1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8 *
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
14 *
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
17 * conditions are met:
18 *
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer.
22 *
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
27 *
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 * SOFTWARE.
36 */
37
38 #include <linux/sched/signal.h>
39 #include <linux/module.h>
40 #include <crypto/aead.h>
41
42 #include <net/strparser.h>
43 #include <net/tls.h>
44
__skb_nsg(struct sk_buff * skb,int offset,int len,unsigned int recursion_level)45 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
46 unsigned int recursion_level)
47 {
48 int start = skb_headlen(skb);
49 int i, chunk = start - offset;
50 struct sk_buff *frag_iter;
51 int elt = 0;
52
53 if (unlikely(recursion_level >= 24))
54 return -EMSGSIZE;
55
56 if (chunk > 0) {
57 if (chunk > len)
58 chunk = len;
59 elt++;
60 len -= chunk;
61 if (len == 0)
62 return elt;
63 offset += chunk;
64 }
65
66 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
67 int end;
68
69 WARN_ON(start > offset + len);
70
71 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
72 chunk = end - offset;
73 if (chunk > 0) {
74 if (chunk > len)
75 chunk = len;
76 elt++;
77 len -= chunk;
78 if (len == 0)
79 return elt;
80 offset += chunk;
81 }
82 start = end;
83 }
84
85 if (unlikely(skb_has_frag_list(skb))) {
86 skb_walk_frags(skb, frag_iter) {
87 int end, ret;
88
89 WARN_ON(start > offset + len);
90
91 end = start + frag_iter->len;
92 chunk = end - offset;
93 if (chunk > 0) {
94 if (chunk > len)
95 chunk = len;
96 ret = __skb_nsg(frag_iter, offset - start, chunk,
97 recursion_level + 1);
98 if (unlikely(ret < 0))
99 return ret;
100 elt += ret;
101 len -= chunk;
102 if (len == 0)
103 return elt;
104 offset += chunk;
105 }
106 start = end;
107 }
108 }
109 BUG_ON(len);
110 return elt;
111 }
112
113 /* Return the number of scatterlist elements required to completely map the
114 * skb, or -EMSGSIZE if the recursion depth is exceeded.
115 */
skb_nsg(struct sk_buff * skb,int offset,int len)116 static int skb_nsg(struct sk_buff *skb, int offset, int len)
117 {
118 return __skb_nsg(skb, offset, len, 0);
119 }
120
padding_length(struct tls_sw_context_rx * ctx,struct tls_prot_info * prot,struct sk_buff * skb)121 static int padding_length(struct tls_sw_context_rx *ctx,
122 struct tls_prot_info *prot, struct sk_buff *skb)
123 {
124 struct strp_msg *rxm = strp_msg(skb);
125 int sub = 0;
126
127 /* Determine zero-padding length */
128 if (prot->version == TLS_1_3_VERSION) {
129 char content_type = 0;
130 int err;
131 int back = 17;
132
133 while (content_type == 0) {
134 if (back > rxm->full_len - prot->prepend_size)
135 return -EBADMSG;
136 err = skb_copy_bits(skb,
137 rxm->offset + rxm->full_len - back,
138 &content_type, 1);
139 if (err)
140 return err;
141 if (content_type)
142 break;
143 sub++;
144 back++;
145 }
146 ctx->control = content_type;
147 }
148 return sub;
149 }
150
tls_decrypt_done(struct crypto_async_request * req,int err)151 static void tls_decrypt_done(struct crypto_async_request *req, int err)
152 {
153 struct aead_request *aead_req = (struct aead_request *)req;
154 struct scatterlist *sgout = aead_req->dst;
155 struct scatterlist *sgin = aead_req->src;
156 struct tls_sw_context_rx *ctx;
157 struct tls_context *tls_ctx;
158 struct tls_prot_info *prot;
159 struct scatterlist *sg;
160 struct sk_buff *skb;
161 unsigned int pages;
162 int pending;
163
164 skb = (struct sk_buff *)req->data;
165 tls_ctx = tls_get_ctx(skb->sk);
166 ctx = tls_sw_ctx_rx(tls_ctx);
167 prot = &tls_ctx->prot_info;
168
169 /* Propagate if there was an err */
170 if (err) {
171 if (err == -EBADMSG)
172 TLS_INC_STATS(sock_net(skb->sk),
173 LINUX_MIB_TLSDECRYPTERROR);
174 ctx->async_wait.err = err;
175 tls_err_abort(skb->sk, err);
176 } else {
177 struct strp_msg *rxm = strp_msg(skb);
178 int pad;
179
180 pad = padding_length(ctx, prot, skb);
181 if (pad < 0) {
182 ctx->async_wait.err = pad;
183 tls_err_abort(skb->sk, pad);
184 } else {
185 rxm->full_len -= pad;
186 rxm->offset += prot->prepend_size;
187 rxm->full_len -= prot->overhead_size;
188 }
189 }
190
191 /* After using skb->sk to propagate sk through crypto async callback
192 * we need to NULL it again.
