode = get_pipe_inode();
915 	struct file *f;
916 	int error;
917 
918 	if (!inode)
919 		return -ENFILE;
920 
921 	if (flags & O_NOTIFICATION_PIPE) {
922 		error = watch_queue_init(inode->i_pipe);
923 		if (error) {
924 			free_pipe_info(inode->i_pipe);
925 			iput(inode);
926 			return error;
927 		}
928 	}
929 
930 	f = alloc_file_pseudo(inode, pipe_mnt, "",
931 				O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
932 				&pipefifo_fops);
933 	if (IS_ERR(f)) {
934 		free_pipe_info(inode->i_pipe);
935 		iput(inode);
936 		return PTR_ERR(f);
937 	}
938 
939 	f->private_data = inode->i_pipe;
940 
941 	res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
942 				  &pipefifo_fops);
943 	if (IS_ERR(res[0])) {
944 		put_pipe_info(inode, inode->i_pipe);
945 		fput(f);
946 		return PTR_ERR(res[0]);
947 	}
948 	res[0]->private_data = inode->i_pipe;
949 	res[1] = f;
950 	stream_open(inode, res[0]);
951 	stream_open(inode, res[1]);
952 	return 0;
953 }
954 
__do_pipe_flags(int * fd,struct file ** files,int flags)955 static int __do_pipe_flags(int *fd, struct file **files, int flags)
956 {
957 	int error;
958 	int fdw, fdr;
959 
960 	if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
961 		return -EINVAL;
962 
963 	error = create_pipe_files(files, flags);
964 	if (error)
965 		return error;
966 
967 	error = get_unused_fd_flags(flags);
968 	if (error < 0)
969 		goto err_read_pipe;
970 	fdr = error;
971 
972 	error = get_unused_fd_flags(flags);
973 	if (error < 0)
974 		goto err_fdr;
975 	fdw = error;
976 
977 	audit_fd_pair(fdr, fdw);
978 	fd[0] = fdr;
979 	fd[1] = fdw;
980 	/* pipe groks IOCB_NOWAIT */
981 	files[0]->f_mode |= FMODE_NOWAIT;
982 	files[1]->f_mode |= FMODE_NOWAIT;
983 	return 0;
984 
985  err_fdr:
986 	put_unused_fd(fdr);
987  err_read_pipe:
988 	fput(files[0]);
989 	fput(files[1]);
990 	return error;
991 }
992 
do_pipe_flags(int * fd,int flags)993 int do_pipe_flags(int *fd, int flags)
994 {
995 	struct file *files[2];
996 	int error = __do_pipe_flags(fd, files, flags);
997 	if (!error) {
998 		fd_install(fd[0], files[0]);
999 		fd_install(fd[1], files[1]);
1000 	}
1001 	return error;
1002 }
1003 
1004 /*
1005  * sys_pipe() is the normal C calling standard for creating
1006  * a pipe. It's not the way Unix traditionally does this, though.
1007  */
do_pipe2(int __user * fildes,int flags)1008 static int do_pipe2(int __user *fildes, int flags)
1009 {
1010 	struct file *files[2];
1011 	int fd[2];
1012 	int error;
1013 
1014 	error = __do_pipe_flags(fd, files, flags);
1015 	if (!error) {
1016 		if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1017 			fput(files[0]);
1018 			fput(files[1]);
1019 			put_unused_fd(fd[0]);
1020 			put_unused_fd(fd[1]);
1021 			error = -EFAULT;
1022 		} else {
1023 			fd_install(fd[0], files[0]);
1024 			fd_install(fd[1], files[1]);
1025 		}
1026 	}
1027 	return error;
1028 }
1029 
SYSCALL_DEFINE2(pipe2,int __user *,fildes,int,flags)1030 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1031 {
1032 	return do_pipe2(fildes, flags);
1033 }
1034 
SYSCALL_DEFINE1(pipe,int __user *,fildes)1035 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1036 {
1037 	return do_pipe2(fildes, 0);
1038 }
1039 
1040 /*
1041  * This is the stupid "wait for pipe to be readable or writable"
1042  * model.
1043  *
1044  * See pipe_read/write() for the proper kind of exclusive wait,
1045  * but that requires that we wake up any other readers/writers
1046  * if we then do not end up reading everything (ie the whole
1047  * "wake_next_reader/writer" logic in pipe_read/write()).
