1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 * Internal non-public definitions that provide either classic
5 * or preemptible semantics.
6 *
7 * Copyright Red Hat, 2009
8 * Copyright IBM Corporation, 2009
9 *
10 * Author: Ingo Molnar <mingo@elte.hu>
11 * Paul E. McKenney <paulmck@linux.ibm.com>
12 */
13
14 #include "../locking/rtmutex_common.h"
15
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
19 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
20
21 /*
22 * Check the RCU kernel configuration parameters and print informative
23 * messages about anything out of the ordinary.
24 */
rcu_bootup_announce_oddness(void)25 static void __init rcu_bootup_announce_oddness(void)
26 {
27 if (IS_ENABLED(CONFIG_RCU_TRACE))
28 pr_info("\tRCU event tracing is enabled.\n");
29 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
30 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
31 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
32 RCU_FANOUT);
33 if (rcu_fanout_exact)
34 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
35 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
36 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
37 if (IS_ENABLED(CONFIG_PROVE_RCU))
38 pr_info("\tRCU lockdep checking is enabled.\n");
39 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
40 pr_info("\tRCU strict (and thus non-scalable) grace periods enabled.\n");
41 if (RCU_NUM_LVLS >= 4)
42 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
43 if (RCU_FANOUT_LEAF != 16)
44 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
45 RCU_FANOUT_LEAF);
46 if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
47 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
48 rcu_fanout_leaf);
49 if (nr_cpu_ids != NR_CPUS)
50 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
51 #ifdef CONFIG_RCU_BOOST
52 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
53 kthread_prio, CONFIG_RCU_BOOST_DELAY);
54 #endif
55 if (blimit != DEFAULT_RCU_BLIMIT)
56 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
57 if (qhimark != DEFAULT_RCU_QHIMARK)
58 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
59 if (qlowmark != DEFAULT_RCU_QLOMARK)
60 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
61 if (qovld != DEFAULT_RCU_QOVLD)
62 pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
63 if (jiffies_till_first_fqs != ULONG_MAX)
64 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
65 if (jiffies_till_next_fqs != ULONG_MAX)
66 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
67 if (jiffies_till_sched_qs != ULONG_MAX)
68 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
69 if (rcu_kick_kthreads)
70 pr_info("\tKick kthreads if too-long grace period.\n");
71 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
72 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
73 if (gp_preinit_delay)
74 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
75 if (gp_init_delay)
76 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
77 if (gp_cleanup_delay)
78 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
79 if (!use_softirq)
80 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
81 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
82 pr_info("\tRCU debug extended QS entry/exit.\n");
83 rcupdate_announce_bootup_oddness();
84 }
85
86 #ifdef CONFIG_PREEMPT_RCU
87
88 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
89 static void rcu_read_unlock_special(struct task_struct *t);
90
91 /*
92 * Tell them what RCU they are running.
93 */
rcu_bootup_announce(void)94 static void __init rcu_bootup_announce(void)
95 {
96 pr_info("Preemptible hierarchical RCU implementation.\n");
97 rcu_bootup_announce_oddness();
98 }
99
100 /* Flags for rcu_preempt_ctxt_queue() decision table. */
101 #define RCU_GP_TASKS 0x8
102 #define RCU_EXP_TASKS 0x4
103 #define RCU_GP_BLKD 0x2
104 #define RCU_EXP_BLKD 0x1
105
106 /*
107 * Queues a task preempted within an RCU-preempt read-side critical
108 * section into the appropriate location within the ->blkd_tasks list,
109 * depending on the states of any ongoing normal and expedited grace
110 * periods. The ->gp_tasks pointer indicates which element the normal
111 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
112 * indicates which element the expedited grace period is waiting on (again,
113 * NULL if none). If a grace period is waiting on a given element in the
114 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
115 * adding a task to the tail of the list blocks any grace period that is
116 * already waiting on one of the elements. In contrast, adding a task
117 * to the head of the list won't block any grace period that is already
118 * waiting on one of the elements.
119 *
120 * This queuing is imprecise, and can sometimes make an ongoing grace
121 * period wait for a task that is not strictly speaking blocking it.
122 * Given the choice, we needlessly block a normal grace period rather than
123 * blocking an expedited grace period.
124 *
125 * Note that an endless sequence of expedited grace periods still cannot
126 * indefinitely postpone a normal grace period. Eventually, all of the
127 * fixed number of preempted tasks blocking the normal grace period that are
128 * not also blocking the expedited grace period will resume and complete
129 * their RCU read-side critical sections. At that point, the ->gp_tasks
130 * pointer will equal the ->exp_tasks pointer, at which point the end of
131 * the corresponding expedited grace period will also be the end of the
132 * normal grace period.
133 */
rcu_preempt_ctxt_queue(struct rcu_node * rnp,struct rcu_data * rdp)134 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
135 __releases(rnp->lock) /* But leaves rrupts disabled. */
136 {
137 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
138 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
139 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
140 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
141 struct task_struct *t = current;
142
143 raw_lockdep_assert_held_rcu_node(rnp);
144 WARN_ON_ONCE(rdp->mynode != rnp);
145 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
146 /* RCU better not be waiting on newly onlined CPUs! */
147 WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
148 rdp->grpmask);
149
150 /*
151 * Decide where to queue the newly blocked task. In theory,
152 * this could be an if-statement. In practice, when I tried
153 * that, it was quite messy.
154 */
155 switch (blkd_state) {
156 case 0:
157 case RCU_EXP_TASKS:
158 case RCU_EXP_TASKS + RCU_GP_BLKD:
159 case RCU_GP_TASKS:
160 case RCU_GP_TASKS + RCU_EXP_TASKS:
161
162 /*
163 * Blocking neither GP, or first task blocking the normal
164 * GP but not blocking the already-waiting expedited GP.
165 * Queue at the head of the list to avoid unnecessarily
166 * blocking the already-waiting GPs.
167 */
168 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
169 break;
170
171 case RCU_EXP_BLKD:
172 case RCU_GP_BLKD:
173 case RCU_GP_BLKD + RCU_EXP_BLKD:
174 case RCU_GP_TASKS + RCU_EXP_BLKD:
175 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
176 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
177
178 /*
179 * First task arriving that blocks either GP, or first task
180 * arriving that blocks the expedited GP (with the normal
181 * GP already waiting), or a task arriving that blocks
182 * both GPs with both GPs already waiting. Queue at the
183 * tail of the list to avoid any GP waiting on any of the
184 * already queued tasks that are not blocking it.
185 */
186 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
187 break;
188
189 case RCU_EXP_TASKS + RCU_EXP_BLKD:
190 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
191 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
192
193 /*
194 * Second or subsequent task blocking the expedited GP.
195 * The task either does not block the normal GP, or is the
196 * first task blocking the normal GP. Queue just after
197 * the first task blocking the expedited GP.
198 */
199 list_add(&t->rcu_node_entry, rnp->exp_tasks);
200 break;
201
202 case RCU_GP_TASKS + RCU_GP_BLKD:
203 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
204
205 /*
206 * Second or subsequent task blocking the normal GP.
207 * The task does not block the expedited GP. Queue just
208 * after the first task blocking the normal GP.
209 */
210 list_add(&t->rcu_node_entry, rnp->gp_tasks);
211 break;
212
213 default:
214
215 /* Yet another exercise in excessive paranoia. */
216 WARN_ON_ONCE(1);
217 break;
218 }
219
220 /*
221 * We have now queued the task. If it was the first one to
222 * block either grace period, update the ->gp_tasks and/or
223 * ->exp_tasks pointers, respectively, to reference the newly
224 * blocked tasks.
225 */
226 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
227 WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
228 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
229 }
230 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
231 WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry);
232 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
233 !(rnp->qsmask & rdp->grpmask));
234 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
235 !(rnp->expmask & rdp->grpmask));
236 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
237
238 /*
239 * Report the quiescent state for the expedited GP. This expedited
240 * GP should not be able to end until we report, so there should be
241 * no need to check for a subsequent expedited GP. (Though we are
242 * still in a quiescent state in any case.)
243 */
244 if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
245 rcu_report_exp_rdp(rdp);
246 else
247 WARN_ON_ONCE(rdp->exp_deferred_qs);
248 }
249
250 /*
251 * Record a preemptible-RCU quiescent state for the specified CPU.
252 * Note that this does not necessarily mean that the task currently running
253 * on the CPU is in a quiescent state: Instead, it means that the current
254 * grace period need not wait on any RCU read-side critical section that
255 * starts later on this CPU. It also means that if the current task is
256 * in an RCU read-side critical section, it has already added itself to
257 * some leaf rcu_node structure's ->blkd_tasks list. In addition to the
258 * current task, there might be any number of other tasks blocked while
259 * in an RCU read-side critical section.
260 *
261 * Callers to this function must disable preemption.
262 */
rcu_qs(void)263 static void rcu_qs(void)
264 {
265 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
266 if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
267 trace_rcu_grace_period(TPS("rcu_preempt"),
268 __this_cpu_read(rcu_data.gp_seq),
269 TPS("cpuqs"));
270 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
271 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
272 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
273 }
274 }
275
276 /*
277 * We have entered the scheduler, and the current task might soon be
278 * context-switched away from. If this task is in an RCU read-side
279 * critical section, we will no longer be able to rely on the CPU to
280 * record that fact, so we enqueue the task on the blkd_tasks list.
281 * The task will dequeue itself when it exits the outermost enclosing
282 * RCU read-side critical section. Therefore, the current grace period
283 * cannot be permitted to complete until the blkd_tasks list entries
284 * predating the current grace period drain, in other words, until
285 * rnp->gp_tasks becomes NULL.
286 *
287 * Caller must disable interrupts.
288 */
rcu_note_context_switch(bool preempt)289 void rcu_note_context_switch(bool preempt)
290 {
291 struct task_struct *t = current;
292 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
293 struct rcu_node *rnp;
294
295 trace_rcu_utilization(TPS("Start context switch"));
296 lockdep_assert_irqs_disabled();
297 WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0);
298 if (rcu_preempt_depth() > 0 &&
299 !t->rcu_read_unlock_special.b.blocked) {
300
301 /* Possibly blocking in an RCU read-side critical section. */
302 rnp = rdp->mynode;
303 raw_spin_lock_rcu_node(rnp);
304 t->rcu_read_unlock_special.b.blocked = true;
305 t->rcu_blocked_node = rnp;
306
307 /*
308 * Verify the CPU's sanity, trace the preemption, and
309 * then queue the task as required based on the states
310 * of any ongoing and expedited grace periods.
311 */
312 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
313 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
314 trace_rcu_preempt_task(rcu_state.name,
315 t->pid,
316 (rnp->qsmask & rdp->grpmask)
317 ? rnp->gp_seq
318 : rcu_seq_snap(&rnp->gp_seq));
319 rcu_preempt_ctxt_queue(rnp, rdp);
320 } else {
321 rcu_preempt_deferred_qs(t);
322 }
323
324 /*
325 * Either we were not in an RCU read-side critical section to
326 * begin with, or we have now recorded that critical section
327 * globally. Either way, we can now note a quiescent state
328 * for this CPU. Again, if we were in an RCU read-side critical
329 * section, and if that critical section was blocking the current
330 * grace period, then the fact that the task has been enqueued
331 * means that we continue to block the current grace period.