193 */
194 skb->sk = NULL;
195
196
197 /* Free the destination pages if skb was not decrypted inplace */
198 if (sgout != sgin) {
199 /* Skip the first S/G entry as it points to AAD */
200 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
201 if (!sg)
202 break;
203 put_page(sg_page(sg));
204 }
205 }
206
207 kfree(aead_req);
208
209 spin_lock_bh(&ctx->decrypt_compl_lock);
210 pending = atomic_dec_return(&ctx->decrypt_pending);
211
212 if (!pending && ctx->async_notify)
213 complete(&ctx->async_wait.completion);
214 spin_unlock_bh(&ctx->decrypt_compl_lock);
215 }
216
tls_do_decryption(struct sock * sk,struct sk_buff * skb,struct scatterlist * sgin,struct scatterlist * sgout,char * iv_recv,size_t data_len,struct aead_request * aead_req,bool async)217 static int tls_do_decryption(struct sock *sk,
218 struct sk_buff *skb,
219 struct scatterlist *sgin,
220 struct scatterlist *sgout,
221 char *iv_recv,
222 size_t data_len,
223 struct aead_request *aead_req,
224 bool async)
225 {
226 struct tls_context *tls_ctx = tls_get_ctx(sk);
227 struct tls_prot_info *prot = &tls_ctx->prot_info;
228 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
229 int ret;
230
231 aead_request_set_tfm(aead_req, ctx->aead_recv);
232 aead_request_set_ad(aead_req, prot->aad_size);
233 aead_request_set_crypt(aead_req, sgin, sgout,
234 data_len + prot->tag_size,
235 (u8 *)iv_recv);
236
237 if (async) {
238 /* Using skb->sk to push sk through to crypto async callback
239 * handler. This allows propagating errors up to the socket
240 * if needed. It _must_ be cleared in the async handler
241 * before consume_skb is called. We _know_ skb->sk is NULL
242 * because it is a clone from strparser.
