1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/stddef.h>
26 #include <linux/unistd.h>
27 #include <linux/ptrace.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/elf.h>
31 #include <linux/prctl.h>
32 #include <linux/init_task.h>
33 #include <linux/export.h>
34 #include <linux/kallsyms.h>
35 #include <linux/mqueue.h>
36 #include <linux/hardirq.h>
37 #include <linux/utsname.h>
38 #include <linux/ftrace.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/personality.h>
41 #include <linux/random.h>
42 #include <linux/hw_breakpoint.h>
43 #include <linux/uaccess.h>
44 #include <linux/elf-randomize.h>
45 #include <linux/pkeys.h>
46 
47 #include <asm/pgtable.h>
48 #include <asm/io.h>
49 #include <asm/processor.h>
50 #include <asm/mmu.h>
51 #include <asm/prom.h>
52 #include <asm/machdep.h>
53 #include <asm/time.h>
54 #include <asm/runlatch.h>
55 #include <asm/syscalls.h>
56 #include <asm/switch_to.h>
57 #include <asm/tm.h>
58 #include <asm/debug.h>
59 #ifdef CONFIG_PPC64
60 #include <asm/firmware.h>
61 #include <asm/hw_irq.h>
62 #endif
63 #include <asm/code-patching.h>
64 #include <asm/exec.h>
65 #include <asm/livepatch.h>
66 #include <asm/cpu_has_feature.h>
67 #include <asm/asm-prototypes.h>
68 
69 #include <linux/kprobes.h>
70 #include <linux/kdebug.h>
71 
72 /* Transactional Memory debug */
73 #ifdef TM_DEBUG_SW
74 #define TM_DEBUG(x...) printk(KERN_INFO x)
75 #else
76 #define TM_DEBUG(x...) do { } while(0)
77 #endif
78 
79 extern unsigned long _get_SP(void);
80 
81 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
82 /*
83  * Are we running in "Suspend disabled" mode? If so we have to block any
84  * sigreturn that would get us into suspended state, and we also warn in some
85  * other paths that we should never reach with suspend disabled.
86  */
87 bool tm_suspend_disabled __ro_after_init = false;
88 
check_if_tm_restore_required(struct task_struct * tsk)89 static void check_if_tm_restore_required(struct task_struct *tsk)
90 {
91 	/*
92 	 * If we are saving the current thread's registers, and the
93 	 * thread is in a transactional state, set the TIF_RESTORE_TM
94 	 * bit so that we know to restore the registers before
95 	 * returning to userspace.
96 	 */
97 	if (tsk == current && tsk->thread.regs &&
98 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
99 	    !test_thread_flag(TIF_RESTORE_TM)) {
100 		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
101 		set_thread_flag(TIF_RESTORE_TM);
102 	}
103 }
104 
msr_tm_active(unsigned long msr)105 static inline bool msr_tm_active(unsigned long msr)
106 {
107 	return MSR_TM_ACTIVE(msr);
108 }
109 
tm_active_with_fp(struct task_struct * tsk)110 static bool tm_active_with_fp(struct task_struct *tsk)
111 {
112 	return msr_tm_active(tsk->thread.regs->msr) &&
113 		(tsk->thread.ckpt_regs.msr & MSR_FP);
114 }
115 
tm_active_with_altivec(struct task_struct * tsk)116 static bool tm_active_with_altivec(struct task_struct *tsk)
117 {
118 	return msr_tm_active(tsk->thread.regs->msr) &&
119 		(tsk->thread.ckpt_regs.msr & MSR_VEC);
120 }
121 #else
msr_tm_active(unsigned long msr)122 static inline bool msr_tm_active(unsigned long msr) { return false; }
check_if_tm_restore_required(struct task_struct * tsk)123 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
tm_active_with_fp(struct task_struct * tsk)124 static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
tm_active_with_altivec(struct task_struct * tsk)125 static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
126 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
127 
128 bool strict_msr_control;
129 EXPORT_SYMBOL(strict_msr_control);
130 
enable_strict_msr_control(char * str)131 static int __init enable_strict_msr_control(char *str)
132 {
133 	strict_msr_control = true;
134 	pr_info("Enabling strict facility control\n");
135 
136 	return 0;
137 }
138 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
139 
msr_check_and_set(unsigned long bits)140 unsigned long msr_check_and_set(unsigned long bits)
141 {
142 	unsigned long oldmsr = mfmsr();
143 	unsigned long newmsr;
144 
145 	newmsr = oldmsr | bits;
146 
147 #ifdef CONFIG_VSX
148 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
149 		newmsr |= MSR_VSX;
150 #endif
151 
152 	if (oldmsr != newmsr)
153 		mtmsr_isync(newmsr);
154 
155 	return newmsr;
156 }
157 EXPORT_SYMBOL_GPL(msr_check_and_set);
158 
__msr_check_and_clear(unsigned long bits)159 void __msr_check_and_clear(unsigned long bits)
160 {
161 	unsigned long oldmsr = mfmsr();
162 	unsigned long newmsr;
163 
164 	newmsr = oldmsr & ~bits;
165 
166 #ifdef CONFIG_VSX
167 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
168 		newmsr &= ~MSR_VSX;
169 #endif
170 
171 	if (oldmsr != newmsr)
172 		mtmsr_isync(newmsr);
173 }
174 EXPORT_SYMBOL(__msr_check_and_clear);
175 
176 #ifdef CONFIG_PPC_FPU
__giveup_fpu(struct task_struct * tsk)177 static void __giveup_fpu(struct task_struct *tsk)
178 {
179 	unsigned long msr;
180 
181 	save_fpu(tsk);
182 	msr = tsk->thread.regs->msr;
183 	msr &= ~MSR_FP;
184 #ifdef CONFIG_VSX
185 	if (cpu_has_feature(CPU_FTR_VSX))
186 		msr &= ~MSR_VSX;
187 #endif
188 	tsk->thread.regs->msr = msr;
189 }
190 
giveup_fpu(struct task_struct * tsk)191 void giveup_fpu(struct task_struct *tsk)
192 {
193 	check_if_tm_restore_required(tsk);
194 
195 	msr_check_and_set(MSR_FP);
196 	__giveup_fpu(tsk);
197 	msr_check_and_clear(MSR_FP);
198 }
199 EXPORT_SYMBOL(giveup_fpu);
200 
201 /*
202  * Make sure the floating-point register state in the
203  * the thread_struct is up to date for task tsk.
204  */
flush_fp_to_thread(struct task_struct * tsk)205 void flush_fp_to_thread(struct task_struct *tsk)
206 {
207 	if (tsk->thread.regs) {
208 		/*
209 		 * We need to disable preemption here because if we didn't,
210 		 * another process could get scheduled after the regs->msr
211 		 * test but before we have finished saving the FP registers
212 		 * to the thread_struct.  That process could take over the
213 		 * FPU, and then when we get scheduled again we would store
214 		 * bogus values for the remaining FP registers.
215 		 */
216 		preempt_disable();
217 		if (tsk->thread.regs->msr & MSR_FP) {
218 			/*
219 			 * This should only ever be called for current or
220 			 * for a stopped child process.  Since we save away
221 			 * the FP register state on context switch,
222 			 * there is something wrong if a stopped child appears
223 			 * to still have its FP state in the CPU registers.
224 			 */
225 			BUG_ON(tsk != current);
226 			giveup_fpu(tsk);
227 		}
228 		preempt_enable();
229 	}
230 }
231 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
232 
enable_kernel_fp(void)233 void enable_kernel_fp(void)
234 {
235 	unsigned long cpumsr;
236 
237 	WARN_ON(preemptible());
238 
239 	cpumsr = msr_check_and_set(MSR_FP);
240 
241 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
242 		check_if_tm_restore_required(current);
243 		/*
244 		 * If a thread has already been reclaimed then the
245 		 * checkpointed registers are on the CPU but have definitely
246 		 * been saved by the reclaim code. Don't need to and *cannot*
247 		 * giveup as this would save  to the 'live' structure not the
248 		 * checkpointed structure.
249 		 */
250 		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
251 			return;
252 		__giveup_fpu(current);
253 	}
254 }
255 EXPORT_SYMBOL(enable_kernel_fp);
256 
restore_fp(struct task_struct * tsk)257 static int restore_fp(struct task_struct *tsk)
258 {
259 	if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
260 		load_fp_state(&current->thread.fp_state);
261 		current->thread.load_fp++;
262 		return 1;
263 	}
264 	return 0;
265 }
266 #else
restore_fp(struct task_struct * tsk)267 static int restore_fp(struct task_struct *tsk) { return 0; }
268 #endif /* CONFIG_PPC_FPU */
269 
270 #ifdef CONFIG_ALTIVEC
271 #define loadvec(thr) ((thr).load_vec)
272 
__giveup_altivec(struct task_struct * tsk)273 static void __giveup_altivec(struct task_struct *tsk)
274 {
275 	unsigned long msr;
276 
277 	save_altivec(tsk);
278 	msr = tsk->thread.regs->msr;
279 	msr &= ~MSR_VEC;
280 #ifdef CONFIG_VSX
281 	if (cpu_has_feature(CPU_FTR_VSX))
282 		msr &= ~MSR_VSX;
283 #endif
284 	tsk->thread.regs->msr = msr;
285 }
286 
giveup_altivec(struct task_struct * tsk)287 void giveup_altivec(struct task_struct *tsk)
288 {
289 	check_if_tm_restore_required(tsk);
290 
291 	msr_check_and_set(MSR_VEC);
292 	__giveup_altivec(tsk);
293 	msr_check_and_clear(MSR_VEC);
294 }
295 EXPORT_SYMBOL(giveup_altivec);
296 
enable_kernel_altivec(void)297 void enable_kernel_altivec(void)
298 {
299 	unsigned long cpumsr;
300 
301 	WARN_ON(preemptible());
302 
303 	cpumsr = msr_check_and_set(MSR_VEC);
304 
305 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
306 		check_if_tm_restore_required(current);
307 		/*
308 		 * If a thread has already been reclaimed then the
309 		 * checkpointed registers are on the CPU but have definitely
310 		 * been saved by the reclaim code. Don't need to and *cannot*
311 		 * giveup as this would save  to the 'live' structure not the
312 		 * checkpointed structure.