332 */
333 rcu_qs();
334 if (rdp->exp_deferred_qs)
335 rcu_report_exp_rdp(rdp);
336 rcu_tasks_qs(current, preempt);
337 trace_rcu_utilization(TPS("End context switch"));
338 }
339 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
340
341 /*
342 * Check for preempted RCU readers blocking the current grace period
343 * for the specified rcu_node structure. If the caller needs a reliable
344 * answer, it must hold the rcu_node's ->lock.
345 */
rcu_preempt_blocked_readers_cgp(struct rcu_node * rnp)346 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
347 {
348 return READ_ONCE(rnp->gp_tasks) != NULL;
349 }
350
351 /* limit value for ->rcu_read_lock_nesting. */
352 #define RCU_NEST_PMAX (INT_MAX / 2)
353
rcu_preempt_read_enter(void)354 static void rcu_preempt_read_enter(void)
355 {
356 current->rcu_read_lock_nesting++;
357 }
358
rcu_preempt_read_exit(void)359 static int rcu_preempt_read_exit(void)
360 {
361 return --current->rcu_read_lock_nesting;
362 }
363
rcu_preempt_depth_set(int val)364 static void rcu_preempt_depth_set(int val)
365 {
366 current->rcu_read_lock_nesting = val;
367 }
368
369 /*
370 * Preemptible RCU implementation for rcu_read_lock().
371 * Just increment ->rcu_read_lock_nesting, shared state will be updated
372 * if we block.
373 */
__rcu_read_lock(void)374 void __rcu_read_lock(void)
375 {
376 rcu_preempt_read_enter();
377 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
378 WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
379 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread)
380 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true);
381 barrier(); /* critical section after entry code. */
382 }
383 EXPORT_SYMBOL_GPL(__rcu_read_lock);
384
385 /*
386 * Preemptible RCU implementation for rcu_read_unlock().
387 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
388 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
389 * invoke rcu_read_unlock_special() to clean up after a context switch
390 * in an RCU read-side critical section and other special cases.
391 */
__rcu_read_unlock(void)392 void __rcu_read_unlock(void)
393 {
394 struct task_struct *t = current;
395
396 if (rcu_preempt_read_exit() == 0) {
397 barrier(); /* critical section before exit code. */
398 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
399 rcu_read_unlock_special(t);
400 }
401 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
402 int rrln = rcu_preempt_depth();
403
404 WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX);
405 }
406 }
407 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
408
409 /*
410 * Advance a ->blkd_tasks-list pointer to the next entry, instead
411 * returning NULL if at the end of the list.
412 */
rcu_next_node_entry(struct task_struct * t,struct rcu_node * rnp)413 static struct list_head *rcu_next_node_entry(struct task_struct *t,
414 struct rcu_node *rnp)
415 {
416 struct list_head *np;
417
418 np = t->rcu_node_entry.next;
419 if (np == &rnp->blkd_tasks)
420 np = NULL;
421 return np;
422 }
423
424 /*
425 * Return true if the specified rcu_node structure has tasks that were
426 * preempted within an RCU read-side critical section.
427 */
rcu_preempt_has_tasks(struct rcu_node * rnp)428 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
429 {
430 return !list_empty(&rnp->blkd_tasks);
431 }
432
433 /*
434 * Report deferred quiescent states. The deferral time can
435 * be quite short, for example, in the case of the call from
436 * rcu_read_unlock_special().
437 */
438 static void
rcu_preempt_deferred_qs_irqrestore(struct task_struct * t,unsigned long flags)439 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
440 {
441 bool empty_exp;
442 bool empty_norm;
443 bool empty_exp_now;
444 struct list_head *np;
445 bool drop_boost_mutex = false;
446 struct rcu_data *rdp;
447 struct rcu_node *rnp;
448 union rcu_special special;
449
450 /*
451 * If RCU core is waiting for this CPU to exit its critical section,
452 * report the fact that it has exited. Because irqs are disabled,
453 * t->rcu_read_unlock_special cannot change.
454 */
455 special = t->rcu_read_unlock_special;
456 rdp = this_cpu_ptr(&rcu_data);
457 if (!special.s && !rdp->exp_deferred_qs) {
458 local_irq_restore(flags);
459 return;
460 }
461 t->rcu_read_unlock_special.s = 0;
462 if (special.b.need_qs) {
463 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
464 rcu_report_qs_rdp(rdp);
465 udelay(rcu_unlock_delay);
466 } else {
467 rcu_qs();
468 }
469 }
470
471 /*
472 * Respond to a request by an expedited grace period for a
473 * quiescent state from this CPU. Note that requests from
474 * tasks are handled when removing the task from the
475 * blocked-tasks list below.
476 */
477 if (rdp->exp_deferred_qs)
478 rcu_report_exp_rdp(rdp);
479
480 /* Clean up if blocked during RCU read-side critical section. */
481 if (special.b.blocked) {
482
483 /*
484 * Remove this task from the list it blocked on. The task
485 * now remains queued on the rcu_node corresponding to the
486 * CPU it first blocked on, so there is no longer any need
487 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
488 */
489 rnp = t->rcu_blocked_node;
490 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
491 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
492 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
493 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
494 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
495 (!empty_norm || rnp->qsmask));
496 empty_exp = sync_rcu_exp_done(rnp);
497 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
498 np = rcu_next_node_entry(t, rnp);
499 list_del_init(&t->rcu_node_entry);
500 t->rcu_blocked_node = NULL;
501 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
502 rnp->gp_seq, t->pid);
503 if (&t->rcu_node_entry == rnp->gp_tasks)
504 WRITE_ONCE(rnp->gp_tasks, np);
505 if (&t->rcu_node_entry == rnp->exp_tasks)
506 WRITE_ONCE(rnp->exp_tasks, np);
507 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
508 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
509 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
510 if (&t->rcu_node_entry == rnp->boost_tasks)
511 WRITE_ONCE(rnp->boost_tasks, np);
512 }
513
514 /*
515 * If this was the last task on the current list, and if
516 * we aren't waiting on any CPUs, report the quiescent state.
517 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
518 * so we must take a snapshot of the expedited state.
519 */
520 empty_exp_now = sync_rcu_exp_done(rnp);
521 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
522 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
523 rnp->gp_seq,
524 0, rnp->qsmask,
525 rnp->level,
526 rnp->grplo,
527 rnp->grphi,
528 !!rnp->gp_tasks);
529 rcu_report_unblock_qs_rnp(rnp, flags);
530 } else {
531 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
532 }
533
534 /* Unboost if we were boosted. */
535 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
536 rt_mutex_futex_unlock(&rnp->boost_mtx);
537
538 /*
539 * If this was the last task on the expedited lists,
540 * then we need to report up the rcu_node hierarchy.
541 */
542 if (!empty_exp && empty_exp_now)
543 rcu_report_exp_rnp(rnp, true);
544 } else {
545 local_irq_restore(flags);
546 }
547 }
548
549 /*
550 * Is a deferred quiescent-state pending, and are we also not in
551 * an RCU read-side critical section? It is the caller's responsibility
552 * to ensure it is otherwise safe to report any deferred quiescent
553 * states. The reason for this is that it is safe to report a
554 * quiescent state during context switch even though preemption
555 * is disabled. This function cannot be expected to understand these
556 * nuances, so the caller must handle them.
557 */
rcu_preempt_need_deferred_qs(struct task_struct * t)558 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
559 {
560 return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
561 READ_ONCE(t->rcu_read_unlock_special.s)) &&
562 rcu_preempt_depth() == 0;
563 }
564
565 /*
566 * Report a deferred quiescent state if needed and safe to do so.
567 * As with rcu_preempt_need_deferred_qs(), "safe" involves only
568 * not being in an RCU read-side critical section. The caller must
569 * evaluate safety in terms of interrupt, softirq, and preemption
570 * disabling.
571 */
rcu_preempt_deferred_qs(struct task_struct * t)572 static void rcu_preempt_deferred_qs(struct task_struct *t)
573 {
574 unsigned long flags;
575
576 if (!rcu_preempt_need_deferred_qs(t))
577 return;
578 local_irq_save(flags);
579 rcu_preempt_deferred_qs_irqrestore(t, flags);
580 }
581
582 /*
583 * Minimal handler to give the scheduler a chance to re-evaluate.
584 */
rcu_preempt_deferred_qs_handler(struct irq_work * iwp)585 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
586 {
587 struct rcu_data *rdp;
588
589 rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
590 rdp->defer_qs_iw_pending = false;
591 }
592
593 /*
594 * Handle special cases during rcu_read_unlock(), such as needing to
595 * notify RCU core processing or task having blocked during the RCU
596 * read-side critical section.
597 */
rcu_read_unlock_special(struct task_struct * t)598 static void rcu_read_unlock_special(struct task_struct *t)
599 {
600 unsigned long flags;
601 bool preempt_bh_were_disabled =
602 !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
603 bool irqs_were_disabled;
604
605 /* NMI handlers cannot block and cannot safely manipulate state. */
606 if (in_nmi())
607 return;
608
609 local_irq_save(flags);
610 irqs_were_disabled = irqs_disabled_flags(flags);
611 if (preempt_bh_were_disabled || irqs_were_disabled) {
612 bool exp;
613 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
614 struct rcu_node *rnp = rdp->mynode;
615
616 exp = (t->rcu_blocked_node &&
617 READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
618 (rdp->grpmask & READ_ONCE(rnp->expmask));
619 // Need to defer quiescent state until everything is enabled.
620 if (use_softirq && (in_irq() || (exp && !irqs_were_disabled))) {
621 // Using softirq, safe to awaken, and either the
622 // wakeup is free or there is an expedited GP.
623 raise_softirq_irqoff(RCU_SOFTIRQ);
624 } else {
625 // Enabling BH or preempt does reschedule, so...
626 // Also if no expediting, slow is OK.
627 // Plus nohz_full CPUs eventually get tick enabled.
628 set_tsk_need_resched(current);
629 set_preempt_need_resched();
630 if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
631 !rdp->defer_qs_iw_pending && exp) {
632 // Get scheduler to re-evaluate and call hooks.
633 // If !IRQ_WORK, FQS scan will eventually IPI.
634 init_irq_work(&rdp->defer_qs_iw,
635 rcu_preempt_deferred_qs_handler);
636 rdp->defer_qs_iw_pending = true;
637 irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
638 }
639 }
640 local_irq_restore(flags);
641 return;
642 }
643 rcu_preempt_deferred_qs_irqrestore(t, flags);
644 }
645
646 /*
647 * Check that the list of blocked tasks for the newly completed grace
648 * period is in fact empty. It is a serious bug to complete a grace
649 * period that still has RCU readers blocked! This function must be
650 * invoked -before- updating this rnp's ->gp_seq.
651 *
652 * Also, if there are blocked tasks on the list, they automatically
653 * block the newly created grace period, so set up ->gp_tasks accordingly.