1048  */
pipe_wait_readable(struct pipe_inode_info * pipe)1049 void pipe_wait_readable(struct pipe_inode_info *pipe)
1050 {
1051 	pipe_unlock(pipe);
1052 	wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1053 	pipe_lock(pipe);
1054 }
1055 
pipe_wait_writable(struct pipe_inode_info * pipe)1056 void pipe_wait_writable(struct pipe_inode_info *pipe)
1057 {
1058 	pipe_unlock(pipe);
1059 	wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1060 	pipe_lock(pipe);
1061 }
1062 
1063 /*
1064  * This depends on both the wait (here) and the wakeup (wake_up_partner)
1065  * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1066  * race with the count check and waitqueue prep.
1067  *
1068  * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1069  * then check the condition you're waiting for, and only then sleep. But
1070  * because of the pipe lock, we can check the condition before being on
1071  * the wait queue.
1072  *
1073  * We use the 'rd_wait' waitqueue for pipe partner waiting.
1074  */
wait_for_partner(struct pipe_inode_info * pipe,unsigned int * cnt)1075 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1076 {
1077 	DEFINE_WAIT(rdwait);
1078 	int cur = *cnt;
1079 
1080 	while (cur == *cnt) {
1081 		prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1082 		pipe_unlock(pipe);
1083 		schedule();
1084 		finish_wait(&pipe->rd_wait, &rdwait);
1085 		pipe_lock(pipe);
1086 		if (signal_pending(current))
1087 			break;
1088 	}
1089 	return cur == *cnt ? -ERESTARTSYS : 0;
1090 }
1091 
wake_up_partner(struct pipe_inode_info * pipe)1092 static void wake_up_partner(struct pipe_inode_info *pipe)
1093 {
1094 	wake_up_interruptible_all(&pipe->rd_wait);
1095 }
1096 
fifo_open(struct inode * inode,struct file * filp)1097 static int fifo_open(struct inode *inode, struct file *filp)
1098 {
1099 	struct pipe_inode_info *pipe;
1100 	bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1101 	int ret;
1102 
1103 	filp->f_version = 0;
1104 
1105 	spin_lock(&inode->i_lock);
1106 	if (inode->i_pipe) {
1107 		pipe = inode->i_pipe;
1108 		pipe->files++;
1109 		spin_unlock(&inode->i_lock);
1110 	} else {
1111 		spin_unlock(&inode->i_lock);
1112 		pipe = alloc_pipe_info();
1113 		if (!pipe)
1114 			return -ENOMEM;
1115 		pipe->files = 1;
1116 		spin_lock(&inode->i_lock);
1117 		if (unlikely(inode->i_pipe)) {
1118 			inode->i_pipe->files++;
1119 			spin_unlock(&inode->i_lock);
1120 			free_pipe_info(pipe);
1121 			pipe = inode->i_pipe;
1122 		} else {
1123 			inode->i_pipe = pipe;
1124 			spin_unlock(&inode->i_lock);
1125 		}
1126 	}
1127 	filp->private_data = pipe;
1128 	/* OK, we have a pipe and it's pinned down */
1129 
1130 	__pipe_lock(pipe);
1131 
1132 	/* We can only do regular read/write on fifos */
1133 	stream_open(inode, filp);
1134 
1135 	switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1136 	case FMODE_READ:
1137 	/*
1138 	 *  O_RDONLY
1139 	 *  POSIX.1 says that O_NONBLOCK means return with the FIFO
1140 	 *  opened, even when there is no process writing the FIFO.
1141 	 */
1142 		pipe->r_counter++;
1143 		if (pipe->readers++ == 0)
1144 			wake_up_partner(pipe);
1145 
1146 		if (!is_pipe && !pipe->writers) {
1147 			if ((filp->f_flags & O_NONBLOCK)) {
1148 				/* suppress EPOLLHUP until we have
1149 				 * seen a writer */
1150 				filp->f_version = pipe->w_counter;
1151 			} else {
1152 				if (wait_for_partner(pipe, &pipe->w_counter))
1153 					goto err_rd;
1154 			}
1155 		}
1156 		break;
1157 
1158 	case FMODE_WRITE:
1159 	/*
1160 	 *  O_WRONLY
1161 	 *  POSIX.1 says that O_NONBLOCK means return -1 with
1162 	 *  errno=ENXIO when there is no process reading the FIFO.