313 		 */
314 		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
315 			return;
316 		__giveup_altivec(current);
317 	}
318 }
319 EXPORT_SYMBOL(enable_kernel_altivec);
320 
321 /*
322  * Make sure the VMX/Altivec register state in the
323  * the thread_struct is up to date for task tsk.
324  */
flush_altivec_to_thread(struct task_struct * tsk)325 void flush_altivec_to_thread(struct task_struct *tsk)
326 {
327 	if (tsk->thread.regs) {
328 		preempt_disable();
329 		if (tsk->thread.regs->msr & MSR_VEC) {
330 			BUG_ON(tsk != current);
331 			giveup_altivec(tsk);
332 		}
333 		preempt_enable();
334 	}
335 }
336 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
337 
restore_altivec(struct task_struct * tsk)338 static int restore_altivec(struct task_struct *tsk)
339 {
340 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
341 		(tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
342 		load_vr_state(&tsk->thread.vr_state);
343 		tsk->thread.used_vr = 1;
344 		tsk->thread.load_vec++;
345 
346 		return 1;
347 	}
348 	return 0;
349 }
350 #else
351 #define loadvec(thr) 0
restore_altivec(struct task_struct * tsk)352 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
353 #endif /* CONFIG_ALTIVEC */
354 
355 #ifdef CONFIG_VSX
__giveup_vsx(struct task_struct * tsk)356 static void __giveup_vsx(struct task_struct *tsk)
357 {
358 	unsigned long msr = tsk->thread.regs->msr;
359 
360 	/*
361 	 * We should never be ssetting MSR_VSX without also setting
362 	 * MSR_FP and MSR_VEC
363 	 */
364 	WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
365 
366 	/* __giveup_fpu will clear MSR_VSX */
367 	if (msr & MSR_FP)
368 		__giveup_fpu(tsk);
369 	if (msr & MSR_VEC)
370 		__giveup_altivec(tsk);
371 }
372 
giveup_vsx(struct task_struct * tsk)373 static void giveup_vsx(struct task_struct *tsk)
374 {
375 	check_if_tm_restore_required(tsk);
376 
377 	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
378 	__giveup_vsx(tsk);
379 	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
380 }
381 
enable_kernel_vsx(void)382 void enable_kernel_vsx(void)
383 {
384 	unsigned long cpumsr;
385 
386 	WARN_ON(preemptible());
387 
388 	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
389 
390 	if (current->thread.regs &&
391 	    (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
392 		check_if_tm_restore_required(current);
393 		/*
394 		 * If a thread has already been reclaimed then the
395 		 * checkpointed registers are on the CPU but have definitely
396 		 * been saved by the reclaim code. Don't need to and *cannot*
397 		 * giveup as this would save  to the 'live' structure not the
398 		 * checkpointed structure.
399 		 */
400 		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
401 			return;
402 		__giveup_vsx(current);
403 	}
404 }
405 EXPORT_SYMBOL(enable_kernel_vsx);
406 
flush_vsx_to_thread(struct task_struct * tsk)407 void flush_vsx_to_thread(struct task_struct *tsk)
408 {
409 	if (tsk->thread.regs) {
410 		preempt_disable();
411 		if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
412 			BUG_ON(tsk != current);
413 			giveup_vsx(tsk);
414 		}
415 		preempt_enable();
416 	}
417 }
418 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
419 
restore_vsx(struct task_struct * tsk)420 static int restore_vsx(struct task_struct *tsk)
421 {
422 	if (cpu_has_feature(CPU_FTR_VSX)) {
423 		tsk->thread.used_vsr = 1;
424 		return 1;
425 	}
426 
427 	return 0;
428 }
429 #else
restore_vsx(struct task_struct * tsk)430 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
431 #endif /* CONFIG_VSX */
432 
433 #ifdef CONFIG_SPE
giveup_spe(struct task_struct * tsk)434 void giveup_spe(struct task_struct *tsk)
435 {
436 	check_if_tm_restore_required(tsk);
437 
438 	msr_check_and_set(MSR_SPE);
439 	__giveup_spe(tsk);
440 	msr_check_and_clear(MSR_SPE);
441 }
442 EXPORT_SYMBOL(giveup_spe);
443 
enable_kernel_spe(void)444 void enable_kernel_spe(void)
445 {
446 	WARN_ON(preemptible());
447 
448 	msr_check_and_set(MSR_SPE);
449 
450 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
451 		check_if_tm_restore_required(current);
452 		__giveup_spe(current);
453 	}
454 }
455 EXPORT_SYMBOL(enable_kernel_spe);
456 
flush_spe_to_thread(struct task_struct * tsk)457 void flush_spe_to_thread(struct task_struct *tsk)
458 {
459 	if (tsk->thread.regs) {
460 		preempt_disable();
461 		if (tsk->thread.regs->msr & MSR_SPE) {
462 			BUG_ON(tsk != current);
463 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
464 			giveup_spe(tsk);
465 		}
466 		preempt_enable();
467 	}
468 }
469 #endif /* CONFIG_SPE */
470 
471 static unsigned long msr_all_available;
472 
init_msr_all_available(void)473 static int __init init_msr_all_available(void)
474 {
475 #ifdef CONFIG_PPC_FPU
476 	msr_all_available |= MSR_FP;
477 #endif
478 #ifdef CONFIG_ALTIVEC
479 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
480 		msr_all_available |= MSR_VEC;
481 #endif
482 #ifdef CONFIG_VSX
483 	if (cpu_has_feature(CPU_FTR_VSX))
484 		msr_all_available |= MSR_VSX;
485 #endif
486 #ifdef CONFIG_SPE
487 	if (cpu_has_feature(CPU_FTR_SPE))
488 		msr_all_available |= MSR_SPE;
489 #endif
490 
491 	return 0;
492 }
493 early_initcall(init_msr_all_available);
494 
giveup_all(struct task_struct * tsk)495 void giveup_all(struct task_struct *tsk)
496 {
497 	unsigned long usermsr;
498 
499 	if (!tsk->thread.regs)
500 		return;
501 
502 	usermsr = tsk->thread.regs->msr;
503 
504 	if ((usermsr & msr_all_available) == 0)
505 		return;
506 
507 	msr_check_and_set(msr_all_available);
508 	check_if_tm_restore_required(tsk);
509 
510 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
511 
512 #ifdef CONFIG_PPC_FPU
513 	if (usermsr & MSR_FP)
514 		__giveup_fpu(tsk);
515 #endif
516 #ifdef CONFIG_ALTIVEC
517 	if (usermsr & MSR_VEC)
518 		__giveup_altivec(tsk);
519 #endif
520 #ifdef CONFIG_SPE
521 	if (usermsr & MSR_SPE)
522 		__giveup_spe(tsk);
523 #endif
524 
525 	msr_check_and_clear(msr_all_available);
526 }
527 EXPORT_SYMBOL(giveup_all);
528 
restore_math(struct pt_regs * regs)529 void restore_math(struct pt_regs *regs)
530 {
531 	unsigned long msr;
532 
533 	if (!msr_tm_active(regs->msr) &&
534 		!current->thread.load_fp && !loadvec(current->thread))
535 		return;
536 
537 	msr = regs->msr;
538 	msr_check_and_set(msr_all_available);
539 
540 	/*
541 	 * Only reload if the bit is not set in the user MSR, the bit BEING set
542 	 * indicates that the registers are hot
543 	 */
544 	if ((!(msr & MSR_FP)) && restore_fp(current))
545 		msr |= MSR_FP | current->thread.fpexc_mode;
546 
547 	if ((!(msr & MSR_VEC)) && restore_altivec(current))
548 		msr |= MSR_VEC;
549 
550 	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
551 			restore_vsx(current)) {
552 		msr |= MSR_VSX;
553 	}
554 
555 	msr_check_and_clear(msr_all_available);
556 
557 	regs->msr = msr;
558 }
559 
save_all(struct task_struct * tsk)560 static void save_all(struct task_struct *tsk)
561 {
562 	unsigned long usermsr;
563 
564 	if (!tsk->thread.regs)
565 		return;
566 
567 	usermsr = tsk->thread.regs->msr;
568 
569 	if ((usermsr & msr_all_available) == 0)
570 		return;
571 
572 	msr_check_and_set(msr_all_available);
573 
574 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
575 
576 	if (usermsr & MSR_FP)
577 		save_fpu(tsk);
578 
579 	if (usermsr & MSR_VEC)
580 		save_altivec(tsk);
581 
582 	if (usermsr & MSR_SPE)
583 		__giveup_spe(tsk);
584 
585 	msr_check_and_clear(msr_all_available);
586 	thread_pkey_regs_save(&tsk->thread);
587 }
588 
flush_all_to_thread(struct task_struct * tsk)589 void flush_all_to_thread(struct task_struct *tsk)
590 {
591 	if (tsk->thread.regs) {
592 		preempt_disable();
593 		BUG_ON(tsk != current);
594 		save_all(tsk);
595 
596 #ifdef CONFIG_SPE
597 		if (tsk->thread.regs->msr & MSR_SPE)
598 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
599 #endif
600 
601 		preempt_enable();
602 	}
603 }
604 EXPORT_SYMBOL(flush_all_to_thread);
605 
606 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
do_send_trap(struct pt_regs * regs,unsigned long address,unsigned long error_code,int breakpt)607 void do_send_trap(struct pt_regs *regs, unsigned long address,
608 		  unsigned long error_code, int breakpt)
609 {
610 	current->thread.trap_nr = TRAP_HWBKPT;
611 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
612 			11, SIGSEGV) == NOTIFY_STOP)
613 		return;
614 
615 	/* Deliver the signal to userspace */
616 	force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
617 				    (void __user *)address);
618 }
619 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
do_break(struct pt_regs * regs,unsigned long address,unsigned long error_code)620 void do_break (struct pt_regs *regs, unsigned long address,
621 		    unsigned long error_code)
622 {
623 	siginfo_t info;
624 
625 	current->thread.trap_nr = TRAP_HWBKPT;
626 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
627 			11, SIGSEGV) == NOTIFY_STOP)
628 		return;
629 
630 	if (debugger_break_match(regs))
631 		return;
632 
633 	/* Clear the breakpoint */
634 	hw_breakpoint_disable();
635 
636 	/* Deliver the signal to userspace */
637 	clear_siginfo(&info);
638 	info.si_signo = SIGTRAP;
639 	info.si_errno = 0;
640 	info.si_code = TRAP_HWBKPT;
641 	info.si_addr = (void __user *)address;
642 	force_sig_info(SIGTRAP, &info, current);
643 }
644 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
645 
646 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
647 
648 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
649 /*
650  * Set the debug registers back to their default "safe" values.