654 */
rcu_preempt_check_blocked_tasks(struct rcu_node * rnp)655 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
656 {
657 struct task_struct *t;
658
659 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
660 raw_lockdep_assert_held_rcu_node(rnp);
661 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
662 dump_blkd_tasks(rnp, 10);
663 if (rcu_preempt_has_tasks(rnp) &&
664 (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
665 WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
666 t = container_of(rnp->gp_tasks, struct task_struct,
667 rcu_node_entry);
668 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
669 rnp->gp_seq, t->pid);
670 }
671 WARN_ON_ONCE(rnp->qsmask);
672 }
673
674 /*
675 * Check for a quiescent state from the current CPU, including voluntary
676 * context switches for Tasks RCU. When a task blocks, the task is
677 * recorded in the corresponding CPU's rcu_node structure, which is checked
678 * elsewhere, hence this function need only check for quiescent states
679 * related to the current CPU, not to those related to tasks.
680 */
rcu_flavor_sched_clock_irq(int user)681 static void rcu_flavor_sched_clock_irq(int user)
682 {
683 struct task_struct *t = current;
684
685 if (user || rcu_is_cpu_rrupt_from_idle()) {
686 rcu_note_voluntary_context_switch(current);
687 }
688 if (rcu_preempt_depth() > 0 ||
689 (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
690 /* No QS, force context switch if deferred. */
691 if (rcu_preempt_need_deferred_qs(t)) {
692 set_tsk_need_resched(t);
693 set_preempt_need_resched();
694 }
695 } else if (rcu_preempt_need_deferred_qs(t)) {
696 rcu_preempt_deferred_qs(t); /* Report deferred QS. */
697 return;
698 } else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
699 rcu_qs(); /* Report immediate QS. */
700 return;
701 }
702
703 /* If GP is oldish, ask for help from rcu_read_unlock_special(). */
704 if (rcu_preempt_depth() > 0 &&
705 __this_cpu_read(rcu_data.core_needs_qs) &&
706 __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
707 !t->rcu_read_unlock_special.b.need_qs &&
708 time_after(jiffies, rcu_state.gp_start + HZ))
709 t->rcu_read_unlock_special.b.need_qs = true;
710 }
711
712 /*
713 * Check for a task exiting while in a preemptible-RCU read-side
714 * critical section, clean up if so. No need to issue warnings, as
715 * debug_check_no_locks_held() already does this if lockdep is enabled.
716 * Besides, if this function does anything other than just immediately
717 * return, there was a bug of some sort. Spewing warnings from this
718 * function is like as not to simply obscure important prior warnings.
719 */
exit_rcu(void)720 void exit_rcu(void)
721 {
722 struct task_struct *t = current;
723
724 if (unlikely(!list_empty(¤t->rcu_node_entry))) {
725 rcu_preempt_depth_set(1);
726 barrier();
727 WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
728 } else if (unlikely(rcu_preempt_depth())) {
729 rcu_preempt_depth_set(1);
730 } else {
731 return;
732 }
733 __rcu_read_unlock();
734 rcu_preempt_deferred_qs(current);
735 }
736
737 /*
738 * Dump the blocked-tasks state, but limit the list dump to the
739 * specified number of elements.
740 */
741 static void
dump_blkd_tasks(struct rcu_node * rnp,int ncheck)742 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
743 {
744 int cpu;
745 int i;
746 struct list_head *lhp;
747 bool onl;
748 struct rcu_data *rdp;
749 struct rcu_node *rnp1;
750
751 raw_lockdep_assert_held_rcu_node(rnp);
752 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
753 __func__, rnp->grplo, rnp->grphi, rnp->level,
754 (long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
755 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
756 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
757 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
758 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
759 __func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks),
760 READ_ONCE(rnp->exp_tasks));
761 pr_info("%s: ->blkd_tasks", __func__);
762 i = 0;
763 list_for_each(lhp, &rnp->blkd_tasks) {
764 pr_cont(" %p", lhp);
765 if (++i >= ncheck)
766 break;
767 }
768 pr_cont("\n");
769 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
770 rdp = per_cpu_ptr(&rcu_data, cpu);
771 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
772 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
773 cpu, ".o"[onl],
774 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
775 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
776 }
777 }
778
779 #else /* #ifdef CONFIG_PREEMPT_RCU */
780
781 /*
782 * If strict grace periods are enabled, and if the calling
783 * __rcu_read_unlock() marks the beginning of a quiescent state, immediately
784 * report that quiescent state and, if requested, spin for a bit.
785 */
rcu_read_unlock_strict(void)786 void rcu_read_unlock_strict(void)
787 {
788 struct rcu_data *rdp;
789
790 if (!IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ||
791 irqs_disabled() || preempt_count() || !rcu_state.gp_kthread)
792 return;
793 rdp = this_cpu_ptr(&rcu_data);
794 rcu_report_qs_rdp(rdp);
795 udelay(rcu_unlock_delay);
796 }
797 EXPORT_SYMBOL_GPL(rcu_read_unlock_strict);
798
799 /*
800 * Tell them what RCU they are running.
801 */
rcu_bootup_announce(void)802 static void __init rcu_bootup_announce(void)
803 {
804 pr_info("Hierarchical RCU implementation.\n");
805 rcu_bootup_announce_oddness();
806 }
807
808 /*
809 * Note a quiescent state for PREEMPTION=n. Because we do not need to know
810 * how many quiescent states passed, just if there was at least one since
811 * the start of the grace period, this just sets a flag. The caller must
812 * have disabled preemption.
813 */
rcu_qs(void)814 static void rcu_qs(void)
815 {
816 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
817 if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
818 return;
819 trace_rcu_grace_period(TPS("rcu_sched"),
820 __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
821 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
822 if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
823 return;
824 __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
825 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
826 }
827
828 /*
829 * Register an urgently needed quiescent state. If there is an
830 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
831 * dyntick-idle quiescent state visible to other CPUs, which will in
832 * some cases serve for expedited as well as normal grace periods.
833 * Either way, register a lightweight quiescent state.
834 */
rcu_all_qs(void)835 void rcu_all_qs(void)
836 {
837 unsigned long flags;
838
839 if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
840 return;
841 preempt_disable();
842 /* Load rcu_urgent_qs before other flags. */
843 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
844 preempt_enable();
845 return;
846 }
847 this_cpu_write(rcu_data.rcu_urgent_qs, false);
848 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
849 local_irq_save(flags);
850 rcu_momentary_dyntick_idle();
851 local_irq_restore(flags);
852 }
853 rcu_qs();
854 preempt_enable();
855 }
856 EXPORT_SYMBOL_GPL(rcu_all_qs);
857
858 /*
859 * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
860 */
rcu_note_context_switch(bool preempt)861 void rcu_note_context_switch(bool preempt)
862 {
863 trace_rcu_utilization(TPS("Start context switch"));
864 rcu_qs();
865 /* Load rcu_urgent_qs before other flags. */
866 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
867 goto out;
868 this_cpu_write(rcu_data.rcu_urgent_qs, false);
869 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
870 rcu_momentary_dyntick_idle();
871 rcu_tasks_qs(current, preempt);
872 out:
873 trace_rcu_utilization(TPS("End context switch"));
874 }
875 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
876
877 /*
878 * Because preemptible RCU does not exist, there are never any preempted
879 * RCU readers.
880 */
rcu_preempt_blocked_readers_cgp(struct rcu_node * rnp)881 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
882 {
883 return 0;
884 }
885
886 /*
887 * Because there is no preemptible RCU, there can be no readers blocked.
888 */
rcu_preempt_has_tasks(struct rcu_node * rnp)889 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
890 {
891 return false;
892 }
893
894 /*
895 * Because there is no preemptible RCU, there can be no deferred quiescent
896 * states.
897 */
rcu_preempt_need_deferred_qs(struct task_struct * t)898 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
899 {
900 return false;
901 }
rcu_preempt_deferred_qs(struct task_struct * t)902 static void rcu_preempt_deferred_qs(struct task_struct *t) { }
903
904 /*
905 * Because there is no preemptible RCU, there can be no readers blocked,
906 * so there is no need to check for blocked tasks. So check only for
907 * bogus qsmask values.
908 */
rcu_preempt_check_blocked_tasks(struct rcu_node * rnp)909 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
910 {
911 WARN_ON_ONCE(rnp->qsmask);
912 }
913
914 /*
915 * Check to see if this CPU is in a non-context-switch quiescent state,
916 * namely user mode and idle loop.
917 */
rcu_flavor_sched_clock_irq(int user)918 static void rcu_flavor_sched_clock_irq(int user)
919 {
920 if (user || rcu_is_cpu_rrupt_from_idle()) {
921
922 /*
923 * Get here if this CPU took its interrupt from user
924 * mode or from the idle loop, and if this is not a
925 * nested interrupt. In this case, the CPU is in
926 * a quiescent state, so note it.
927 *
928 * No memory barrier is required here because rcu_qs()
929 * references only CPU-local variables that other CPUs
930 * neither access nor modify, at least not while the
931 * corresponding CPU is online.
932 */
933
934 rcu_qs();
935 }
936 }
937
938 /*
939 * Because preemptible RCU does not exist, tasks cannot possibly exit
940 * while in preemptible RCU read-side critical sections.
941 */
exit_rcu(void)942 void exit_rcu(void)
943 {
944 }
945
946 /*
947 * Dump the guaranteed-empty blocked-tasks state. Trust but verify.
948 */
949 static void
dump_blkd_tasks(struct rcu_node * rnp,int ncheck)950 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
951 {
952 WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
953 }
954
955 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
956
957 /*
958 * If boosting, set rcuc kthreads to realtime priority.
959 */
rcu_cpu_kthread_setup(unsigned int cpu)960 static void rcu_cpu_kthread_setup(unsigned int cpu)
961 {
962 #ifdef CONFIG_RCU_BOOST
963 struct sched_param sp;
964
965 sp.sched_priority = kthread_prio;
966 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
967 #endif /* #ifdef CONFIG_RCU_BOOST */
968 }
969
970 #ifdef CONFIG_RCU_BOOST
971
972 /*
973 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
974 * or ->boost_tasks, advancing the pointer to the next task in the
975 * ->blkd_tasks list.
976 *
977 * Note that irqs must be enabled: boosting the task can block.
978 * Returns 1 if there are more tasks needing to be boosted.
979 */
rcu_boost(struct rcu_node * rnp)980 static int rcu_boost(struct rcu_node *rnp)
981 {
982 unsigned long flags;
983 struct task_struct *t;
984 struct list_head *tb;
985
986 if (READ_ONCE(rnp->exp_tasks) == NULL &&
987 READ_ONCE(rnp->boost_tasks) == NULL)
988 return 0; /* Nothing left to boost. */
989
990 raw_spin_lock_irqsave_rcu_node(rnp, flags);
991
992 /*
993 * Recheck under the lock: all tasks in need of boosting
994 * might exit their RCU read-side critical sections on their own.
995 */
996 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
997 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
998 return 0;
999 }
1000
1001 /*
1002 * Preferentially boost tasks blocking expedited grace periods.
1003 * This cannot starve the normal grace periods because a second
1004 * expedited grace period must boost all blocked tasks, including
1005 * those blocking the pre-existing normal grace period.
