1 /*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/nmi.h>
18 #include <linux/sched.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/clock.h>
21 #include <linux/syscore_ops.h>
22 #include <linux/clocksource.h>
23 #include <linux/jiffies.h>
24 #include <linux/time.h>
25 #include <linux/tick.h>
26 #include <linux/stop_machine.h>
27 #include <linux/pvclock_gtod.h>
28 #include <linux/compiler.h>
29
30 #include "tick-internal.h"
31 #include "ntp_internal.h"
32 #include "timekeeping_internal.h"
33
34 #define TK_CLEAR_NTP (1 << 0)
35 #define TK_MIRROR (1 << 1)
36 #define TK_CLOCK_WAS_SET (1 << 2)
37
38 enum timekeeping_adv_mode {
39 /* Update timekeeper when a tick has passed */
40 TK_ADV_TICK,
41
42 /* Update timekeeper on a direct frequency change */
43 TK_ADV_FREQ
44 };
45
46 /*
47 * The most important data for readout fits into a single 64 byte
48 * cache line.
49 */
50 static struct {
51 seqcount_t seq;
52 struct timekeeper timekeeper;
53 } tk_core ____cacheline_aligned;
54
55 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
56 static struct timekeeper shadow_timekeeper;
57
58 /**
59 * struct tk_fast - NMI safe timekeeper
60 * @seq: Sequence counter for protecting updates. The lowest bit
61 * is the index for the tk_read_base array
62 * @base: tk_read_base array. Access is indexed by the lowest bit of
63 * @seq.
64 *
65 * See @update_fast_timekeeper() below.
66 */
67 struct tk_fast {
68 seqcount_t seq;
69 struct tk_read_base base[2];
70 };
71
72 /* Suspend-time cycles value for halted fast timekeeper. */
73 static u64 cycles_at_suspend;
74
dummy_clock_read(struct clocksource * cs)75 static u64 dummy_clock_read(struct clocksource *cs)
76 {
77 return cycles_at_suspend;
78 }
79
80 static struct clocksource dummy_clock = {
81 .read = dummy_clock_read,
82 };
83
84 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
85 .base[0] = { .clock = &dummy_clock, },
86 .base[1] = { .clock = &dummy_clock, },
87 };
88
89 static struct tk_fast tk_fast_raw ____cacheline_aligned = {
90 .base[0] = { .clock = &dummy_clock, },
91 .base[1] = { .clock = &dummy_clock, },
92 };
93
94 /* flag for if timekeeping is suspended */
95 int __read_mostly timekeeping_suspended;
96
tk_normalize_xtime(struct timekeeper * tk)97 static inline void tk_normalize_xtime(struct timekeeper *tk)
98 {
99 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
100 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
101 tk->xtime_sec++;
102 }
103 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
104 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
105 tk->raw_sec++;
106 }
107 }
108
tk_xtime(const struct timekeeper * tk)109 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
110 {
111 struct timespec64 ts;
112
113 ts.tv_sec = tk->xtime_sec;
114 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
115 return ts;
116 }
117
tk_set_xtime(struct timekeeper * tk,const struct timespec64 * ts)118 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
119 {
120 tk->xtime_sec = ts->tv_sec;
121 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
122 }
123
tk_xtime_add(struct timekeeper * tk,const struct timespec64 * ts)124 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
125 {
126 tk->xtime_sec += ts->tv_sec;
127 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
128 tk_normalize_xtime(tk);
129 }
130
tk_set_wall_to_mono(struct timekeeper * tk,struct timespec64 wtm)131 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
132 {
133 struct timespec64 tmp;
134
135 /*
136 * Verify consistency of: offset_real = -wall_to_monotonic
137 * before modifying anything
138 */
139 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
140 -tk->wall_to_monotonic.tv_nsec);
141 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
142 tk->wall_to_monotonic = wtm;
143 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
144 tk->offs_real = timespec64_to_ktime(tmp);
145 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
146 }
147
tk_update_sleep_time(struct timekeeper * tk,ktime_t delta)148 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
149 {
150 tk->offs_boot = ktime_add(tk->offs_boot, delta);
151 }
152
153 /*
154 * tk_clock_read - atomic clocksource read() helper
155 *
156 * This helper is necessary to use in the read paths because, while the
157 * seqlock ensures we don't return a bad value while structures are updated,
158 * it doesn't protect from potential crashes. There is the possibility that
159 * the tkr's clocksource may change between the read reference, and the
160 * clock reference passed to the read function. This can cause crashes if
161 * the wrong clocksource is passed to the wrong read function.
162 * This isn't necessary to use when holding the timekeeper_lock or doing
163 * a read of the fast-timekeeper tkrs (which is protected by its own locking
164 * and update logic).
165 */
tk_clock_read(const struct tk_read_base * tkr)166 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
167 {
168 struct clocksource *clock = READ_ONCE(tkr->clock);
169
170 return clock->read(clock);
171 }
172
173 #ifdef CONFIG_DEBUG_TIMEKEEPING
174 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
175
timekeeping_check_update(struct timekeeper * tk,u64 offset)176 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
177 {
178
179 u64 max_cycles = tk->tkr_mono.clock->max_cycles;
180 const char *name = tk->tkr_mono.clock->name;
181
182 if (offset > max_cycles) {
183 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
184 offset, name, max_cycles);
185 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
186 } else {
187 if (offset > (max_cycles >> 1)) {
188 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
189 offset, name, max_cycles >> 1);
190 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
191 }
192 }
193
194 if (tk->underflow_seen) {
195 if (jiffies - tk->last_warning > WARNING_FREQ) {
196 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
197 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
198 printk_deferred(" Your kernel is probably still fine.\n");
199 tk->last_warning = jiffies;
200 }
201 tk->underflow_seen = 0;
202 }
203
204 if (tk->overflow_seen) {
205 if (jiffies - tk->last_warning > WARNING_FREQ) {
206 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
207 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
208 printk_deferred(" Your kernel is probably still fine.\n");
209 tk->last_warning = jiffies;
210 }
211 tk->overflow_seen = 0;
212 }
213 }
214
timekeeping_get_delta(const struct tk_read_base * tkr)215 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
216 {
217 struct timekeeper *tk = &tk_core.timekeeper;
218 u64 now, last, mask, max, delta;
219 unsigned int seq;
220
221 /*
222 * Since we're called holding a seqlock, the data may shift
223 * under us while we're doing the calculation. This can cause
224 * false positives, since we'd note a problem but throw the
225 * results away. So nest another seqlock here to atomically
226 * grab the points we are checking with.
227 */
228 do {
229 seq = read_seqcount_begin(&tk_core.seq);
230 now = tk_clock_read(tkr);
231 last = tkr->cycle_last;
232 mask = tkr->mask;
233 max = tkr->clock->max_cycles;
234 } while (read_seqcount_retry(&tk_core.seq, seq));
235
236 delta = clocksource_delta(now, last, mask);
237
238 /*
239 * Try to catch underflows by checking if we are seeing small
240 * mask-relative negative values.
241 */
242 if (unlikely((~delta & mask) < (mask >> 3))) {
243 tk->underflow_seen = 1;
244 delta = 0;
245 }
246
247 /* Cap delta value to the max_cycles values to avoid mult overflows */
248 if (unlikely(delta > max)) {
249 tk->overflow_seen = 1;
250 delta = tkr->clock->max_cycles;
251 }
252
253 return delta;
254 }
255 #else
timekeeping_check_update(struct timekeeper * tk,u64 offset)256 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
257 {
258 }
timekeeping_get_delta(const struct tk_read_base * tkr)259 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
260 {
261 u64 cycle_now, delta;
262
263 /* read clocksource */
264 cycle_now = tk_clock_read(tkr);
265
266 /* calculate the delta since the last update_wall_time */
267 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
268
269 return delta;
270 }
271 #endif
272
273 /**
274 * tk_setup_internals - Set up internals to use clocksource clock.
275 *
276 * @tk: The target timekeeper to setup.
277 * @clock: Pointer to clocksource.
278 *
279 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
280 * pair and interval request.
281 *
282 * Unless you're the timekeeping code, you should not be using this!
283 */
tk_setup_internals(struct timekeeper * tk,struct clocksource * clock)284 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
285 {
286 u64 interval;
287 u64 tmp, ntpinterval;
288 struct clocksource *old_clock;
289
290 ++tk->cs_was_changed_seq;
291 old_clock = tk->tkr_mono.clock;
292 tk->tkr_mono.clock = clock;
293 tk->tkr_mono.mask = clock->mask;
294 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
295
296 tk->tkr_raw.clock = clock;
297 tk->tkr_raw.mask = clock->mask;
298 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
299
300 /* Do the ns -> cycle conversion first, using original mult */
301 tmp = NTP_INTERVAL_LENGTH;
302 tmp <<= clock->shift;
303 ntpinterval = tmp;
304 tmp += clock->mult/2;
305 do_div(tmp, clock->mult);
306 if (tmp == 0)
307 tmp = 1;
308
309 interval = (u64) tmp;
310 tk->cycle_interval = interval;
311
312 /* Go back from cycles -> shifted ns */
313 tk->xtime_interval = interval * clock->mult;
314 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
315 tk->raw_interval = interval * clock->mult;
316
317 /* if changing clocks, convert xtime_nsec shift units */
318 if (old_clock) {
319 int shift_change = clock->shift - old_clock->shift;
320 if (shift_change < 0) {
321 tk->tkr_mono.xtime_nsec >>= -shift_change;
322 tk->tkr_raw.xtime_nsec >>= -shift_change;
323 } else {
324 tk->tkr_mono.xtime_nsec <<= shift_change;
325 tk->tkr_raw.xtime_nsec <<= shift_change;
326 }
327 }
328
329 tk->tkr_mono.shift = clock->shift;
330 tk->tkr_raw.shift = clock->shift;
331
332 tk->ntp_error = 0;
333 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
334 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
335
336 /*
337 * The timekeeper keeps its own mult values for the currently
338 * active clocksource. These value will be adjusted via NTP
339 * to counteract clock drifting.