651  */
set_debug_reg_defaults(struct thread_struct * thread)652 static void set_debug_reg_defaults(struct thread_struct *thread)
653 {
654 	thread->debug.iac1 = thread->debug.iac2 = 0;
655 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
656 	thread->debug.iac3 = thread->debug.iac4 = 0;
657 #endif
658 	thread->debug.dac1 = thread->debug.dac2 = 0;
659 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
660 	thread->debug.dvc1 = thread->debug.dvc2 = 0;
661 #endif
662 	thread->debug.dbcr0 = 0;
663 #ifdef CONFIG_BOOKE
664 	/*
665 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
666 	 */
667 	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
668 			DBCR1_IAC3US | DBCR1_IAC4US;
669 	/*
670 	 * Force Data Address Compare User/Supervisor bits to be User-only
671 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
672 	 */
673 	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
674 #else
675 	thread->debug.dbcr1 = 0;
676 #endif
677 }
678 
prime_debug_regs(struct debug_reg * debug)679 static void prime_debug_regs(struct debug_reg *debug)
680 {
681 	/*
682 	 * We could have inherited MSR_DE from userspace, since
683 	 * it doesn't get cleared on exception entry.  Make sure
684 	 * MSR_DE is clear before we enable any debug events.
685 	 */
686 	mtmsr(mfmsr() & ~MSR_DE);
687 
688 	mtspr(SPRN_IAC1, debug->iac1);
689 	mtspr(SPRN_IAC2, debug->iac2);
690 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
691 	mtspr(SPRN_IAC3, debug->iac3);
692 	mtspr(SPRN_IAC4, debug->iac4);
693 #endif
694 	mtspr(SPRN_DAC1, debug->dac1);
695 	mtspr(SPRN_DAC2, debug->dac2);
696 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
697 	mtspr(SPRN_DVC1, debug->dvc1);
698 	mtspr(SPRN_DVC2, debug->dvc2);
699 #endif
700 	mtspr(SPRN_DBCR0, debug->dbcr0);
701 	mtspr(SPRN_DBCR1, debug->dbcr1);
702 #ifdef CONFIG_BOOKE
703 	mtspr(SPRN_DBCR2, debug->dbcr2);
704 #endif
705 }
706 /*
707  * Unless neither the old or new thread are making use of the
708  * debug registers, set the debug registers from the values
709  * stored in the new thread.
710  */
switch_booke_debug_regs(struct debug_reg * new_debug)711 void switch_booke_debug_regs(struct debug_reg *new_debug)
712 {
713 	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
714 		|| (new_debug->dbcr0 & DBCR0_IDM))
715 			prime_debug_regs(new_debug);
716 }
717 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
718 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
719 #ifndef CONFIG_HAVE_HW_BREAKPOINT
set_breakpoint(struct arch_hw_breakpoint * brk)720 static void set_breakpoint(struct arch_hw_breakpoint *brk)
721 {
722 	preempt_disable();
723 	__set_breakpoint(brk);
724 	preempt_enable();
725 }
726 
set_debug_reg_defaults(struct thread_struct * thread)727 static void set_debug_reg_defaults(struct thread_struct *thread)
728 {
729 	thread->hw_brk.address = 0;
730 	thread->hw_brk.type = 0;
731 	if (ppc_breakpoint_available())
732 		set_breakpoint(&thread->hw_brk);
733 }
734 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
735 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
736 
737 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
__set_dabr(unsigned long dabr,unsigned long dabrx)738 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
739 {
740 	mtspr(SPRN_DAC1, dabr);
741 #ifdef CONFIG_PPC_47x
742 	isync();
743 #endif
744 	return 0;
745 }
746 #elif defined(CONFIG_PPC_BOOK3S)
__set_dabr(unsigned long dabr,unsigned long dabrx)747 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
748 {
749 	mtspr(SPRN_DABR, dabr);
750 	if (cpu_has_feature(CPU_FTR_DABRX))
751 		mtspr(SPRN_DABRX, dabrx);
752 	return 0;
753 }
754 #elif defined(CONFIG_PPC_8xx)
__set_dabr(unsigned long dabr,unsigned long dabrx)755 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
756 {
757 	unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
758 	unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
759 	unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
760 
761 	if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
762 		lctrl1 |= 0xa0000;
763 	else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
764 		lctrl1 |= 0xf0000;
765 	else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
766 		lctrl2 = 0;
767 
768 	mtspr(SPRN_LCTRL2, 0);
769 	mtspr(SPRN_CMPE, addr);
770 	mtspr(SPRN_CMPF, addr + 4);
771 	mtspr(SPRN_LCTRL1, lctrl1);
772 	mtspr(SPRN_LCTRL2, lctrl2);
773 
774 	return 0;
775 }
776 #else
__set_dabr(unsigned long dabr,unsigned long dabrx)777 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
778 {
779 	return -EINVAL;
780 }
781 #endif
782 
set_dabr(struct arch_hw_breakpoint * brk)783 static inline int set_dabr(struct arch_hw_breakpoint *brk)
784 {
785 	unsigned long dabr, dabrx;
786 
787 	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
788 	dabrx = ((brk->type >> 3) & 0x7);
789 
790 	if (ppc_md.set_dabr)
791 		return ppc_md.set_dabr(dabr, dabrx);
792 
793 	return __set_dabr(dabr, dabrx);
794 }
795 
set_dawr(struct arch_hw_breakpoint * brk)796 static inline int set_dawr(struct arch_hw_breakpoint *brk)
797 {
798 	unsigned long dawr, dawrx, mrd;
799 
800 	dawr = brk->address;
801 
802 	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
803 		                   << (63 - 58); //* read/write bits */
804 	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
805 		                   << (63 - 59); //* translate */
806 	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
807 		                   >> 3; //* PRIM bits */
808 	/* dawr length is stored in field MDR bits 48:53.  Matches range in
809 	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
810 	   0b111111=64DW.
811 	   brk->len is in bytes.
812 	   This aligns up to double word size, shifts and does the bias.
813 	*/
814 	mrd = ((brk->len + 7) >> 3) - 1;
815 	dawrx |= (mrd & 0x3f) << (63 - 53);
816 
817 	if (ppc_md.set_dawr)
818 		return ppc_md.set_dawr(dawr, dawrx);
819 	mtspr(SPRN_DAWR, dawr);
820 	mtspr(SPRN_DAWRX, dawrx);
821 	return 0;
822 }
823 
__set_breakpoint(struct arch_hw_breakpoint * brk)824 void __set_breakpoint(struct arch_hw_breakpoint *brk)
825 {
826 	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
827 
828 	if (cpu_has_feature(CPU_FTR_DAWR))
829 		// Power8 or later
830 		set_dawr(brk);
831 	else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
832 		// Power7 or earlier
833 		set_dabr(brk);
834 	else
835 		// Shouldn't happen due to higher level checks
836 		WARN_ON_ONCE(1);
837 }
838 
839 /* Check if we have DAWR or DABR hardware */
ppc_breakpoint_available(void)840 bool ppc_breakpoint_available(void)
841 {
842 	if (cpu_has_feature(CPU_FTR_DAWR))
843 		return true; /* POWER8 DAWR */
844 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
845 		return false; /* POWER9 with DAWR disabled */
846 	/* DABR: Everything but POWER8 and POWER9 */
847 	return true;
848 }
849 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
850 
hw_brk_match(struct arch_hw_breakpoint * a,struct arch_hw_breakpoint * b)851 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
852 			      struct arch_hw_breakpoint *b)
853 {
854 	if (a->address != b->address)
855 		return false;
856 	if (a->type != b->type)
857 		return false;
858 	if (a->len != b->len)
859 		return false;
860 	return true;
861 }
862 
863 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
864 
tm_enabled(struct task_struct * tsk)865 static inline bool tm_enabled(struct task_struct *tsk)
866 {
867 	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
868 }
869 
tm_reclaim_thread(struct thread_struct * thr,uint8_t cause)870 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
871 {
872 	/*
873 	 * Use the current MSR TM suspended bit to track if we have
874 	 * checkpointed state outstanding.