1006 */
1007 if (rnp->exp_tasks != NULL)
1008 tb = rnp->exp_tasks;
1009 else
1010 tb = rnp->boost_tasks;
1011
1012 /*
1013 * We boost task t by manufacturing an rt_mutex that appears to
1014 * be held by task t. We leave a pointer to that rt_mutex where
1015 * task t can find it, and task t will release the mutex when it
1016 * exits its outermost RCU read-side critical section. Then
1017 * simply acquiring this artificial rt_mutex will boost task
1018 * t's priority. (Thanks to tglx for suggesting this approach!)
1019 *
1020 * Note that task t must acquire rnp->lock to remove itself from
1021 * the ->blkd_tasks list, which it will do from exit() if from
1022 * nowhere else. We therefore are guaranteed that task t will
1023 * stay around at least until we drop rnp->lock. Note that
1024 * rnp->lock also resolves races between our priority boosting
1025 * and task t's exiting its outermost RCU read-side critical
1026 * section.
1027 */
1028 t = container_of(tb, struct task_struct, rcu_node_entry);
1029 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1030 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1031 /* Lock only for side effect: boosts task t's priority. */
1032 rt_mutex_lock(&rnp->boost_mtx);
1033 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
1034
1035 return READ_ONCE(rnp->exp_tasks) != NULL ||
1036 READ_ONCE(rnp->boost_tasks) != NULL;
1037 }
1038
1039 /*
1040 * Priority-boosting kthread, one per leaf rcu_node.
1041 */
rcu_boost_kthread(void * arg)1042 static int rcu_boost_kthread(void *arg)
1043 {
1044 struct rcu_node *rnp = (struct rcu_node *)arg;
1045 int spincnt = 0;
1046 int more2boost;
1047
1048 trace_rcu_utilization(TPS("Start boost kthread@init"));
1049 for (;;) {
1050 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
1051 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1052 rcu_wait(READ_ONCE(rnp->boost_tasks) ||
1053 READ_ONCE(rnp->exp_tasks));
1054 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1055 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
1056 more2boost = rcu_boost(rnp);
1057 if (more2boost)
1058 spincnt++;
1059 else
1060 spincnt = 0;
1061 if (spincnt > 10) {
1062 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
1063 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1064 schedule_timeout_idle(2);
1065 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1066 spincnt = 0;
1067 }
1068 }
1069 /* NOTREACHED */
1070 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1071 return 0;
1072 }
1073
1074 /*
1075 * Check to see if it is time to start boosting RCU readers that are
1076 * blocking the current grace period, and, if so, tell the per-rcu_node
1077 * kthread to start boosting them. If there is an expedited grace
1078 * period in progress, it is always time to boost.
1079 *
1080 * The caller must hold rnp->lock, which this function releases.
1081 * The ->boost_kthread_task is immortal, so we don't need to worry
1082 * about it going away.
1083 */
rcu_initiate_boost(struct rcu_node * rnp,unsigned long flags)1084 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1085 __releases(rnp->lock)
1086 {
1087 raw_lockdep_assert_held_rcu_node(rnp);
1088 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1089 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1090 return;
1091 }
1092 if (rnp->exp_tasks != NULL ||
1093 (rnp->gp_tasks != NULL &&
1094 rnp->boost_tasks == NULL &&
1095 rnp->qsmask == 0 &&
1096 (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld))) {
1097 if (rnp->exp_tasks == NULL)
1098 WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks);
1099 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1100 rcu_wake_cond(rnp->boost_kthread_task,
1101 READ_ONCE(rnp->boost_kthread_status));
1102 } else {
1103 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1104 }
1105 }
1106
1107 /*
1108 * Is the current CPU running the RCU-callbacks kthread?
1109 * Caller must have preemption disabled.
1110 */
rcu_is_callbacks_kthread(void)1111 static bool rcu_is_callbacks_kthread(void)
1112 {
1113 return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
1114 }
1115
1116 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1117
1118 /*
1119 * Do priority-boost accounting for the start of a new grace period.
1120 */
rcu_preempt_boost_start_gp(struct rcu_node * rnp)1121 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1122 {
1123 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1124 }
1125
1126 /*
1127 * Create an RCU-boost kthread for the specified node if one does not
1128 * already exist. We only create this kthread for preemptible RCU.
1129 * Returns zero if all is well, a negated errno otherwise.
1130 */
rcu_spawn_one_boost_kthread(struct rcu_node * rnp)1131 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1132 {
1133 int rnp_index = rnp - rcu_get_root();
1134 unsigned long flags;
1135 struct sched_param sp;
1136 struct task_struct *t;
1137
1138 if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
1139 return;
1140
1141 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1142 return;
1143
1144 rcu_state.boost = 1;
1145
1146 if (rnp->boost_kthread_task != NULL)
1147 return;
1148
1149 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1150 "rcub/%d", rnp_index);
1151 if (WARN_ON_ONCE(IS_ERR(t)))
1152 return;
1153
1154 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1155 rnp->boost_kthread_task = t;
1156 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1157 sp.sched_priority = kthread_prio;
1158 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1159 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1160 }
1161
1162 /*
1163 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1164 * served by the rcu_node in question. The CPU hotplug lock is still
1165 * held, so the value of rnp->qsmaskinit will be stable.
1166 *
1167 * We don't include outgoingcpu in the affinity set, use -1 if there is
1168 * no outgoing CPU. If there are no CPUs left in the affinity set,
1169 * this function allows the kthread to execute on any CPU.
1170 */
rcu_boost_kthread_setaffinity(struct rcu_node * rnp,int outgoingcpu)1171 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1172 {
1173 struct task_struct *t = rnp->boost_kthread_task;
1174 unsigned long mask = rcu_rnp_online_cpus(rnp);
1175 cpumask_var_t cm;
1176 int cpu;
1177
1178 if (!t)
1179 return;
1180 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1181 return;
1182 for_each_leaf_node_possible_cpu(rnp, cpu)
1183 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1184 cpu != outgoingcpu)
1185 cpumask_set_cpu(cpu, cm);
1186 if (cpumask_weight(cm) == 0)
1187 cpumask_setall(cm);
1188 set_cpus_allowed_ptr(t, cm);
1189 free_cpumask_var(cm);
1190 }
1191
1192 /*
1193 * Spawn boost kthreads -- called as soon as the scheduler is running.
1194 */
rcu_spawn_boost_kthreads(void)1195 static void __init rcu_spawn_boost_kthreads(void)
1196 {
1197 struct rcu_node *rnp;
1198
1199 rcu_for_each_leaf_node(rnp)
1200 rcu_spawn_one_boost_kthread(rnp);
1201 }
1202
rcu_prepare_kthreads(int cpu)1203 static void rcu_prepare_kthreads(int cpu)
1204 {
1205 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1206 struct rcu_node *rnp = rdp->mynode;
1207
1208 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1209 if (rcu_scheduler_fully_active)
1210 rcu_spawn_one_boost_kthread(rnp);
1211 }
1212
1213 #else /* #ifdef CONFIG_RCU_BOOST */
1214
rcu_initiate_boost(struct rcu_node * rnp,unsigned long flags)1215 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1216 __releases(rnp->lock)
1217 {
1218 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1219 }
1220
rcu_is_callbacks_kthread(void)1221 static bool rcu_is_callbacks_kthread(void)
1222 {
1223 return false;
1224 }
1225
rcu_preempt_boost_start_gp(struct rcu_node * rnp)1226 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1227 {
1228 }
1229
rcu_boost_kthread_setaffinity(struct rcu_node * rnp,int outgoingcpu)1230 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1231 {
1232 }
1233
rcu_spawn_boost_kthreads(void)1234 static void __init rcu_spawn_boost_kthreads(void)
1235 {
1236 }
1237
rcu_prepare_kthreads(int cpu)1238 static void rcu_prepare_kthreads(int cpu)
1239 {
1240 }
1241
1242 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1243
1244 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1245
1246 /*
1247 * Check to see if any future non-offloaded RCU-related work will need
1248 * to be done by the current CPU, even if none need be done immediately,
1249 * returning 1 if so. This function is part of the RCU implementation;
1250 * it is -not- an exported member of the RCU API.
1251 *
1252 * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1253 * CPU has RCU callbacks queued.
1254 */
rcu_needs_cpu(u64 basemono,u64 * nextevt)1255 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1256 {
1257 *nextevt = KTIME_MAX;
1258 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1259 !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist);
1260 }
1261
1262 /*
1263 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1264 * after it.
1265 */
rcu_cleanup_after_idle(void)1266 static void rcu_cleanup_after_idle(void)
1267 {
1268 }
1269
1270 /*
1271 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1272 * is nothing.
1273 */
rcu_prepare_for_idle(void)1274 static void rcu_prepare_for_idle(void)
1275 {
1276 }
1277
1278 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1279
1280 /*
1281 * This code is invoked when a CPU goes idle, at which point we want
1282 * to have the CPU do everything required for RCU so that it can enter
1283 * the energy-efficient dyntick-idle mode.
1284 *
1285 * The following preprocessor symbol controls this:
1286 *
1287 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1288 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1289 * is sized to be roughly one RCU grace period. Those energy-efficiency
1290 * benchmarkers who might otherwise be tempted to set this to a large
1291 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1292 * system. And if you are -that- concerned about energy efficiency,
1293 * just power the system down and be done with it!
1294 *
1295 * The value below works well in practice. If future workloads require
1296 * adjustment, they can be converted into kernel config parameters, though
1297 * making the state machine smarter might be a better option.
1298 */
1299 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1300
1301 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1302 module_param(rcu_idle_gp_delay, int, 0644);
1303
1304 /*
1305 * Try to advance callbacks on the current CPU, but only if it has been
1306 * awhile since the last time we did so. Afterwards, if there are any
1307 * callbacks ready for immediate invocation, return true.
1308 */
rcu_try_advance_all_cbs(void)1309 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1310 {
1311 bool cbs_ready = false;
1312 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1313 struct rcu_node *rnp;
1314
1315 /* Exit early if we advanced recently. */
1316 if (jiffies == rdp->last_advance_all)
1317 return false;
1318 rdp->last_advance_all = jiffies;
1319
1320 rnp = rdp->mynode;
1321
1322 /*
1323 * Don't bother checking unless a grace period has
1324 * completed since we last checked and there are
1325 * callbacks not yet ready to invoke.
1326 */
1327 if ((rcu_seq_completed_gp(rdp->gp_seq,
1328 rcu_seq_current(&rnp->gp_seq)) ||
1329 unlikely(READ_ONCE(rdp->gpwrap))) &&
1330 rcu_segcblist_pend_cbs(&rdp->cblist))
1331 note_gp_changes(rdp);
1332
1333 if (rcu_segcblist_ready_cbs(&rdp->cblist))
1334 cbs_ready = true;
1335 return cbs_ready;
1336 }
1337
1338 /*
1339 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1340 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1341 * caller about what to set the timeout.
1342 *
1343 * The caller must have disabled interrupts.