340 */
341 tk->tkr_mono.mult = clock->mult;
342 tk->tkr_raw.mult = clock->mult;
343 tk->ntp_err_mult = 0;
344 tk->skip_second_overflow = 0;
345 }
346
347 /* Timekeeper helper functions. */
348
349 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
default_arch_gettimeoffset(void)350 static u32 default_arch_gettimeoffset(void) { return 0; }
351 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
352 #else
arch_gettimeoffset(void)353 static inline u32 arch_gettimeoffset(void) { return 0; }
354 #endif
355
timekeeping_delta_to_ns(const struct tk_read_base * tkr,u64 delta)356 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
357 {
358 u64 nsec;
359
360 nsec = delta * tkr->mult + tkr->xtime_nsec;
361 nsec >>= tkr->shift;
362
363 /* If arch requires, add in get_arch_timeoffset() */
364 return nsec + arch_gettimeoffset();
365 }
366
timekeeping_get_ns(const struct tk_read_base * tkr)367 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
368 {
369 u64 delta;
370
371 delta = timekeeping_get_delta(tkr);
372 return timekeeping_delta_to_ns(tkr, delta);
373 }
374
timekeeping_cycles_to_ns(const struct tk_read_base * tkr,u64 cycles)375 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
376 {
377 u64 delta;
378
379 /* calculate the delta since the last update_wall_time */
380 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
381 return timekeeping_delta_to_ns(tkr, delta);
382 }
383
384 /**
385 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
386 * @tkr: Timekeeping readout base from which we take the update
387 *
388 * We want to use this from any context including NMI and tracing /
389 * instrumenting the timekeeping code itself.
390 *
391 * Employ the latch technique; see @raw_write_seqcount_latch.
392 *
393 * So if a NMI hits the update of base[0] then it will use base[1]
394 * which is still consistent. In the worst case this can result is a
395 * slightly wrong timestamp (a few nanoseconds). See
396 * @ktime_get_mono_fast_ns.
397 */
update_fast_timekeeper(const struct tk_read_base * tkr,struct tk_fast * tkf)398 static void update_fast_timekeeper(const struct tk_read_base *tkr,
399 struct tk_fast *tkf)
400 {
401 struct tk_read_base *base = tkf->base;
402
403 /* Force readers off to base[1] */
404 raw_write_seqcount_latch(&tkf->seq);
405
406 /* Update base[0] */
407 memcpy(base, tkr, sizeof(*base));
408
409 /* Force readers back to base[0] */
410 raw_write_seqcount_latch(&tkf->seq);
411
412 /* Update base[1] */
413 memcpy(base + 1, base, sizeof(*base));
414 }
415
416 /**
417 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
418 *
419 * This timestamp is not guaranteed to be monotonic across an update.
420 * The timestamp is calculated by:
421 *
422 * now = base_mono + clock_delta * slope
423 *
424 * So if the update lowers the slope, readers who are forced to the
425 * not yet updated second array are still using the old steeper slope.
426 *
427 * tmono
428 * ^
429 * | o n
430 * | o n
431 * | u
432 * | o
433 * |o
434 * |12345678---> reader order
435 *
436 * o = old slope
437 * u = update
438 * n = new slope
439 *
440 * So reader 6 will observe time going backwards versus reader 5.
441 *
442 * While other CPUs are likely to be able observe that, the only way
443 * for a CPU local observation is when an NMI hits in the middle of
444 * the update. Timestamps taken from that NMI context might be ahead
445 * of the following timestamps. Callers need to be aware of that and
446 * deal with it.
447 */
__ktime_get_fast_ns(struct tk_fast * tkf)448 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
449 {
450 struct tk_read_base *tkr;
451 unsigned int seq;
452 u64 now;
453
454 do {
455 seq = raw_read_seqcount_latch(&tkf->seq);
456 tkr = tkf->base + (seq & 0x01);
457 now = ktime_to_ns(tkr->base);
458
459 now += timekeeping_delta_to_ns(tkr,
460 clocksource_delta(
461 tk_clock_read(tkr),
462 tkr->cycle_last,
463 tkr->mask));
464 } while (read_seqcount_retry(&tkf->seq, seq));
465
466 return now;
467 }
468
ktime_get_mono_fast_ns(void)469 u64 ktime_get_mono_fast_ns(void)
470 {
471 return __ktime_get_fast_ns(&tk_fast_mono);
472 }
473 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
474
ktime_get_raw_fast_ns(void)475 u64 ktime_get_raw_fast_ns(void)
476 {
477 return __ktime_get_fast_ns(&tk_fast_raw);
478 }
479 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
480
481 /**
482 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
483 *
484 * To keep it NMI safe since we're accessing from tracing, we're not using a
485 * separate timekeeper with updates to monotonic clock and boot offset
486 * protected with seqlocks. This has the following minor side effects:
487 *
488 * (1) Its possible that a timestamp be taken after the boot offset is updated
489 * but before the timekeeper is updated. If this happens, the new boot offset
490 * is added to the old timekeeping making the clock appear to update slightly
491 * earlier:
492 * CPU 0 CPU 1
493 * timekeeping_inject_sleeptime64()
494 * __timekeeping_inject_sleeptime(tk, delta);
495 * timestamp();
496 * timekeeping_update(tk, TK_CLEAR_NTP...);
497 *
498 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
499 * partially updated. Since the tk->offs_boot update is a rare event, this
500 * should be a rare occurrence which postprocessing should be able to handle.
501 */
ktime_get_boot_fast_ns(void)502 u64 notrace ktime_get_boot_fast_ns(void)
503 {
504 struct timekeeper *tk = &tk_core.timekeeper;
505
506 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
507 }
508 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
509
510
511 /*
512 * See comment for __ktime_get_fast_ns() vs. timestamp ordering
513 */
__ktime_get_real_fast_ns(struct tk_fast * tkf)514 static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
515 {
516 struct tk_read_base *tkr;
517 unsigned int seq;
518 u64 now;
519
520 do {
521 seq = raw_read_seqcount_latch(&tkf->seq);
522 tkr = tkf->base + (seq & 0x01);
523 now = ktime_to_ns(tkr->base_real);
524
525 now += timekeeping_delta_to_ns(tkr,
526 clocksource_delta(
527 tk_clock_read(tkr),
528 tkr->cycle_last,
529 tkr->mask));
530 } while (read_seqcount_retry(&tkf->seq, seq));
531
532 return now;
533 }
534
535 /**
536 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
537 */
ktime_get_real_fast_ns(void)538 u64 ktime_get_real_fast_ns(void)
539 {
540 return __ktime_get_real_fast_ns(&tk_fast_mono);
541 }
542 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
543
544 /**
545 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
546 * @tk: Timekeeper to snapshot.
547 *
548 * It generally is unsafe to access the clocksource after timekeeping has been
549 * suspended, so take a snapshot of the readout base of @tk and use it as the
550 * fast timekeeper's readout base while suspended. It will return the same
551 * number of cycles every time until timekeeping is resumed at which time the
552 * proper readout base for the fast timekeeper will be restored automatically.
553 */
halt_fast_timekeeper(const struct timekeeper * tk)554 static void halt_fast_timekeeper(const struct timekeeper *tk)
555 {
556 static struct tk_read_base tkr_dummy;
557 const struct tk_read_base *tkr = &tk->tkr_mono;
558
559 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
560 cycles_at_suspend = tk_clock_read(tkr);
561 tkr_dummy.clock = &dummy_clock;
562 tkr_dummy.base_real = tkr->base + tk->offs_real;
563 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
564
565 tkr = &tk->tkr_raw;
566 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
567 tkr_dummy.clock = &dummy_clock;
568 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
569 }
570
571 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
572
update_pvclock_gtod(struct timekeeper * tk,bool was_set)573 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
574 {
575 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
576 }
577
578 /**
579 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
580 */
pvclock_gtod_register_notifier(struct notifier_block * nb)581 int pvclock_gtod_register_notifier(struct notifier_block *nb)
582 {
583 struct timekeeper *tk = &tk_core.timekeeper;
584 unsigned long flags;
585 int ret;
586
587 raw_spin_lock_irqsave(&timekeeper_lock, flags);
588 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
589 update_pvclock_gtod(tk, true);
590 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
591
592 return ret;
593 }
594 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
595
596 /**
597 * pvclock_gtod_unregister_notifier - unregister a pvclock
598 * timedata update listener
599 */
pvclock_gtod_unregister_notifier(struct notifier_block * nb)600 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
601 {
602 unsigned long flags;
603 int ret;
604
605 raw_spin_lock_irqsave(&timekeeper_lock, flags);
606 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
607 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
608
609 return ret;
610 }
611 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
612
613 /*
614 * tk_update_leap_state - helper to update the next_leap_ktime
615 */
tk_update_leap_state(struct timekeeper * tk)616 static inline void tk_update_leap_state(struct timekeeper *tk)
617 {
618 tk->next_leap_ktime = ntp_get_next_leap();
619 if (tk->next_leap_ktime != KTIME_MAX)
620 /* Convert to monotonic time */
621 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
622 }
623
624 /*
625 * Update the ktime_t based scalar nsec members of the timekeeper
626 */
tk_update_ktime_data(struct timekeeper * tk)627 static inline void tk_update_ktime_data(struct timekeeper *tk)
628 {
629 u64 seconds;
630 u32 nsec;
631
632 /*
633 * The xtime based monotonic readout is:
634 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
635 * The ktime based monotonic readout is:
636 * nsec = base_mono + now();
637 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
638 */
639 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
640 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
641 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
642
643 /*
644 * The sum of the nanoseconds portions of xtime and
645 * wall_to_monotonic can be greater/equal one second. Take
646 * this into account before updating tk->ktime_sec.
