1 /* tnum: tracked (or tristate) numbers
2 *
3 * A tnum tracks knowledge about the bits of a value. Each bit can be either
4 * known (0 or 1), or unknown (x). Arithmetic operations on tnums will
5 * propagate the unknown bits such that the tnum result represents all the
6 * possible results for possible values of the operands.
7 */
8 #include <linux/kernel.h>
9 #include <linux/tnum.h>
10
11 #define TNUM(_v, _m) (struct tnum){.value = _v, .mask = _m}
12 /* A completely unknown value */
13 const struct tnum tnum_unknown = { .value = 0, .mask = -1 };
14
tnum_const(u64 value)15 struct tnum tnum_const(u64 value)
16 {
17 return TNUM(value, 0);
18 }
19
tnum_range(u64 min,u64 max)20 struct tnum tnum_range(u64 min, u64 max)
21 {
22 u64 chi = min ^ max, delta;
23 u8 bits = fls64(chi);
24
25 /* special case, needed because 1ULL << 64 is undefined */
26 if (bits > 63)
27 return tnum_unknown;
28 /* e.g. if chi = 4, bits = 3, delta = (1<<3) - 1 = 7.
29 * if chi = 0, bits = 0, delta = (1<<0) - 1 = 0, so we return
30 * constant min (since min == max).
31 */
32 delta = (1ULL << bits) - 1;
33 return TNUM(min & ~delta, delta);
34 }
35
tnum_lshift(struct tnum a,u8 shift)36 struct tnum tnum_lshift(struct tnum a, u8 shift)
37 {
38 return TNUM(a.value << shift, a.mask << shift);
39 }
40
tnum_rshift(struct tnum a,u8 shift)41 struct tnum tnum_rshift(struct tnum a, u8 shift)
42 {
43 return TNUM(a.value >> shift, a.mask >> shift);
44 }
45
tnum_arshift(struct tnum a,u8 min_shift)46 struct tnum tnum_arshift(struct tnum a, u8 min_shift)
47 {
48 /* if a.value is negative, arithmetic shifting by minimum shift
49 * will have larger negative offset compared to more shifting.
50 * If a.value is nonnegative, arithmetic shifting by minimum shift
51 * will have larger positive offset compare to more shifting.
52 */
53 return TNUM((s64)a.value >> min_shift, (s64)a.mask >> min_shift);
54 }
55
tnum_add(struct tnum a,struct tnum b)56 struct tnum tnum_add(struct tnum a, struct tnum b)
57 {
58 u64 sm, sv, sigma, chi, mu;
59
60 sm = a.mask + b.mask;
61 sv = a.value + b.value;
62 sigma = sm + sv;
63 chi = sigma ^ sv;
64 mu = chi | a.mask | b.mask;
65 return TNUM(sv & ~mu, mu);
66 }
67
tnum_sub(struct tnum a,struct tnum b)68 struct tnum tnum_sub(struct tnum a, struct tnum b)
69 {
70 u64 dv, alpha, beta, chi, mu;
71
72 dv = a.value - b.value;
73 alpha = dv + a.mask;
74 beta = dv - b.mask;
75 chi = alpha ^ beta;
76 mu = chi | a.mask | b.mask;
77 return TNUM(dv & ~mu, mu);
78 }
79
tnum_and(struct tnum a,struct tnum b)80 struct tnum tnum_and(struct tnum a, struct tnum b)
81 {
82 u64 alpha, beta, v;
83
84 alpha = a.value | a.mask;
85 beta = b.value | b.mask;
86 v = a.value & b.value;
87 return TNUM(v, alpha & beta & ~v);
88 }
89
tnum_or(struct tnum a,struct tnum b)90 struct tnum tnum_or(struct tnum a, struct tnum b)
91 {
92 u64 v, mu;
93
94 v = a.value | b.value;
95 mu = a.mask | b.mask;
96 return TNUM(v, mu & ~v);
97 }
98
tnum_xor(struct tnum a,struct tnum b)99 struct tnum tnum_xor(struct tnum a, struct tnum b)
100 {
101 u64 v, mu;
102
103 v = a.value ^ b.value;
104 mu = a.mask | b.mask;
105 return TNUM(v & ~mu, mu);
106 }
107
108 /* half-multiply add: acc += (unknown * mask * value).
109 * An intermediate step in the multiply algorithm.
110 */
hma(struct tnum acc,u64 value,u64 mask)111 static struct tnum hma(struct tnum acc, u64 value, u64 mask)
112 {
113 while (mask) {
114 if (mask & 1)
115 acc = tnum_add(acc, TNUM(0, value));
116 mask >>= 1;
117 value <<= 1;
118 }
119 return acc;
120 }
121
tnum_mul(struct tnum a,struct tnum b)122 struct tnum tnum_mul(struct tnum a, struct tnum b)
123 {
124 struct tnum acc;
125 u64 pi;
126
127 pi = a.value * b.value;
128 acc = hma(TNUM(pi, 0), a.mask, b.mask | b.value);
129 return hma(acc, b.mask, a.value);
130 }
131
132 /* Note that if a and b disagree - i.e. one has a 'known 1' where the other has
133 * a 'known 0' - this will return a 'known 1' for that bit.
134 */
tnum_intersect(struct tnum a,struct tnum b)135 struct tnum tnum_intersect(struct tnum a, struct tnum b)
136 {
137 u64 v, mu;
138
139 v = a.value | b.value;
140 mu = a.mask & b.mask;
141 return TNUM(v & ~mu, mu);
142 }
143
tnum_cast(struct tnum a,u8 size)144 struct tnum tnum_cast(struct tnum a, u8 size)
145 {
146 a.value &= (1ULL << (size * 8)) - 1;
147 a.mask &= (1ULL << (size * 8)) - 1;
148 return a;
149 }
150
tnum_is_aligned(struct tnum a,u64 size)151 bool tnum_is_aligned(struct tnum a, u64 size)
152 {
153 if (!size)
154 return true;
155 return !((a.value | a.mask) & (size - 1));
156 }
157
tnum_in(struct tnum a,struct tnum b)158 bool tnum_in(struct tnum a, struct tnum b)
159 {
160 if (b.mask & ~a.mask)
161 return false;
162 b.value &= ~a.mask;
163 return a.value == b.value;
164 }
165
tnum_strn(char * str,size_t size,struct tnum a)166 int tnum_strn(char *str, size_t size, struct tnum a)
167 {
168 return snprintf(str, size, "(%#llx; %#llx)", a.value, a.mask);
169 }
170 EXPORT_SYMBOL_GPL(tnum_strn);
171
tnum_sbin(char * str,size_t size,struct tnum a)172 int tnum_sbin(char *str, size_t size, struct tnum a)
173 {
174 size_t n;
175
176 for (n = 64; n; n--) {
177 if (n < size) {
178 if (a.mask & 1)
179 str[n - 1] = 'x';
180 else if (a.value & 1)
181 str[n - 1] = '1';
182 else
183 str[n - 1] = '0';
184 }
185 a.mask >>= 1;
186 a.value >>= 1;
187 }
188 str[min(size - 1, (size_t)64)] = 0;
189 return 64;
190 }
191