1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2016 Linaro Limited. All rights reserved.
4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
5 */
6
7 #include <linux/atomic.h>
8 #include <linux/coresight.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/iommu.h>
11 #include <linux/idr.h>
12 #include <linux/mutex.h>
13 #include <linux/refcount.h>
14 #include <linux/slab.h>
15 #include <linux/types.h>
16 #include <linux/vmalloc.h>
17 #include "coresight-catu.h"
18 #include "coresight-etm-perf.h"
19 #include "coresight-priv.h"
20 #include "coresight-tmc.h"
21
22 struct etr_flat_buf {
23 struct device *dev;
24 dma_addr_t daddr;
25 void *vaddr;
26 size_t size;
27 };
28
29 /*
30 * etr_perf_buffer - Perf buffer used for ETR
31 * @drvdata - The ETR drvdaga this buffer has been allocated for.
32 * @etr_buf - Actual buffer used by the ETR
33 * @pid - The PID this etr_perf_buffer belongs to.
34 * @snaphost - Perf session mode
35 * @head - handle->head at the beginning of the session.
36 * @nr_pages - Number of pages in the ring buffer.
37 * @pages - Array of Pages in the ring buffer.
38 */
39 struct etr_perf_buffer {
40 struct tmc_drvdata *drvdata;
41 struct etr_buf *etr_buf;
42 pid_t pid;
43 bool snapshot;
44 unsigned long head;
45 int nr_pages;
46 void **pages;
47 };
48
49 /* Convert the perf index to an offset within the ETR buffer */
50 #define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
51
52 /* Lower limit for ETR hardware buffer */
53 #define TMC_ETR_PERF_MIN_BUF_SIZE SZ_1M
54
55 /*
56 * The TMC ETR SG has a page size of 4K. The SG table contains pointers
57 * to 4KB buffers. However, the OS may use a PAGE_SIZE different from
58 * 4K (i.e, 16KB or 64KB). This implies that a single OS page could
59 * contain more than one SG buffer and tables.
60 *
61 * A table entry has the following format:
62 *
63 * ---Bit31------------Bit4-------Bit1-----Bit0--
64 * | Address[39:12] | SBZ | Entry Type |
65 * ----------------------------------------------
66 *
67 * Address: Bits [39:12] of a physical page address. Bits [11:0] are
68 * always zero.
69 *
70 * Entry type:
71 * b00 - Reserved.
72 * b01 - Last entry in the tables, points to 4K page buffer.
73 * b10 - Normal entry, points to 4K page buffer.
74 * b11 - Link. The address points to the base of next table.
75 */
76
77 typedef u32 sgte_t;
78
79 #define ETR_SG_PAGE_SHIFT 12
80 #define ETR_SG_PAGE_SIZE (1UL << ETR_SG_PAGE_SHIFT)
81 #define ETR_SG_PAGES_PER_SYSPAGE (PAGE_SIZE / ETR_SG_PAGE_SIZE)
82 #define ETR_SG_PTRS_PER_PAGE (ETR_SG_PAGE_SIZE / sizeof(sgte_t))
83 #define ETR_SG_PTRS_PER_SYSPAGE (PAGE_SIZE / sizeof(sgte_t))
84
85 #define ETR_SG_ET_MASK 0x3
86 #define ETR_SG_ET_LAST 0x1
87 #define ETR_SG_ET_NORMAL 0x2
88 #define ETR_SG_ET_LINK 0x3
89
90 #define ETR_SG_ADDR_SHIFT 4
91
92 #define ETR_SG_ENTRY(addr, type) \
93 (sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \
94 (type & ETR_SG_ET_MASK))
95
96 #define ETR_SG_ADDR(entry) \
97 (((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT)
98 #define ETR_SG_ET(entry) ((entry) & ETR_SG_ET_MASK)
99
100 /*
101 * struct etr_sg_table : ETR SG Table
102 * @sg_table: Generic SG Table holding the data/table pages.
103 * @hwaddr: hwaddress used by the TMC, which is the base
104 * address of the table.
105 */
106 struct etr_sg_table {
107 struct tmc_sg_table *sg_table;
108 dma_addr_t hwaddr;
109 };
110
111 /*
112 * tmc_etr_sg_table_entries: Total number of table entries required to map
113 * @nr_pages system pages.
114 *
115 * We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages.
116 * Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers,
117 * with the last entry pointing to another page of table entries.
118 * If we spill over to a new page for mapping 1 entry, we could as
119 * well replace the link entry of the previous page with the last entry.
120 */
121 static inline unsigned long __attribute_const__
tmc_etr_sg_table_entries(int nr_pages)122 tmc_etr_sg_table_entries(int nr_pages)
123 {
124 unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE;
125 unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1);
126 /*
127 * If we spill over to a new page for 1 entry, we could as well
128 * make it the LAST entry in the previous page, skipping the Link
129 * address.
130 */
131 if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2))
132 nr_sglinks--;
133 return nr_sgpages + nr_sglinks;
134 }
135
136 /*
137 * tmc_pages_get_offset: Go through all the pages in the tmc_pages
138 * and map the device address @addr to an offset within the virtual
139 * contiguous buffer.
140 */
141 static long
tmc_pages_get_offset(struct tmc_pages * tmc_pages,dma_addr_t addr)142 tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr)
143 {
144 int i;
145 dma_addr_t page_start;
146
147 for (i = 0; i < tmc_pages->nr_pages; i++) {
148 page_start = tmc_pages->daddrs[i];
149 if (addr >= page_start && addr < (page_start + PAGE_SIZE))
150 return i * PAGE_SIZE + (addr - page_start);
151 }
152
153 return -EINVAL;
154 }
155
156 /*
157 * tmc_pages_free : Unmap and free the pages used by tmc_pages.
158 * If the pages were not allocated in tmc_pages_alloc(), we would
159 * simply drop the refcount.
160 */
tmc_pages_free(struct tmc_pages * tmc_pages,struct device * dev,enum dma_data_direction dir)161 static void tmc_pages_free(struct tmc_pages *tmc_pages,
162 struct device *dev, enum dma_data_direction dir)
163 {
164 int i;
165 struct device *real_dev = dev->parent;
166
167 for (i = 0; i < tmc_pages->nr_pages; i++) {
168 if (tmc_pages->daddrs && tmc_pages->daddrs[i])
169 dma_unmap_page(real_dev, tmc_pages->daddrs[i],
170 PAGE_SIZE, dir);
171 if (tmc_pages->pages && tmc_pages->pages[i])
172 __free_page(tmc_pages->pages[i]);
173 }
174
175 kfree(tmc_pages->pages);
176 kfree(tmc_pages->daddrs);
177 tmc_pages->pages = NULL;
178 tmc_pages->daddrs = NULL;
179 tmc_pages->nr_pages = 0;
180 }
181
182 /*
183 * tmc_pages_alloc : Allocate and map pages for a given @tmc_pages.
184 * If @pages is not NULL, the list of page virtual addresses are
185 * used as the data pages. The pages are then dma_map'ed for @dev
186 * with dma_direction @dir.
187 *
188 * Returns 0 upon success, else the error number.