875 	 * On signal delivery, we'd normally reclaim the checkpointed
876 	 * state to obtain stack pointer (see:get_tm_stackpointer()).
877 	 * This will then directly return to userspace without going
878 	 * through __switch_to(). However, if the stack frame is bad,
879 	 * we need to exit this thread which calls __switch_to() which
880 	 * will again attempt to reclaim the already saved tm state.
881 	 * Hence we need to check that we've not already reclaimed
882 	 * this state.
883 	 * We do this using the current MSR, rather tracking it in
884 	 * some specific thread_struct bit, as it has the additional
885 	 * benefit of checking for a potential TM bad thing exception.
886 	 */
887 	if (!MSR_TM_SUSPENDED(mfmsr()))
888 		return;
889 
890 	giveup_all(container_of(thr, struct task_struct, thread));
891 
892 	tm_reclaim(thr, cause);
893 
894 	/*
895 	 * If we are in a transaction and FP is off then we can't have
896 	 * used FP inside that transaction. Hence the checkpointed
897 	 * state is the same as the live state. We need to copy the
898 	 * live state to the checkpointed state so that when the
899 	 * transaction is restored, the checkpointed state is correct
900 	 * and the aborted transaction sees the correct state. We use
901 	 * ckpt_regs.msr here as that's what tm_reclaim will use to
902 	 * determine if it's going to write the checkpointed state or
903 	 * not. So either this will write the checkpointed registers,
904 	 * or reclaim will. Similarly for VMX.
905 	 */
906 	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
907 		memcpy(&thr->ckfp_state, &thr->fp_state,
908 		       sizeof(struct thread_fp_state));
909 	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
910 		memcpy(&thr->ckvr_state, &thr->vr_state,
911 		       sizeof(struct thread_vr_state));
912 }
913 
tm_reclaim_current(uint8_t cause)914 void tm_reclaim_current(uint8_t cause)
915 {
916 	tm_enable();
917 	tm_reclaim_thread(&current->thread, cause);
918 }
919 
tm_reclaim_task(struct task_struct * tsk)920 static inline void tm_reclaim_task(struct task_struct *tsk)
921 {
922 	/* We have to work out if we're switching from/to a task that's in the
923 	 * middle of a transaction.
924 	 *
925 	 * In switching we need to maintain a 2nd register state as
926 	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
927 	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
928 	 * ckvr_state
929 	 *
930 	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
931 	 */
932 	struct thread_struct *thr = &tsk->thread;
933 
934 	if (!thr->regs)
935 		return;
936 
937 	if (!MSR_TM_ACTIVE(thr->regs->msr))
938 		goto out_and_saveregs;
939 
940 	WARN_ON(tm_suspend_disabled);
941 
942 	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
943 		 "ccr=%lx, msr=%lx, trap=%lx)\n",
944 		 tsk->pid, thr->regs->nip,
945 		 thr->regs->ccr, thr->regs->msr,
946 		 thr->regs->trap);
947 
948 	tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
949 
950 	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
951 		 tsk->pid);
952 
953 out_and_saveregs:
954 	/* Always save the regs here, even if a transaction's not active.
955 	 * This context-switches a thread's TM info SPRs.  We do it here to
956 	 * be consistent with the restore path (in recheckpoint) which
957 	 * cannot happen later in _switch().
958 	 */
959 	tm_save_sprs(thr);
960 }
961 
962 extern void __tm_recheckpoint(struct thread_struct *thread);
963 
tm_recheckpoint(struct thread_struct * thread)964 void tm_recheckpoint(struct thread_struct *thread)
965 {
966 	unsigned long flags;
967 
968 	if (!(thread->regs->msr & MSR_TM))
969 		return;
970 
971 	/* We really can't be interrupted here as the TEXASR registers can't
972 	 * change and later in the trecheckpoint code, we have a userspace R1.
973 	 * So let's hard disable over this region.
974 	 */
975 	local_irq_save(flags);
976 	hard_irq_disable();
977 
978 	/* The TM SPRs are restored here, so that TEXASR.FS can be set
979 	 * before the trecheckpoint and no explosion occurs.
980 	 */
981 	tm_restore_sprs(thread);
982 
983 	__tm_recheckpoint(thread);
984 
985 	local_irq_restore(flags);
986 }
987 
tm_recheckpoint_new_task(struct task_struct * new)988 static inline void tm_recheckpoint_new_task(struct task_struct *new)
989 {
990 	if (!cpu_has_feature(CPU_FTR_TM))
991 		return;
992 
993 	/* Recheckpoint the registers of the thread we're about to switch to.
994 	 *
995 	 * If the task was using FP, we non-lazily reload both the original and
996 	 * the speculative FP register states.  This is because the kernel
997 	 * doesn't see if/when a TM rollback occurs, so if we take an FP
998 	 * unavailable later, we are unable to determine which set of FP regs
999 	 * need to be restored.
1000 	 */
1001 	if (!tm_enabled(new))
1002 		return;
1003 
1004 	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1005 		tm_restore_sprs(&new->thread);
1006 		return;
1007 	}
1008 	/* Recheckpoint to restore original checkpointed register state. */
1009 	TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1010 		 new->pid, new->thread.regs->msr);
1011 
1012 	tm_recheckpoint(&new->thread);
1013 
1014 	/*
1015 	 * The checkpointed state has been restored but the live state has
1016 	 * not, ensure all the math functionality is turned off to trigger
1017 	 * restore_math() to reload.
1018 	 */
1019 	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1020 
1021 	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1022 		 "(kernel msr 0x%lx)\n",
1023 		 new->pid, mfmsr());
1024 }
1025 
__switch_to_tm(struct task_struct * prev,struct task_struct * new)1026 static inline void __switch_to_tm(struct task_struct *prev,
1027 		struct task_struct *new)
1028 {
1029 	if (cpu_has_feature(CPU_FTR_TM)) {
1030 		if (tm_enabled(prev) || tm_enabled(new))
1031 			tm_enable();
1032 
1033 		if (tm_enabled(prev)) {
1034 			prev->thread.load_tm++;
1035 			tm_reclaim_task(prev);
1036 			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1037 				prev->thread.regs->msr &= ~MSR_TM;
1038 		}
1039 
1040 		tm_recheckpoint_new_task(new);
1041 	}
1042 }
1043 
1044 /*
1045  * This is called if we are on the way out to userspace and the
1046  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1047  * FP and/or vector state and does so if necessary.
1048  * If userspace is inside a transaction (whether active or
1049  * suspended) and FP/VMX/VSX instructions have ever been enabled
1050  * inside that transaction, then we have to keep them enabled
1051  * and keep the FP/VMX/VSX state loaded while ever the transaction
1052  * continues.  The reason is that if we didn't, and subsequently
1053  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1054  * we don't know whether it's the same transaction, and thus we
1055  * don't know which of the checkpointed state and the transactional
1056  * state to use.
1057  */
restore_tm_state(struct pt_regs * regs)1058 void restore_tm_state(struct pt_regs *regs)
1059 {
1060 	unsigned long msr_diff;
1061 
1062 	/*
1063 	 * This is the only moment we should clear TIF_RESTORE_TM as
1064 	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1065 	 * again, anything else could lead to an incorrect ckpt_msr being
1066 	 * saved and therefore incorrect signal contexts.
1067 	 */
1068 	clear_thread_flag(TIF_RESTORE_TM);
1069 	if (!MSR_TM_ACTIVE(regs->msr))
1070 		return;
1071 
1072 	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1073 	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1074 
1075 	/* Ensure that restore_math() will restore */
1076 	if (msr_diff & MSR_FP)
1077 		current->thread.load_fp = 1;
1078 #ifdef CONFIG_ALTIVEC
1079 	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1080 		current->thread.load_vec = 1;
1081 #endif
1082 	restore_math(regs);
1083 
1084 	regs->msr |= msr_diff;
1085 }
1086 
1087 #else
1088 #define tm_recheckpoint_new_task(new)
1089 #define __switch_to_tm(prev, new)
1090 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1091 
save_sprs(struct thread_struct * t)1092 static inline void save_sprs(struct thread_struct *t)
1093 {
1094 #ifdef CONFIG_ALTIVEC
1095 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1096 		t->vrsave = mfspr(SPRN_VRSAVE);
1097 #endif
1098 #ifdef CONFIG_PPC_BOOK3S_64
1099 	if (cpu_has_feature(CPU_FTR_DSCR))
1100 		t->dscr = mfspr(SPRN_DSCR);
1101 
1102 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1103 		t->bescr = mfspr(SPRN_BESCR);
1104 		t->ebbhr = mfspr(SPRN_EBBHR);
1105 		t->ebbrr = mfspr(SPRN_EBBRR);
1106 
1107 		t->fscr = mfspr(SPRN_FSCR);
1108 
1109 		/*
1110 		 * Note that the TAR is not available for use in the kernel.
1111 		 * (To provide this, the TAR should be backed up/restored on
1112 		 * exception entry/exit instead, and be in pt_regs.  FIXME,
1113 		 * this should be in pt_regs anyway (for debug).)