243 */
244 skb->sk = sk;
245 aead_request_set_callback(aead_req,
246 CRYPTO_TFM_REQ_MAY_BACKLOG,
247 tls_decrypt_done, skb);
248 atomic_inc(&ctx->decrypt_pending);
249 } else {
250 aead_request_set_callback(aead_req,
251 CRYPTO_TFM_REQ_MAY_BACKLOG,
252 crypto_req_done, &ctx->async_wait);
253 }
254
255 ret = crypto_aead_decrypt(aead_req);
256 if (ret == -EINPROGRESS) {
257 if (async)
258 return ret;
259
260 ret = crypto_wait_req(ret, &ctx->async_wait);
261 }
262
263 if (async)
264 atomic_dec(&ctx->decrypt_pending);
265
266 return ret;
267 }
268
tls_trim_both_msgs(struct sock * sk,int target_size)269 static void tls_trim_both_msgs(struct sock *sk, int target_size)
270 {
271 struct tls_context *tls_ctx = tls_get_ctx(sk);
272 struct tls_prot_info *prot = &tls_ctx->prot_info;
273 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
274 struct tls_rec *rec = ctx->open_rec;
275
276 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
277 if (target_size > 0)
278 target_size += prot->overhead_size;
279 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
280 }
281
tls_alloc_encrypted_msg(struct sock * sk,int len)282 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
283 {
284 struct tls_context *tls_ctx = tls_get_ctx(sk);
285 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
286 struct tls_rec *rec = ctx->open_rec;
287 struct sk_msg *msg_en = &rec->msg_encrypted;
288
289 return sk_msg_alloc(sk, msg_en, len, 0);
290 }
291
tls_clone_plaintext_msg(struct sock * sk,int required)292 static int tls_clone_plaintext_msg(struct sock *sk, int required)
293 {
294 struct tls_context *tls_ctx = tls_get_ctx(sk);
295 struct tls_prot_info *prot = &tls_ctx->prot_info;
296 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
297 struct tls_rec *rec = ctx->open_rec;
298 struct sk_msg *msg_pl = &rec->msg_plaintext;
299 struct sk_msg *msg_en = &rec->msg_encrypted;
300 int skip, len;
301
302 /* We add page references worth len bytes from encrypted sg
303 * at the end of plaintext sg. It is guaranteed that msg_en
304 * has enough required room (ensured by caller).
305 */
306 len = required - msg_pl->sg.size;
307
308 /* Skip initial bytes in msg_en's data to be able to use
309 * same offset of both plain and encrypted data.
310 */
311 skip = prot->prepend_size + msg_pl->sg.size;
312
313 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
314 }
315
tls_get_rec(struct sock * sk)316 static struct tls_rec *tls_get_rec(struct sock *sk)
317 {
318 struct tls_context *tls_ctx = tls_get_ctx(sk);
319 struct tls_prot_info *prot = &tls_ctx->prot_info;
320 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
321 struct sk_msg *msg_pl, *msg_en;
322 struct tls_rec *rec;
323 int mem_size;
324
325 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
326
327 rec = kzalloc(mem_size, sk->sk_allocation);
328 if (!rec)
329 return NULL;
330
331 msg_pl = &rec->msg_plaintext;
332 msg_en = &rec->msg_encrypted;
333
334 sk_msg_init(msg_pl);
335 sk_msg_init(msg_en);
336
337 sg_init_table(rec->sg_aead_in, 2);
338 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
339 sg_unmark_end(&rec->sg_aead_in[1]);
340
341 sg_init_table(rec->sg_aead_out, 2);
342 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
343 sg_unmark_end(&rec->sg_aead_out[1]);
344
345 return rec;
346 }
347
tls_free_rec(struct sock * sk,struct tls_rec * rec)348 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
349 {
350 sk_msg_free(sk, &rec->msg_encrypted);
351 sk_msg_free(sk, &rec->msg_plaintext);
352 kfree(rec);
353 }
354
tls_free_open_rec(struct sock * sk)355 static void tls_free_open_rec(struct sock *sk)
356 {
357 struct tls_context *tls_ctx = tls_get_ctx(sk);
358 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
359 struct tls_rec *rec = ctx->open_rec;
360
361 if (rec) {
362 tls_free_rec(sk, rec);
363 ctx->open_rec = NULL;
364 }
365 }
366
tls_tx_records(struct sock * sk,int flags)367 int tls_tx_records(struct sock *sk, int flags)
368 {
369 struct tls_context *tls_ctx = tls_get_ctx(sk);
370 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
371 struct tls_rec *rec, *tmp;
372 struct sk_msg *msg_en;
373 int tx_flags, rc = 0;
374
375 if (tls_is_partially_sent_record(tls_ctx)) {
376 rec = list_first_entry(&ctx->tx_list,
377 struct tls_rec, list);
378
379 if (flags == -1)
380 tx_flags = rec->tx_flags;
381 else
382 tx_flags = flags;
383
384 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
385 if (rc)
386 goto tx_err;
387
388 /* Full record has been transmitted.