1163 	 */
1164 		ret = -ENXIO;
1165 		if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1166 			goto err;
1167 
1168 		pipe->w_counter++;
1169 		if (!pipe->writers++)
1170 			wake_up_partner(pipe);
1171 
1172 		if (!is_pipe && !pipe->readers) {
1173 			if (wait_for_partner(pipe, &pipe->r_counter))
1174 				goto err_wr;
1175 		}
1176 		break;
1177 
1178 	case FMODE_READ | FMODE_WRITE:
1179 	/*
1180 	 *  O_RDWR
1181 	 *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1182 	 *  This implementation will NEVER block on a O_RDWR open, since
1183 	 *  the process can at least talk to itself.
1184 	 */
1185 
1186 		pipe->readers++;
1187 		pipe->writers++;
1188 		pipe->r_counter++;
1189 		pipe->w_counter++;
1190 		if (pipe->readers == 1 || pipe->writers == 1)
1191 			wake_up_partner(pipe);
1192 		break;
1193 
1194 	default:
1195 		ret = -EINVAL;
1196 		goto err;
1197 	}
1198 
1199 	/* Ok! */
1200 	__pipe_unlock(pipe);
1201 	return 0;
1202 
1203 err_rd:
1204 	if (!--pipe->readers)
1205 		wake_up_interruptible(&pipe->wr_wait);
1206 	ret = -ERESTARTSYS;
1207 	goto err;
1208 
1209 err_wr:
1210 	if (!--pipe->writers)
1211 		wake_up_interruptible_all(&pipe->rd_wait);
1212 	ret = -ERESTARTSYS;
1213 	goto err;
1214 
1215 err:
1216 	__pipe_unlock(pipe);
1217 
1218 	put_pipe_info(inode, pipe);
1219 	return ret;
1220 }
1221 
1222 const struct file_operations pipefifo_fops = {
1223 	.open		= fifo_open,
1224 	.llseek		= no_llseek,
1225 	.read_iter	= pipe_read,
1226 	.write_iter	= pipe_write,
1227 	.poll		= pipe_poll,
1228 	.unlocked_ioctl	= pipe_ioctl,
1229 	.release	= pipe_release,
1230 	.fasync		= pipe_fasync,
1231 	.splice_write	= iter_file_splice_write,
1232 };
1233 
1234 /*
1235  * Currently we rely on the pipe array holding a power-of-2 number
1236  * of pages. Returns 0 on error.
1237  */
round_pipe_size(unsigned int size)1238 unsigned int round_pipe_size(unsigned int size)
1239 {
1240 	if (size > (1U << 31))
1241 		return 0;
1242 
1243 	/* Minimum pipe size, as required by POSIX */
1244 	if (size < PAGE_SIZE)
1245 		return PAGE_SIZE;
1246 
1247 	return roundup_pow_of_two(size);
1248 }
1249 
1250 /*
1251  * Resize the pipe ring to a number of slots.
1252  *
1253  * Note the pipe can be reduced in capacity, but only if the current
1254  * occupancy doesn't exceed nr_slots; if it does, EBUSY will be
1255  * returned instead.
1256  */
pipe_resize_ring(struct pipe_inode_info * pipe,unsigned int nr_slots)1257 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1258 {
1259 	struct pipe_buffer *bufs;
1260 	unsigned int head, tail, mask, n;
1261 
1262 	bufs = kcalloc(nr_slots, sizeof(*bufs),
1263 		       GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1264 	if (unlikely(!bufs))
1265 		return -ENOMEM;
1266 
1267 	spin_lock_irq(&pipe->rd_wait.lock);
1268 	mask = pipe->ring_size - 1;
1269 	head = pipe->head;
1270 	tail = pipe->tail;
1271 
1272 	n = pipe_occupancy(head, tail);
1273 	if (nr_slots < n) {
1274 		spin_unlock_irq(&pipe->rd_wait.lock);
1275 		kfree(bufs);
1276 		return -EBUSY;
1277 	}
1278 
1279 	/*
1280 	 * The pipe array wraps around, so just start the new one at zero
1281 	 * and adjust the indices.