647 */
648 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
649 if (nsec >= NSEC_PER_SEC)
650 seconds++;
651 tk->ktime_sec = seconds;
652
653 /* Update the monotonic raw base */
654 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
655 }
656
657 /* must hold timekeeper_lock */
timekeeping_update(struct timekeeper * tk,unsigned int action)658 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
659 {
660 if (action & TK_CLEAR_NTP) {
661 tk->ntp_error = 0;
662 ntp_clear();
663 }
664
665 tk_update_leap_state(tk);
666 tk_update_ktime_data(tk);
667
668 update_vsyscall(tk);
669 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
670
671 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
672 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
673 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
674
675 if (action & TK_CLOCK_WAS_SET)
676 tk->clock_was_set_seq++;
677 /*
678 * The mirroring of the data to the shadow-timekeeper needs
679 * to happen last here to ensure we don't over-write the
680 * timekeeper structure on the next update with stale data
681 */
682 if (action & TK_MIRROR)
683 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
684 sizeof(tk_core.timekeeper));
685 }
686
687 /**
688 * timekeeping_forward_now - update clock to the current time
689 *
690 * Forward the current clock to update its state since the last call to
691 * update_wall_time(). This is useful before significant clock changes,
692 * as it avoids having to deal with this time offset explicitly.
693 */
timekeeping_forward_now(struct timekeeper * tk)694 static void timekeeping_forward_now(struct timekeeper *tk)
695 {
696 u64 cycle_now, delta;
697
698 cycle_now = tk_clock_read(&tk->tkr_mono);
699 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
700 tk->tkr_mono.cycle_last = cycle_now;
701 tk->tkr_raw.cycle_last = cycle_now;
702
703 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
704
705 /* If arch requires, add in get_arch_timeoffset() */
706 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
707
708
709 tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
710
711 /* If arch requires, add in get_arch_timeoffset() */
712 tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
713
714 tk_normalize_xtime(tk);
715 }
716
717 /**
718 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
719 * @ts: pointer to the timespec to be set
720 *
721 * Returns the time of day in a timespec64 (WARN if suspended).
722 */
ktime_get_real_ts64(struct timespec64 * ts)723 void ktime_get_real_ts64(struct timespec64 *ts)
724 {
725 struct timekeeper *tk = &tk_core.timekeeper;
726 unsigned long seq;
727 u64 nsecs;
728
729 WARN_ON(timekeeping_suspended);
730
731 do {
732 seq = read_seqcount_begin(&tk_core.seq);
733
734 ts->tv_sec = tk->xtime_sec;
735 nsecs = timekeeping_get_ns(&tk->tkr_mono);
736
737 } while (read_seqcount_retry(&tk_core.seq, seq));
738
739 ts->tv_nsec = 0;
740 timespec64_add_ns(ts, nsecs);
741 }
742 EXPORT_SYMBOL(ktime_get_real_ts64);
743
ktime_get(void)744 ktime_t ktime_get(void)
745 {
746 struct timekeeper *tk = &tk_core.timekeeper;
747 unsigned int seq;
748 ktime_t base;
749 u64 nsecs;
750
751 WARN_ON(timekeeping_suspended);
752
753 do {
754 seq = read_seqcount_begin(&tk_core.seq);
755 base = tk->tkr_mono.base;
756 nsecs = timekeeping_get_ns(&tk->tkr_mono);
757
758 } while (read_seqcount_retry(&tk_core.seq, seq));
759
760 return ktime_add_ns(base, nsecs);
761 }
762 EXPORT_SYMBOL_GPL(ktime_get);
763
ktime_get_resolution_ns(void)764 u32 ktime_get_resolution_ns(void)
765 {
766 struct timekeeper *tk = &tk_core.timekeeper;
767 unsigned int seq;
768 u32 nsecs;
769
770 WARN_ON(timekeeping_suspended);
771
772 do {
773 seq = read_seqcount_begin(&tk_core.seq);
774 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
775 } while (read_seqcount_retry(&tk_core.seq, seq));
776
777 return nsecs;
778 }
779 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
780
781 static ktime_t *offsets[TK_OFFS_MAX] = {
782 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
783 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
784 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
785 };
786
ktime_get_with_offset(enum tk_offsets offs)787 ktime_t ktime_get_with_offset(enum tk_offsets offs)
788 {
789 struct timekeeper *tk = &tk_core.timekeeper;
790 unsigned int seq;
791 ktime_t base, *offset = offsets[offs];
792 u64 nsecs;
793
794 WARN_ON(timekeeping_suspended);
795
796 do {
797 seq = read_seqcount_begin(&tk_core.seq);
798 base = ktime_add(tk->tkr_mono.base, *offset);
799 nsecs = timekeeping_get_ns(&tk->tkr_mono);
800
801 } while (read_seqcount_retry(&tk_core.seq, seq));
802
803 return ktime_add_ns(base, nsecs);
804
805 }
806 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
807
ktime_get_coarse_with_offset(enum tk_offsets offs)808 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
809 {
810 struct timekeeper *tk = &tk_core.timekeeper;
811 unsigned int seq;
812 ktime_t base, *offset = offsets[offs];
813
814 WARN_ON(timekeeping_suspended);
815
816 do {
817 seq = read_seqcount_begin(&tk_core.seq);
818 base = ktime_add(tk->tkr_mono.base, *offset);
819
820 } while (read_seqcount_retry(&tk_core.seq, seq));
821
822 return base;
823
824 }
825 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
826
827 /**
828 * ktime_mono_to_any() - convert mononotic time to any other time
829 * @tmono: time to convert.
830 * @offs: which offset to use
831 */
ktime_mono_to_any(ktime_t tmono,enum tk_offsets offs)832 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
833 {
834 ktime_t *offset = offsets[offs];
835 unsigned long seq;
836 ktime_t tconv;
837
838 do {
839 seq = read_seqcount_begin(&tk_core.seq);
840 tconv = ktime_add(tmono, *offset);
841 } while (read_seqcount_retry(&tk_core.seq, seq));
842
843 return tconv;
844 }
845 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
846
847 /**
848 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
849 */
ktime_get_raw(void)850 ktime_t ktime_get_raw(void)
851 {
852 struct timekeeper *tk = &tk_core.timekeeper;
853 unsigned int seq;
854 ktime_t base;
855 u64 nsecs;
856
857 do {
858 seq = read_seqcount_begin(&tk_core.seq);
859 base = tk->tkr_raw.base;
860 nsecs = timekeeping_get_ns(&tk->tkr_raw);
861
862 } while (read_seqcount_retry(&tk_core.seq, seq));
863
864 return ktime_add_ns(base, nsecs);
865 }
866 EXPORT_SYMBOL_GPL(ktime_get_raw);
867
868 /**
869 * ktime_get_ts64 - get the monotonic clock in timespec64 format
870 * @ts: pointer to timespec variable
871 *
872 * The function calculates the monotonic clock from the realtime
873 * clock and the wall_to_monotonic offset and stores the result
874 * in normalized timespec64 format in the variable pointed to by @ts.
875 */
ktime_get_ts64(struct timespec64 * ts)876 void ktime_get_ts64(struct timespec64 *ts)
877 {
878 struct timekeeper *tk = &tk_core.timekeeper;
879 struct timespec64 tomono;
880 unsigned int seq;
881 u64 nsec;
882
883 WARN_ON(timekeeping_suspended);
884
885 do {
886 seq = read_seqcount_begin(&tk_core.seq);
887 ts->tv_sec = tk->xtime_sec;
888 nsec = timekeeping_get_ns(&tk->tkr_mono);
889 tomono = tk->wall_to_monotonic;
890
891 } while (read_seqcount_retry(&tk_core.seq, seq));
892
893 ts->tv_sec += tomono.tv_sec;
894 ts->tv_nsec = 0;
895 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
896 }
897 EXPORT_SYMBOL_GPL(ktime_get_ts64);
898
899 /**
900 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
901 *
902 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
903 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
904 * works on both 32 and 64 bit systems. On 32 bit systems the readout
905 * covers ~136 years of uptime which should be enough to prevent
906 * premature wrap arounds.
907 */
ktime_get_seconds(void)908 time64_t ktime_get_seconds(void)
909 {
910 struct timekeeper *tk = &tk_core.timekeeper;
911
912 WARN_ON(timekeeping_suspended);
913 return tk->ktime_sec;
914 }
915 EXPORT_SYMBOL_GPL(ktime_get_seconds);
916
917 /**
918 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
919 *
920 * Returns the wall clock seconds since 1970. This replaces the
921 * get_seconds() interface which is not y2038 safe on 32bit systems.
922 *
923 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
924 * 32bit systems the access must be protected with the sequence
925 * counter to provide "atomic" access to the 64bit tk->xtime_sec
926 * value.
927 */
ktime_get_real_seconds(void)928 time64_t ktime_get_real_seconds(void)
929 {
930 struct timekeeper *tk = &tk_core.timekeeper;
931 time64_t seconds;
932 unsigned int seq;
933
934 if (IS_ENABLED(CONFIG_64BIT))
935 return tk->xtime_sec;
936
937 do {
938 seq = read_seqcount_begin(&tk_core.seq);
939 seconds = tk->xtime_sec;
940
941 } while (read_seqcount_retry(&tk_core.seq, seq));
942
943 return seconds;
944 }
945 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
946
947 /**
948 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
949 * but without the sequence counter protect. This internal function
950 * is called just when timekeeping lock is already held.