1344 */
rcu_needs_cpu(u64 basemono,u64 * nextevt)1345 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1346 {
1347 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1348 unsigned long dj;
1349
1350 lockdep_assert_irqs_disabled();
1351
1352 /* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1353 if (rcu_segcblist_empty(&rdp->cblist) ||
1354 rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) {
1355 *nextevt = KTIME_MAX;
1356 return 0;
1357 }
1358
1359 /* Attempt to advance callbacks. */
1360 if (rcu_try_advance_all_cbs()) {
1361 /* Some ready to invoke, so initiate later invocation. */
1362 invoke_rcu_core();
1363 return 1;
1364 }
1365 rdp->last_accelerate = jiffies;
1366
1367 /* Request timer and round. */
1368 dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies;
1369
1370 *nextevt = basemono + dj * TICK_NSEC;
1371 return 0;
1372 }
1373
1374 /*
1375 * Prepare a CPU for idle from an RCU perspective. The first major task is to
1376 * sense whether nohz mode has been enabled or disabled via sysfs. The second
1377 * major task is to accelerate (that is, assign grace-period numbers to) any
1378 * recently arrived callbacks.
1379 *
1380 * The caller must have disabled interrupts.
1381 */
rcu_prepare_for_idle(void)1382 static void rcu_prepare_for_idle(void)
1383 {
1384 bool needwake;
1385 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1386 struct rcu_node *rnp;
1387 int tne;
1388
1389 lockdep_assert_irqs_disabled();
1390 if (rcu_segcblist_is_offloaded(&rdp->cblist))
1391 return;
1392
1393 /* Handle nohz enablement switches conservatively. */
1394 tne = READ_ONCE(tick_nohz_active);
1395 if (tne != rdp->tick_nohz_enabled_snap) {
1396 if (!rcu_segcblist_empty(&rdp->cblist))
1397 invoke_rcu_core(); /* force nohz to see update. */
1398 rdp->tick_nohz_enabled_snap = tne;
1399 return;
1400 }
1401 if (!tne)
1402 return;
1403
1404 /*
1405 * If we have not yet accelerated this jiffy, accelerate all
1406 * callbacks on this CPU.
1407 */
1408 if (rdp->last_accelerate == jiffies)
1409 return;
1410 rdp->last_accelerate = jiffies;
1411 if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
1412 rnp = rdp->mynode;
1413 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1414 needwake = rcu_accelerate_cbs(rnp, rdp);
1415 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1416 if (needwake)
1417 rcu_gp_kthread_wake();
1418 }
1419 }
1420
1421 /*
1422 * Clean up for exit from idle. Attempt to advance callbacks based on
1423 * any grace periods that elapsed while the CPU was idle, and if any
1424 * callbacks are now ready to invoke, initiate invocation.
1425 */
rcu_cleanup_after_idle(void)1426 static void rcu_cleanup_after_idle(void)
1427 {
1428 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1429
1430 lockdep_assert_irqs_disabled();
1431 if (rcu_segcblist_is_offloaded(&rdp->cblist))
1432 return;
1433 if (rcu_try_advance_all_cbs())
1434 invoke_rcu_core();
1435 }
1436
1437 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1438
1439 #ifdef CONFIG_RCU_NOCB_CPU
1440
1441 /*
1442 * Offload callback processing from the boot-time-specified set of CPUs
1443 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads
1444 * created that pull the callbacks from the corresponding CPU, wait for
1445 * a grace period to elapse, and invoke the callbacks. These kthreads
1446 * are organized into GP kthreads, which manage incoming callbacks, wait for
1447 * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1448 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs
1449 * do a wake_up() on their GP kthread when they insert a callback into any
1450 * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1451 * in which case each kthread actively polls its CPU. (Which isn't so great
1452 * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
1453 *
1454 * This is intended to be used in conjunction with Frederic Weisbecker's
1455 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1456 * running CPU-bound user-mode computations.
1457 *
1458 * Offloading of callbacks can also be used as an energy-efficiency
1459 * measure because CPUs with no RCU callbacks queued are more aggressive
1460 * about entering dyntick-idle mode.
1461 */
1462
1463
1464 /*
1465 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1466 * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1467 * comma-separated list of CPUs and/or CPU ranges. If an invalid list is
1468 * given, a warning is emitted and all CPUs are offloaded.
1469 */
rcu_nocb_setup(char * str)1470 static int __init rcu_nocb_setup(char *str)
1471 {
1472 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1473 if (!strcasecmp(str, "all"))
1474 cpumask_setall(rcu_nocb_mask);
1475 else
1476 if (cpulist_parse(str, rcu_nocb_mask)) {
1477 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1478 cpumask_setall(rcu_nocb_mask);
1479 }
1480 return 1;
1481 }
1482 __setup("rcu_nocbs=", rcu_nocb_setup);
1483
parse_rcu_nocb_poll(char * arg)1484 static int __init parse_rcu_nocb_poll(char *arg)
1485 {
1486 rcu_nocb_poll = true;
1487 return 0;
1488 }
1489 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1490
1491 /*
1492 * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1493 * After all, the main point of bypassing is to avoid lock contention
1494 * on ->nocb_lock, which only can happen at high call_rcu() rates.
1495 */
1496 int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1497 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1498
1499 /*
1500 * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the
1501 * lock isn't immediately available, increment ->nocb_lock_contended to
1502 * flag the contention.
1503 */
rcu_nocb_bypass_lock(struct rcu_data * rdp)1504 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
1505 __acquires(&rdp->nocb_bypass_lock)
1506 {
1507 lockdep_assert_irqs_disabled();
1508 if (raw_spin_trylock(&rdp->nocb_bypass_lock))
1509 return;
1510 atomic_inc(&rdp->nocb_lock_contended);
1511 WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1512 smp_mb__after_atomic(); /* atomic_inc() before lock. */
1513 raw_spin_lock(&rdp->nocb_bypass_lock);
1514 smp_mb__before_atomic(); /* atomic_dec() after lock. */
1515 atomic_dec(&rdp->nocb_lock_contended);
1516 }
1517
1518 /*
1519 * Spinwait until the specified rcu_data structure's ->nocb_lock is
1520 * not contended. Please note that this is extremely special-purpose,
1521 * relying on the fact that at most two kthreads and one CPU contend for
1522 * this lock, and also that the two kthreads are guaranteed to have frequent
1523 * grace-period-duration time intervals between successive acquisitions
1524 * of the lock. This allows us to use an extremely simple throttling
1525 * mechanism, and further to apply it only to the CPU doing floods of
1526 * call_rcu() invocations. Don't try this at home!
1527 */
rcu_nocb_wait_contended(struct rcu_data * rdp)1528 static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1529 {
1530 WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1531 while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
1532 cpu_relax();
1533 }
1534
1535 /*
1536 * Conditionally acquire the specified rcu_data structure's
1537 * ->nocb_bypass_lock.
1538 */
rcu_nocb_bypass_trylock(struct rcu_data * rdp)1539 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1540 {
1541 lockdep_assert_irqs_disabled();
1542 return raw_spin_trylock(&rdp->nocb_bypass_lock);
1543 }
1544
1545 /*
1546 * Release the specified rcu_data structure's ->nocb_bypass_lock.
1547 */
rcu_nocb_bypass_unlock(struct rcu_data * rdp)1548 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
1549 __releases(&rdp->nocb_bypass_lock)
1550 {
1551 lockdep_assert_irqs_disabled();
1552 raw_spin_unlock(&rdp->nocb_bypass_lock);
1553 }
1554
1555 /*
1556 * Acquire the specified rcu_data structure's ->nocb_lock, but only
1557 * if it corresponds to a no-CBs CPU.
1558 */
rcu_nocb_lock(struct rcu_data * rdp)1559 static void rcu_nocb_lock(struct rcu_data *rdp)
1560 {
1561 lockdep_assert_irqs_disabled();
1562 if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1563 return;
1564 raw_spin_lock(&rdp->nocb_lock);
1565 }
1566
1567 /*
1568 * Release the specified rcu_data structure's ->nocb_lock, but only
1569 * if it corresponds to a no-CBs CPU.
1570 */
rcu_nocb_unlock(struct rcu_data * rdp)1571 static void rcu_nocb_unlock(struct rcu_data *rdp)
1572 {
1573 if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1574 lockdep_assert_irqs_disabled();
1575 raw_spin_unlock(&rdp->nocb_lock);
1576 }
1577 }
1578
1579 /*
1580 * Release the specified rcu_data structure's ->nocb_lock and restore
1581 * interrupts, but only if it corresponds to a no-CBs CPU.
1582 */
rcu_nocb_unlock_irqrestore(struct rcu_data * rdp,unsigned long flags)1583 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1584 unsigned long flags)
1585 {
1586 if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1587 lockdep_assert_irqs_disabled();
1588 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1589 } else {
1590 local_irq_restore(flags);
1591 }
1592 }
1593
1594 /* Lockdep check that ->cblist may be safely accessed. */
rcu_lockdep_assert_cblist_protected(struct rcu_data * rdp)1595 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1596 {
1597 lockdep_assert_irqs_disabled();
1598 if (rcu_segcblist_is_offloaded(&rdp->cblist))
1599 lockdep_assert_held(&rdp->nocb_lock);
1600 }
1601
1602 /*
1603 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1604 * grace period.
1605 */
rcu_nocb_gp_cleanup(struct swait_queue_head * sq)1606 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1607 {
1608 swake_up_all(sq);
1609 }
1610
rcu_nocb_gp_get(struct rcu_node * rnp)1611 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1612 {
1613 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1614 }
1615
rcu_init_one_nocb(struct rcu_node * rnp)1616 static void rcu_init_one_nocb(struct rcu_node *rnp)
1617 {
1618 init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1619 init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1620 }
1621
1622 /* Is the specified CPU a no-CBs CPU? */
rcu_is_nocb_cpu(int cpu)1623 bool rcu_is_nocb_cpu(int cpu)
1624 {
1625 if (cpumask_available(rcu_nocb_mask))
1626 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1627 return false;
1628 }
1629
1630 /*
1631 * Kick the GP kthread for this NOCB group. Caller holds ->nocb_lock
1632 * and this function releases it.
1633 */
wake_nocb_gp(struct rcu_data * rdp,bool force,unsigned long flags)1634 static void wake_nocb_gp(struct rcu_data *rdp, bool force,
1635 unsigned long flags)
1636 __releases(rdp->nocb_lock)
1637 {
1638 bool needwake = false;
1639 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1640
1641 lockdep_assert_held(&rdp->nocb_lock);
1642 if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
1643 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1644 TPS("AlreadyAwake"));
1645 rcu_nocb_unlock_irqrestore(rdp, flags);
1646 return;
1647 }
1648 del_timer(&rdp->nocb_timer);
1649 rcu_nocb_unlock_irqrestore(rdp, flags);
1650 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1651 if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
1652 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
1653 needwake = true;
1654 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
1655 }
1656 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1657 if (needwake)
1658 wake_up_process(rdp_gp->nocb_gp_kthread);
1659 }
1660
1661 /*
1662 * Arrange to wake the GP kthread for this NOCB group at some future
1663 * time when it is safe to do so.