1282 	 */
1283 	if (n > 0) {
1284 		unsigned int h = head & mask;
1285 		unsigned int t = tail & mask;
1286 		if (h > t) {
1287 			memcpy(bufs, pipe->bufs + t,
1288 			       n * sizeof(struct pipe_buffer));
1289 		} else {
1290 			unsigned int tsize = pipe->ring_size - t;
1291 			if (h > 0)
1292 				memcpy(bufs + tsize, pipe->bufs,
1293 				       h * sizeof(struct pipe_buffer));
1294 			memcpy(bufs, pipe->bufs + t,
1295 			       tsize * sizeof(struct pipe_buffer));
1296 		}
1297 	}
1298 
1299 	head = n;
1300 	tail = 0;
1301 
1302 	kfree(pipe->bufs);
1303 	pipe->bufs = bufs;
1304 	pipe->ring_size = nr_slots;
1305 	if (pipe->max_usage > nr_slots)
1306 		pipe->max_usage = nr_slots;
1307 	pipe->tail = tail;
1308 	pipe->head = head;
1309 
1310 	spin_unlock_irq(&pipe->rd_wait.lock);
1311 
1312 	/* This might have made more room for writers */
1313 	wake_up_interruptible(&pipe->wr_wait);
1314 	return 0;
1315 }
1316 
1317 /*
1318  * Allocate a new array of pipe buffers and copy the info over. Returns the
1319  * pipe size if successful, or return -ERROR on error.
1320  */
pipe_set_size(struct pipe_inode_info * pipe,unsigned int arg)1321 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned int arg)
1322 {
1323 	unsigned long user_bufs;
1324 	unsigned int nr_slots, size;
1325 	long ret = 0;
1326 
1327 #ifdef CONFIG_WATCH_QUEUE
1328 	if (pipe->watch_queue)
1329 		return -EBUSY;
1330 #endif
1331 
1332 	size = round_pipe_size(arg);
1333 	nr_slots = size >> PAGE_SHIFT;
1334 
1335 	if (!nr_slots)
1336 		return -EINVAL;
1337 
1338 	/*
1339 	 * If trying to increase the pipe capacity, check that an
1340 	 * unprivileged user is not trying to exceed various limits
1341 	 * (soft limit check here, hard limit check just below).
1342 	 * Decreasing the pipe capacity is always permitted, even
1343 	 * if the user is currently over a limit.
1344 	 */
1345 	if (nr_slots > pipe->max_usage &&
1346 			size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1347 		return -EPERM;
1348 
1349 	user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1350 
1351 	if (nr_slots > pipe->max_usage &&
1352 			(too_many_pipe_buffers_hard(user_bufs) ||
1353 			 too_many_pipe_buffers_soft(user_bufs)) &&
1354 			pipe_is_unprivileged_user()) {
1355 		ret = -EPERM;
1356 		goto out_revert_acct;
1357 	}
1358 
1359 	ret = pipe_resize_ring(pipe, nr_slots);
1360 	if (ret < 0)
1361 		goto out_revert_acct;
1362 
1363 	pipe->max_usage = nr_slots;
1364 	pipe->nr_accounted = nr_slots;
1365 	return pipe->max_usage * PAGE_SIZE;
1366 
1367 out_revert_acct:
1368 	(void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1369 	return ret;
1370 }
1371 
1372 /*
1373  * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
1374  * not enough to verify that this is a pipe.