189 */
tmc_pages_alloc(struct tmc_pages * tmc_pages,struct device * dev,int node,enum dma_data_direction dir,void ** pages)190 static int tmc_pages_alloc(struct tmc_pages *tmc_pages,
191 struct device *dev, int node,
192 enum dma_data_direction dir, void **pages)
193 {
194 int i, nr_pages;
195 dma_addr_t paddr;
196 struct page *page;
197 struct device *real_dev = dev->parent;
198
199 nr_pages = tmc_pages->nr_pages;
200 tmc_pages->daddrs = kcalloc(nr_pages, sizeof(*tmc_pages->daddrs),
201 GFP_KERNEL);
202 if (!tmc_pages->daddrs)
203 return -ENOMEM;
204 tmc_pages->pages = kcalloc(nr_pages, sizeof(*tmc_pages->pages),
205 GFP_KERNEL);
206 if (!tmc_pages->pages) {
207 kfree(tmc_pages->daddrs);
208 tmc_pages->daddrs = NULL;
209 return -ENOMEM;
210 }
211
212 for (i = 0; i < nr_pages; i++) {
213 if (pages && pages[i]) {
214 page = virt_to_page(pages[i]);
215 /* Hold a refcount on the page */
216 get_page(page);
217 } else {
218 page = alloc_pages_node(node,
219 GFP_KERNEL | __GFP_ZERO, 0);
220 if (!page)
221 goto err;
222 }
223 paddr = dma_map_page(real_dev, page, 0, PAGE_SIZE, dir);
224 if (dma_mapping_error(real_dev, paddr))
225 goto err;
226 tmc_pages->daddrs[i] = paddr;
227 tmc_pages->pages[i] = page;
228 }
229 return 0;
230 err:
231 tmc_pages_free(tmc_pages, dev, dir);
232 return -ENOMEM;
233 }
234
235 static inline long
tmc_sg_get_data_page_offset(struct tmc_sg_table * sg_table,dma_addr_t addr)236 tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr)
237 {
238 return tmc_pages_get_offset(&sg_table->data_pages, addr);
239 }
240
tmc_free_table_pages(struct tmc_sg_table * sg_table)241 static inline void tmc_free_table_pages(struct tmc_sg_table *sg_table)
242 {
243 if (sg_table->table_vaddr)
244 vunmap(sg_table->table_vaddr);
245 tmc_pages_free(&sg_table->table_pages, sg_table->dev, DMA_TO_DEVICE);
246 }
247
tmc_free_data_pages(struct tmc_sg_table * sg_table)248 static void tmc_free_data_pages(struct tmc_sg_table *sg_table)
249 {
250 if (sg_table->data_vaddr)
251 vunmap(sg_table->data_vaddr);
252 tmc_pages_free(&sg_table->data_pages, sg_table->dev, DMA_FROM_DEVICE);
253 }
254
tmc_free_sg_table(struct tmc_sg_table * sg_table)255 void tmc_free_sg_table(struct tmc_sg_table *sg_table)
256 {
257 tmc_free_table_pages(sg_table);
258 tmc_free_data_pages(sg_table);
259 }
260 EXPORT_SYMBOL_GPL(tmc_free_sg_table);
261
262 /*
263 * Alloc pages for the table. Since this will be used by the device,
264 * allocate the pages closer to the device (i.e, dev_to_node(dev)
265 * rather than the CPU node).
266 */
tmc_alloc_table_pages(struct tmc_sg_table * sg_table)267 static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table)
268 {
269 int rc;
270 struct tmc_pages *table_pages = &sg_table->table_pages;
271
272 rc = tmc_pages_alloc(table_pages, sg_table->dev,
273 dev_to_node(sg_table->dev),
274 DMA_TO_DEVICE, NULL);
275 if (rc)
276 return rc;
277 sg_table->table_vaddr = vmap(table_pages->pages,
278 table_pages->nr_pages,
279 VM_MAP,
280 PAGE_KERNEL);
281 if (!sg_table->table_vaddr)
282 rc = -ENOMEM;
283 else
284 sg_table->table_daddr = table_pages->daddrs[0];
285 return rc;
286 }
287
tmc_alloc_data_pages(struct tmc_sg_table * sg_table,void ** pages)288 static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages)
289 {
290 int rc;
291
292 /* Allocate data pages on the node requested by the caller */
293 rc = tmc_pages_alloc(&sg_table->data_pages,
294 sg_table->dev, sg_table->node,
295 DMA_FROM_DEVICE, pages);
296 if (!rc) {
297 sg_table->data_vaddr = vmap(sg_table->data_pages.pages,
298 sg_table->data_pages.nr_pages,
299 VM_MAP,
300 PAGE_KERNEL);
301 if (!sg_table->data_vaddr)
302 rc = -ENOMEM;
303 }
304 return rc;
305 }
306
307 /*
308 * tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table
309 * and data buffers. TMC writes to the data buffers and reads from the SG
310 * Table pages.
311 *
312 * @dev - Coresight device to which page should be DMA mapped.
313 * @node - Numa node for mem allocations
314 * @nr_tpages - Number of pages for the table entries.
315 * @nr_dpages - Number of pages for Data buffer.
316 * @pages - Optional list of virtual address of pages.
317 */
tmc_alloc_sg_table(struct device * dev,int node,int nr_tpages,int nr_dpages,void ** pages)318 struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev,
319 int node,
320 int nr_tpages,
321 int nr_dpages,
322 void **pages)
323 {
324 long rc;
325 struct tmc_sg_table *sg_table;
326
327 sg_table = kzalloc(sizeof(*sg_table), GFP_KERNEL);
328 if (!sg_table)
329 return ERR_PTR(-ENOMEM);
330 sg_table->data_pages.nr_pages = nr_dpages;
331 sg_table->table_pages.nr_pages = nr_tpages;
332 sg_table->node = node;
333 sg_table->dev = dev;
334
335 rc = tmc_alloc_data_pages(sg_table, pages);
336 if (!rc)
337 rc = tmc_alloc_table_pages(sg_table);
338 if (rc) {
339 tmc_free_sg_table(sg_table);
340 kfree(sg_table);
341 return ERR_PTR(rc);
342 }
343
344 return sg_table;
345 }
346 EXPORT_SYMBOL_GPL(tmc_alloc_sg_table);
347
348 /*
349 * tmc_sg_table_sync_data_range: Sync the data buffer written
350 * by the device from @offset upto a @size bytes.
351 */
tmc_sg_table_sync_data_range(struct tmc_sg_table * table,u64 offset,u64 size)352 void tmc_sg_table_sync_data_range(struct tmc_sg_table *table,
353 u64 offset, u64 size)
354 {
355 int i, index, start;
356 int npages = DIV_ROUND_UP(size, PAGE_SIZE);
357 struct device *real_dev = table->dev->parent;
358 struct tmc_pages *data = &table->data_pages;
359
360 start = offset >> PAGE_SHIFT;
361 for (i = start; i < (start + npages); i++) {
362 index = i % data->nr_pages;
363 dma_sync_single_for_cpu(real_dev, data->daddrs[index],
364 PAGE_SIZE, DMA_FROM_DEVICE);
365 }
366 }
367 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_data_range);
368
369 /* tmc_sg_sync_table: Sync the page table */
tmc_sg_table_sync_table(struct tmc_sg_table * sg_table)370 void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table)
371 {
372 int i;
373 struct device *real_dev = sg_table->dev->parent;
374 struct tmc_pages *table_pages = &sg_table->table_pages;
375
376 for (i = 0; i < table_pages->nr_pages; i++)
377 dma_sync_single_for_device(real_dev, table_pages->daddrs[i],
378 PAGE_SIZE, DMA_TO_DEVICE);
379 }
380 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_table);
381
382 /*
383 * tmc_sg_table_get_data: Get the buffer pointer for data @offset
384 * in the SG buffer. The @bufpp is updated to point to the buffer.
385 * Returns :
386 * the length of linear data available at @offset.
387 * or
388 * <= 0 if no data is available.
389 */
tmc_sg_table_get_data(struct tmc_sg_table * sg_table,u64 offset,size_t len,char ** bufpp)390 ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table,
391 u64 offset, size_t len, char **bufpp)
392 {
393 size_t size;
394 int pg_idx = offset >> PAGE_SHIFT;
395 int pg_offset = offset & (PAGE_SIZE - 1);
396 struct tmc_pages *data_pages = &sg_table->data_pages;
397
398 size = tmc_sg_table_buf_size(sg_table);
399 if (offset >= size)
400 return -EINVAL;
401
402 /* Make sure we don't go beyond the end */
403 len = (len < (size - offset)) ? len : size - offset;
404 /* Respect the page boundaries */
405 len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset);
406 if (len > 0)
407 *bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset;
408 return len;
409 }
410 EXPORT_SYMBOL_GPL(tmc_sg_table_get_data);
411
412 #ifdef ETR_SG_DEBUG
413 /* Map a dma address to virtual address */
414 static unsigned long
tmc_sg_daddr_to_vaddr(struct tmc_sg_table * sg_table,dma_addr_t addr,bool table)415 tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table,
416 dma_addr_t addr, bool table)
417 {
418 long offset;
419 unsigned long base;
420 struct tmc_pages *tmc_pages;
421
422 if (table) {
423 tmc_pages = &sg_table->table_pages;
424 base = (unsigned long)sg_table->table_vaddr;
425 } else {
426 tmc_pages = &sg_table->data_pages;
427 base = (unsigned long)sg_table->data_vaddr;
428 }
429
430 offset = tmc_pages_get_offset(tmc_pages, addr);
431 if (offset < 0)
432 return 0;
433 return base + offset;
434 }
435
436 /* Dump the given sg_table */
tmc_etr_sg_table_dump(struct etr_sg_table * etr_table)437 static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table)
438 {
439 sgte_t *ptr;
440 int i = 0;
441 dma_addr_t addr;
442 struct tmc_sg_table *sg_table = etr_table->sg_table;
443
444 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
445 etr_table->hwaddr, true);
446 while (ptr) {
447 addr = ETR_SG_ADDR(*ptr);
448 switch (ETR_SG_ET(*ptr)) {
449 case ETR_SG_ET_NORMAL:
450 dev_dbg(sg_table->dev,
451 "%05d: %p\t:[N] 0x%llx\n", i, ptr, addr);
452 ptr++;
453 break;
454 case ETR_SG_ET_LINK:
455 dev_dbg(sg_table->dev,
456 "%05d: *** %p\t:{L} 0x%llx ***\n",
457 i, ptr, addr);
458 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
459 addr, true);
460 break;
461 case ETR_SG_ET_LAST:
462 dev_dbg(sg_table->dev,
463 "%05d: ### %p\t:[L] 0x%llx ###\n",
464 i, ptr, addr);
465 return;
466 default:
467 dev_dbg(sg_table->dev,
468 "%05d: xxx %p\t:[INVALID] 0x%llx xxx\n",
469 i, ptr, addr);
470 return;
471 }
472 i++;
473 }
474 dev_dbg(sg_table->dev, "******* End of Table *****\n");
475 }
476 #else
tmc_etr_sg_table_dump(struct etr_sg_table * etr_table)477 static inline void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {}
478 #endif
479
480 /*
481 * Populate the SG Table page table entries from table/data
482 * pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages.