389 * Remove the head of tx_list
390 */
391 list_del(&rec->list);
392 sk_msg_free(sk, &rec->msg_plaintext);
393 kfree(rec);
394 }
395
396 /* Tx all ready records */
397 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
398 if (READ_ONCE(rec->tx_ready)) {
399 if (flags == -1)
400 tx_flags = rec->tx_flags;
401 else
402 tx_flags = flags;
403
404 msg_en = &rec->msg_encrypted;
405 rc = tls_push_sg(sk, tls_ctx,
406 &msg_en->sg.data[msg_en->sg.curr],
407 0, tx_flags);
408 if (rc)
409 goto tx_err;
410
411 list_del(&rec->list);
412 sk_msg_free(sk, &rec->msg_plaintext);
413 kfree(rec);
414 } else {
415 break;
416 }
417 }
418
419 tx_err:
420 if (rc < 0 && rc != -EAGAIN)
421 tls_err_abort(sk, EBADMSG);
422
423 return rc;
424 }
425
tls_encrypt_done(struct crypto_async_request * req,int err)426 static void tls_encrypt_done(struct crypto_async_request *req, int err)
427 {
428 struct aead_request *aead_req = (struct aead_request *)req;
429 struct sock *sk = req->data;
430 struct tls_context *tls_ctx = tls_get_ctx(sk);
431 struct tls_prot_info *prot = &tls_ctx->prot_info;
432 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
433 struct scatterlist *sge;
434 struct sk_msg *msg_en;
435 struct tls_rec *rec;
436 bool ready = false;
437 int pending;
438
439 rec = container_of(aead_req, struct tls_rec, aead_req);
440 msg_en = &rec->msg_encrypted;
441
442 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
443 sge->offset -= prot->prepend_size;
444 sge->length += prot->prepend_size;
445
446 /* Check if error is previously set on socket */
447 if (err || sk->sk_err) {
448 rec = NULL;
449
450 /* If err is already set on socket, return the same code */
451 if (sk->sk_err) {
452 ctx->async_wait.err = sk->sk_err;
453 } else {
454 ctx->async_wait.err = err;
455 tls_err_abort(sk, err);
456 }
457 }
458
459 if (rec) {
460 struct tls_rec *first_rec;
461
462 /* Mark the record as ready for transmission */
463 smp_store_mb(rec->tx_ready, true);
464
465 /* If received record is at head of tx_list, schedule tx */
466 first_rec = list_first_entry(&ctx->tx_list,
467 struct tls_rec, list);
468 if (rec == first_rec)
469 ready = true;
470 }
471
472 spin_lock_bh(&ctx->encrypt_compl_lock);
473 pending = atomic_dec_return(&ctx->encrypt_pending);
474
475 if (!pending && ctx->async_notify)
476 complete(&ctx->async_wait.completion);
477 spin_unlock_bh(&ctx->encrypt_compl_lock);
478
479 if (!ready)
480 return;
481
482 /* Schedule the transmission */
483 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
484 schedule_delayed_work(&ctx->tx_work.work, 1);
485 }
486
tls_do_encryption(struct sock * sk,struct tls_context * tls_ctx,struct tls_sw_context_tx * ctx,struct aead_request * aead_req,size_t data_len,u32 start)487 static int tls_do_encryption(struct sock *sk,
488 struct tls_context *tls_ctx,
489 struct tls_sw_context_tx *ctx,
490 struct aead_request *aead_req,
491 size_t data_len, u32 start)
492 {
493 struct tls_prot_info *prot = &tls_ctx->prot_info;
494 struct tls_rec *rec = ctx->open_rec;
495 struct sk_msg *msg_en = &rec->msg_encrypted;