1114 		 */
1115 		t->tar = mfspr(SPRN_TAR);
1116 	}
1117 #endif
1118 
1119 	thread_pkey_regs_save(t);
1120 }
1121 
restore_sprs(struct thread_struct * old_thread,struct thread_struct * new_thread)1122 static inline void restore_sprs(struct thread_struct *old_thread,
1123 				struct thread_struct *new_thread)
1124 {
1125 #ifdef CONFIG_ALTIVEC
1126 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1127 	    old_thread->vrsave != new_thread->vrsave)
1128 		mtspr(SPRN_VRSAVE, new_thread->vrsave);
1129 #endif
1130 #ifdef CONFIG_PPC_BOOK3S_64
1131 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1132 		u64 dscr = get_paca()->dscr_default;
1133 		if (new_thread->dscr_inherit)
1134 			dscr = new_thread->dscr;
1135 
1136 		if (old_thread->dscr != dscr)
1137 			mtspr(SPRN_DSCR, dscr);
1138 	}
1139 
1140 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1141 		if (old_thread->bescr != new_thread->bescr)
1142 			mtspr(SPRN_BESCR, new_thread->bescr);
1143 		if (old_thread->ebbhr != new_thread->ebbhr)
1144 			mtspr(SPRN_EBBHR, new_thread->ebbhr);
1145 		if (old_thread->ebbrr != new_thread->ebbrr)
1146 			mtspr(SPRN_EBBRR, new_thread->ebbrr);
1147 
1148 		if (old_thread->fscr != new_thread->fscr)
1149 			mtspr(SPRN_FSCR, new_thread->fscr);
1150 
1151 		if (old_thread->tar != new_thread->tar)
1152 			mtspr(SPRN_TAR, new_thread->tar);
1153 	}
1154 
1155 	if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1156 	    old_thread->tidr != new_thread->tidr)
1157 		mtspr(SPRN_TIDR, new_thread->tidr);
1158 #endif
1159 
1160 	thread_pkey_regs_restore(new_thread, old_thread);
1161 }
1162 
1163 #ifdef CONFIG_PPC_BOOK3S_64
1164 #define CP_SIZE 128
1165 static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
1166 #endif
1167 
__switch_to(struct task_struct * prev,struct task_struct * new)1168 struct task_struct *__switch_to(struct task_struct *prev,
1169 	struct task_struct *new)
1170 {
1171 	struct thread_struct *new_thread, *old_thread;
1172 	struct task_struct *last;
1173 #ifdef CONFIG_PPC_BOOK3S_64
1174 	struct ppc64_tlb_batch *batch;
1175 #endif
1176 
1177 	new_thread = &new->thread;
1178 	old_thread = &current->thread;
1179 
1180 	WARN_ON(!irqs_disabled());
1181 
1182 #ifdef CONFIG_PPC_BOOK3S_64
1183 	batch = this_cpu_ptr(&ppc64_tlb_batch);
1184 	if (batch->active) {
1185 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1186 		if (batch->index)
1187 			__flush_tlb_pending(batch);
1188 		batch->active = 0;
1189 	}
1190 #endif /* CONFIG_PPC_BOOK3S_64 */
1191 
1192 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1193 	switch_booke_debug_regs(&new->thread.debug);
1194 #else
1195 /*
1196  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1197  * schedule DABR
1198  */
1199 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1200 	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1201 		__set_breakpoint(&new->thread.hw_brk);
1202 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1203 #endif
1204 
1205 	/*
1206 	 * We need to save SPRs before treclaim/trecheckpoint as these will
1207 	 * change a number of them.
1208 	 */
1209 	save_sprs(&prev->thread);
1210 
1211 	/* Save FPU, Altivec, VSX and SPE state */
1212 	giveup_all(prev);
1213 
1214 	__switch_to_tm(prev, new);
1215 
1216 	if (!radix_enabled()) {
1217 		/*
1218 		 * We can't take a PMU exception inside _switch() since there
1219 		 * is a window where the kernel stack SLB and the kernel stack
1220 		 * are out of sync. Hard disable here.
1221 		 */
1222 		hard_irq_disable();
1223 	}
1224 
1225 	/*
1226 	 * Call restore_sprs() before calling _switch(). If we move it after
1227 	 * _switch() then we miss out on calling it for new tasks. The reason
1228 	 * for this is we manually create a stack frame for new tasks that
1229 	 * directly returns through ret_from_fork() or
1230 	 * ret_from_kernel_thread(). See copy_thread() for details.
1231 	 */
1232 	restore_sprs(old_thread, new_thread);
1233 
1234 	last = _switch(old_thread, new_thread);
1235 
1236 #ifdef CONFIG_PPC_BOOK3S_64
1237 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1238 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1239 		batch = this_cpu_ptr(&ppc64_tlb_batch);
1240 		batch->active = 1;
1241 	}
1242 
1243 	if (current_thread_info()->task->thread.regs) {
1244 		restore_math(current_thread_info()->task->thread.regs);
1245 
1246 		/*
1247 		 * The copy-paste buffer can only store into foreign real
1248 		 * addresses, so unprivileged processes can not see the
1249 		 * data or use it in any way unless they have foreign real
1250 		 * mappings. If the new process has the foreign real address
1251 		 * mappings, we must issue a cp_abort to clear any state and
1252 		 * prevent snooping, corruption or a covert channel.
1253 		 */
1254 		if (current_thread_info()->task->thread.used_vas)
1255 			asm volatile(PPC_CP_ABORT);
1256 	}
1257 #endif /* CONFIG_PPC_BOOK3S_64 */
1258 
1259 	return last;
1260 }
1261 
1262 static int instructions_to_print = 16;
1263 
show_instructions(struct pt_regs * regs)1264 static void show_instructions(struct pt_regs *regs)
1265 {
1266 	int i;
1267 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1268 			sizeof(int));
1269 
1270 	printk("Instruction dump:");
1271 
1272 	for (i = 0; i < instructions_to_print; i++) {
1273 		int instr;
1274 
1275 		if (!(i % 8))
1276 			pr_cont("\n");
1277 
1278 #if !defined(CONFIG_BOOKE)
1279 		/* If executing with the IMMU off, adjust pc rather
1280 		 * than print XXXXXXXX.
1281 		 */
1282 		if (!(regs->msr & MSR_IR))
1283 			pc = (unsigned long)phys_to_virt(pc);
1284 #endif
1285 
1286 		if (!__kernel_text_address(pc) ||
1287 		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1288 			pr_cont("XXXXXXXX ");
1289 		} else {
1290 			if (regs->nip == pc)
1291 				pr_cont("<%08x> ", instr);
1292 			else
1293 				pr_cont("%08x ", instr);
1294 		}
1295 
1296 		pc += sizeof(int);
1297 	}
1298 
1299 	pr_cont("\n");
1300 }
1301 
show_user_instructions(struct pt_regs * regs)1302 void show_user_instructions(struct pt_regs *regs)
1303 {
1304 	unsigned long pc;
1305 	int i;
1306 
1307 	pc = regs->nip - (instructions_to_print * 3 / 4 * sizeof(int));
1308 
1309 	/*
1310 	 * Make sure the NIP points at userspace, not kernel text/data or
1311 	 * elsewhere.
1312 	 */
1313 	if (!__access_ok(pc, instructions_to_print * sizeof(int), USER_DS)) {
1314 		pr_info("%s[%d]: Bad NIP, not dumping instructions.\n",
1315 			current->comm, current->pid);
1316 		return;
1317 	}
1318 
1319 	pr_info("%s[%d]: code: ", current->comm, current->pid);
1320 
1321 	for (i = 0; i < instructions_to_print; i++) {
1322 		int instr;
1323 
1324 		if (!(i % 8) && (i > 0)) {
1325 			pr_cont("\n");
1326 			pr_info("%s[%d]: code: ", current->comm, current->pid);
1327 		}
1328 
1329 		if (probe_kernel_address((unsigned int __user *)pc, instr)) {
1330 			pr_cont("XXXXXXXX ");
1331 		} else {
1332 			if (regs->nip == pc)
1333 				pr_cont("<%08x> ", instr);
1334 			else
1335 				pr_cont("%08x ", instr);
1336 		}
1337 
1338 		pc += sizeof(int);
1339 	}
1340 
1341 	pr_cont("\n");
1342 }
1343 
1344 struct regbit {
1345 	unsigned long bit;
1346 	const char *name;
1347 };
1348 
1349 static struct regbit msr_bits[] = {
1350 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1351 	{MSR_SF,	"SF"},
1352 	{MSR_HV,	"HV"},
1353 #endif
1354 	{MSR_VEC,	"VEC"},
1355 	{MSR_VSX,	"VSX"},
1356 #ifdef CONFIG_BOOKE
1357 	{MSR_CE,	"CE"},
1358 #endif
1359 	{MSR_EE,	"EE"},
1360 	{MSR_PR,	"PR"},
1361 	{MSR_FP,	"FP"},
1362 	{MSR_ME,	"ME"},
1363 #ifdef CONFIG_BOOKE
1364 	{MSR_DE,	"DE"},
1365 #else
1366 	{MSR_SE,	"SE"},
1367 	{MSR_BE,	"BE"},
1368 #endif
1369 	{MSR_IR,	"IR"},
1370 	{MSR_DR,	"DR"},
1371 	{MSR_PMM,	"PMM"},
1372 #ifndef CONFIG_BOOKE
1373 	{MSR_RI,	"RI"},
1374 	{MSR_LE,	"LE"},
1375 #endif
1376 	{0,		NULL}
1377 };
1378 
print_bits(unsigned long val,struct regbit * bits,const char * sep)1379 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1380 {
1381 	const char *s = "";
1382 
1383 	for (; bits->bit; ++bits)
1384 		if (val & bits->bit) {
1385 			pr_cont("%s%s", s, bits->name);
1386 			s = sep;
1387 		}
1388 }
1389 
1390 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1391 static struct regbit msr_tm_bits[] = {
1392 	{MSR_TS_T,	"T"},
1393 	{MSR_TS_S,	"S"},
1394 	{MSR_TM,	"E"},
1395 	{0,		NULL}
1396 };
1397 
print_tm_bits(unsigned long val)1398 static void print_tm_bits(unsigned long val)
1399 {
1400 /*
1401  * This only prints something if at least one of the TM bit is set.