483 * So does a Table page. So we keep track of indices of the tables
484 * in each system page and move the pointers accordingly.
485 */
486 #define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size))
tmc_etr_sg_table_populate(struct etr_sg_table * etr_table)487 static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table)
488 {
489 dma_addr_t paddr;
490 int i, type, nr_entries;
491 int tpidx = 0; /* index to the current system table_page */
492 int sgtidx = 0; /* index to the sg_table within the current syspage */
493 int sgtentry = 0; /* the entry within the sg_table */
494 int dpidx = 0; /* index to the current system data_page */
495 int spidx = 0; /* index to the SG page within the current data page */
496 sgte_t *ptr; /* pointer to the table entry to fill */
497 struct tmc_sg_table *sg_table = etr_table->sg_table;
498 dma_addr_t *table_daddrs = sg_table->table_pages.daddrs;
499 dma_addr_t *data_daddrs = sg_table->data_pages.daddrs;
500
501 nr_entries = tmc_etr_sg_table_entries(sg_table->data_pages.nr_pages);
502 /*
503 * Use the contiguous virtual address of the table to update entries.
504 */
505 ptr = sg_table->table_vaddr;
506 /*
507 * Fill all the entries, except the last entry to avoid special
508 * checks within the loop.
509 */
510 for (i = 0; i < nr_entries - 1; i++) {
511 if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) {
512 /*
513 * Last entry in a sg_table page is a link address to
514 * the next table page. If this sg_table is the last
515 * one in the system page, it links to the first
516 * sg_table in the next system page. Otherwise, it
517 * links to the next sg_table page within the system
518 * page.
519 */
520 if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) {
521 paddr = table_daddrs[tpidx + 1];
522 } else {
523 paddr = table_daddrs[tpidx] +
524 (ETR_SG_PAGE_SIZE * (sgtidx + 1));
525 }
526 type = ETR_SG_ET_LINK;
527 } else {
528 /*
529 * Update the indices to the data_pages to point to the
530 * next sg_page in the data buffer.
531 */
532 type = ETR_SG_ET_NORMAL;
533 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
534 if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE))
535 dpidx++;
536 }
537 *ptr++ = ETR_SG_ENTRY(paddr, type);
538 /*
539 * Move to the next table pointer, moving the table page index
540 * if necessary
541 */
542 if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) {
543 if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE))
544 tpidx++;
545 }
546 }
547
548 /* Set up the last entry, which is always a data pointer */
549 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
550 *ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST);
551 }
552
553 /*
554 * tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and
555 * populate the table.
556 *
557 * @dev - Device pointer for the TMC
558 * @node - NUMA node where the memory should be allocated
559 * @size - Total size of the data buffer
560 * @pages - Optional list of page virtual address
561 */
562 static struct etr_sg_table *
tmc_init_etr_sg_table(struct device * dev,int node,unsigned long size,void ** pages)563 tmc_init_etr_sg_table(struct device *dev, int node,
564 unsigned long size, void **pages)
565 {
566 int nr_entries, nr_tpages;
567 int nr_dpages = size >> PAGE_SHIFT;
568 struct tmc_sg_table *sg_table;
569 struct etr_sg_table *etr_table;
570
571 etr_table = kzalloc(sizeof(*etr_table), GFP_KERNEL);
572 if (!etr_table)
573 return ERR_PTR(-ENOMEM);
574 nr_entries = tmc_etr_sg_table_entries(nr_dpages);
575 nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE);
576
577 sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages);
578 if (IS_ERR(sg_table)) {
579 kfree(etr_table);
580 return ERR_CAST(sg_table);
581 }
582
583 etr_table->sg_table = sg_table;
584 /* TMC should use table base address for DBA */
585 etr_table->hwaddr = sg_table->table_daddr;
586 tmc_etr_sg_table_populate(etr_table);
587 /* Sync the table pages for the HW */
588 tmc_sg_table_sync_table(sg_table);
589 tmc_etr_sg_table_dump(etr_table);
590
591 return etr_table;
592 }
593
594 /*
595 * tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer.
596 */
tmc_etr_alloc_flat_buf(struct tmc_drvdata * drvdata,struct etr_buf * etr_buf,int node,void ** pages)597 static int tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata,
598 struct etr_buf *etr_buf, int node,
599 void **pages)
600 {
601 struct etr_flat_buf *flat_buf;
602 struct device *real_dev = drvdata->csdev->dev.parent;
603
604 /* We cannot reuse existing pages for flat buf */
605 if (pages)
606 return -EINVAL;
607
608 flat_buf = kzalloc(sizeof(*flat_buf), GFP_KERNEL);
609 if (!flat_buf)
610 return -ENOMEM;
611
612 flat_buf->vaddr = dma_alloc_coherent(real_dev, etr_buf->size,
613 &flat_buf->daddr, GFP_KERNEL);
614 if (!flat_buf->vaddr) {
615 kfree(flat_buf);
616 return -ENOMEM;
617 }
618
619 flat_buf->size = etr_buf->size;
620 flat_buf->dev = &drvdata->csdev->dev;
621 etr_buf->hwaddr = flat_buf->daddr;
622 etr_buf->mode = ETR_MODE_FLAT;
623 etr_buf->private = flat_buf;
624 return 0;
625 }
626
tmc_etr_free_flat_buf(struct etr_buf * etr_buf)627 static void tmc_etr_free_flat_buf(struct etr_buf *etr_buf)
628 {
629 struct etr_flat_buf *flat_buf = etr_buf->private;
630
631 if (flat_buf && flat_buf->daddr) {
632 struct device *real_dev = flat_buf->dev->parent;
633
634 dma_free_coherent(real_dev, flat_buf->size,
635 flat_buf->vaddr, flat_buf->daddr);
636 }
637 kfree(flat_buf);
638 }
639
tmc_etr_sync_flat_buf(struct etr_buf * etr_buf,u64 rrp,u64 rwp)640 static void tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
641 {
642 /*
643 * Adjust the buffer to point to the beginning of the trace data
644 * and update the available trace data.
645 */
646 etr_buf->offset = rrp - etr_buf->hwaddr;
647 if (etr_buf->full)
648 etr_buf->len = etr_buf->size;
649 else
650 etr_buf->len = rwp - rrp;
651 }
652
tmc_etr_get_data_flat_buf(struct etr_buf * etr_buf,u64 offset,size_t len,char ** bufpp)653 static ssize_t tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf,
654 u64 offset, size_t len, char **bufpp)
655 {
656 struct etr_flat_buf *flat_buf = etr_buf->private;
657
658 *bufpp = (char *)flat_buf->vaddr + offset;
659 /*
660 * tmc_etr_buf_get_data already adjusts the length to handle
661 * buffer wrapping around.
662 */
663 return len;
664 }
665
666 static const struct etr_buf_operations etr_flat_buf_ops = {
667 .alloc = tmc_etr_alloc_flat_buf,
668 .free = tmc_etr_free_flat_buf,
669 .sync = tmc_etr_sync_flat_buf,
670 .get_data = tmc_etr_get_data_flat_buf,
671 };
672
673 /*
674 * tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters
675 * appropriately.