1664 */
wake_nocb_gp_defer(struct rcu_data * rdp,int waketype,const char * reason)1665 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1666 const char *reason)
1667 {
1668 if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1669 mod_timer(&rdp->nocb_timer, jiffies + 1);
1670 if (rdp->nocb_defer_wakeup < waketype)
1671 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1672 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
1673 }
1674
1675 /*
1676 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1677 * However, if there is a callback to be enqueued and if ->nocb_bypass
1678 * proves to be initially empty, just return false because the no-CB GP
1679 * kthread may need to be awakened in this case.
1680 *
1681 * Note that this function always returns true if rhp is NULL.
1682 */
rcu_nocb_do_flush_bypass(struct rcu_data * rdp,struct rcu_head * rhp,unsigned long j)1683 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1684 unsigned long j)
1685 {
1686 struct rcu_cblist rcl;
1687
1688 WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist));
1689 rcu_lockdep_assert_cblist_protected(rdp);
1690 lockdep_assert_held(&rdp->nocb_bypass_lock);
1691 if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1692 raw_spin_unlock(&rdp->nocb_bypass_lock);
1693 return false;
1694 }
1695 /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1696 if (rhp)
1697 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1698 rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1699 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1700 WRITE_ONCE(rdp->nocb_bypass_first, j);
1701 rcu_nocb_bypass_unlock(rdp);
1702 return true;
1703 }
1704
1705 /*
1706 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1707 * However, if there is a callback to be enqueued and if ->nocb_bypass
1708 * proves to be initially empty, just return false because the no-CB GP
1709 * kthread may need to be awakened in this case.
1710 *
1711 * Note that this function always returns true if rhp is NULL.
1712 */
rcu_nocb_flush_bypass(struct rcu_data * rdp,struct rcu_head * rhp,unsigned long j)1713 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1714 unsigned long j)
1715 {
1716 if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1717 return true;
1718 rcu_lockdep_assert_cblist_protected(rdp);
1719 rcu_nocb_bypass_lock(rdp);
1720 return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1721 }
1722
1723 /*
1724 * If the ->nocb_bypass_lock is immediately available, flush the
1725 * ->nocb_bypass queue into ->cblist.
1726 */
rcu_nocb_try_flush_bypass(struct rcu_data * rdp,unsigned long j)1727 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1728 {
1729 rcu_lockdep_assert_cblist_protected(rdp);
1730 if (!rcu_segcblist_is_offloaded(&rdp->cblist) ||
1731 !rcu_nocb_bypass_trylock(rdp))
1732 return;
1733 WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1734 }
1735
1736 /*
1737 * See whether it is appropriate to use the ->nocb_bypass list in order
1738 * to control contention on ->nocb_lock. A limited number of direct
1739 * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass
1740 * is non-empty, further callbacks must be placed into ->nocb_bypass,
1741 * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch
1742 * back to direct use of ->cblist. However, ->nocb_bypass should not be
1743 * used if ->cblist is empty, because otherwise callbacks can be stranded
1744 * on ->nocb_bypass because we cannot count on the current CPU ever again
1745 * invoking call_rcu(). The general rule is that if ->nocb_bypass is
1746 * non-empty, the corresponding no-CBs grace-period kthread must not be
1747 * in an indefinite sleep state.
1748 *
1749 * Finally, it is not permitted to use the bypass during early boot,
1750 * as doing so would confuse the auto-initialization code. Besides
1751 * which, there is no point in worrying about lock contention while
1752 * there is only one CPU in operation.
1753 */
rcu_nocb_try_bypass(struct rcu_data * rdp,struct rcu_head * rhp,bool * was_alldone,unsigned long flags)1754 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1755 bool *was_alldone, unsigned long flags)
1756 {
1757 unsigned long c;
1758 unsigned long cur_gp_seq;
1759 unsigned long j = jiffies;
1760 long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1761
1762 if (!rcu_segcblist_is_offloaded(&rdp->cblist)) {
1763 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1764 return false; /* Not offloaded, no bypassing. */
1765 }
1766 lockdep_assert_irqs_disabled();
1767
1768 // Don't use ->nocb_bypass during early boot.
1769 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1770 rcu_nocb_lock(rdp);
1771 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1772 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1773 return false;
1774 }
1775
1776 // If we have advanced to a new jiffy, reset counts to allow
1777 // moving back from ->nocb_bypass to ->cblist.
1778 if (j == rdp->nocb_nobypass_last) {
1779 c = rdp->nocb_nobypass_count + 1;
1780 } else {
1781 WRITE_ONCE(rdp->nocb_nobypass_last, j);
1782 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1783 if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1784 nocb_nobypass_lim_per_jiffy))
1785 c = 0;
1786 else if (c > nocb_nobypass_lim_per_jiffy)
1787 c = nocb_nobypass_lim_per_jiffy;
1788 }
1789 WRITE_ONCE(rdp->nocb_nobypass_count, c);
1790
1791 // If there hasn't yet been all that many ->cblist enqueues
1792 // this jiffy, tell the caller to enqueue onto ->cblist. But flush
1793 // ->nocb_bypass first.
1794 if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1795 rcu_nocb_lock(rdp);
1796 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1797 if (*was_alldone)
1798 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1799 TPS("FirstQ"));
1800 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1801 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1802 return false; // Caller must enqueue the callback.
1803 }
1804
1805 // If ->nocb_bypass has been used too long or is too full,
1806 // flush ->nocb_bypass to ->cblist.
1807 if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1808 ncbs >= qhimark) {
1809 rcu_nocb_lock(rdp);
1810 if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1811 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1812 if (*was_alldone)
1813 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1814 TPS("FirstQ"));
1815 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1816 return false; // Caller must enqueue the callback.
1817 }
1818 if (j != rdp->nocb_gp_adv_time &&
1819 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1820 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1821 rcu_advance_cbs_nowake(rdp->mynode, rdp);
1822 rdp->nocb_gp_adv_time = j;
1823 }
1824 rcu_nocb_unlock_irqrestore(rdp, flags);
1825 return true; // Callback already enqueued.
1826 }
1827
1828 // We need to use the bypass.
1829 rcu_nocb_wait_contended(rdp);
1830 rcu_nocb_bypass_lock(rdp);
1831 ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1832 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1833 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1834 if (!ncbs) {
1835 WRITE_ONCE(rdp->nocb_bypass_first, j);
1836 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1837 }
1838 rcu_nocb_bypass_unlock(rdp);
1839 smp_mb(); /* Order enqueue before wake. */
1840 if (ncbs) {
1841 local_irq_restore(flags);
1842 } else {
1843 // No-CBs GP kthread might be indefinitely asleep, if so, wake.
1844 rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1845 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1846 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1847 TPS("FirstBQwake"));
1848 __call_rcu_nocb_wake(rdp, true, flags);
1849 } else {
1850 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1851 TPS("FirstBQnoWake"));
1852 rcu_nocb_unlock_irqrestore(rdp, flags);
1853 }
1854 }
1855 return true; // Callback already enqueued.
1856 }
1857
1858 /*
1859 * Awaken the no-CBs grace-period kthead if needed, either due to it
1860 * legitimately being asleep or due to overload conditions.
1861 *
1862 * If warranted, also wake up the kthread servicing this CPUs queues.
1863 */
__call_rcu_nocb_wake(struct rcu_data * rdp,bool was_alldone,unsigned long flags)1864 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1865 unsigned long flags)
1866 __releases(rdp->nocb_lock)
1867 {
1868 unsigned long cur_gp_seq;
1869 unsigned long j;
1870 long len;
1871 struct task_struct *t;
1872
1873 // If we are being polled or there is no kthread, just leave.
1874 t = READ_ONCE(rdp->nocb_gp_kthread);
1875 if (rcu_nocb_poll || !t) {
1876 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1877 TPS("WakeNotPoll"));
1878 rcu_nocb_unlock_irqrestore(rdp, flags);
1879 return;
1880 }
1881 // Need to actually to a wakeup.
1882 len = rcu_segcblist_n_cbs(&rdp->cblist);
1883 if (was_alldone) {
1884 rdp->qlen_last_fqs_check = len;
1885 if (!irqs_disabled_flags(flags)) {
1886 /* ... if queue was empty ... */
1887 wake_nocb_gp(rdp, false, flags);
1888 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1889 TPS("WakeEmpty"));
1890 } else {
1891 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1892 TPS("WakeEmptyIsDeferred"));
1893 rcu_nocb_unlock_irqrestore(rdp, flags);
1894 }
1895 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
1896 /* ... or if many callbacks queued. */
1897 rdp->qlen_last_fqs_check = len;
1898 j = jiffies;
1899 if (j != rdp->nocb_gp_adv_time &&
1900 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1901 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1902 rcu_advance_cbs_nowake(rdp->mynode, rdp);
1903 rdp->nocb_gp_adv_time = j;
1904 }
1905 smp_mb(); /* Enqueue before timer_pending(). */
1906 if ((rdp->nocb_cb_sleep ||
1907 !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1908 !timer_pending(&rdp->nocb_bypass_timer))
1909 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1910 TPS("WakeOvfIsDeferred"));
1911 rcu_nocb_unlock_irqrestore(rdp, flags);
1912 } else {
1913 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1914 rcu_nocb_unlock_irqrestore(rdp, flags);
1915 }
1916 return;
1917 }
1918
1919 /* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
do_nocb_bypass_wakeup_timer(struct timer_list * t)1920 static void do_nocb_bypass_wakeup_timer(struct timer_list *t)
1921 {
1922 unsigned long flags;
1923 struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer);
1924
1925 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1926 rcu_nocb_lock_irqsave(rdp, flags);
1927 smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1928 __call_rcu_nocb_wake(rdp, true, flags);
1929 }
1930
1931 /*
1932 * No-CBs GP kthreads come here to wait for additional callbacks to show up
1933 * or for grace periods to end.
1934 */
nocb_gp_wait(struct rcu_data * my_rdp)1935 static void nocb_gp_wait(struct rcu_data *my_rdp)
1936 {
1937 bool bypass = false;
1938 long bypass_ncbs;
1939 int __maybe_unused cpu = my_rdp->cpu;
1940 unsigned long cur_gp_seq;
1941 unsigned long flags;
1942 bool gotcbs = false;
1943 unsigned long j = jiffies;
1944 bool needwait_gp = false; // This prevents actual uninitialized use.
1945 bool needwake;
1946 bool needwake_gp;
1947 struct rcu_data *rdp;
1948 struct rcu_node *rnp;
1949 unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
1950 bool wasempty = false;
1951
1952 /*
1953 * Each pass through the following loop checks for CBs and for the
1954 * nearest grace period (if any) to wait for next. The CB kthreads
1955 * and the global grace-period kthread are awakened if needed.
1956 */
1957 WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp);
1958 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
1959 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
1960 rcu_nocb_lock_irqsave(rdp, flags);
1961 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1962 if (bypass_ncbs &&
1963 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
1964 bypass_ncbs > 2 * qhimark)) {
1965 // Bypass full or old, so flush it.
1966 (void)rcu_nocb_try_flush_bypass(rdp, j);
1967 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1968 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
1969 rcu_nocb_unlock_irqrestore(rdp, flags);
1970 continue; /* No callbacks here, try next. */
1971 }
1972 if (bypass_ncbs) {
1973 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1974 TPS("Bypass"));
1975 bypass = true;
1976 }
1977 rnp = rdp->mynode;
1978 if (bypass) { // Avoid race with first bypass CB.