951 */
__ktime_get_real_seconds(void)952 time64_t __ktime_get_real_seconds(void)
953 {
954 struct timekeeper *tk = &tk_core.timekeeper;
955
956 return tk->xtime_sec;
957 }
958
959 /**
960 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
961 * @systime_snapshot: pointer to struct receiving the system time snapshot
962 */
ktime_get_snapshot(struct system_time_snapshot * systime_snapshot)963 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
964 {
965 struct timekeeper *tk = &tk_core.timekeeper;
966 unsigned long seq;
967 ktime_t base_raw;
968 ktime_t base_real;
969 u64 nsec_raw;
970 u64 nsec_real;
971 u64 now;
972
973 WARN_ON_ONCE(timekeeping_suspended);
974
975 do {
976 seq = read_seqcount_begin(&tk_core.seq);
977 now = tk_clock_read(&tk->tkr_mono);
978 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
979 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
980 base_real = ktime_add(tk->tkr_mono.base,
981 tk_core.timekeeper.offs_real);
982 base_raw = tk->tkr_raw.base;
983 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
984 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
985 } while (read_seqcount_retry(&tk_core.seq, seq));
986
987 systime_snapshot->cycles = now;
988 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
989 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
990 }
991 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
992
993 /* Scale base by mult/div checking for overflow */
scale64_check_overflow(u64 mult,u64 div,u64 * base)994 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
995 {
996 u64 tmp, rem;
997
998 tmp = div64_u64_rem(*base, div, &rem);
999
1000 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1001 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1002 return -EOVERFLOW;
1003 tmp *= mult;
1004 rem *= mult;
1005
1006 do_div(rem, div);
1007 *base = tmp + rem;
1008 return 0;
1009 }
1010
1011 /**
1012 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1013 * @history: Snapshot representing start of history
1014 * @partial_history_cycles: Cycle offset into history (fractional part)
1015 * @total_history_cycles: Total history length in cycles
1016 * @discontinuity: True indicates clock was set on history period
1017 * @ts: Cross timestamp that should be adjusted using
1018 * partial/total ratio
1019 *
1020 * Helper function used by get_device_system_crosststamp() to correct the
1021 * crosstimestamp corresponding to the start of the current interval to the
1022 * system counter value (timestamp point) provided by the driver. The
1023 * total_history_* quantities are the total history starting at the provided
1024 * reference point and ending at the start of the current interval. The cycle
1025 * count between the driver timestamp point and the start of the current
1026 * interval is partial_history_cycles.
1027 */
adjust_historical_crosststamp(struct system_time_snapshot * history,u64 partial_history_cycles,u64 total_history_cycles,bool discontinuity,struct system_device_crosststamp * ts)1028 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1029 u64 partial_history_cycles,
1030 u64 total_history_cycles,
1031 bool discontinuity,
1032 struct system_device_crosststamp *ts)
1033 {
1034 struct timekeeper *tk = &tk_core.timekeeper;
1035 u64 corr_raw, corr_real;
1036 bool interp_forward;
1037 int ret;
1038
1039 if (total_history_cycles == 0 || partial_history_cycles == 0)
1040 return 0;
1041
1042 /* Interpolate shortest distance from beginning or end of history */
1043 interp_forward = partial_history_cycles > total_history_cycles / 2;
1044 partial_history_cycles = interp_forward ?
1045 total_history_cycles - partial_history_cycles :
1046 partial_history_cycles;
1047
1048 /*
1049 * Scale the monotonic raw time delta by:
1050 * partial_history_cycles / total_history_cycles
1051 */
1052 corr_raw = (u64)ktime_to_ns(
1053 ktime_sub(ts->sys_monoraw, history->raw));
1054 ret = scale64_check_overflow(partial_history_cycles,
1055 total_history_cycles, &corr_raw);
1056 if (ret)
1057 return ret;
1058
1059 /*
1060 * If there is a discontinuity in the history, scale monotonic raw
1061 * correction by:
1062 * mult(real)/mult(raw) yielding the realtime correction
1063 * Otherwise, calculate the realtime correction similar to monotonic
1064 * raw calculation
1065 */
1066 if (discontinuity) {
1067 corr_real = mul_u64_u32_div
1068 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1069 } else {
1070 corr_real = (u64)ktime_to_ns(
1071 ktime_sub(ts->sys_realtime, history->real));
1072 ret = scale64_check_overflow(partial_history_cycles,
1073 total_history_cycles, &corr_real);
1074 if (ret)
1075 return ret;
1076 }
1077
1078 /* Fixup monotonic raw and real time time values */
1079 if (interp_forward) {
1080 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1081 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1082 } else {
1083 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1084 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1085 }
1086
1087 return 0;
1088 }
1089
1090 /*
1091 * cycle_between - true if test occurs chronologically between before and after
1092 */
cycle_between(u64 before,u64 test,u64 after)1093 static bool cycle_between(u64 before, u64 test, u64 after)
1094 {
1095 if (test > before && test < after)
1096 return true;
1097 if (test < before && before > after)
1098 return true;
1099 return false;
1100 }
1101
1102 /**
1103 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1104 * @get_time_fn: Callback to get simultaneous device time and
1105 * system counter from the device driver
1106 * @ctx: Context passed to get_time_fn()
1107 * @history_begin: Historical reference point used to interpolate system
1108 * time when counter provided by the driver is before the current interval
1109 * @xtstamp: Receives simultaneously captured system and device time
1110 *
1111 * Reads a timestamp from a device and correlates it to system time
1112 */
get_device_system_crosststamp(int (* get_time_fn)(ktime_t * device_time,struct system_counterval_t * sys_counterval,void * ctx),void * ctx,struct system_time_snapshot * history_begin,struct system_device_crosststamp * xtstamp)1113 int get_device_system_crosststamp(int (*get_time_fn)
1114 (ktime_t *device_time,
1115 struct system_counterval_t *sys_counterval,
1116 void *ctx),
1117 void *ctx,
1118 struct system_time_snapshot *history_begin,
1119 struct system_device_crosststamp *xtstamp)
1120 {
1121 struct system_counterval_t system_counterval;
1122 struct timekeeper *tk = &tk_core.timekeeper;
1123 u64 cycles, now, interval_start;
1124 unsigned int clock_was_set_seq = 0;
1125 ktime_t base_real, base_raw;
1126 u64 nsec_real, nsec_raw;
1127 u8 cs_was_changed_seq;
1128 unsigned long seq;
1129 bool do_interp;
1130 int ret;
1131
1132 do {
1133 seq = read_seqcount_begin(&tk_core.seq);
1134 /*
1135 * Try to synchronously capture device time and a system
1136 * counter value calling back into the device driver
1137 */
1138 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1139 if (ret)
1140 return ret;
1141
1142 /*
1143 * Verify that the clocksource associated with the captured
1144 * system counter value is the same as the currently installed
1145 * timekeeper clocksource
1146 */
1147 if (tk->tkr_mono.clock != system_counterval.cs)
1148 return -ENODEV;
1149 cycles = system_counterval.cycles;
1150
1151 /*
1152 * Check whether the system counter value provided by the
1153 * device driver is on the current timekeeping interval.
1154 */
1155 now = tk_clock_read(&tk->tkr_mono);
1156 interval_start = tk->tkr_mono.cycle_last;
1157 if (!cycle_between(interval_start, cycles, now)) {
1158 clock_was_set_seq = tk->clock_was_set_seq;
1159 cs_was_changed_seq = tk->cs_was_changed_seq;
1160 cycles = interval_start;
1161 do_interp = true;
1162 } else {
1163 do_interp = false;
1164 }
1165
1166 base_real = ktime_add(tk->tkr_mono.base,
1167 tk_core.timekeeper.offs_real);
1168 base_raw = tk->tkr_raw.base;
1169
1170 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1171 system_counterval.cycles);
1172 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1173 system_counterval.cycles);
1174 } while (read_seqcount_retry(&tk_core.seq, seq));
1175
1176 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1177 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1178
1179 /*
1180 * Interpolate if necessary, adjusting back from the start of the
1181 * current interval
1182 */
1183 if (do_interp) {
1184 u64 partial_history_cycles, total_history_cycles;
1185 bool discontinuity;
1186
1187 /*
1188 * Check that the counter value occurs after the provided
1189 * history reference and that the history doesn't cross a
1190 * clocksource change
1191 */
1192 if (!history_begin ||
1193 !cycle_between(history_begin->cycles,
1194 system_counterval.cycles, cycles) ||
1195 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1196 return -EINVAL;
1197 partial_history_cycles = cycles - system_counterval.cycles;
1198 total_history_cycles = cycles - history_begin->cycles;
1199 discontinuity =
1200 history_begin->clock_was_set_seq != clock_was_set_seq;
1201
1202 ret = adjust_historical_crosststamp(history_begin,
1203 partial_history_cycles,
1204 total_history_cycles,
1205 discontinuity, xtstamp);
1206 if (ret)
1207 return ret;
1208 }
1209
1210 return 0;
1211 }
1212 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1213
1214 /**
1215 * do_gettimeofday - Returns the time of day in a timeval
1216 * @tv: pointer to the timeval to be set
1217 *
1218 * NOTE: Users should be converted to using getnstimeofday()
1219 */
do_gettimeofday(struct timeval * tv)1220 void do_gettimeofday(struct timeval *tv)
1221 {
1222 struct timespec64 now;
1223
1224 getnstimeofday64(&now);
1225 tv->tv_sec = now.tv_sec;
1226 tv->tv_usec = now.tv_nsec/1000;
1227 }
1228 EXPORT_SYMBOL(do_gettimeofday);
1229
1230 /**
1231 * do_settimeofday64 - Sets the time of day.
1232 * @ts: pointer to the timespec64 variable containing the new time
1233 *
1234 * Sets the time of day to the new time and update NTP and notify hrtimers
1235 */
do_settimeofday64(const struct timespec64 * ts)1236 int do_settimeofday64(const struct timespec64 *ts)
1237 {
1238 struct timekeeper *tk = &tk_core.timekeeper;
1239 struct timespec64 ts_delta, xt;
1240 unsigned long flags;
1241 int ret = 0;
1242
1243 if (!timespec64_valid_strict(ts))
1244 return -EINVAL;
1245
1246 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1247 write_seqcount_begin(&tk_core.seq);
1248
1249 timekeeping_forward_now(tk);
1250
1251 xt = tk_xtime(tk);
1252 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1253 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1254
1255 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1256 ret = -EINVAL;
1257 goto out;
1258 }
1259
1260 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1261
1262 tk_set_xtime(tk, ts);
1263 out:
1264 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1265
1266 write_seqcount_end(&tk_core.seq);
1267 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1268
1269 /* signal hrtimers about time change */
1270 clock_was_set();
1271
1272 return ret;
1273 }
1274 EXPORT_SYMBOL(do_settimeofday64);
1275
1276 /**
1277 * timekeeping_inject_offset - Adds or subtracts from the current time.