496 struct scatterlist *sge = sk_msg_elem(msg_en, start);
497 int rc, iv_offset = 0;
498
499 /* For CCM based ciphers, first byte of IV is a constant */
500 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
501 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
502 iv_offset = 1;
503 }
504
505 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
506 prot->iv_size + prot->salt_size);
507
508 xor_iv_with_seq(prot->version, rec->iv_data, tls_ctx->tx.rec_seq);
509
510 sge->offset += prot->prepend_size;
511 sge->length -= prot->prepend_size;
512
513 msg_en->sg.curr = start;
514
515 aead_request_set_tfm(aead_req, ctx->aead_send);
516 aead_request_set_ad(aead_req, prot->aad_size);
517 aead_request_set_crypt(aead_req, rec->sg_aead_in,
518 rec->sg_aead_out,
519 data_len, rec->iv_data);
520
521 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
522 tls_encrypt_done, sk);
523
524 /* Add the record in tx_list */
525 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
526 atomic_inc(&ctx->encrypt_pending);
527
528 rc = crypto_aead_encrypt(aead_req);
529 if (!rc || rc != -EINPROGRESS) {
530 atomic_dec(&ctx->encrypt_pending);
531 sge->offset -= prot->prepend_size;
532 sge->length += prot->prepend_size;
533 }
534
535 if (!rc) {
536 WRITE_ONCE(rec->tx_ready, true);
537 } else if (rc != -EINPROGRESS) {
538 list_del(&rec->list);
539 return rc;
540 }
541
542 /* Unhook the record from context if encryption is not failure */
543 ctx->open_rec = NULL;
544 tls_advance_record_sn(sk, prot, &tls_ctx->tx);
545 return rc;
546 }
547
tls_split_open_record(struct sock * sk,struct tls_rec * from,struct tls_rec ** to,struct sk_msg * msg_opl,struct sk_msg * msg_oen,u32 split_point,u32 tx_overhead_size,u32 * orig_end)548 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
549 struct tls_rec **to, struct sk_msg *msg_opl,
550 struct sk_msg *msg_oen, u32 split_point,
551 u32 tx_overhead_size, u32 *orig_end)
552 {
553 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
554 struct scatterlist *sge, *osge, *nsge;
555 u32 orig_size = msg_opl->sg.size;
556 struct scatterlist tmp = { };
557 struct sk_msg *msg_npl;
558 struct tls_rec *new;
559 int ret;
560
561 new = tls_get_rec(sk);
562 if (!new)
563 return -ENOMEM;
564 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
565 tx_overhead_size, 0);
566 if (ret < 0) {
567 tls_free_rec(sk, new);
568 return ret;
569 }
570
571 *orig_end = msg_opl->sg.end;
572 i = msg_opl->sg.start;
573 sge = sk_msg_elem(msg_opl, i);
574 while (apply && sge->length) {
575 if (sge->length > apply) {
576 u32 len = sge->length - apply;
577
578 get_page(sg_page(sge));
579 sg_set_page(&tmp, sg_page(sge), len,
580 sge->offset + apply);
581 sge->length = apply;
582 bytes += apply;
583 apply = 0;
584 } else {
585 apply -= sge->length;
586 bytes += sge->length;
587 }
588
589 sk_msg_iter_var_next(i);
590 if (i == msg_opl->sg.end)
591 break;
592 sge = sk_msg_elem(msg_opl, i);
593 }
594
595 msg_opl->sg.end = i;
596 msg_opl->sg.curr = i;
597 msg_opl->sg.copybreak = 0;
598 msg_opl->apply_bytes = 0;
599 msg_opl->sg.size = bytes;
600