676 */
tmc_etr_alloc_sg_buf(struct tmc_drvdata * drvdata,struct etr_buf * etr_buf,int node,void ** pages)677 static int tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata,
678 struct etr_buf *etr_buf, int node,
679 void **pages)
680 {
681 struct etr_sg_table *etr_table;
682 struct device *dev = &drvdata->csdev->dev;
683
684 etr_table = tmc_init_etr_sg_table(dev, node,
685 etr_buf->size, pages);
686 if (IS_ERR(etr_table))
687 return -ENOMEM;
688 etr_buf->hwaddr = etr_table->hwaddr;
689 etr_buf->mode = ETR_MODE_ETR_SG;
690 etr_buf->private = etr_table;
691 return 0;
692 }
693
tmc_etr_free_sg_buf(struct etr_buf * etr_buf)694 static void tmc_etr_free_sg_buf(struct etr_buf *etr_buf)
695 {
696 struct etr_sg_table *etr_table = etr_buf->private;
697
698 if (etr_table) {
699 tmc_free_sg_table(etr_table->sg_table);
700 kfree(etr_table);
701 }
702 }
703
tmc_etr_get_data_sg_buf(struct etr_buf * etr_buf,u64 offset,size_t len,char ** bufpp)704 static ssize_t tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset,
705 size_t len, char **bufpp)
706 {
707 struct etr_sg_table *etr_table = etr_buf->private;
708
709 return tmc_sg_table_get_data(etr_table->sg_table, offset, len, bufpp);
710 }
711
tmc_etr_sync_sg_buf(struct etr_buf * etr_buf,u64 rrp,u64 rwp)712 static void tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
713 {
714 long r_offset, w_offset;
715 struct etr_sg_table *etr_table = etr_buf->private;
716 struct tmc_sg_table *table = etr_table->sg_table;
717
718 /* Convert hw address to offset in the buffer */
719 r_offset = tmc_sg_get_data_page_offset(table, rrp);
720 if (r_offset < 0) {
721 dev_warn(table->dev,
722 "Unable to map RRP %llx to offset\n", rrp);
723 etr_buf->len = 0;
724 return;
725 }
726
727 w_offset = tmc_sg_get_data_page_offset(table, rwp);
728 if (w_offset < 0) {
729 dev_warn(table->dev,
730 "Unable to map RWP %llx to offset\n", rwp);
731 etr_buf->len = 0;
732 return;
733 }
734
735 etr_buf->offset = r_offset;
736 if (etr_buf->full)
737 etr_buf->len = etr_buf->size;
738 else
739 etr_buf->len = ((w_offset < r_offset) ? etr_buf->size : 0) +
740 w_offset - r_offset;
741 tmc_sg_table_sync_data_range(table, r_offset, etr_buf->len);
742 }
743
744 static const struct etr_buf_operations etr_sg_buf_ops = {
745 .alloc = tmc_etr_alloc_sg_buf,
746 .free = tmc_etr_free_sg_buf,
747 .sync = tmc_etr_sync_sg_buf,
748 .get_data = tmc_etr_get_data_sg_buf,
749 };
750
751 /*
752 * TMC ETR could be connected to a CATU device, which can provide address
753 * translation service. This is represented by the Output port of the TMC
754 * (ETR) connected to the input port of the CATU.
755 *
756 * Returns : coresight_device ptr for the CATU device if a CATU is found.
757 * : NULL otherwise.
758 */
759 struct coresight_device *
tmc_etr_get_catu_device(struct tmc_drvdata * drvdata)760 tmc_etr_get_catu_device(struct tmc_drvdata *drvdata)
761 {
762 int i;
763 struct coresight_device *tmp, *etr = drvdata->csdev;
764
765 if (!IS_ENABLED(CONFIG_CORESIGHT_CATU))
766 return NULL;
767
768 for (i = 0; i < etr->pdata->nr_outport; i++) {
769 tmp = etr->pdata->conns[i].child_dev;
770 if (tmp && coresight_is_catu_device(tmp))
771 return tmp;
772 }
773
774 return NULL;
775 }
776 EXPORT_SYMBOL_GPL(tmc_etr_get_catu_device);
777
tmc_etr_enable_catu(struct tmc_drvdata * drvdata,struct etr_buf * etr_buf)778 static inline int tmc_etr_enable_catu(struct tmc_drvdata *drvdata,
779 struct etr_buf *etr_buf)
780 {
781 struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);
782
783 if (catu && helper_ops(catu)->enable)
784 return helper_ops(catu)->enable(catu, etr_buf);
785 return 0;
786 }
787
tmc_etr_disable_catu(struct tmc_drvdata * drvdata)788 static inline void tmc_etr_disable_catu(struct tmc_drvdata *drvdata)
789 {
790 struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);
791
792 if (catu && helper_ops(catu)->disable)
793 helper_ops(catu)->disable(catu, drvdata->etr_buf);
794 }
795
796 static const struct etr_buf_operations *etr_buf_ops[] = {
797 [ETR_MODE_FLAT] = &etr_flat_buf_ops,
798 [ETR_MODE_ETR_SG] = &etr_sg_buf_ops,
799 [ETR_MODE_CATU] = NULL,
800 };
801
tmc_etr_set_catu_ops(const struct etr_buf_operations * catu)802 void tmc_etr_set_catu_ops(const struct etr_buf_operations *catu)
803 {
804 etr_buf_ops[ETR_MODE_CATU] = catu;
805 }
806 EXPORT_SYMBOL_GPL(tmc_etr_set_catu_ops);
807
tmc_etr_remove_catu_ops(void)808 void tmc_etr_remove_catu_ops(void)
809 {
810 etr_buf_ops[ETR_MODE_CATU] = NULL;
811 }
812 EXPORT_SYMBOL_GPL(tmc_etr_remove_catu_ops);
813
tmc_etr_mode_alloc_buf(int mode,struct tmc_drvdata * drvdata,struct etr_buf * etr_buf,int node,void ** pages)814 static inline int tmc_etr_mode_alloc_buf(int mode,
815 struct tmc_drvdata *drvdata,
816 struct etr_buf *etr_buf, int node,
817 void **pages)
818 {
819 int rc = -EINVAL;
820
821 switch (mode) {
822 case ETR_MODE_FLAT:
823 case ETR_MODE_ETR_SG:
824 case ETR_MODE_CATU:
825 if (etr_buf_ops[mode] && etr_buf_ops[mode]->alloc)
826 rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf,
827 node, pages);
828 if (!rc)
829 etr_buf->ops = etr_buf_ops[mode];
830 return rc;
831 default:
832 return -EINVAL;
833 }
834 }
835
836 /*
837 * tmc_alloc_etr_buf: Allocate a buffer use by ETR.
838 * @drvdata : ETR device details.
839 * @size : size of the requested buffer.
840 * @flags : Required properties for the buffer.
841 * @node : Node for memory allocations.
842 * @pages : An optional list of pages.
843 */
tmc_alloc_etr_buf(struct tmc_drvdata * drvdata,ssize_t size,int flags,int node,void ** pages)844 static struct etr_buf *tmc_alloc_etr_buf(struct tmc_drvdata *drvdata,
845 ssize_t size, int flags,
846 int node, void **pages)
847 {
848 int rc = -ENOMEM;
849 bool has_etr_sg, has_iommu;
850 bool has_sg, has_catu;
851 struct etr_buf *etr_buf;
852 struct device *dev = &drvdata->csdev->dev;
853
854 has_etr_sg = tmc_etr_has_cap(drvdata, TMC_ETR_SG);
855 has_iommu = iommu_get_domain_for_dev(dev->parent);
856 has_catu = !!tmc_etr_get_catu_device(drvdata);
857
858 has_sg = has_catu || has_etr_sg;
859
860 etr_buf = kzalloc(sizeof(*etr_buf), GFP_KERNEL);
861 if (!etr_buf)
862 return ERR_PTR(-ENOMEM);
863
864 etr_buf->size = size;
865
866 /*
867 * If we have to use an existing list of pages, we cannot reliably
868 * use a contiguous DMA memory (even if we have an IOMMU). Otherwise,
869 * we use the contiguous DMA memory if at least one of the following
870 * conditions is true:
871 * a) The ETR cannot use Scatter-Gather.
872 * b) we have a backing IOMMU
873 * c) The requested memory size is smaller (< 1M).
874 *
875 * Fallback to available mechanisms.