1278 * @tv: pointer to the timespec variable containing the offset
1279 *
1280 * Adds or subtracts an offset value from the current time.
1281 */
timekeeping_inject_offset(const struct timespec64 * ts)1282 static int timekeeping_inject_offset(const struct timespec64 *ts)
1283 {
1284 struct timekeeper *tk = &tk_core.timekeeper;
1285 unsigned long flags;
1286 struct timespec64 tmp;
1287 int ret = 0;
1288
1289 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1290 return -EINVAL;
1291
1292 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1293 write_seqcount_begin(&tk_core.seq);
1294
1295 timekeeping_forward_now(tk);
1296
1297 /* Make sure the proposed value is valid */
1298 tmp = timespec64_add(tk_xtime(tk), *ts);
1299 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1300 !timespec64_valid_strict(&tmp)) {
1301 ret = -EINVAL;
1302 goto error;
1303 }
1304
1305 tk_xtime_add(tk, ts);
1306 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1307
1308 error: /* even if we error out, we forwarded the time, so call update */
1309 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1310
1311 write_seqcount_end(&tk_core.seq);
1312 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1313
1314 /* signal hrtimers about time change */
1315 clock_was_set();
1316
1317 return ret;
1318 }
1319
1320 /*
1321 * Indicates if there is an offset between the system clock and the hardware
1322 * clock/persistent clock/rtc.
1323 */
1324 int persistent_clock_is_local;
1325
1326 /*
1327 * Adjust the time obtained from the CMOS to be UTC time instead of
1328 * local time.
1329 *
1330 * This is ugly, but preferable to the alternatives. Otherwise we
1331 * would either need to write a program to do it in /etc/rc (and risk
1332 * confusion if the program gets run more than once; it would also be
1333 * hard to make the program warp the clock precisely n hours) or
1334 * compile in the timezone information into the kernel. Bad, bad....
1335 *
1336 * - TYT, 1992-01-01
1337 *
1338 * The best thing to do is to keep the CMOS clock in universal time (UTC)
1339 * as real UNIX machines always do it. This avoids all headaches about
1340 * daylight saving times and warping kernel clocks.
1341 */
timekeeping_warp_clock(void)1342 void timekeeping_warp_clock(void)
1343 {
1344 if (sys_tz.tz_minuteswest != 0) {
1345 struct timespec64 adjust;
1346
1347 persistent_clock_is_local = 1;
1348 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1349 adjust.tv_nsec = 0;
1350 timekeeping_inject_offset(&adjust);
1351 }
1352 }
1353
1354 /**
1355 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1356 *
1357 */
__timekeeping_set_tai_offset(struct timekeeper * tk,s32 tai_offset)1358 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1359 {
1360 tk->tai_offset = tai_offset;
1361 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1362 }
1363
1364 /**
1365 * change_clocksource - Swaps clocksources if a new one is available
1366 *
1367 * Accumulates current time interval and initializes new clocksource
1368 */
change_clocksource(void * data)1369 static int change_clocksource(void *data)
1370 {
1371 struct timekeeper *tk = &tk_core.timekeeper;
1372 struct clocksource *new, *old;
1373 unsigned long flags;
1374
1375 new = (struct clocksource *) data;
1376
1377 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1378 write_seqcount_begin(&tk_core.seq);
1379
1380 timekeeping_forward_now(tk);
1381 /*
1382 * If the cs is in module, get a module reference. Succeeds
1383 * for built-in code (owner == NULL) as well.
1384 */
1385 if (try_module_get(new->owner)) {
1386 if (!new->enable || new->enable(new) == 0) {
1387 old = tk->tkr_mono.clock;
1388 tk_setup_internals(tk, new);
1389 if (old->disable)
1390 old->disable(old);
1391 module_put(old->owner);
1392 } else {
1393 module_put(new->owner);
1394 }
1395 }
1396 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1397
1398 write_seqcount_end(&tk_core.seq);
1399 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1400
1401 return 0;
1402 }
1403
1404 /**
1405 * timekeeping_notify - Install a new clock source
1406 * @clock: pointer to the clock source
1407 *
1408 * This function is called from clocksource.c after a new, better clock
1409 * source has been registered. The caller holds the clocksource_mutex.
1410 */
timekeeping_notify(struct clocksource * clock)1411 int timekeeping_notify(struct clocksource *clock)
1412 {
1413 struct timekeeper *tk = &tk_core.timekeeper;
1414
1415 if (tk->tkr_mono.clock == clock)
1416 return 0;
1417 stop_machine(change_clocksource, clock, NULL);
1418 tick_clock_notify();
1419 return tk->tkr_mono.clock == clock ? 0 : -1;
1420 }
1421
1422 /**
1423 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1424 * @ts: pointer to the timespec64 to be set
1425 *
1426 * Returns the raw monotonic time (completely un-modified by ntp)
1427 */
ktime_get_raw_ts64(struct timespec64 * ts)1428 void ktime_get_raw_ts64(struct timespec64 *ts)
1429 {
1430 struct timekeeper *tk = &tk_core.timekeeper;
1431 unsigned long seq;
1432 u64 nsecs;
1433
1434 do {
1435 seq = read_seqcount_begin(&tk_core.seq);
1436 ts->tv_sec = tk->raw_sec;
1437 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1438
1439 } while (read_seqcount_retry(&tk_core.seq, seq));
1440
1441 ts->tv_nsec = 0;
1442 timespec64_add_ns(ts, nsecs);
1443 }
1444 EXPORT_SYMBOL(ktime_get_raw_ts64);
1445
1446
1447 /**
1448 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1449 */
timekeeping_valid_for_hres(void)1450 int timekeeping_valid_for_hres(void)
1451 {
1452 struct timekeeper *tk = &tk_core.timekeeper;
1453 unsigned long seq;
1454 int ret;
1455
1456 do {
1457 seq = read_seqcount_begin(&tk_core.seq);
1458
1459 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1460
1461 } while (read_seqcount_retry(&tk_core.seq, seq));
1462
1463 return ret;
1464 }
1465
1466 /**
1467 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1468 */
timekeeping_max_deferment(void)1469 u64 timekeeping_max_deferment(void)
1470 {
1471 struct timekeeper *tk = &tk_core.timekeeper;
1472 unsigned long seq;
1473 u64 ret;
1474
1475 do {
1476 seq = read_seqcount_begin(&tk_core.seq);
1477
1478 ret = tk->tkr_mono.clock->max_idle_ns;
1479
1480 } while (read_seqcount_retry(&tk_core.seq, seq));
1481
1482 return ret;
1483 }
1484
1485 /**
1486 * read_persistent_clock - Return time from the persistent clock.
1487 *
1488 * Weak dummy function for arches that do not yet support it.
1489 * Reads the time from the battery backed persistent clock.
1490 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1491 *
1492 * XXX - Do be sure to remove it once all arches implement it.
1493 */
read_persistent_clock(struct timespec * ts)1494 void __weak read_persistent_clock(struct timespec *ts)
1495 {
1496 ts->tv_sec = 0;
1497 ts->tv_nsec = 0;
1498 }
1499
read_persistent_clock64(struct timespec64 * ts64)1500 void __weak read_persistent_clock64(struct timespec64 *ts64)
1501 {
1502 struct timespec ts;
1503
1504 read_persistent_clock(&ts);
1505 *ts64 = timespec_to_timespec64(ts);
1506 }
1507
1508 /**
1509 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1510 * from the boot.
1511 *
1512 * Weak dummy function for arches that do not yet support it.
1513 * wall_time - current time as returned by persistent clock
1514 * boot_offset - offset that is defined as wall_time - boot_time
1515 * The default function calculates offset based on the current value of
1516 * local_clock(). This way architectures that support sched_clock() but don't
1517 * support dedicated boot time clock will provide the best estimate of the
1518 * boot time.
1519 */
1520 void __weak __init
read_persistent_wall_and_boot_offset(struct timespec64 * wall_time,struct timespec64 * boot_offset)1521 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1522 struct timespec64 *boot_offset)
1523 {
1524 read_persistent_clock64(wall_time);
1525 *boot_offset = ns_to_timespec64(local_clock());
1526 }
1527
1528 /*
1529 * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1530 *
1531 * The flag starts of false and is only set when a suspend reaches
1532 * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1533 * timekeeper clocksource is not stopping across suspend and has been
1534 * used to update sleep time. If the timekeeper clocksource has stopped
1535 * then the flag stays true and is used by the RTC resume code to decide
1536 * whether sleeptime must be injected and if so the flag gets false then.
1537 *
1538 * If a suspend fails before reaching timekeeping_resume() then the flag
1539 * stays false and prevents erroneous sleeptime injection.