601 msg_npl = &new->msg_plaintext;
602 msg_npl->apply_bytes = apply;
603 msg_npl->sg.size = orig_size - bytes;
604
605 j = msg_npl->sg.start;
606 nsge = sk_msg_elem(msg_npl, j);
607 if (tmp.length) {
608 memcpy(nsge, &tmp, sizeof(*nsge));
609 sk_msg_iter_var_next(j);
610 nsge = sk_msg_elem(msg_npl, j);
611 }
612
613 osge = sk_msg_elem(msg_opl, i);
614 while (osge->length) {
615 memcpy(nsge, osge, sizeof(*nsge));
616 sg_unmark_end(nsge);
617 sk_msg_iter_var_next(i);
618 sk_msg_iter_var_next(j);
619 if (i == *orig_end)
620 break;
621 osge = sk_msg_elem(msg_opl, i);
622 nsge = sk_msg_elem(msg_npl, j);
623 }
624
625 msg_npl->sg.end = j;
626 msg_npl->sg.curr = j;
627 msg_npl->sg.copybreak = 0;
628
629 *to = new;
630 return 0;
631 }
632
tls_merge_open_record(struct sock * sk,struct tls_rec * to,struct tls_rec * from,u32 orig_end)633 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
634 struct tls_rec *from, u32 orig_end)
635 {
636 struct sk_msg *msg_npl = &from->msg_plaintext;
637 struct sk_msg *msg_opl = &to->msg_plaintext;
638 struct scatterlist *osge, *nsge;
639 u32 i, j;
640
641 i = msg_opl->sg.end;
642 sk_msg_iter_var_prev(i);
643 j = msg_npl->sg.start;
644
645 osge = sk_msg_elem(msg_opl, i);
646 nsge = sk_msg_elem(msg_npl, j);
647
648 if (sg_page(osge) == sg_page(nsge) &&
649 osge->offset + osge->length == nsge->offset) {
650 osge->length += nsge->length;
651 put_page(sg_page(nsge));
652 }
653
654 msg_opl->sg.end = orig_end;
655 msg_opl->sg.curr = orig_end;
656 msg_opl->sg.copybreak = 0;
657 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
658 msg_opl->sg.size += msg_npl->sg.size;
659
660 sk_msg_free(sk, &to->msg_encrypted);
661 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
662
663 kfree(from);
664 }
665
tls_push_record(struct sock * sk,int flags,unsigned char record_type)666 static int tls_push_record(struct sock *sk, int flags,
667 unsigned char record_type)
668 {
669 struct tls_context *tls_ctx = tls_get_ctx(sk);
670 struct tls_prot_info *prot = &tls_ctx->prot_info;
671 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
672 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
673 u32 i, split_point, orig_end;
674 struct sk_msg *msg_pl, *msg_en;
675 struct aead_request *req;
676 bool split;
677 int rc;
678
679 if (!rec)
680 return 0;
681
682 msg_pl = &rec->msg_plaintext;
683 msg_en = &rec->msg_encrypted;
684
685 split_point = msg_pl->apply_bytes;
686 split = split_point && split_point < msg_pl->sg.size;
687 if (unlikely((!split &&
688 msg_pl->sg.size +
689 prot->overhead_size > msg_en->sg.size) ||
690 (split &&
691 split_point +
692 prot->overhead_size > msg_en->sg.size))) {
693 split = true;
694 split_point = msg_en->sg.size;
695 }
696 if (split) {
697 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
698 split_point, prot->overhead_size,
699 &orig_end);
700 if (rc < 0)
701 return rc;
702 /* This can happen if above tls_split_open_record allocates
703 * a single large encryption buffer instead of two smaller
704 * ones. In this case adjust pointers and continue without
705 * split.