1402  * Inside the TM[], the output means:
1403  *   E: Enabled		(bit 32)
1404  *   S: Suspended	(bit 33)
1405  *   T: Transactional	(bit 34)
1406  */
1407 	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1408 		pr_cont(",TM[");
1409 		print_bits(val, msr_tm_bits, "");
1410 		pr_cont("]");
1411 	}
1412 }
1413 #else
print_tm_bits(unsigned long val)1414 static void print_tm_bits(unsigned long val) {}
1415 #endif
1416 
print_msr_bits(unsigned long val)1417 static void print_msr_bits(unsigned long val)
1418 {
1419 	pr_cont("<");
1420 	print_bits(val, msr_bits, ",");
1421 	print_tm_bits(val);
1422 	pr_cont(">");
1423 }
1424 
1425 #ifdef CONFIG_PPC64
1426 #define REG		"%016lx"
1427 #define REGS_PER_LINE	4
1428 #define LAST_VOLATILE	13
1429 #else
1430 #define REG		"%08lx"
1431 #define REGS_PER_LINE	8
1432 #define LAST_VOLATILE	12
1433 #endif
1434 
show_regs(struct pt_regs * regs)1435 void show_regs(struct pt_regs * regs)
1436 {
1437 	int i, trap;
1438 
1439 	show_regs_print_info(KERN_DEFAULT);
1440 
1441 	printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1442 	       regs->nip, regs->link, regs->ctr);
1443 	printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1444 	       regs, regs->trap, print_tainted(), init_utsname()->release);
1445 	printk("MSR:  "REG" ", regs->msr);
1446 	print_msr_bits(regs->msr);
1447 	pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1448 	trap = TRAP(regs);
1449 	if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1450 		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1451 	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1452 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1453 		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1454 #else
1455 		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1456 #endif
1457 #ifdef CONFIG_PPC64
1458 	pr_cont("IRQMASK: %lx ", regs->softe);
1459 #endif
1460 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1461 	if (MSR_TM_ACTIVE(regs->msr))
1462 		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1463 #endif
1464 
1465 	for (i = 0;  i < 32;  i++) {
1466 		if ((i % REGS_PER_LINE) == 0)
1467 			pr_cont("\nGPR%02d: ", i);
1468 		pr_cont(REG " ", regs->gpr[i]);
1469 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1470 			break;
1471 	}
1472 	pr_cont("\n");
1473 #ifdef CONFIG_KALLSYMS
1474 	/*
1475 	 * Lookup NIP late so we have the best change of getting the
1476 	 * above info out without failing
1477 	 */
1478 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1479 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1480 #endif
1481 	show_stack(current, (unsigned long *) regs->gpr[1]);
1482 	if (!user_mode(regs))
1483 		show_instructions(regs);
1484 }
1485 
flush_thread(void)1486 void flush_thread(void)
1487 {
1488 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1489 	flush_ptrace_hw_breakpoint(current);
1490 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1491 	set_debug_reg_defaults(&current->thread);
1492 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1493 }
1494 
set_thread_uses_vas(void)1495 int set_thread_uses_vas(void)
1496 {
1497 #ifdef CONFIG_PPC_BOOK3S_64
1498 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1499 		return -EINVAL;
1500 
1501 	current->thread.used_vas = 1;
1502 
1503 	/*
1504 	 * Even a process that has no foreign real address mapping can use
1505 	 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1506 	 * to clear any pending COPY and prevent a covert channel.
1507 	 *
1508 	 * __switch_to() will issue CP_ABORT on future context switches.
1509 	 */
1510 	asm volatile(PPC_CP_ABORT);
1511 
1512 #endif /* CONFIG_PPC_BOOK3S_64 */
1513 	return 0;
1514 }
1515 
1516 #ifdef CONFIG_PPC64
1517 /**
1518  * Assign a TIDR (thread ID) for task @t and set it in the thread
1519  * structure. For now, we only support setting TIDR for 'current' task.
1520  *
1521  * Since the TID value is a truncated form of it PID, it is possible
1522  * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1523  * that 2 threads share the same TID and are waiting, one of the following
1524  * cases will happen:
1525  *
1526  * 1. The correct thread is running, the wrong thread is not
1527  * In this situation, the correct thread is woken and proceeds to pass it's
1528  * condition check.
1529  *
1530  * 2. Neither threads are running
1531  * In this situation, neither thread will be woken. When scheduled, the waiting
1532  * threads will execute either a wait, which will return immediately, followed
1533  * by a condition check, which will pass for the correct thread and fail
1534  * for the wrong thread, or they will execute the condition check immediately.
1535  *
1536  * 3. The wrong thread is running, the correct thread is not
1537  * The wrong thread will be woken, but will fail it's condition check and
1538  * re-execute wait. The correct thread, when scheduled, will execute either
1539  * it's condition check (which will pass), or wait, which returns immediately
1540  * when called the first time after the thread is scheduled, followed by it's
1541  * condition check (which will pass).
1542  *
1543  * 4. Both threads are running
1544  * Both threads will be woken. The wrong thread will fail it's condition check
1545  * and execute another wait, while the correct thread will pass it's condition
1546  * check.
1547  *
1548  * @t: the task to set the thread ID for
1549  */
set_thread_tidr(struct task_struct * t)1550 int set_thread_tidr(struct task_struct *t)
1551 {
1552 	if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1553 		return -EINVAL;
1554 
1555 	if (t != current)
1556 		return -EINVAL;
1557 
1558 	if (t->thread.tidr)
1559 		return 0;
1560 
1561 	t->thread.tidr = (u16)task_pid_nr(t);
1562 	mtspr(SPRN_TIDR, t->thread.tidr);
1563 
1564 	return 0;
1565 }
1566 EXPORT_SYMBOL_GPL(set_thread_tidr);
1567 
1568 #endif /* CONFIG_PPC64 */
1569 
1570 void
release_thread(struct task_struct * t)1571 release_thread(struct task_struct *t)
1572 {
1573 }
1574 
1575 /*
1576  * this gets called so that we can store coprocessor state into memory and
1577  * copy the current task into the new thread.
1578  */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)1579 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1580 {
1581 	flush_all_to_thread(src);
1582 	/*
1583 	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1584 	 * flush but it removes the checkpointed state from the current CPU and
1585 	 * transitions the CPU out of TM mode.  Hence we need to call
1586 	 * tm_recheckpoint_new_task() (on the same task) to restore the
1587 	 * checkpointed state back and the TM mode.
1588 	 *
1589 	 * Can't pass dst because it isn't ready. Doesn't matter, passing
1590 	 * dst is only important for __switch_to()
1591 	 */
1592 	__switch_to_tm(src, src);
1593 
1594 	*dst = *src;
1595 
1596 	clear_task_ebb(dst);
1597 
1598 	return 0;
1599 }
1600 
setup_ksp_vsid(struct task_struct * p,unsigned long sp)1601 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1602 {
1603 #ifdef CONFIG_PPC_BOOK3S_64
1604 	unsigned long sp_vsid;
1605 	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1606 
1607 	if (radix_enabled())
1608 		return;
1609 
1610 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1611 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1612 			<< SLB_VSID_SHIFT_1T;
1613 	else
1614 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1615 			<< SLB_VSID_SHIFT;
1616 	sp_vsid |= SLB_VSID_KERNEL | llp;
1617 	p->thread.ksp_vsid = sp_vsid;
1618 #endif
1619 }
1620 
1621 /*
1622  * Copy a thread..
1623  */
1624 
1625 /*
1626  * Copy architecture-specific thread state
1627  */
copy_thread(unsigned long clone_flags,unsigned long usp,unsigned long kthread_arg,struct task_struct * p)1628 int copy_thread(unsigned long clone_flags, unsigned long usp,
1629 		unsigned long kthread_arg, struct task_struct *p)
1630 {
1631 	struct pt_regs *childregs, *kregs;
1632 	extern void ret_from_fork(void);
1633 	extern void ret_from_kernel_thread(void);
1634 	void (*f)(void);
1635 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1636 	struct thread_info *ti = task_thread_info(p);
1637 
1638 	klp_init_thread_info(ti);
1639 
1640 	/* Copy registers */
1641 	sp -= sizeof(struct pt_regs);
1642 	childregs = (struct pt_regs *) sp;
1643 	if (unlikely(p->flags & PF_KTHREAD)) {
1644 		/* kernel thread */
1645 		memset(childregs, 0, sizeof(struct pt_regs));
1646 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1647 		/* function */
1648 		if (usp)
1649 			childregs->gpr[14] = ppc_function_entry((void *)usp);
1650 #ifdef CONFIG_PPC64
1651 		clear_tsk_thread_flag(p, TIF_32BIT);
1652 		childregs->softe = IRQS_ENABLED;
1653 #endif
1654 		childregs->gpr[15] = kthread_arg;
1655 		p->thread.regs = NULL;	/* no user register state */
1656 		ti->flags |= _TIF_RESTOREALL;
1657 		f = ret_from_kernel_thread;
1658 	} else {
1659 		/* user thread */
1660 		struct pt_regs *regs = current_pt_regs();
1661 		CHECK_FULL_REGS(regs);
1662 		*childregs = *regs;
1663 		if (usp)
1664 			childregs->gpr[1] = usp;
1665 		p->thread.regs = childregs;
1666 		childregs->gpr[3] = 0;  /* Result from fork() */
1667 		if (clone_flags & CLONE_SETTLS) {
1668 #ifdef CONFIG_PPC64
1669 			if (!is_32bit_task())
1670 				childregs->gpr[13] = childregs->gpr[6];
1671 			else
1672 #endif
1673 				childregs->gpr[2] = childregs->gpr[6];
1674 		}
1675 
1676 		f = ret_from_fork;
1677 	}
1678 	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1679 	sp -= STACK_FRAME_OVERHEAD;
1680 
1681 	/*
1682 	 * The way this works is that at some point in the future
1683 	 * some task will call _switch to switch to the new task.