876 *
877 */
878 if (!pages &&
879 (!has_sg || has_iommu || size < SZ_1M))
880 rc = tmc_etr_mode_alloc_buf(ETR_MODE_FLAT, drvdata,
881 etr_buf, node, pages);
882 if (rc && has_etr_sg)
883 rc = tmc_etr_mode_alloc_buf(ETR_MODE_ETR_SG, drvdata,
884 etr_buf, node, pages);
885 if (rc && has_catu)
886 rc = tmc_etr_mode_alloc_buf(ETR_MODE_CATU, drvdata,
887 etr_buf, node, pages);
888 if (rc) {
889 kfree(etr_buf);
890 return ERR_PTR(rc);
891 }
892
893 refcount_set(&etr_buf->refcount, 1);
894 dev_dbg(dev, "allocated buffer of size %ldKB in mode %d\n",
895 (unsigned long)size >> 10, etr_buf->mode);
896 return etr_buf;
897 }
898
tmc_free_etr_buf(struct etr_buf * etr_buf)899 static void tmc_free_etr_buf(struct etr_buf *etr_buf)
900 {
901 WARN_ON(!etr_buf->ops || !etr_buf->ops->free);
902 etr_buf->ops->free(etr_buf);
903 kfree(etr_buf);
904 }
905
906 /*
907 * tmc_etr_buf_get_data: Get the pointer the trace data at @offset
908 * with a maximum of @len bytes.
909 * Returns: The size of the linear data available @pos, with *bufpp
910 * updated to point to the buffer.
911 */
tmc_etr_buf_get_data(struct etr_buf * etr_buf,u64 offset,size_t len,char ** bufpp)912 static ssize_t tmc_etr_buf_get_data(struct etr_buf *etr_buf,
913 u64 offset, size_t len, char **bufpp)
914 {
915 /* Adjust the length to limit this transaction to end of buffer */
916 len = (len < (etr_buf->size - offset)) ? len : etr_buf->size - offset;
917
918 return etr_buf->ops->get_data(etr_buf, (u64)offset, len, bufpp);
919 }
920
921 static inline s64
tmc_etr_buf_insert_barrier_packet(struct etr_buf * etr_buf,u64 offset)922 tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset)
923 {
924 ssize_t len;
925 char *bufp;
926
927 len = tmc_etr_buf_get_data(etr_buf, offset,
928 CORESIGHT_BARRIER_PKT_SIZE, &bufp);
929 if (WARN_ON(len < CORESIGHT_BARRIER_PKT_SIZE))
930 return -EINVAL;
931 coresight_insert_barrier_packet(bufp);
932 return offset + CORESIGHT_BARRIER_PKT_SIZE;
933 }
934
935 /*
936 * tmc_sync_etr_buf: Sync the trace buffer availability with drvdata.
937 * Makes sure the trace data is synced to the memory for consumption.
938 * @etr_buf->offset will hold the offset to the beginning of the trace data
939 * within the buffer, with @etr_buf->len bytes to consume.
940 */
tmc_sync_etr_buf(struct tmc_drvdata * drvdata)941 static void tmc_sync_etr_buf(struct tmc_drvdata *drvdata)
942 {
943 struct etr_buf *etr_buf = drvdata->etr_buf;
944 u64 rrp, rwp;
945 u32 status;
946
947 rrp = tmc_read_rrp(drvdata);
948 rwp = tmc_read_rwp(drvdata);
949 status = readl_relaxed(drvdata->base + TMC_STS);
950
951 /*
952 * If there were memory errors in the session, truncate the
953 * buffer.
954 */
955 if (WARN_ON_ONCE(status & TMC_STS_MEMERR)) {
956 dev_dbg(&drvdata->csdev->dev,
957 "tmc memory error detected, truncating buffer\n");
958 etr_buf->len = 0;
959 etr_buf->full = false;
960 return;
961 }
962
963 etr_buf->full = !!(status & TMC_STS_FULL);
964
965 WARN_ON(!etr_buf->ops || !etr_buf->ops->sync);
966
967 etr_buf->ops->sync(etr_buf, rrp, rwp);
968 }
969
__tmc_etr_enable_hw(struct tmc_drvdata * drvdata)970 static void __tmc_etr_enable_hw(struct tmc_drvdata *drvdata)
971 {
972 u32 axictl, sts;
973 struct etr_buf *etr_buf = drvdata->etr_buf;
974
975 CS_UNLOCK(drvdata->base);
976
977 /* Wait for TMCSReady bit to be set */
978 tmc_wait_for_tmcready(drvdata);
979
980 writel_relaxed(etr_buf->size / 4, drvdata->base + TMC_RSZ);
981 writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE);
982
983 axictl = readl_relaxed(drvdata->base + TMC_AXICTL);
984 axictl &= ~TMC_AXICTL_CLEAR_MASK;
985 axictl |= (TMC_AXICTL_PROT_CTL_B1 | TMC_AXICTL_WR_BURST_16);
986 axictl |= TMC_AXICTL_AXCACHE_OS;
987
988 if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) {
989 axictl &= ~TMC_AXICTL_ARCACHE_MASK;
990 axictl |= TMC_AXICTL_ARCACHE_OS;
991 }
992
993 if (etr_buf->mode == ETR_MODE_ETR_SG)
994 axictl |= TMC_AXICTL_SCT_GAT_MODE;
995
996 writel_relaxed(axictl, drvdata->base + TMC_AXICTL);
997 tmc_write_dba(drvdata, etr_buf->hwaddr);
998 /*
999 * If the TMC pointers must be programmed before the session,
1000 * we have to set it properly (i.e, RRP/RWP to base address and
1001 * STS to "not full").
1002 */
1003 if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) {
1004 tmc_write_rrp(drvdata, etr_buf->hwaddr);
1005 tmc_write_rwp(drvdata, etr_buf->hwaddr);
1006 sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL;
1007 writel_relaxed(sts, drvdata->base + TMC_STS);
1008 }
1009
1010 writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI |
1011 TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT |
1012 TMC_FFCR_TRIGON_TRIGIN,
1013 drvdata->base + TMC_FFCR);
1014 writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG);
1015 tmc_enable_hw(drvdata);
1016
1017 CS_LOCK(drvdata->base);
1018 }
1019
tmc_etr_enable_hw(struct tmc_drvdata * drvdata,struct etr_buf * etr_buf)1020 static int tmc_etr_enable_hw(struct tmc_drvdata *drvdata,
1021 struct etr_buf *etr_buf)
1022 {
1023 int rc;
1024
1025 /* Callers should provide an appropriate buffer for use */
1026 if (WARN_ON(!etr_buf))
1027 return -EINVAL;
1028
1029 if ((etr_buf->mode == ETR_MODE_ETR_SG) &&
1030 WARN_ON(!tmc_etr_has_cap(drvdata, TMC_ETR_SG)))
1031 return -EINVAL;
1032
1033 if (WARN_ON(drvdata->etr_buf))
1034 return -EBUSY;
1035
1036 /*
1037 * If this ETR is connected to a CATU, enable it before we turn
1038 * this on.
1039 */
1040 rc = tmc_etr_enable_catu(drvdata, etr_buf);
1041 if (rc)
1042 return rc;
1043 rc = coresight_claim_device(drvdata->csdev);
1044 if (!rc) {
1045 drvdata->etr_buf = etr_buf;
1046 __tmc_etr_enable_hw(drvdata);
1047 }
1048
1049 return rc;
1050 }
1051
1052 /*
1053 * Return the available trace data in the buffer (starts at etr_buf->offset,
1054 * limited by etr_buf->len) from @pos, with a maximum limit of @len,
1055 * also updating the @bufpp on where to find it. Since the trace data
1056 * starts at anywhere in the buffer, depending on the RRP, we adjust the
1057 * @len returned to handle buffer wrapping around.
1058 *
1059 * We are protected here by drvdata->reading != 0, which ensures the
1060 * sysfs_buf stays alive.
1061 */
tmc_etr_get_sysfs_trace(struct tmc_drvdata * drvdata,loff_t pos,size_t len,char ** bufpp)1062 ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata,
1063 loff_t pos, size_t len, char **bufpp)
1064 {
1065 s64 offset;
1066 ssize_t actual = len;
1067 struct etr_buf *etr_buf = drvdata->sysfs_buf;
1068
1069 if (pos + actual > etr_buf->len)
1070 actual = etr_buf->len - pos;
1071 if (actual <= 0)
1072 return actual;
1073
1074 /* Compute the offset from which we read the data */
1075 offset = etr_buf->offset + pos;
1076 if (offset >= etr_buf->size)
1077 offset -= etr_buf->size;
1078 return tmc_etr_buf_get_data(etr_buf, offset, actual, bufpp);
1079 }
1080
1081 static struct etr_buf *
tmc_etr_setup_sysfs_buf(struct tmc_drvdata * drvdata)1082 tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata)
1083 {
1084 return tmc_alloc_etr_buf(drvdata, drvdata->size,
1085 0, cpu_to_node(0), NULL);
1086 }
1087
1088 static void
tmc_etr_free_sysfs_buf(struct etr_buf * buf)1089 tmc_etr_free_sysfs_buf(struct etr_buf *buf)
1090 {
1091 if (buf)
1092 tmc_free_etr_buf(buf);
1093 }
1094
tmc_etr_sync_sysfs_buf(struct tmc_drvdata * drvdata)1095 static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata)
1096 {
1097 struct etr_buf *etr_buf = drvdata->etr_buf;
1098
1099 if (WARN_ON(drvdata->sysfs_buf != etr_buf)) {
1100 tmc_etr_free_sysfs_buf(drvdata->sysfs_buf);
1101 drvdata->sysfs_buf = NULL;
1102 } else {
1103 tmc_sync_etr_buf(drvdata);
1104 /*
1105 * Insert barrier packets at the beginning, if there was
1106 * an overflow.