1540 */
1541 static bool suspend_timing_needed;
1542
1543 /* Flag for if there is a persistent clock on this platform */
1544 static bool persistent_clock_exists;
1545
1546 /*
1547 * timekeeping_init - Initializes the clocksource and common timekeeping values
1548 */
timekeeping_init(void)1549 void __init timekeeping_init(void)
1550 {
1551 struct timespec64 wall_time, boot_offset, wall_to_mono;
1552 struct timekeeper *tk = &tk_core.timekeeper;
1553 struct clocksource *clock;
1554 unsigned long flags;
1555
1556 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1557 if (timespec64_valid_strict(&wall_time) &&
1558 timespec64_to_ns(&wall_time) > 0) {
1559 persistent_clock_exists = true;
1560 } else if (timespec64_to_ns(&wall_time) != 0) {
1561 pr_warn("Persistent clock returned invalid value");
1562 wall_time = (struct timespec64){0};
1563 }
1564
1565 if (timespec64_compare(&wall_time, &boot_offset) < 0)
1566 boot_offset = (struct timespec64){0};
1567
1568 /*
1569 * We want set wall_to_mono, so the following is true:
1570 * wall time + wall_to_mono = boot time
1571 */
1572 wall_to_mono = timespec64_sub(boot_offset, wall_time);
1573
1574 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1575 write_seqcount_begin(&tk_core.seq);
1576 ntp_init();
1577
1578 clock = clocksource_default_clock();
1579 if (clock->enable)
1580 clock->enable(clock);
1581 tk_setup_internals(tk, clock);
1582
1583 tk_set_xtime(tk, &wall_time);
1584 tk->raw_sec = 0;
1585
1586 tk_set_wall_to_mono(tk, wall_to_mono);
1587
1588 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1589
1590 write_seqcount_end(&tk_core.seq);
1591 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1592 }
1593
1594 /* time in seconds when suspend began for persistent clock */
1595 static struct timespec64 timekeeping_suspend_time;
1596
1597 /**
1598 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1599 * @delta: pointer to a timespec delta value
1600 *
1601 * Takes a timespec offset measuring a suspend interval and properly
1602 * adds the sleep offset to the timekeeping variables.
1603 */
__timekeeping_inject_sleeptime(struct timekeeper * tk,const struct timespec64 * delta)1604 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1605 const struct timespec64 *delta)
1606 {
1607 if (!timespec64_valid_strict(delta)) {
1608 printk_deferred(KERN_WARNING
1609 "__timekeeping_inject_sleeptime: Invalid "
1610 "sleep delta value!\n");
1611 return;
1612 }
1613 tk_xtime_add(tk, delta);
1614 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1615 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1616 tk_debug_account_sleep_time(delta);
1617 }
1618
1619 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1620 /**
1621 * We have three kinds of time sources to use for sleep time
1622 * injection, the preference order is:
1623 * 1) non-stop clocksource
1624 * 2) persistent clock (ie: RTC accessible when irqs are off)
1625 * 3) RTC
1626 *
1627 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1628 * If system has neither 1) nor 2), 3) will be used finally.
1629 *
1630 *
1631 * If timekeeping has injected sleeptime via either 1) or 2),
1632 * 3) becomes needless, so in this case we don't need to call
1633 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1634 * means.
1635 */
timekeeping_rtc_skipresume(void)1636 bool timekeeping_rtc_skipresume(void)
1637 {
1638 return !suspend_timing_needed;
1639 }
1640
1641 /**
1642 * 1) can be determined whether to use or not only when doing
1643 * timekeeping_resume() which is invoked after rtc_suspend(),
1644 * so we can't skip rtc_suspend() surely if system has 1).
1645 *
1646 * But if system has 2), 2) will definitely be used, so in this
1647 * case we don't need to call rtc_suspend(), and this is what
1648 * timekeeping_rtc_skipsuspend() means.
1649 */
timekeeping_rtc_skipsuspend(void)1650 bool timekeeping_rtc_skipsuspend(void)
1651 {
1652 return persistent_clock_exists;
1653 }
1654
1655 /**
1656 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1657 * @delta: pointer to a timespec64 delta value
1658 *
1659 * This hook is for architectures that cannot support read_persistent_clock64
1660 * because their RTC/persistent clock is only accessible when irqs are enabled.
1661 * and also don't have an effective nonstop clocksource.
1662 *
1663 * This function should only be called by rtc_resume(), and allows
1664 * a suspend offset to be injected into the timekeeping values.
1665 */
timekeeping_inject_sleeptime64(const struct timespec64 * delta)1666 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1667 {
1668 struct timekeeper *tk = &tk_core.timekeeper;
1669 unsigned long flags;
1670
1671 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1672 write_seqcount_begin(&tk_core.seq);
1673
1674 suspend_timing_needed = false;
1675
1676 timekeeping_forward_now(tk);
1677
1678 __timekeeping_inject_sleeptime(tk, delta);
1679
1680 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1681
1682 write_seqcount_end(&tk_core.seq);
1683 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1684
1685 /* signal hrtimers about time change */
1686 clock_was_set();
1687 }
1688 #endif
1689
1690 /**
1691 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1692 */
timekeeping_resume(void)1693 void timekeeping_resume(void)
1694 {
1695 struct timekeeper *tk = &tk_core.timekeeper;
1696 struct clocksource *clock = tk->tkr_mono.clock;
1697 unsigned long flags;
1698 struct timespec64 ts_new, ts_delta;
1699 u64 cycle_now, nsec;
1700 bool inject_sleeptime = false;
1701
1702 read_persistent_clock64(&ts_new);
1703
1704 clockevents_resume();
1705 clocksource_resume();
1706
1707 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1708 write_seqcount_begin(&tk_core.seq);
1709
1710 /*
1711 * After system resumes, we need to calculate the suspended time and
1712 * compensate it for the OS time. There are 3 sources that could be
1713 * used: Nonstop clocksource during suspend, persistent clock and rtc
1714 * device.
1715 *
1716 * One specific platform may have 1 or 2 or all of them, and the
1717 * preference will be:
1718 * suspend-nonstop clocksource -> persistent clock -> rtc
1719 * The less preferred source will only be tried if there is no better
1720 * usable source. The rtc part is handled separately in rtc core code.
1721 */
1722 cycle_now = tk_clock_read(&tk->tkr_mono);
1723 nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1724 if (nsec > 0) {
1725 ts_delta = ns_to_timespec64(nsec);
1726 inject_sleeptime = true;
1727 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1728 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1729 inject_sleeptime = true;
1730 }
1731
1732 if (inject_sleeptime) {
1733 suspend_timing_needed = false;
1734 __timekeeping_inject_sleeptime(tk, &ts_delta);
1735 }
1736
1737 /* Re-base the last cycle value */
1738 tk->tkr_mono.cycle_last = cycle_now;
1739 tk->tkr_raw.cycle_last = cycle_now;
1740
1741 tk->ntp_error = 0;
1742 timekeeping_suspended = 0;
1743 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1744 write_seqcount_end(&tk_core.seq);
1745 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1746
1747 touch_softlockup_watchdog();
1748
1749 tick_resume();
1750 hrtimers_resume();
1751 }
1752
timekeeping_suspend(void)1753 int timekeeping_suspend(void)
1754 {
1755 struct timekeeper *tk = &tk_core.timekeeper;
1756 unsigned long flags;
1757 struct timespec64 delta, delta_delta;
1758 static struct timespec64 old_delta;
1759 struct clocksource *curr_clock;
1760 u64 cycle_now;
1761
1762 read_persistent_clock64(&timekeeping_suspend_time);
1763
1764 /*
1765 * On some systems the persistent_clock can not be detected at
1766 * timekeeping_init by its return value, so if we see a valid
1767 * value returned, update the persistent_clock_exists flag.
1768 */
1769 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1770 persistent_clock_exists = true;
1771
1772 suspend_timing_needed = true;
1773
1774 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1775 write_seqcount_begin(&tk_core.seq);
1776 timekeeping_forward_now(tk);
1777 timekeeping_suspended = 1;
1778
1779 /*
1780 * Since we've called forward_now, cycle_last stores the value
1781 * just read from the current clocksource. Save this to potentially
1782 * use in suspend timing.
1783 */
1784 curr_clock = tk->tkr_mono.clock;
1785 cycle_now = tk->tkr_mono.cycle_last;
1786 clocksource_start_suspend_timing(curr_clock, cycle_now);
1787
1788 if (persistent_clock_exists) {
1789 /*
1790 * To avoid drift caused by repeated suspend/resumes,
1791 * which each can add ~1 second drift error,
1792 * try to compensate so the difference in system time
1793 * and persistent_clock time stays close to constant.
1794 */
1795 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1796 delta_delta = timespec64_sub(delta, old_delta);
1797 if (abs(delta_delta.tv_sec) >= 2) {
1798 /*
1799 * if delta_delta is too large, assume time correction
1800 * has occurred and set old_delta to the current delta.
1801 */
1802 old_delta = delta;
1803 } else {
1804 /* Otherwise try to adjust old_system to compensate */
1805 timekeeping_suspend_time =
1806 timespec64_add(timekeeping_suspend_time, delta_delta);
1807 }
1808 }
1809
1810 timekeeping_update(tk, TK_MIRROR);
1811 halt_fast_timekeeper(tk);
1812 write_seqcount_end(&tk_core.seq);
1813 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1814
1815 tick_suspend();
1816 clocksource_suspend();
1817 clockevents_suspend();
1818
1819 return 0;
1820 }
1821
1822 /* sysfs resume/suspend bits for timekeeping */
1823 static struct syscore_ops timekeeping_syscore_ops = {
1824 .resume = timekeeping_resume,
1825 .suspend = timekeeping_suspend,
1826 };
1827
timekeeping_init_ops(void)1828 static int __init timekeeping_init_ops(void)
1829 {
1830 register_syscore_ops(&timekeeping_syscore_ops);
1831 return 0;
1832 }
1833 device_initcall(timekeeping_init_ops);
1834
1835 /*
1836 * Apply a multiplier adjustment to the timekeeper
1837 */
timekeeping_apply_adjustment(struct timekeeper * tk,s64 offset,s32 mult_adj)1838 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1839 s64 offset,
1840 s32 mult_adj)
1841 {
1842 s64 interval = tk->cycle_interval;
1843
1844 if (mult_adj == 0) {
1845 return;
1846 } else if (mult_adj == -1) {
1847 interval = -interval;
1848 offset = -offset;
1849 } else if (mult_adj != 1) {
1850 interval *= mult_adj;
1851 offset *= mult_adj;
1852 }
1853
1854 /*
1855 * So the following can be confusing.