1684 	 * That will pop off the stack frame created below and start
1685 	 * the new task running at ret_from_fork.  The new task will
1686 	 * do some house keeping and then return from the fork or clone
1687 	 * system call, using the stack frame created above.
1688 	 */
1689 	((unsigned long *)sp)[0] = 0;
1690 	sp -= sizeof(struct pt_regs);
1691 	kregs = (struct pt_regs *) sp;
1692 	sp -= STACK_FRAME_OVERHEAD;
1693 	p->thread.ksp = sp;
1694 #ifdef CONFIG_PPC32
1695 	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1696 				_ALIGN_UP(sizeof(struct thread_info), 16);
1697 #endif
1698 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1699 	p->thread.ptrace_bps[0] = NULL;
1700 #endif
1701 
1702 	p->thread.fp_save_area = NULL;
1703 #ifdef CONFIG_ALTIVEC
1704 	p->thread.vr_save_area = NULL;
1705 #endif
1706 
1707 	setup_ksp_vsid(p, sp);
1708 
1709 #ifdef CONFIG_PPC64
1710 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1711 		p->thread.dscr_inherit = current->thread.dscr_inherit;
1712 		p->thread.dscr = mfspr(SPRN_DSCR);
1713 	}
1714 	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1715 		p->thread.ppr = INIT_PPR;
1716 
1717 	p->thread.tidr = 0;
1718 #endif
1719 	kregs->nip = ppc_function_entry(f);
1720 	return 0;
1721 }
1722 
1723 /*
1724  * Set up a thread for executing a new program
1725  */
start_thread(struct pt_regs * regs,unsigned long start,unsigned long sp)1726 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1727 {
1728 #ifdef CONFIG_PPC64
1729 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1730 #endif
1731 
1732 	/*
1733 	 * If we exec out of a kernel thread then thread.regs will not be
1734 	 * set.  Do it now.
1735 	 */
1736 	if (!current->thread.regs) {
1737 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1738 		current->thread.regs = regs - 1;
1739 	}
1740 
1741 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1742 	/*
1743 	 * Clear any transactional state, we're exec()ing. The cause is
1744 	 * not important as there will never be a recheckpoint so it's not
1745 	 * user visible.
1746 	 */
1747 	if (MSR_TM_SUSPENDED(mfmsr()))
1748 		tm_reclaim_current(0);
1749 #endif
1750 
1751 	memset(regs->gpr, 0, sizeof(regs->gpr));
1752 	regs->ctr = 0;
1753 	regs->link = 0;
1754 	regs->xer = 0;
1755 	regs->ccr = 0;
1756 	regs->gpr[1] = sp;
1757 
1758 	/*
1759 	 * We have just cleared all the nonvolatile GPRs, so make
1760 	 * FULL_REGS(regs) return true.  This is necessary to allow
1761 	 * ptrace to examine the thread immediately after exec.
1762 	 */
1763 	regs->trap &= ~1UL;
1764 
1765 #ifdef CONFIG_PPC32
1766 	regs->mq = 0;
1767 	regs->nip = start;
1768 	regs->msr = MSR_USER;
1769 #else
1770 	if (!is_32bit_task()) {
1771 		unsigned long entry;
1772 
1773 		if (is_elf2_task()) {
1774 			/* Look ma, no function descriptors! */
1775 			entry = start;
1776 
1777 			/*
1778 			 * Ulrich says:
1779 			 *   The latest iteration of the ABI requires that when
1780 			 *   calling a function (at its global entry point),
1781 			 *   the caller must ensure r12 holds the entry point
1782 			 *   address (so that the function can quickly
1783 			 *   establish addressability).
1784 			 */
1785 			regs->gpr[12] = start;
1786 			/* Make sure that's restored on entry to userspace. */
1787 			set_thread_flag(TIF_RESTOREALL);
1788 		} else {
1789 			unsigned long toc;
1790 
1791 			/* start is a relocated pointer to the function
1792 			 * descriptor for the elf _start routine.  The first
1793 			 * entry in the function descriptor is the entry
1794 			 * address of _start and the second entry is the TOC
1795 			 * value we need to use.
1796 			 */
1797 			__get_user(entry, (unsigned long __user *)start);
1798 			__get_user(toc, (unsigned long __user *)start+1);
1799 
1800 			/* Check whether the e_entry function descriptor entries
1801 			 * need to be relocated before we can use them.
1802 			 */
1803 			if (load_addr != 0) {
1804 				entry += load_addr;
1805 				toc   += load_addr;
1806 			}
1807 			regs->gpr[2] = toc;
1808 		}
1809 		regs->nip = entry;
1810 		regs->msr = MSR_USER64;
1811 	} else {
1812 		regs->nip = start;
1813 		regs->gpr[2] = 0;
1814 		regs->msr = MSR_USER32;
1815 	}
1816 #endif
1817 #ifdef CONFIG_VSX
1818 	current->thread.used_vsr = 0;
1819 #endif
1820 	current->thread.load_fp = 0;
1821 	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1822 	current->thread.fp_save_area = NULL;
1823 #ifdef CONFIG_ALTIVEC
1824 	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1825 	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1826 	current->thread.vr_save_area = NULL;
1827 	current->thread.vrsave = 0;
1828 	current->thread.used_vr = 0;
1829 	current->thread.load_vec = 0;
1830 #endif /* CONFIG_ALTIVEC */
1831 #ifdef CONFIG_SPE
1832 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1833 	current->thread.acc = 0;
1834 	current->thread.spefscr = 0;
1835 	current->thread.used_spe = 0;
1836 #endif /* CONFIG_SPE */
1837 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1838 	current->thread.tm_tfhar = 0;
1839 	current->thread.tm_texasr = 0;
1840 	current->thread.tm_tfiar = 0;
1841 	current->thread.load_tm = 0;
1842 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1843 
1844 	thread_pkey_regs_init(&current->thread);
1845 }
1846 EXPORT_SYMBOL(start_thread);
1847 
1848 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1849 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1850 
set_fpexc_mode(struct task_struct * tsk,unsigned int val)1851 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1852 {
1853 	struct pt_regs *regs = tsk->thread.regs;
1854 
1855 	/* This is a bit hairy.  If we are an SPE enabled  processor
1856 	 * (have embedded fp) we store the IEEE exception enable flags in
1857 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1858 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1859 	if (val & PR_FP_EXC_SW_ENABLE) {
1860 #ifdef CONFIG_SPE
1861 		if (cpu_has_feature(CPU_FTR_SPE)) {
1862 			/*
1863 			 * When the sticky exception bits are set
1864 			 * directly by userspace, it must call prctl
1865 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1866 			 * in the existing prctl settings) or
1867 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1868 			 * the bits being set).  <fenv.h> functions
1869 			 * saving and restoring the whole
1870 			 * floating-point environment need to do so
1871 			 * anyway to restore the prctl settings from
1872 			 * the saved environment.
1873 			 */
1874 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1875 			tsk->thread.fpexc_mode = val &
1876 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1877 			return 0;
1878 		} else {
1879 			return -EINVAL;
1880 		}
1881 #else
1882 		return -EINVAL;
1883 #endif
1884 	}
1885 
1886 	/* on a CONFIG_SPE this does not hurt us.  The bits that
1887 	 * __pack_fe01 use do not overlap with bits used for
1888 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1889 	 * on CONFIG_SPE implementations are reserved so writing to
1890 	 * them does not change anything */
1891 	if (val > PR_FP_EXC_PRECISE)
1892 		return -EINVAL;
1893 	tsk->thread.fpexc_mode = __pack_fe01(val);
1894 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
1895 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1896 			| tsk->thread.fpexc_mode;
1897 	return 0;
1898 }
1899 
get_fpexc_mode(struct task_struct * tsk,unsigned long adr)1900 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1901 {
1902 	unsigned int val;
1903 
1904 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1905 #ifdef CONFIG_SPE
1906 		if (cpu_has_feature(CPU_FTR_SPE)) {
1907 			/*
1908 			 * When the sticky exception bits are set
1909 			 * directly by userspace, it must call prctl
1910 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1911 			 * in the existing prctl settings) or
1912 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1913 			 * the bits being set).  <fenv.h> functions
1914 			 * saving and restoring the whole
1915 			 * floating-point environment need to do so
1916 			 * anyway to restore the prctl settings from
1917 			 * the saved environment.