1107 */
1108 if (etr_buf->full)
1109 tmc_etr_buf_insert_barrier_packet(etr_buf,
1110 etr_buf->offset);
1111 }
1112 }
1113
__tmc_etr_disable_hw(struct tmc_drvdata * drvdata)1114 static void __tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1115 {
1116 CS_UNLOCK(drvdata->base);
1117
1118 tmc_flush_and_stop(drvdata);
1119 /*
1120 * When operating in sysFS mode the content of the buffer needs to be
1121 * read before the TMC is disabled.
1122 */
1123 if (drvdata->mode == CS_MODE_SYSFS)
1124 tmc_etr_sync_sysfs_buf(drvdata);
1125
1126 tmc_disable_hw(drvdata);
1127
1128 CS_LOCK(drvdata->base);
1129
1130 }
1131
tmc_etr_disable_hw(struct tmc_drvdata * drvdata)1132 void tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1133 {
1134 __tmc_etr_disable_hw(drvdata);
1135 /* Disable CATU device if this ETR is connected to one */
1136 tmc_etr_disable_catu(drvdata);
1137 coresight_disclaim_device(drvdata->csdev);
1138 /* Reset the ETR buf used by hardware */
1139 drvdata->etr_buf = NULL;
1140 }
1141
tmc_enable_etr_sink_sysfs(struct coresight_device * csdev)1142 static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev)
1143 {
1144 int ret = 0;
1145 unsigned long flags;
1146 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1147 struct etr_buf *sysfs_buf = NULL, *new_buf = NULL, *free_buf = NULL;
1148
1149 /*
1150 * If we are enabling the ETR from disabled state, we need to make
1151 * sure we have a buffer with the right size. The etr_buf is not reset
1152 * immediately after we stop the tracing in SYSFS mode as we wait for
1153 * the user to collect the data. We may be able to reuse the existing
1154 * buffer, provided the size matches. Any allocation has to be done
1155 * with the lock released.
1156 */
1157 spin_lock_irqsave(&drvdata->spinlock, flags);
1158 sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
1159 if (!sysfs_buf || (sysfs_buf->size != drvdata->size)) {
1160 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1161
1162 /* Allocate memory with the locks released */
1163 free_buf = new_buf = tmc_etr_setup_sysfs_buf(drvdata);
1164 if (IS_ERR(new_buf))
1165 return PTR_ERR(new_buf);
1166
1167 /* Let's try again */
1168 spin_lock_irqsave(&drvdata->spinlock, flags);
1169 }
1170
1171 if (drvdata->reading || drvdata->mode == CS_MODE_PERF) {
1172 ret = -EBUSY;
1173 goto out;
1174 }
1175
1176 /*
1177 * In sysFS mode we can have multiple writers per sink. Since this
1178 * sink is already enabled no memory is needed and the HW need not be
1179 * touched, even if the buffer size has changed.
1180 */
1181 if (drvdata->mode == CS_MODE_SYSFS) {
1182 atomic_inc(csdev->refcnt);
1183 goto out;
1184 }
1185
1186 /*
1187 * If we don't have a buffer or it doesn't match the requested size,
1188 * use the buffer allocated above. Otherwise reuse the existing buffer.
1189 */
1190 sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
1191 if (!sysfs_buf || (new_buf && sysfs_buf->size != new_buf->size)) {
1192 free_buf = sysfs_buf;
1193 drvdata->sysfs_buf = new_buf;
1194 }
1195
1196 ret = tmc_etr_enable_hw(drvdata, drvdata->sysfs_buf);
1197 if (!ret) {
1198 drvdata->mode = CS_MODE_SYSFS;
1199 atomic_inc(csdev->refcnt);
1200 }
1201 out:
1202 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1203
1204 /* Free memory outside the spinlock if need be */
1205 if (free_buf)
1206 tmc_etr_free_sysfs_buf(free_buf);
1207
1208 if (!ret)
1209 dev_dbg(&csdev->dev, "TMC-ETR enabled\n");
1210
1211 return ret;
1212 }
1213
1214 /*
1215 * alloc_etr_buf: Allocate ETR buffer for use by perf.
1216 * The size of the hardware buffer is dependent on the size configured
1217 * via sysfs and the perf ring buffer size. We prefer to allocate the
1218 * largest possible size, scaling down the size by half until it
1219 * reaches a minimum limit (1M), beyond which we give up.
1220 */
1221 static struct etr_buf *
alloc_etr_buf(struct tmc_drvdata * drvdata,struct perf_event * event,int nr_pages,void ** pages,bool snapshot)1222 alloc_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1223 int nr_pages, void **pages, bool snapshot)
1224 {
1225 int node;
1226 struct etr_buf *etr_buf;
1227 unsigned long size;
1228
1229 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu);
1230 /*
1231 * Try to match the perf ring buffer size if it is larger
1232 * than the size requested via sysfs.
1233 */
1234 if ((nr_pages << PAGE_SHIFT) > drvdata->size) {
1235 etr_buf = tmc_alloc_etr_buf(drvdata, (nr_pages << PAGE_SHIFT),
1236 0, node, NULL);
1237 if (!IS_ERR(etr_buf))
1238 goto done;
1239 }
1240
1241 /*
1242 * Else switch to configured size for this ETR
1243 * and scale down until we hit the minimum limit.
1244 */
1245 size = drvdata->size;
1246 do {
1247 etr_buf = tmc_alloc_etr_buf(drvdata, size, 0, node, NULL);
1248 if (!IS_ERR(etr_buf))
1249 goto done;
1250 size /= 2;
1251 } while (size >= TMC_ETR_PERF_MIN_BUF_SIZE);
1252
1253 return ERR_PTR(-ENOMEM);
1254
1255 done:
1256 return etr_buf;
1257 }
1258
1259 static struct etr_buf *
get_perf_etr_buf_cpu_wide(struct tmc_drvdata * drvdata,struct perf_event * event,int nr_pages,void ** pages,bool snapshot)1260 get_perf_etr_buf_cpu_wide(struct tmc_drvdata *drvdata,
1261 struct perf_event *event, int nr_pages,
1262 void **pages, bool snapshot)
1263 {
1264 int ret;
1265 pid_t pid = task_pid_nr(event->owner);
1266 struct etr_buf *etr_buf;
1267
1268 retry:
1269 /*
1270 * An etr_perf_buffer is associated with an event and holds a reference
1271 * to the AUX ring buffer that was created for that event. In CPU-wide
1272 * N:1 mode multiple events (one per CPU), each with its own AUX ring
1273 * buffer, share a sink. As such an etr_perf_buffer is created for each
1274 * event but a single etr_buf associated with the ETR is shared between
1275 * them. The last event in a trace session will copy the content of the
1276 * etr_buf to its AUX ring buffer. Ring buffer associated to other
1277 * events are simply not used an freed as events are destoyed. We still
1278 * need to allocate a ring buffer for each event since we don't know
1279 * which event will be last.
1280 */
1281
1282 /*
1283 * The first thing to do here is check if an etr_buf has already been
1284 * allocated for this session. If so it is shared with this event,
1285 * otherwise it is created.