1856 *
1857 * To keep things simple, lets assume mult_adj == 1 for now.
1858 *
1859 * When mult_adj != 1, remember that the interval and offset values
1860 * have been appropriately scaled so the math is the same.
1861 *
1862 * The basic idea here is that we're increasing the multiplier
1863 * by one, this causes the xtime_interval to be incremented by
1864 * one cycle_interval. This is because:
1865 * xtime_interval = cycle_interval * mult
1866 * So if mult is being incremented by one:
1867 * xtime_interval = cycle_interval * (mult + 1)
1868 * Its the same as:
1869 * xtime_interval = (cycle_interval * mult) + cycle_interval
1870 * Which can be shortened to:
1871 * xtime_interval += cycle_interval
1872 *
1873 * So offset stores the non-accumulated cycles. Thus the current
1874 * time (in shifted nanoseconds) is:
1875 * now = (offset * adj) + xtime_nsec
1876 * Now, even though we're adjusting the clock frequency, we have
1877 * to keep time consistent. In other words, we can't jump back
1878 * in time, and we also want to avoid jumping forward in time.
1879 *
1880 * So given the same offset value, we need the time to be the same
1881 * both before and after the freq adjustment.
1882 * now = (offset * adj_1) + xtime_nsec_1
1883 * now = (offset * adj_2) + xtime_nsec_2
1884 * So:
1885 * (offset * adj_1) + xtime_nsec_1 =
1886 * (offset * adj_2) + xtime_nsec_2
1887 * And we know:
1888 * adj_2 = adj_1 + 1
1889 * So:
1890 * (offset * adj_1) + xtime_nsec_1 =
1891 * (offset * (adj_1+1)) + xtime_nsec_2
1892 * (offset * adj_1) + xtime_nsec_1 =
1893 * (offset * adj_1) + offset + xtime_nsec_2
1894 * Canceling the sides:
1895 * xtime_nsec_1 = offset + xtime_nsec_2
1896 * Which gives us:
1897 * xtime_nsec_2 = xtime_nsec_1 - offset
1898 * Which simplfies to:
1899 * xtime_nsec -= offset
1900 */
1901 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1902 /* NTP adjustment caused clocksource mult overflow */
1903 WARN_ON_ONCE(1);
1904 return;
1905 }
1906
1907 tk->tkr_mono.mult += mult_adj;
1908 tk->xtime_interval += interval;
1909 tk->tkr_mono.xtime_nsec -= offset;
1910 }
1911
1912 /*
1913 * Adjust the timekeeper's multiplier to the correct frequency
1914 * and also to reduce the accumulated error value.
1915 */
timekeeping_adjust(struct timekeeper * tk,s64 offset)1916 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1917 {
1918 u32 mult;
1919
1920 /*
1921 * Determine the multiplier from the current NTP tick length.
1922 * Avoid expensive division when the tick length doesn't change.
1923 */
1924 if (likely(tk->ntp_tick == ntp_tick_length())) {
1925 mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1926 } else {
1927 tk->ntp_tick = ntp_tick_length();
1928 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1929 tk->xtime_remainder, tk->cycle_interval);
1930 }
1931
1932 /*
1933 * If the clock is behind the NTP time, increase the multiplier by 1
1934 * to catch up with it. If it's ahead and there was a remainder in the
1935 * tick division, the clock will slow down. Otherwise it will stay
1936 * ahead until the tick length changes to a non-divisible value.
1937 */
1938 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
1939 mult += tk->ntp_err_mult;
1940
1941 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1942
1943 if (unlikely(tk->tkr_mono.clock->maxadj &&
1944 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1945 > tk->tkr_mono.clock->maxadj))) {
1946 printk_once(KERN_WARNING
1947 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1948 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1949 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1950 }
1951
1952 /*
1953 * It may be possible that when we entered this function, xtime_nsec
1954 * was very small. Further, if we're slightly speeding the clocksource
1955 * in the code above, its possible the required corrective factor to
1956 * xtime_nsec could cause it to underflow.
1957 *
1958 * Now, since we have already accumulated the second and the NTP
1959 * subsystem has been notified via second_overflow(), we need to skip
1960 * the next update.
1961 */
1962 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1963 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
1964 tk->tkr_mono.shift;
1965 tk->xtime_sec--;
1966 tk->skip_second_overflow = 1;
1967 }
1968 }
1969
1970 /**
1971 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1972 *
1973 * Helper function that accumulates the nsecs greater than a second
1974 * from the xtime_nsec field to the xtime_secs field.
1975 * It also calls into the NTP code to handle leapsecond processing.
1976 *
1977 */
accumulate_nsecs_to_secs(struct timekeeper * tk)1978 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1979 {
1980 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1981 unsigned int clock_set = 0;
1982
1983 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1984 int leap;
1985
1986 tk->tkr_mono.xtime_nsec -= nsecps;
1987 tk->xtime_sec++;
1988
1989 /*
1990 * Skip NTP update if this second was accumulated before,
1991 * i.e. xtime_nsec underflowed in timekeeping_adjust()
1992 */
1993 if (unlikely(tk->skip_second_overflow)) {
1994 tk->skip_second_overflow = 0;
1995 continue;
1996 }
1997
1998 /* Figure out if its a leap sec and apply if needed */
1999 leap = second_overflow(tk->xtime_sec);
2000 if (unlikely(leap)) {
2001 struct timespec64 ts;
2002
2003 tk->xtime_sec += leap;
2004
2005 ts.tv_sec = leap;
2006 ts.tv_nsec = 0;
2007 tk_set_wall_to_mono(tk,
2008 timespec64_sub(tk->wall_to_monotonic, ts));
2009
2010 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2011
2012 clock_set = TK_CLOCK_WAS_SET;
2013 }
2014 }
2015 return clock_set;
2016 }
2017
2018 /**
2019 * logarithmic_accumulation - shifted accumulation of cycles
2020 *
2021 * This functions accumulates a shifted interval of cycles into
2022 * into a shifted interval nanoseconds. Allows for O(log) accumulation
2023 * loop.
2024 *
2025 * Returns the unconsumed cycles.
2026 */
logarithmic_accumulation(struct timekeeper * tk,u64 offset,u32 shift,unsigned int * clock_set)2027 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2028 u32 shift, unsigned int *clock_set)
2029 {
2030 u64 interval = tk->cycle_interval << shift;
2031 u64 snsec_per_sec;
2032
2033 /* If the offset is smaller than a shifted interval, do nothing */
2034 if (offset < interval)
2035 return offset;
2036
2037 /* Accumulate one shifted interval */
2038 offset -= interval;
2039 tk->tkr_mono.cycle_last += interval;
2040 tk->tkr_raw.cycle_last += interval;
2041
2042 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2043 *clock_set |= accumulate_nsecs_to_secs(tk);
2044
2045 /* Accumulate raw time */
2046 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2047 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2048 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2049 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2050 tk->raw_sec++;
2051 }
2052
2053 /* Accumulate error between NTP and clock interval */
2054 tk->ntp_error += tk->ntp_tick << shift;
2055 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2056 (tk->ntp_error_shift + shift);
2057
2058 return offset;
2059 }
2060
2061 /*
2062 * timekeeping_advance - Updates the timekeeper to the current time and
2063 * current NTP tick length
2064 */
timekeeping_advance(enum timekeeping_adv_mode mode)2065 static void timekeeping_advance(enum timekeeping_adv_mode mode)
2066 {
2067 struct timekeeper *real_tk = &tk_core.timekeeper;
2068 struct timekeeper *tk = &shadow_timekeeper;
2069 u64 offset;
2070 int shift = 0, maxshift;
2071 unsigned int clock_set = 0;
2072 unsigned long flags;
2073
2074 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2075
2076 /* Make sure we're fully resumed: */
2077 if (unlikely(timekeeping_suspended))
2078 goto out;
2079
2080 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2081 offset = real_tk->cycle_interval;
2082
2083 if (mode != TK_ADV_TICK)
2084 goto out;
2085 #else
2086 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2087 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2088
2089 /* Check if there's really nothing to do */
2090 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2091 goto out;
2092 #endif
2093
2094 /* Do some additional sanity checking */
2095 timekeeping_check_update(tk, offset);
2096
2097 /*
2098 * With NO_HZ we may have to accumulate many cycle_intervals
2099 * (think "ticks") worth of time at once. To do this efficiently,
2100 * we calculate the largest doubling multiple of cycle_intervals
2101 * that is smaller than the offset. We then accumulate that
2102 * chunk in one go, and then try to consume the next smaller
2103 * doubled multiple.
2104 */
2105 shift = ilog2(offset) - ilog2(tk->cycle_interval);
2106 shift = max(0, shift);
2107 /* Bound shift to one less than what overflows tick_length */
2108 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2109 shift = min(shift, maxshift);
2110 while (offset >= tk->cycle_interval) {
2111 offset = logarithmic_accumulation(tk, offset, shift,
2112 &clock_set);
2113 if (offset < tk->cycle_interval<<shift)
2114 shift--;
2115 }
2116
2117 /* Adjust the multiplier to correct NTP error */
2118 timekeeping_adjust(tk, offset);
2119
2120 /*
2121 * Finally, make sure that after the rounding
2122 * xtime_nsec isn't larger than NSEC_PER_SEC
2123 */
2124 clock_set |= accumulate_nsecs_to_secs(tk);
2125
2126 write_seqcount_begin(&tk_core.seq);
2127 /*
2128 * Update the real timekeeper.
2129 *
2130 * We could avoid this memcpy by switching pointers, but that
2131 * requires changes to all other timekeeper usage sites as
2132 * well, i.e. move the timekeeper pointer getter into the
2133 * spinlocked/seqcount protected sections. And we trade this
2134 * memcpy under the tk_core.seq against one before we start
2135 * updating.