1918 			 */
1919 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1920 			val = tsk->thread.fpexc_mode;
1921 		} else
1922 			return -EINVAL;
1923 #else
1924 		return -EINVAL;
1925 #endif
1926 	else
1927 		val = __unpack_fe01(tsk->thread.fpexc_mode);
1928 	return put_user(val, (unsigned int __user *) adr);
1929 }
1930 
set_endian(struct task_struct * tsk,unsigned int val)1931 int set_endian(struct task_struct *tsk, unsigned int val)
1932 {
1933 	struct pt_regs *regs = tsk->thread.regs;
1934 
1935 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1936 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1937 		return -EINVAL;
1938 
1939 	if (regs == NULL)
1940 		return -EINVAL;
1941 
1942 	if (val == PR_ENDIAN_BIG)
1943 		regs->msr &= ~MSR_LE;
1944 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1945 		regs->msr |= MSR_LE;
1946 	else
1947 		return -EINVAL;
1948 
1949 	return 0;
1950 }
1951 
get_endian(struct task_struct * tsk,unsigned long adr)1952 int get_endian(struct task_struct *tsk, unsigned long adr)
1953 {
1954 	struct pt_regs *regs = tsk->thread.regs;
1955 	unsigned int val;
1956 
1957 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1958 	    !cpu_has_feature(CPU_FTR_REAL_LE))
1959 		return -EINVAL;
1960 
1961 	if (regs == NULL)
1962 		return -EINVAL;
1963 
1964 	if (regs->msr & MSR_LE) {
1965 		if (cpu_has_feature(CPU_FTR_REAL_LE))
1966 			val = PR_ENDIAN_LITTLE;
1967 		else
1968 			val = PR_ENDIAN_PPC_LITTLE;
1969 	} else
1970 		val = PR_ENDIAN_BIG;
1971 
1972 	return put_user(val, (unsigned int __user *)adr);
1973 }
1974 
set_unalign_ctl(struct task_struct * tsk,unsigned int val)1975 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1976 {
1977 	tsk->thread.align_ctl = val;
1978 	return 0;
1979 }
1980 
get_unalign_ctl(struct task_struct * tsk,unsigned long adr)1981 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1982 {
1983 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1984 }
1985 
valid_irq_stack(unsigned long sp,struct task_struct * p,unsigned long nbytes)1986 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1987 				  unsigned long nbytes)
1988 {
1989 	unsigned long stack_page;
1990 	unsigned long cpu = task_cpu(p);
1991 
1992 	/*
1993 	 * Avoid crashing if the stack has overflowed and corrupted
1994 	 * task_cpu(p), which is in the thread_info struct.
1995 	 */
1996 	if (cpu < NR_CPUS && cpu_possible(cpu)) {
1997 		stack_page = (unsigned long) hardirq_ctx[cpu];
1998 		if (sp >= stack_page + sizeof(struct thread_struct)
1999 		    && sp <= stack_page + THREAD_SIZE - nbytes)
2000 			return 1;
2001 
2002 		stack_page = (unsigned long) softirq_ctx[cpu];
2003 		if (sp >= stack_page + sizeof(struct thread_struct)
2004 		    && sp <= stack_page + THREAD_SIZE - nbytes)
2005 			return 1;
2006 	}
2007 	return 0;
2008 }
2009 
validate_sp(unsigned long sp,struct task_struct * p,unsigned long nbytes)2010 int validate_sp(unsigned long sp, struct task_struct *p,
2011 		       unsigned long nbytes)
2012 {
2013 	unsigned long stack_page = (unsigned long)task_stack_page(p);
2014 
2015 	if (sp >= stack_page + sizeof(struct thread_struct)
2016 	    && sp <= stack_page + THREAD_SIZE - nbytes)
2017 		return 1;
2018 
2019 	return valid_irq_stack(sp, p, nbytes);
2020 }
2021 
2022 EXPORT_SYMBOL(validate_sp);
2023 
get_wchan(struct task_struct * p)2024 unsigned long get_wchan(struct task_struct *p)
2025 {
2026 	unsigned long ip, sp;
2027 	int count = 0;
2028 
2029 	if (!p || p == current || p->state == TASK_RUNNING)
2030 		return 0;
2031 
2032 	sp = p->thread.ksp;
2033 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2034 		return 0;
2035 
2036 	do {
2037 		sp = *(unsigned long *)sp;
2038 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2039 		    p->state == TASK_RUNNING)
2040 			return 0;
2041 		if (count > 0) {
2042 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2043 			if (!in_sched_functions(ip))
2044 				return ip;
2045 		}
2046 	} while (count++ < 16);
2047 	return 0;
2048 }
2049 
2050 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2051 
show_stack(struct task_struct * tsk,unsigned long * stack)2052 void show_stack(struct task_struct *tsk, unsigned long *stack)
2053 {
2054 	unsigned long sp, ip, lr, newsp;
2055 	int count = 0;
2056 	int firstframe = 1;
2057 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2058 	int curr_frame = current->curr_ret_stack;
2059 	extern void return_to_handler(void);
2060 	unsigned long rth = (unsigned long)return_to_handler;
2061 #endif
2062 
2063 	sp = (unsigned long) stack;
2064 	if (tsk == NULL)
2065 		tsk = current;
2066 	if (sp == 0) {
2067 		if (tsk == current)
2068 			sp = current_stack_pointer();
2069 		else
2070 			sp = tsk->thread.ksp;
2071 	}
2072 
2073 	lr = 0;
2074 	printk("Call Trace:\n");
2075 	do {
2076 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2077 			return;
2078 
2079 		stack = (unsigned long *) sp;
2080 		newsp = stack[0];
2081 		ip = stack[STACK_FRAME_LR_SAVE];
2082 		if (!firstframe || ip != lr) {
2083 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2084 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2085 			if ((ip == rth) && curr_frame >= 0) {
2086 				pr_cont(" (%pS)",
2087 				       (void *)current->ret_stack[curr_frame].ret);
2088 				curr_frame--;
2089 			}
2090 #endif
2091 			if (firstframe)
2092 				pr_cont(" (unreliable)");
2093 			pr_cont("\n");
2094 		}
2095 		firstframe = 0;
2096 
2097 		/*
2098 		 * See if this is an exception frame.
2099 		 * We look for the "regshere" marker in the current frame.
2100 		 */
2101 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2102 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2103 			struct pt_regs *regs = (struct pt_regs *)
2104 				(sp + STACK_FRAME_OVERHEAD);
2105 			lr = regs->link;
2106 			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
2107 			       regs->trap, (void *)regs->nip, (void *)lr);
2108 			firstframe = 1;
2109 		}
2110 
2111 		sp = newsp;
2112 	} while (count++ < kstack_depth_to_print);
2113 }
2114 
2115 #ifdef CONFIG_PPC64
2116 /* Called with hard IRQs off */
__ppc64_runlatch_on(void)2117 void notrace __ppc64_runlatch_on(void)
2118 {
2119 	struct thread_info *ti = current_thread_info();
2120 
2121 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2122 		/*
2123 		 * Least significant bit (RUN) is the only writable bit of
2124 		 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2125 		 * earliest ISA where this is the case, but it's convenient.
2126 		 */
2127 		mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2128 	} else {
2129 		unsigned long ctrl;
2130 
2131 		/*
2132 		 * Some architectures (e.g., Cell) have writable fields other
2133 		 * than RUN, so do the read-modify-write.
2134 		 */
2135 		ctrl = mfspr(SPRN_CTRLF);
2136 		ctrl |= CTRL_RUNLATCH;
2137 		mtspr(SPRN_CTRLT, ctrl);
2138 	}
2139 
2140 	ti->local_flags |= _TLF_RUNLATCH;
2141 }
2142 
2143 /* Called with hard IRQs off */
__ppc64_runlatch_off(void)2144 void notrace __ppc64_runlatch_off(void)
2145 {
2146 	struct thread_info *ti = current_thread_info();
2147 
2148 	ti->local_flags &= ~_TLF_RUNLATCH;
2149 
2150 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2151 		mtspr(SPRN_CTRLT, 0);
2152 	} else {
2153 		unsigned long ctrl;
2154 
2155 		ctrl = mfspr(SPRN_CTRLF);
2156 		ctrl &= ~CTRL_RUNLATCH;
2157 		mtspr(SPRN_CTRLT, ctrl);
2158 	}
2159 }
2160 #endif /* CONFIG_PPC64 */
2161 
arch_align_stack(unsigned long sp)2162 unsigned long arch_align_stack(unsigned long sp)
2163 {
2164 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2165 		sp -= get_random_int() & ~PAGE_MASK;
2166 	return sp & ~0xf;
2167 }
2168 
brk_rnd(void)2169 static inline unsigned long brk_rnd(void)
2170 {
2171         unsigned long rnd = 0;
2172 
2173 	/* 8MB for 32bit, 1GB for 64bit */
2174 	if (is_32bit_task())
2175 		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2176 	else
2177 		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2178 
2179 	return rnd << PAGE_SHIFT;
2180 }
2181 
arch_randomize_brk(struct mm_struct * mm)2182 unsigned long arch_randomize_brk(struct mm_struct *mm)
2183 {
2184 	unsigned long base = mm->brk;
2185 	unsigned long ret;
2186 
2187 #ifdef CONFIG_PPC_BOOK3S_64
2188 	/*
2189 	 * If we are using 1TB segments and we are allowed to randomise
2190 	 * the heap, we can put it above 1TB so it is backed by a 1TB
2191 	 * segment. Otherwise the heap will be in the bottom 1TB
2192 	 * which always uses 256MB segments and this may result in a
2193 	 * performance penalty. We don't need to worry about radix. For
2194 	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2195 	 */
2196 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2197 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2198 #endif
2199 
2200 	ret = PAGE_ALIGN(base + brk_rnd());
2201 
2202 	if (ret < mm->brk)
2203 		return mm->brk;
2204 
2205 	return ret;
2206 }
2207 
2208