1286 */
1287 mutex_lock(&drvdata->idr_mutex);
1288 etr_buf = idr_find(&drvdata->idr, pid);
1289 if (etr_buf) {
1290 refcount_inc(&etr_buf->refcount);
1291 mutex_unlock(&drvdata->idr_mutex);
1292 return etr_buf;
1293 }
1294
1295 /* If we made it here no buffer has been allocated, do so now. */
1296 mutex_unlock(&drvdata->idr_mutex);
1297
1298 etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1299 if (IS_ERR(etr_buf))
1300 return etr_buf;
1301
1302 /* Now that we have a buffer, add it to the IDR. */
1303 mutex_lock(&drvdata->idr_mutex);
1304 ret = idr_alloc(&drvdata->idr, etr_buf, pid, pid + 1, GFP_KERNEL);
1305 mutex_unlock(&drvdata->idr_mutex);
1306
1307 /* Another event with this session ID has allocated this buffer. */
1308 if (ret == -ENOSPC) {
1309 tmc_free_etr_buf(etr_buf);
1310 goto retry;
1311 }
1312
1313 /* The IDR can't allocate room for a new session, abandon ship. */
1314 if (ret == -ENOMEM) {
1315 tmc_free_etr_buf(etr_buf);
1316 return ERR_PTR(ret);
1317 }
1318
1319
1320 return etr_buf;
1321 }
1322
1323 static struct etr_buf *
get_perf_etr_buf_per_thread(struct tmc_drvdata * drvdata,struct perf_event * event,int nr_pages,void ** pages,bool snapshot)1324 get_perf_etr_buf_per_thread(struct tmc_drvdata *drvdata,
1325 struct perf_event *event, int nr_pages,
1326 void **pages, bool snapshot)
1327 {
1328 /*
1329 * In per-thread mode the etr_buf isn't shared, so just go ahead
1330 * with memory allocation.
1331 */
1332 return alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1333 }
1334
1335 static struct etr_buf *
get_perf_etr_buf(struct tmc_drvdata * drvdata,struct perf_event * event,int nr_pages,void ** pages,bool snapshot)1336 get_perf_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1337 int nr_pages, void **pages, bool snapshot)
1338 {
1339 if (event->cpu == -1)
1340 return get_perf_etr_buf_per_thread(drvdata, event, nr_pages,
1341 pages, snapshot);
1342
1343 return get_perf_etr_buf_cpu_wide(drvdata, event, nr_pages,
1344 pages, snapshot);
1345 }
1346
1347 static struct etr_perf_buffer *
tmc_etr_setup_perf_buf(struct tmc_drvdata * drvdata,struct perf_event * event,int nr_pages,void ** pages,bool snapshot)1348 tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1349 int nr_pages, void **pages, bool snapshot)
1350 {
1351 int node;
1352 struct etr_buf *etr_buf;
1353 struct etr_perf_buffer *etr_perf;
1354
1355 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu);
1356
1357 etr_perf = kzalloc_node(sizeof(*etr_perf), GFP_KERNEL, node);
1358 if (!etr_perf)
1359 return ERR_PTR(-ENOMEM);
1360
1361 etr_buf = get_perf_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1362 if (!IS_ERR(etr_buf))
1363 goto done;
1364
1365 kfree(etr_perf);
1366 return ERR_PTR(-ENOMEM);
1367
1368 done:
1369 /*
1370 * Keep a reference to the ETR this buffer has been allocated for
1371 * in order to have access to the IDR in tmc_free_etr_buffer().
1372 */
1373 etr_perf->drvdata = drvdata;
1374 etr_perf->etr_buf = etr_buf;
1375
1376 return etr_perf;
1377 }
1378
1379
tmc_alloc_etr_buffer(struct coresight_device * csdev,struct perf_event * event,void ** pages,int nr_pages,bool snapshot)1380 static void *tmc_alloc_etr_buffer(struct coresight_device *csdev,
1381 struct perf_event *event, void **pages,
1382 int nr_pages, bool snapshot)
1383 {
1384 struct etr_perf_buffer *etr_perf;
1385 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1386
1387 etr_perf = tmc_etr_setup_perf_buf(drvdata, event,
1388 nr_pages, pages, snapshot);
1389 if (IS_ERR(etr_perf)) {
1390 dev_dbg(&csdev->dev, "Unable to allocate ETR buffer\n");
1391 return NULL;
1392 }
1393
1394 etr_perf->pid = task_pid_nr(event->owner);
1395 etr_perf->snapshot = snapshot;
1396 etr_perf->nr_pages = nr_pages;
1397 etr_perf->pages = pages;
1398
1399 return etr_perf;
1400 }
1401
tmc_free_etr_buffer(void * config)1402 static void tmc_free_etr_buffer(void *config)
1403 {
1404 struct etr_perf_buffer *etr_perf = config;
1405 struct tmc_drvdata *drvdata = etr_perf->drvdata;
1406 struct etr_buf *buf, *etr_buf = etr_perf->etr_buf;
1407
1408 if (!etr_buf)
1409 goto free_etr_perf_buffer;
1410
1411 mutex_lock(&drvdata->idr_mutex);
1412 /* If we are not the last one to use the buffer, don't touch it. */
1413 if (!refcount_dec_and_test(&etr_buf->refcount)) {
1414 mutex_unlock(&drvdata->idr_mutex);
1415 goto free_etr_perf_buffer;
1416 }
1417
1418 /* We are the last one, remove from the IDR and free the buffer. */
1419 buf = idr_remove(&drvdata->idr, etr_perf->pid);
1420 mutex_unlock(&drvdata->idr_mutex);
1421
1422 /*
1423 * Something went very wrong if the buffer associated with this ID
1424 * is not the same in the IDR. Leak to avoid use after free.
1425 */
1426 if (buf && WARN_ON(buf != etr_buf))
1427 goto free_etr_perf_buffer;
1428
1429 tmc_free_etr_buf(etr_perf->etr_buf);
1430
1431 free_etr_perf_buffer:
1432 kfree(etr_perf);
1433 }
1434
1435 /*
1436 * tmc_etr_sync_perf_buffer: Copy the actual trace data from the hardware
1437 * buffer to the perf ring buffer.
1438 */
tmc_etr_sync_perf_buffer(struct etr_perf_buffer * etr_perf,unsigned long src_offset,unsigned long to_copy)1439 static void tmc_etr_sync_perf_buffer(struct etr_perf_buffer *etr_perf,
1440 unsigned long src_offset,
1441 unsigned long to_copy)
1442 {
1443 long bytes;
1444 long pg_idx, pg_offset;
1445 unsigned long head = etr_perf->head;
1446 char **dst_pages, *src_buf;
1447 struct etr_buf *etr_buf = etr_perf->etr_buf;
1448
1449 head = etr_perf->head;
1450 pg_idx = head >> PAGE_SHIFT;
1451 pg_offset = head & (PAGE_SIZE - 1);
1452 dst_pages = (char **)etr_perf->pages;
1453
1454 while (to_copy > 0) {
1455 /*
1456 * In one iteration, we can copy minimum of :
1457 * 1) what is available in the source buffer,
1458 * 2) what is available in the source buffer, before it
1459 * wraps around.
1460 * 3) what is available in the destination page.
1461 * in one iteration.
1462 */
1463 if (src_offset >= etr_buf->size)
1464 src_offset -= etr_buf->size;
1465 bytes = tmc_etr_buf_get_data(etr_buf, src_offset, to_copy,
1466 &src_buf);
1467 if (WARN_ON_ONCE(bytes <= 0))
1468 break;
1469 bytes = min(bytes, (long)(PAGE_SIZE - pg_offset));
1470
1471 memcpy(dst_pages[pg_idx] + pg_offset, src_buf, bytes);
1472
1473 to_copy -= bytes;
1474
1475 /* Move destination pointers */
1476 pg_offset += bytes;
1477 if (pg_offset == PAGE_SIZE) {
1478 pg_offset = 0;
1479 if (++pg_idx == etr_perf->nr_pages)
1480 pg_idx = 0;
1481 }
1482
1483 /* Move source pointers */
1484 src_offset += bytes;
1485 }
1486 }
1487
1488 /*
1489 * tmc_update_etr_buffer : Update the perf ring buffer with the
1490 * available trace data. We use software double buffering at the moment.
1491 *
1492 * TODO: Add support for reusing the perf ring buffer.
1493 */
1494 static unsigned long
tmc_update_etr_buffer(struct coresight_device * csdev,struct perf_output_handle * handle,void * config)1495 tmc_update_etr_buffer(struct coresight_device *csdev,
1496 struct perf_output_handle *handle,
1497 void *config)
1498 {
1499 bool lost = false;
1500 unsigned long flags, offset, size = 0;
1501 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1502 struct etr_perf_buffer *etr_perf = config;
1503 struct etr_buf *etr_buf = etr_perf->etr_buf;
1504
1505 spin_lock_irqsave(&drvdata->spinlock, flags);
1506
1507 /* Don't do anything if another tracer is using this sink */
1508 if (atomic_read(csdev->refcnt) != 1) {
1509 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1510 goto out;
1511 }
1512
1513 if (WARN_ON(drvdata->perf_buf != etr_buf)) {
1514 lost = true;
1515 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1516 goto out;
1517 }
1518
1519 CS_UNLOCK(drvdata->base);
1520
1521 tmc_flush_and_stop(drvdata);
1522 tmc_sync_etr_buf(drvdata);
1523
1524 CS_LOCK(drvdata->base);
1525 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1526
1527 lost = etr_buf->full;
1528 offset = etr_buf->offset;
1529 size = etr_buf->len;
1530
1531 /*
1532 * The ETR buffer may be bigger than the space available in the
1533 * perf ring buffer (handle->size). If so advance the offset so that we
1534 * get the latest trace data. In snapshot mode none of that matters
1535 * since we are expected to clobber stale data in favour of the latest
1536 * traces.