1979 WRITE_ONCE(my_rdp->nocb_defer_wakeup,
1980 RCU_NOCB_WAKE_NOT);
1981 del_timer(&my_rdp->nocb_timer);
1982 }
1983 // Advance callbacks if helpful and low contention.
1984 needwake_gp = false;
1985 if (!rcu_segcblist_restempty(&rdp->cblist,
1986 RCU_NEXT_READY_TAIL) ||
1987 (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1988 rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
1989 raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
1990 needwake_gp = rcu_advance_cbs(rnp, rdp);
1991 wasempty = rcu_segcblist_restempty(&rdp->cblist,
1992 RCU_NEXT_READY_TAIL);
1993 raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
1994 }
1995 // Need to wait on some grace period?
1996 WARN_ON_ONCE(wasempty &&
1997 !rcu_segcblist_restempty(&rdp->cblist,
1998 RCU_NEXT_READY_TAIL));
1999 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
2000 if (!needwait_gp ||
2001 ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
2002 wait_gp_seq = cur_gp_seq;
2003 needwait_gp = true;
2004 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
2005 TPS("NeedWaitGP"));
2006 }
2007 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2008 needwake = rdp->nocb_cb_sleep;
2009 WRITE_ONCE(rdp->nocb_cb_sleep, false);
2010 smp_mb(); /* CB invocation -after- GP end. */
2011 } else {
2012 needwake = false;
2013 }
2014 rcu_nocb_unlock_irqrestore(rdp, flags);
2015 if (needwake) {
2016 swake_up_one(&rdp->nocb_cb_wq);
2017 gotcbs = true;
2018 }
2019 if (needwake_gp)
2020 rcu_gp_kthread_wake();
2021 }
2022
2023 my_rdp->nocb_gp_bypass = bypass;
2024 my_rdp->nocb_gp_gp = needwait_gp;
2025 my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
2026 if (bypass && !rcu_nocb_poll) {
2027 // At least one child with non-empty ->nocb_bypass, so set
2028 // timer in order to avoid stranding its callbacks.
2029 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2030 mod_timer(&my_rdp->nocb_bypass_timer, j + 2);
2031 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2032 }
2033 if (rcu_nocb_poll) {
2034 /* Polling, so trace if first poll in the series. */
2035 if (gotcbs)
2036 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
2037 schedule_timeout_idle(1);
2038 } else if (!needwait_gp) {
2039 /* Wait for callbacks to appear. */
2040 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2041 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2042 !READ_ONCE(my_rdp->nocb_gp_sleep));
2043 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
2044 } else {
2045 rnp = my_rdp->mynode;
2046 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2047 swait_event_interruptible_exclusive(
2048 rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2049 rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2050 !READ_ONCE(my_rdp->nocb_gp_sleep));
2051 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2052 }
2053 if (!rcu_nocb_poll) {
2054 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2055 if (bypass)
2056 del_timer(&my_rdp->nocb_bypass_timer);
2057 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
2058 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2059 }
2060 my_rdp->nocb_gp_seq = -1;
2061 WARN_ON(signal_pending(current));
2062 }
2063
2064 /*
2065 * No-CBs grace-period-wait kthread. There is one of these per group
2066 * of CPUs, but only once at least one CPU in that group has come online
2067 * at least once since boot. This kthread checks for newly posted
2068 * callbacks from any of the CPUs it is responsible for, waits for a
2069 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2070 * that then have callback-invocation work to do.
2071 */
rcu_nocb_gp_kthread(void * arg)2072 static int rcu_nocb_gp_kthread(void *arg)
2073 {
2074 struct rcu_data *rdp = arg;
2075
2076 for (;;) {
2077 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
2078 nocb_gp_wait(rdp);
2079 cond_resched_tasks_rcu_qs();
2080 }
2081 return 0;
2082 }
2083
2084 /*
2085 * Invoke any ready callbacks from the corresponding no-CBs CPU,
2086 * then, if there are no more, wait for more to appear.
2087 */
nocb_cb_wait(struct rcu_data * rdp)2088 static void nocb_cb_wait(struct rcu_data *rdp)
2089 {
2090 unsigned long cur_gp_seq;
2091 unsigned long flags;
2092 bool needwake_gp = false;
2093 struct rcu_node *rnp = rdp->mynode;
2094
2095 local_irq_save(flags);
2096 rcu_momentary_dyntick_idle();
2097 local_irq_restore(flags);
2098 local_bh_disable();
2099 rcu_do_batch(rdp);
2100 local_bh_enable();
2101 lockdep_assert_irqs_enabled();
2102 rcu_nocb_lock_irqsave(rdp, flags);
2103 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2104 rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2105 raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
2106 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2107 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2108 }
2109 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2110 rcu_nocb_unlock_irqrestore(rdp, flags);
2111 if (needwake_gp)
2112 rcu_gp_kthread_wake();
2113 return;
2114 }
2115
2116 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
2117 WRITE_ONCE(rdp->nocb_cb_sleep, true);
2118 rcu_nocb_unlock_irqrestore(rdp, flags);
2119 if (needwake_gp)
2120 rcu_gp_kthread_wake();
2121 swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
2122 !READ_ONCE(rdp->nocb_cb_sleep));
2123 if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */
2124 /* ^^^ Ensure CB invocation follows _sleep test. */
2125 return;
2126 }
2127 WARN_ON(signal_pending(current));
2128 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
2129 }
2130
2131 /*
2132 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke
2133 * nocb_cb_wait() to do the dirty work.
2134 */
rcu_nocb_cb_kthread(void * arg)2135 static int rcu_nocb_cb_kthread(void *arg)
2136 {
2137 struct rcu_data *rdp = arg;
2138
2139 // Each pass through this loop does one callback batch, and,
2140 // if there are no more ready callbacks, waits for them.
2141 for (;;) {
2142 nocb_cb_wait(rdp);
2143 cond_resched_tasks_rcu_qs();
2144 }
2145 return 0;
2146 }
2147
2148 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
rcu_nocb_need_deferred_wakeup(struct rcu_data * rdp)2149 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2150 {
2151 return READ_ONCE(rdp->nocb_defer_wakeup);
2152 }
2153
2154 /* Do a deferred wakeup of rcu_nocb_kthread(). */
do_nocb_deferred_wakeup_common(struct rcu_data * rdp)2155 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2156 {
2157 unsigned long flags;
2158 int ndw;
2159
2160 rcu_nocb_lock_irqsave(rdp, flags);
2161 if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2162 rcu_nocb_unlock_irqrestore(rdp, flags);
2163 return;
2164 }
2165 ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2166 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2167 wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2168 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
2169 }
2170
2171 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
do_nocb_deferred_wakeup_timer(struct timer_list * t)2172 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2173 {
2174 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2175
2176 do_nocb_deferred_wakeup_common(rdp);
2177 }
2178
2179 /*
2180 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2181 * This means we do an inexact common-case check. Note that if
2182 * we miss, ->nocb_timer will eventually clean things up.
2183 */
do_nocb_deferred_wakeup(struct rcu_data * rdp)2184 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2185 {
2186 if (rcu_nocb_need_deferred_wakeup(rdp))
2187 do_nocb_deferred_wakeup_common(rdp);
2188 }
2189
rcu_init_nohz(void)2190 void __init rcu_init_nohz(void)
2191 {
2192 int cpu;
2193 bool need_rcu_nocb_mask = false;
2194 struct rcu_data *rdp;
2195
2196 #if defined(CONFIG_NO_HZ_FULL)
2197 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2198 need_rcu_nocb_mask = true;
2199 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2200
2201 if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2202 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2203 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2204 return;
2205 }
2206 }
2207 if (!cpumask_available(rcu_nocb_mask))
2208 return;
2209
2210 #if defined(CONFIG_NO_HZ_FULL)
2211 if (tick_nohz_full_running)
2212 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2213 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2214
2215 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2216 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2217 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2218 rcu_nocb_mask);
2219 }
2220 if (cpumask_empty(rcu_nocb_mask))
2221 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2222 else
2223 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2224 cpumask_pr_args(rcu_nocb_mask));
2225 if (rcu_nocb_poll)
2226 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2227
2228 for_each_cpu(cpu, rcu_nocb_mask) {
2229 rdp = per_cpu_ptr(&rcu_data, cpu);
2230 if (rcu_segcblist_empty(&rdp->cblist))
2231 rcu_segcblist_init(&rdp->cblist);
2232 rcu_segcblist_offload(&rdp->cblist);
2233 }
2234 rcu_organize_nocb_kthreads();
2235 }
2236
2237 /* Initialize per-rcu_data variables for no-CBs CPUs. */
rcu_boot_init_nocb_percpu_data(struct rcu_data * rdp)2238 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2239 {
2240 init_swait_queue_head(&rdp->nocb_cb_wq);
2241 init_swait_queue_head(&rdp->nocb_gp_wq);
2242 raw_spin_lock_init(&rdp->nocb_lock);
2243 raw_spin_lock_init(&rdp->nocb_bypass_lock);
2244 raw_spin_lock_init(&rdp->nocb_gp_lock);
2245 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2246 timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0);
2247 rcu_cblist_init(&rdp->nocb_bypass);
2248 }
2249
2250 /*
2251 * If the specified CPU is a no-CBs CPU that does not already have its
2252 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread
2253 * for this CPU's group has not yet been created, spawn it as well.
2254 */
rcu_spawn_one_nocb_kthread(int cpu)2255 static void rcu_spawn_one_nocb_kthread(int cpu)
2256 {
2257 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2258 struct rcu_data *rdp_gp;
2259 struct task_struct *t;
2260
2261 /*
2262 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2263 * then nothing to do.
2264 */
2265 if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
2266 return;
2267
2268 /* If we didn't spawn the GP kthread first, reorganize! */
2269 rdp_gp = rdp->nocb_gp_rdp;
2270 if (!rdp_gp->nocb_gp_kthread) {
2271 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2272 "rcuog/%d", rdp_gp->cpu);
2273 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2274 return;
2275 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
2276 }
2277
2278 /* Spawn the kthread for this CPU. */
2279 t = kthread_run(rcu_nocb_cb_kthread, rdp,
2280 "rcuo%c/%d", rcu_state.abbr, cpu);
2281 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
2282 return;
2283 WRITE_ONCE(rdp->nocb_cb_kthread, t);
2284 WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
2285 }
2286
2287 /*
2288 * If the specified CPU is a no-CBs CPU that does not already have its
2289 * rcuo kthread, spawn it.
2290 */
rcu_spawn_cpu_nocb_kthread(int cpu)2291 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2292 {
2293 if (rcu_scheduler_fully_active)
2294 rcu_spawn_one_nocb_kthread(cpu);
2295 }
2296
2297 /*
2298 * Once the scheduler is running, spawn rcuo kthreads for all online
2299 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2300 * non-boot CPUs come online -- if this changes, we will need to add
2301 * some mutual exclusion.