1375  */
get_pipe_info(struct file * file,bool for_splice)1376 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1377 {
1378 	struct pipe_inode_info *pipe = file->private_data;
1379 
1380 	if (file->f_op != &pipefifo_fops || !pipe)
1381 		return NULL;
1382 #ifdef CONFIG_WATCH_QUEUE
1383 	if (for_splice && pipe->watch_queue)
1384 		return NULL;
1385 #endif
1386 	return pipe;
1387 }
1388 
pipe_fcntl(struct file * file,unsigned int cmd,unsigned int arg)1389 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned int arg)
1390 {
1391 	struct pipe_inode_info *pipe;
1392 	long ret;
1393 
1394 	pipe = get_pipe_info(file, false);
1395 	if (!pipe)
1396 		return -EBADF;
1397 
1398 	__pipe_lock(pipe);
1399 
1400 	switch (cmd) {
1401 	case F_SETPIPE_SZ:
1402 		ret = pipe_set_size(pipe, arg);
1403 		break;
1404 	case F_GETPIPE_SZ:
1405 		ret = pipe->max_usage * PAGE_SIZE;
1406 		break;
1407 	default:
1408 		ret = -EINVAL;
1409 		break;
1410 	}
1411 
1412 	__pipe_unlock(pipe);
1413 	return ret;
1414 }
1415 
1416 static const struct super_operations pipefs_ops = {
1417 	.destroy_inode = free_inode_nonrcu,
1418 	.statfs = simple_statfs,
1419 };
1420 
1421 /*
1422  * pipefs should _never_ be mounted by userland - too much of security hassle,
1423  * no real gain from having the whole whorehouse mounted. So we don't need
1424  * any operations on the root directory. However, we need a non-trivial
1425  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1426  */
1427 
pipefs_init_fs_context(struct fs_context * fc)1428 static int pipefs_init_fs_context(struct fs_context *fc)
1429 {
1430 	struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1431 	if (!ctx)
1432 		return -ENOMEM;
1433 	ctx->ops = &pipefs_ops;
1434 	ctx->dops = &pipefs_dentry_operations;
1435 	return 0;
1436 }
1437 
1438 static struct file_system_type pipe_fs_type = {
1439 	.name		= "pipefs",
1440 	.init_fs_context = pipefs_init_fs_context,
1441 	.kill_sb	= kill_anon_super,
1442 };
1443 
1444 #ifdef CONFIG_SYSCTL
do_proc_dopipe_max_size_conv(unsigned long * lvalp,unsigned int * valp,int write,void * data)1445 static int do_proc_dopipe_max_size_conv(unsigned long *lvalp,
1446 					unsigned int *valp,
1447 					int write, void *data)
1448 {
1449 	if (write) {
1450 		unsigned int val;
1451 
1452 		val = round_pipe_size(*lvalp);
1453 		if (val == 0)
1454 			return -EINVAL;
1455 
1456 		*valp = val;
1457 	} else {
1458 		unsigned int val = *valp;
1459 		*lvalp = (unsigned long) val;
1460 	}
1461 
1462 	return 0;
1463 }
1464 
proc_dopipe_max_size(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1465 static int proc_dopipe_max_size(struct ctl_table *table, int write,
1466 				void *buffer, size_t *lenp, loff_t *ppos)
1467 {
1468 	return do_proc_douintvec(table, write, buffer, lenp, ppos,
1469 				 do_proc_dopipe_max_size_conv, NULL);
1470 }
1471 
1472 static struct ctl_table fs_pipe_sysctls[] = {
1473 	{
1474 		.procname	= "pipe-max-size",
1475 		.data		= &pipe_max_size,
1476 		.maxlen		= sizeof(pipe_max_size),
1477 		.mode		= 0644,
1478 		.proc_handler	= proc_dopipe_max_size,
1479 	},
1480 	{
1481 		.procname	= "pipe-user-pages-hard",
1482 		.data		= &pipe_user_pages_hard,
1483 		.maxlen		= sizeof(pipe_user_pages_hard),
1484 		.mode		= 0644,
1485 		.proc_handler	= proc_doulongvec_minmax,
1486 	},
1487 	{
1488 		.procname	= "pipe-user-pages-soft",
1489 		.data		= &pipe_user_pages_soft,
1490 		.maxlen		= sizeof(pipe_user_pages_soft),
1491 		.mode		= 0644,
1492 		.proc_handler	= proc_doulongvec_minmax,
1493 	},
1494 	{ }
1495 };
1496 #endif
1497 
init_pipe_fs(void)1498 static int __init init_pipe_fs(void)
1499 {
1500 	int err = register_filesystem(&pipe_fs_type);
1501 
1502 	if (!err) {
1503 		pipe_mnt = kern_mount(&pipe_fs_type);
1504 		if (IS_ERR(pipe_mnt)) {
1505 			err = PTR_ERR(pipe_mnt);
1506 			unregister_filesystem(&pipe_fs_type);
1507 		}
1508 	}
1509 #ifdef CONFIG_SYSCTL
1510 	register_sysctl_init("fs", fs_pipe_sysctls);
1511 #endif
1512 	return err;
1513 }
1514 
1515 fs_initcall(init_pipe_fs);
1516