1537 */
1538 if (!etr_perf->snapshot && size > handle->size) {
1539 u32 mask = tmc_get_memwidth_mask(drvdata);
1540
1541 /*
1542 * Make sure the new size is aligned in accordance with the
1543 * requirement explained in function tmc_get_memwidth_mask().
1544 */
1545 size = handle->size & mask;
1546 offset = etr_buf->offset + etr_buf->len - size;
1547
1548 if (offset >= etr_buf->size)
1549 offset -= etr_buf->size;
1550 lost = true;
1551 }
1552
1553 /* Insert barrier packets at the beginning, if there was an overflow */
1554 if (lost)
1555 tmc_etr_buf_insert_barrier_packet(etr_buf, offset);
1556 tmc_etr_sync_perf_buffer(etr_perf, offset, size);
1557
1558 /*
1559 * In snapshot mode we simply increment the head by the number of byte
1560 * that were written. User space function cs_etm_find_snapshot() will
1561 * figure out how many bytes to get from the AUX buffer based on the
1562 * position of the head.
1563 */
1564 if (etr_perf->snapshot)
1565 handle->head += size;
1566 out:
1567 /*
1568 * Don't set the TRUNCATED flag in snapshot mode because 1) the
1569 * captured buffer is expected to be truncated and 2) a full buffer
1570 * prevents the event from being re-enabled by the perf core,
1571 * resulting in stale data being send to user space.
1572 */
1573 if (!etr_perf->snapshot && lost)
1574 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
1575 return size;
1576 }
1577
tmc_enable_etr_sink_perf(struct coresight_device * csdev,void * data)1578 static int tmc_enable_etr_sink_perf(struct coresight_device *csdev, void *data)
1579 {
1580 int rc = 0;
1581 pid_t pid;
1582 unsigned long flags;
1583 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1584 struct perf_output_handle *handle = data;
1585 struct etr_perf_buffer *etr_perf = etm_perf_sink_config(handle);
1586
1587 spin_lock_irqsave(&drvdata->spinlock, flags);
1588 /* Don't use this sink if it is already claimed by sysFS */
1589 if (drvdata->mode == CS_MODE_SYSFS) {
1590 rc = -EBUSY;
1591 goto unlock_out;
1592 }
1593
1594 if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) {
1595 rc = -EINVAL;
1596 goto unlock_out;
1597 }
1598
1599 /* Get a handle on the pid of the process to monitor */
1600 pid = etr_perf->pid;
1601
1602 /* Do not proceed if this device is associated with another session */
1603 if (drvdata->pid != -1 && drvdata->pid != pid) {
1604 rc = -EBUSY;
1605 goto unlock_out;
1606 }
1607
1608 etr_perf->head = PERF_IDX2OFF(handle->head, etr_perf);
1609
1610 /*
1611 * No HW configuration is needed if the sink is already in
1612 * use for this session.
1613 */
1614 if (drvdata->pid == pid) {
1615 atomic_inc(csdev->refcnt);
1616 goto unlock_out;
1617 }
1618
1619 rc = tmc_etr_enable_hw(drvdata, etr_perf->etr_buf);
1620 if (!rc) {
1621 /* Associate with monitored process. */
1622 drvdata->pid = pid;
1623 drvdata->mode = CS_MODE_PERF;
1624 drvdata->perf_buf = etr_perf->etr_buf;
1625 atomic_inc(csdev->refcnt);
1626 }
1627
1628 unlock_out:
1629 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1630 return rc;
1631 }
1632
tmc_enable_etr_sink(struct coresight_device * csdev,u32 mode,void * data)1633 static int tmc_enable_etr_sink(struct coresight_device *csdev,
1634 u32 mode, void *data)
1635 {
1636 switch (mode) {
1637 case CS_MODE_SYSFS:
1638 return tmc_enable_etr_sink_sysfs(csdev);
1639 case CS_MODE_PERF:
1640 return tmc_enable_etr_sink_perf(csdev, data);
1641 }
1642
1643 /* We shouldn't be here */
1644 return -EINVAL;
1645 }
1646
tmc_disable_etr_sink(struct coresight_device * csdev)1647 static int tmc_disable_etr_sink(struct coresight_device *csdev)
1648 {
1649 unsigned long flags;
1650 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1651
1652 spin_lock_irqsave(&drvdata->spinlock, flags);
1653
1654 if (drvdata->reading) {
1655 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1656 return -EBUSY;
1657 }
1658
1659 if (atomic_dec_return(csdev->refcnt)) {
1660 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1661 return -EBUSY;
1662 }
1663
1664 /* Complain if we (somehow) got out of sync */
1665 WARN_ON_ONCE(drvdata->mode == CS_MODE_DISABLED);
1666 tmc_etr_disable_hw(drvdata);
1667 /* Dissociate from monitored process. */
1668 drvdata->pid = -1;
1669 drvdata->mode = CS_MODE_DISABLED;
1670 /* Reset perf specific data */
1671 drvdata->perf_buf = NULL;
1672
1673 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1674
1675 dev_dbg(&csdev->dev, "TMC-ETR disabled\n");
1676 return 0;
1677 }
1678
1679 static const struct coresight_ops_sink tmc_etr_sink_ops = {
1680 .enable = tmc_enable_etr_sink,
1681 .disable = tmc_disable_etr_sink,
1682 .alloc_buffer = tmc_alloc_etr_buffer,
1683 .update_buffer = tmc_update_etr_buffer,
1684 .free_buffer = tmc_free_etr_buffer,
1685 };
1686
1687 const struct coresight_ops tmc_etr_cs_ops = {
1688 .sink_ops = &tmc_etr_sink_ops,
1689 };
1690
tmc_read_prepare_etr(struct tmc_drvdata * drvdata)1691 int tmc_read_prepare_etr(struct tmc_drvdata *drvdata)
1692 {
1693 int ret = 0;
1694 unsigned long flags;
1695
1696 /* config types are set a boot time and never change */
1697 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
1698 return -EINVAL;
1699
1700 spin_lock_irqsave(&drvdata->spinlock, flags);
1701 if (drvdata->reading) {
1702 ret = -EBUSY;
1703 goto out;
1704 }
1705
1706 /*
1707 * We can safely allow reads even if the ETR is operating in PERF mode,
1708 * since the sysfs session is captured in mode specific data.
1709 * If drvdata::sysfs_data is NULL the trace data has been read already.
1710 */
1711 if (!drvdata->sysfs_buf) {
1712 ret = -EINVAL;
1713 goto out;
1714 }
1715
1716 /* Disable the TMC if we are trying to read from a running session. */
1717 if (drvdata->mode == CS_MODE_SYSFS)
1718 __tmc_etr_disable_hw(drvdata);
1719
1720 drvdata->reading = true;
1721 out:
1722 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1723
1724 return ret;
1725 }
1726
tmc_read_unprepare_etr(struct tmc_drvdata * drvdata)1727 int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata)
1728 {
1729 unsigned long flags;
1730 struct etr_buf *sysfs_buf = NULL;
1731
1732 /* config types are set a boot time and never change */
1733 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
1734 return -EINVAL;
1735
1736 spin_lock_irqsave(&drvdata->spinlock, flags);
1737
1738 /* RE-enable the TMC if need be */
1739 if (drvdata->mode == CS_MODE_SYSFS) {
1740 /*
1741 * The trace run will continue with the same allocated trace
1742 * buffer. Since the tracer is still enabled drvdata::buf can't
1743 * be NULL.
1744 */
1745 __tmc_etr_enable_hw(drvdata);
1746 } else {
1747 /*
1748 * The ETR is not tracing and the buffer was just read.
1749 * As such prepare to free the trace buffer.
1750 */
1751 sysfs_buf = drvdata->sysfs_buf;
1752 drvdata->sysfs_buf = NULL;
1753 }
1754
1755 drvdata->reading = false;
1756 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1757
1758 /* Free allocated memory out side of the spinlock */
1759 if (sysfs_buf)
1760 tmc_etr_free_sysfs_buf(sysfs_buf);
1761
1762 return 0;
1763 }
1764