2302 */
rcu_spawn_nocb_kthreads(void)2303 static void __init rcu_spawn_nocb_kthreads(void)
2304 {
2305 int cpu;
2306
2307 for_each_online_cpu(cpu)
2308 rcu_spawn_cpu_nocb_kthread(cpu);
2309 }
2310
2311 /* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */
2312 static int rcu_nocb_gp_stride = -1;
2313 module_param(rcu_nocb_gp_stride, int, 0444);
2314
2315 /*
2316 * Initialize GP-CB relationships for all no-CBs CPU.
2317 */
rcu_organize_nocb_kthreads(void)2318 static void __init rcu_organize_nocb_kthreads(void)
2319 {
2320 int cpu;
2321 bool firsttime = true;
2322 bool gotnocbs = false;
2323 bool gotnocbscbs = true;
2324 int ls = rcu_nocb_gp_stride;
2325 int nl = 0; /* Next GP kthread. */
2326 struct rcu_data *rdp;
2327 struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */
2328 struct rcu_data *rdp_prev = NULL;
2329
2330 if (!cpumask_available(rcu_nocb_mask))
2331 return;
2332 if (ls == -1) {
2333 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
2334 rcu_nocb_gp_stride = ls;
2335 }
2336
2337 /*
2338 * Each pass through this loop sets up one rcu_data structure.
2339 * Should the corresponding CPU come online in the future, then
2340 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2341 */
2342 for_each_cpu(cpu, rcu_nocb_mask) {
2343 rdp = per_cpu_ptr(&rcu_data, cpu);
2344 if (rdp->cpu >= nl) {
2345 /* New GP kthread, set up for CBs & next GP. */
2346 gotnocbs = true;
2347 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2348 rdp->nocb_gp_rdp = rdp;
2349 rdp_gp = rdp;
2350 if (dump_tree) {
2351 if (!firsttime)
2352 pr_cont("%s\n", gotnocbscbs
2353 ? "" : " (self only)");
2354 gotnocbscbs = false;
2355 firsttime = false;
2356 pr_alert("%s: No-CB GP kthread CPU %d:",
2357 __func__, cpu);
2358 }
2359 } else {
2360 /* Another CB kthread, link to previous GP kthread. */
2361 gotnocbscbs = true;
2362 rdp->nocb_gp_rdp = rdp_gp;
2363 rdp_prev->nocb_next_cb_rdp = rdp;
2364 if (dump_tree)
2365 pr_cont(" %d", cpu);
2366 }
2367 rdp_prev = rdp;
2368 }
2369 if (gotnocbs && dump_tree)
2370 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
2371 }
2372
2373 /*
2374 * Bind the current task to the offloaded CPUs. If there are no offloaded
2375 * CPUs, leave the task unbound. Splat if the bind attempt fails.
2376 */
rcu_bind_current_to_nocb(void)2377 void rcu_bind_current_to_nocb(void)
2378 {
2379 if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2380 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2381 }
2382 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2383
2384 /*
2385 * Dump out nocb grace-period kthread state for the specified rcu_data
2386 * structure.
2387 */
show_rcu_nocb_gp_state(struct rcu_data * rdp)2388 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2389 {
2390 struct rcu_node *rnp = rdp->mynode;
2391
2392 pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2393 rdp->cpu,
2394 "kK"[!!rdp->nocb_gp_kthread],
2395 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2396 "dD"[!!rdp->nocb_defer_wakeup],
2397 "tT"[timer_pending(&rdp->nocb_timer)],
2398 "bB"[timer_pending(&rdp->nocb_bypass_timer)],
2399 "sS"[!!rdp->nocb_gp_sleep],
2400 ".W"[swait_active(&rdp->nocb_gp_wq)],
2401 ".W"[swait_active(&rnp->nocb_gp_wq[0])],
2402 ".W"[swait_active(&rnp->nocb_gp_wq[1])],
2403 ".B"[!!rdp->nocb_gp_bypass],
2404 ".G"[!!rdp->nocb_gp_gp],
2405 (long)rdp->nocb_gp_seq,
2406 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops));
2407 }
2408
2409 /* Dump out nocb kthread state for the specified rcu_data structure. */
show_rcu_nocb_state(struct rcu_data * rdp)2410 static void show_rcu_nocb_state(struct rcu_data *rdp)
2411 {
2412 struct rcu_segcblist *rsclp = &rdp->cblist;
2413 bool waslocked;
2414 bool wastimer;
2415 bool wassleep;
2416
2417 if (rdp->nocb_gp_rdp == rdp)
2418 show_rcu_nocb_gp_state(rdp);
2419
2420 pr_info(" CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
2421 rdp->cpu, rdp->nocb_gp_rdp->cpu,
2422 "kK"[!!rdp->nocb_cb_kthread],
2423 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2424 "cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2425 "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2426 "sS"[!!rdp->nocb_cb_sleep],
2427 ".W"[swait_active(&rdp->nocb_cb_wq)],
2428 jiffies - rdp->nocb_bypass_first,
2429 jiffies - rdp->nocb_nobypass_last,
2430 rdp->nocb_nobypass_count,
2431 ".D"[rcu_segcblist_ready_cbs(rsclp)],
2432 ".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)],
2433 ".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)],
2434 ".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)],
2435 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2436 rcu_segcblist_n_cbs(&rdp->cblist));
2437
2438 /* It is OK for GP kthreads to have GP state. */
2439 if (rdp->nocb_gp_rdp == rdp)
2440 return;
2441
2442 waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
2443 wastimer = timer_pending(&rdp->nocb_bypass_timer);
2444 wassleep = swait_active(&rdp->nocb_gp_wq);
2445 if (!rdp->nocb_gp_sleep && !waslocked && !wastimer && !wassleep)
2446 return; /* Nothing untowards. */
2447
2448 pr_info(" nocb GP activity on CB-only CPU!!! %c%c%c%c %c\n",
2449 "lL"[waslocked],
2450 "dD"[!!rdp->nocb_defer_wakeup],
2451 "tT"[wastimer],
2452 "sS"[!!rdp->nocb_gp_sleep],
2453 ".W"[wassleep]);
2454 }
2455
2456 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2457
2458 /* No ->nocb_lock to acquire. */
rcu_nocb_lock(struct rcu_data * rdp)2459 static void rcu_nocb_lock(struct rcu_data *rdp)
2460 {
2461 }
2462
2463 /* No ->nocb_lock to release. */
rcu_nocb_unlock(struct rcu_data * rdp)2464 static void rcu_nocb_unlock(struct rcu_data *rdp)
2465 {
2466 }
2467
2468 /* No ->nocb_lock to release. */
rcu_nocb_unlock_irqrestore(struct rcu_data * rdp,unsigned long flags)2469 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2470 unsigned long flags)
2471 {
2472 local_irq_restore(flags);
2473 }
2474
2475 /* Lockdep check that ->cblist may be safely accessed. */
rcu_lockdep_assert_cblist_protected(struct rcu_data * rdp)2476 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
2477 {
2478 lockdep_assert_irqs_disabled();
2479 }
2480
rcu_nocb_gp_cleanup(struct swait_queue_head * sq)2481 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2482 {
2483 }
2484
rcu_nocb_gp_get(struct rcu_node * rnp)2485 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2486 {
2487 return NULL;
2488 }
2489
rcu_init_one_nocb(struct rcu_node * rnp)2490 static void rcu_init_one_nocb(struct rcu_node *rnp)
2491 {
2492 }
2493
rcu_nocb_flush_bypass(struct rcu_data * rdp,struct rcu_head * rhp,unsigned long j)2494 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2495 unsigned long j)
2496 {
2497 return true;
2498 }
2499
rcu_nocb_try_bypass(struct rcu_data * rdp,struct rcu_head * rhp,bool * was_alldone,unsigned long flags)2500 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2501 bool *was_alldone, unsigned long flags)
2502 {
2503 return false;
2504 }
2505
__call_rcu_nocb_wake(struct rcu_data * rdp,bool was_empty,unsigned long flags)2506 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2507 unsigned long flags)
2508 {
2509 WARN_ON_ONCE(1); /* Should be dead code! */
2510 }
2511
rcu_boot_init_nocb_percpu_data(struct rcu_data * rdp)2512 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2513 {
2514 }
2515
rcu_nocb_need_deferred_wakeup(struct rcu_data * rdp)2516 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2517 {
2518 return false;
2519 }
2520
do_nocb_deferred_wakeup(struct rcu_data * rdp)2521 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2522 {
2523 }
2524
rcu_spawn_cpu_nocb_kthread(int cpu)2525 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2526 {
2527 }
2528
rcu_spawn_nocb_kthreads(void)2529 static void __init rcu_spawn_nocb_kthreads(void)
2530 {
2531 }
2532
show_rcu_nocb_state(struct rcu_data * rdp)2533 static void show_rcu_nocb_state(struct rcu_data *rdp)
2534 {
2535 }
2536
2537 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2538
2539 /*
2540 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2541 * grace-period kthread will do force_quiescent_state() processing?
2542 * The idea is to avoid waking up RCU core processing on such a
2543 * CPU unless the grace period has extended for too long.
2544 *
2545 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2546 * CONFIG_RCU_NOCB_CPU CPUs.
2547 */
rcu_nohz_full_cpu(void)2548 static bool rcu_nohz_full_cpu(void)
2549 {
2550 #ifdef CONFIG_NO_HZ_FULL
2551 if (tick_nohz_full_cpu(smp_processor_id()) &&
2552 (!rcu_gp_in_progress() ||
2553 time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
2554 return true;
2555 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2556 return false;
2557 }
2558
2559 /*
2560 * Bind the RCU grace-period kthreads to the housekeeping CPU.
2561 */
rcu_bind_gp_kthread(void)2562 static void rcu_bind_gp_kthread(void)
2563 {
2564 if (!tick_nohz_full_enabled())
2565 return;
2566 housekeeping_affine(current, HK_FLAG_RCU);
2567 }
2568
2569 /* Record the current task on dyntick-idle entry. */
rcu_dynticks_task_enter(void)2570 static void noinstr rcu_dynticks_task_enter(void)
2571 {
2572 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2573 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2574 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2575 }
2576
2577 /* Record no current task on dyntick-idle exit. */
rcu_dynticks_task_exit(void)2578 static void noinstr rcu_dynticks_task_exit(void)
2579 {
2580 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2581 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2582 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2583 }
2584
2585 /* Turn on heavyweight RCU tasks trace readers on idle/user entry. */
rcu_dynticks_task_trace_enter(void)2586 static void rcu_dynticks_task_trace_enter(void)
2587 {
2588 #ifdef CONFIG_TASKS_RCU_TRACE
2589 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
2590 current->trc_reader_special.b.need_mb = true;
2591 #endif /* #ifdef CONFIG_TASKS_RCU_TRACE */
2592 }
2593
2594 /* Turn off heavyweight RCU tasks trace readers on idle/user exit. */
rcu_dynticks_task_trace_exit(void)2595 static void rcu_dynticks_task_trace_exit(void)
2596 {
2597 #ifdef CONFIG_TASKS_RCU_TRACE
2598 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
2599 current->trc_reader_special.b.need_mb = false;
2600 #endif /* #ifdef CONFIG_TASKS_RCU_TRACE */
2601 }
2602