2136 */
2137 timekeeping_update(tk, clock_set);
2138 memcpy(real_tk, tk, sizeof(*tk));
2139 /* The memcpy must come last. Do not put anything here! */
2140 write_seqcount_end(&tk_core.seq);
2141 out:
2142 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2143 if (clock_set)
2144 /* Have to call _delayed version, since in irq context*/
2145 clock_was_set_delayed();
2146 }
2147
2148 /**
2149 * update_wall_time - Uses the current clocksource to increment the wall time
2150 *
2151 */
update_wall_time(void)2152 void update_wall_time(void)
2153 {
2154 timekeeping_advance(TK_ADV_TICK);
2155 }
2156
2157 /**
2158 * getboottime64 - Return the real time of system boot.
2159 * @ts: pointer to the timespec64 to be set
2160 *
2161 * Returns the wall-time of boot in a timespec64.
2162 *
2163 * This is based on the wall_to_monotonic offset and the total suspend
2164 * time. Calls to settimeofday will affect the value returned (which
2165 * basically means that however wrong your real time clock is at boot time,
2166 * you get the right time here).
2167 */
getboottime64(struct timespec64 * ts)2168 void getboottime64(struct timespec64 *ts)
2169 {
2170 struct timekeeper *tk = &tk_core.timekeeper;
2171 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2172
2173 *ts = ktime_to_timespec64(t);
2174 }
2175 EXPORT_SYMBOL_GPL(getboottime64);
2176
get_seconds(void)2177 unsigned long get_seconds(void)
2178 {
2179 struct timekeeper *tk = &tk_core.timekeeper;
2180
2181 return tk->xtime_sec;
2182 }
2183 EXPORT_SYMBOL(get_seconds);
2184
ktime_get_coarse_real_ts64(struct timespec64 * ts)2185 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2186 {
2187 struct timekeeper *tk = &tk_core.timekeeper;
2188 unsigned long seq;
2189
2190 do {
2191 seq = read_seqcount_begin(&tk_core.seq);
2192
2193 *ts = tk_xtime(tk);
2194 } while (read_seqcount_retry(&tk_core.seq, seq));
2195 }
2196 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2197
ktime_get_coarse_ts64(struct timespec64 * ts)2198 void ktime_get_coarse_ts64(struct timespec64 *ts)
2199 {
2200 struct timekeeper *tk = &tk_core.timekeeper;
2201 struct timespec64 now, mono;
2202 unsigned long seq;
2203
2204 do {
2205 seq = read_seqcount_begin(&tk_core.seq);
2206
2207 now = tk_xtime(tk);
2208 mono = tk->wall_to_monotonic;
2209 } while (read_seqcount_retry(&tk_core.seq, seq));
2210
2211 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2212 now.tv_nsec + mono.tv_nsec);
2213 }
2214 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2215
2216 /*
2217 * Must hold jiffies_lock
2218 */
do_timer(unsigned long ticks)2219 void do_timer(unsigned long ticks)
2220 {
2221 jiffies_64 += ticks;
2222 calc_global_load(ticks);
2223 }
2224
2225 /**
2226 * ktime_get_update_offsets_now - hrtimer helper
2227 * @cwsseq: pointer to check and store the clock was set sequence number
2228 * @offs_real: pointer to storage for monotonic -> realtime offset
2229 * @offs_boot: pointer to storage for monotonic -> boottime offset
2230 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2231 *
2232 * Returns current monotonic time and updates the offsets if the
2233 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2234 * different.
2235 *
2236 * Called from hrtimer_interrupt() or retrigger_next_event()
2237 */
ktime_get_update_offsets_now(unsigned int * cwsseq,ktime_t * offs_real,ktime_t * offs_boot,ktime_t * offs_tai)2238 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2239 ktime_t *offs_boot, ktime_t *offs_tai)
2240 {
2241 struct timekeeper *tk = &tk_core.timekeeper;
2242 unsigned int seq;
2243 ktime_t base;
2244 u64 nsecs;
2245
2246 do {
2247 seq = read_seqcount_begin(&tk_core.seq);
2248
2249 base = tk->tkr_mono.base;
2250 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2251 base = ktime_add_ns(base, nsecs);
2252
2253 if (*cwsseq != tk->clock_was_set_seq) {
2254 *cwsseq = tk->clock_was_set_seq;
2255 *offs_real = tk->offs_real;
2256 *offs_boot = tk->offs_boot;
2257 *offs_tai = tk->offs_tai;
2258 }
2259
2260 /* Handle leapsecond insertion adjustments */
2261 if (unlikely(base >= tk->next_leap_ktime))
2262 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2263
2264 } while (read_seqcount_retry(&tk_core.seq, seq));
2265
2266 return base;
2267 }
2268
2269 /**
2270 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2271 */
timekeeping_validate_timex(const struct timex * txc)2272 static int timekeeping_validate_timex(const struct timex *txc)
2273 {
2274 if (txc->modes & ADJ_ADJTIME) {
2275 /* singleshot must not be used with any other mode bits */
2276 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2277 return -EINVAL;
2278 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2279 !capable(CAP_SYS_TIME))
2280 return -EPERM;
2281 } else {
2282 /* In order to modify anything, you gotta be super-user! */
2283 if (txc->modes && !capable(CAP_SYS_TIME))
2284 return -EPERM;
2285 /*
2286 * if the quartz is off by more than 10% then
2287 * something is VERY wrong!
2288 */
2289 if (txc->modes & ADJ_TICK &&
2290 (txc->tick < 900000/USER_HZ ||
2291 txc->tick > 1100000/USER_HZ))
2292 return -EINVAL;
2293 }
2294
2295 if (txc->modes & ADJ_SETOFFSET) {
2296 /* In order to inject time, you gotta be super-user! */
2297 if (!capable(CAP_SYS_TIME))
2298 return -EPERM;
2299
2300 /*
2301 * Validate if a timespec/timeval used to inject a time
2302 * offset is valid. Offsets can be postive or negative, so
2303 * we don't check tv_sec. The value of the timeval/timespec
2304 * is the sum of its fields,but *NOTE*:
2305 * The field tv_usec/tv_nsec must always be non-negative and
2306 * we can't have more nanoseconds/microseconds than a second.
2307 */
2308 if (txc->time.tv_usec < 0)
2309 return -EINVAL;
2310
2311 if (txc->modes & ADJ_NANO) {
2312 if (txc->time.tv_usec >= NSEC_PER_SEC)
2313 return -EINVAL;
2314 } else {
2315 if (txc->time.tv_usec >= USEC_PER_SEC)
2316 return -EINVAL;
2317 }
2318 }
2319
2320 /*
2321 * Check for potential multiplication overflows that can
2322 * only happen on 64-bit systems:
2323 */
2324 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2325 if (LLONG_MIN / PPM_SCALE > txc->freq)
2326 return -EINVAL;
2327 if (LLONG_MAX / PPM_SCALE < txc->freq)
2328 return -EINVAL;
2329 }
2330
2331 return 0;
2332 }
2333
2334
2335 /**
2336 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2337 */
do_adjtimex(struct timex * txc)2338 int do_adjtimex(struct timex *txc)
2339 {
2340 struct timekeeper *tk = &tk_core.timekeeper;
2341 unsigned long flags;
2342 struct timespec64 ts;
2343 s32 orig_tai, tai;
2344 int ret;
2345
2346 /* Validate the data before disabling interrupts */
2347 ret = timekeeping_validate_timex(txc);
2348 if (ret)
2349 return ret;
2350
2351 if (txc->modes & ADJ_SETOFFSET) {
2352 struct timespec64 delta;
2353 delta.tv_sec = txc->time.tv_sec;
2354 delta.tv_nsec = txc->time.tv_usec;
2355 if (!(txc->modes & ADJ_NANO))
2356 delta.tv_nsec *= 1000;
2357 ret = timekeeping_inject_offset(&delta);
2358 if (ret)
2359 return ret;
2360 }
2361
2362 ktime_get_real_ts64(&ts);
2363
2364 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2365 write_seqcount_begin(&tk_core.seq);
2366
2367 orig_tai = tai = tk->tai_offset;
2368 ret = __do_adjtimex(txc, &ts, &tai);
2369
2370 if (tai != orig_tai) {
2371 __timekeeping_set_tai_offset(tk, tai);
2372 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2373 }
2374 tk_update_leap_state(tk);
2375
2376 write_seqcount_end(&tk_core.seq);
2377 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2378
2379 /* Update the multiplier immediately if frequency was set directly */
2380 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2381 timekeeping_advance(TK_ADV_FREQ);
2382
2383 if (tai != orig_tai)
2384 clock_was_set();
2385
2386 ntp_notify_cmos_timer();
2387
2388 return ret;
2389 }
2390
2391 #ifdef CONFIG_NTP_PPS
2392 /**
2393 * hardpps() - Accessor function to NTP __hardpps function
2394 */
hardpps(const struct timespec64 * phase_ts,const struct timespec64 * raw_ts)2395 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2396 {
2397 unsigned long flags;
2398
2399 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2400 write_seqcount_begin(&tk_core.seq);
2401
2402 __hardpps(phase_ts, raw_ts);
2403
2404 write_seqcount_end(&tk_core.seq);
2405 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2406 }
2407 EXPORT_SYMBOL(hardpps);
2408 #endif /* CONFIG_NTP_PPS */
2409
2410 /**
2411 * xtime_update() - advances the timekeeping infrastructure
2412 * @ticks: number of ticks, that have elapsed since the last call.
2413 *
2414 * Must be called with interrupts disabled.
2415 */
xtime_update(unsigned long ticks)2416 void xtime_update(unsigned long ticks)
2417 {
2418 write_seqlock(&jiffies_lock);
2419 do_timer(ticks);
2420 write_sequnlock(&jiffies_lock);
2421 update_wall_time();
2422 }
2423