706 */
707 if (!msg_pl->sg.size) {
708 tls_merge_open_record(sk, rec, tmp, orig_end);
709 msg_pl = &rec->msg_plaintext;
710 msg_en = &rec->msg_encrypted;
711 split = false;
712 }
713 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
714 prot->overhead_size);
715 }
716
717 rec->tx_flags = flags;
718 req = &rec->aead_req;
719
720 i = msg_pl->sg.end;
721 sk_msg_iter_var_prev(i);
722
723 rec->content_type = record_type;
724 if (prot->version == TLS_1_3_VERSION) {
725 /* Add content type to end of message. No padding added */
726 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
727 sg_mark_end(&rec->sg_content_type);
728 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
729 &rec->sg_content_type);
730 } else {
731 sg_mark_end(sk_msg_elem(msg_pl, i));
732 }
733
734 if (msg_pl->sg.end < msg_pl->sg.start) {
735 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
736 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
737 msg_pl->sg.data);
738 }
739
740 i = msg_pl->sg.start;
741 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
742
743 i = msg_en->sg.end;
744 sk_msg_iter_var_prev(i);
745 sg_mark_end(sk_msg_elem(msg_en, i));
746
747 i = msg_en->sg.start;
748 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
749
750 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
751 tls_ctx->tx.rec_seq, prot->rec_seq_size,
752 record_type, prot->version);
753
754 tls_fill_prepend(tls_ctx,
755 page_address(sg_page(&msg_en->sg.data[i])) +
756 msg_en->sg.data[i].offset,
757 msg_pl->sg.size + prot->tail_size,
758 record_type, prot->version);
759
760 tls_ctx->pending_open_record_frags = false;
761
762 rc = tls_do_encryption(sk, tls_ctx, ctx, req,
763 msg_pl->sg.size + prot->tail_size, i);
764 if (rc < 0) {
765 if (rc != -EINPROGRESS) {
766 tls_err_abort(sk, EBADMSG);
767 if (split) {
768 tls_ctx->pending_open_record_frags = true;
769 tls_merge_open_record(sk, rec, tmp, orig_end);
770 }
771 }
772 ctx->async_capable = 1;
773 return rc;
774 } else if (split) {
775 msg_pl = &tmp->msg_plaintext;
776 msg_en = &tmp->msg_encrypted;
777 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
778 tls_ctx->pending_open_record_frags = true;
779 ctx->open_rec = tmp;
780 }
781
782 return tls_tx_records(sk, flags);
783 }
784
bpf_exec_tx_verdict(struct sk_msg * msg,struct sock * sk,bool full_record,u8 record_type,ssize_t * copied,int flags)785 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
786 bool full_record, u8 record_type,
787 ssize_t *copied, int flags)
788 {
789 struct tls_context *tls_ctx = tls_get_ctx(sk);
790 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
791 struct sk_msg msg_redir = { };
792 struct sk_psock *psock;
793 struct sock *sk_redir;
794 struct tls_rec *rec;
795 bool enospc, policy;
796 int err = 0, send;
797 u32 delta = 0;
798
799 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
800 psock = sk_psock_get(sk);
801 if (!psock || !policy) {
802 err = tls_push_record(sk, flags, record_type);
803 if (err && sk->sk_err == EBADMSG) {
804 *copied -= sk_msg_free(sk, msg);
805 tls_free_open_rec(sk);
806 err = -sk->sk_err;
807 }
808 if (psock)
809 sk_psock_put(sk, psock);
810 return err;
811 }
812 more_data:
813 enospc = sk_msg_full(msg);
814 if (psock->eval == __SK_NONE) {
815 delta = msg->sg.size;
816 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
817 delta -= msg->sg.size;
818 }
819 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
820 !enospc && !full_record) {
821 err = -ENOSPC;
822 goto out_err;
823 }
824 msg->cork_bytes = 0;
825 send = msg->sg.size;
826 if (msg->apply_bytes && msg->apply_bytes < send)
827 send = msg->apply_bytes;
828
829 switch (psock->eval) {
830 case __SK_PASS:
831 err = tls_push_record(sk, flags, record_type);
832 if (err && sk->sk_err == EBADMSG) {
833 *copied -= sk_msg_free(sk, msg);
834 tls_free_open_rec(sk);
835 err = -sk->sk_err;
836 goto out_err;
837 }
838 break;
839 case __SK_REDIRECT:
840 sk_redir = psock->sk_redir;
841 memcpy(&msg_redir, msg, sizeof(*msg));
842 if (msg->apply_bytes < send)
843 msg->apply_bytes = 0;
844 else
845 msg->apply_bytes -= send;
846 sk_msg_return_zero(sk, msg, send);
847 msg->sg.size -= send;
848 release_sock(sk);
849 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
850 lock_sock(sk);
851 if (err < 0) {
852 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
853 msg->sg.size = 0;
854 }
855 if (msg->sg.size == 0)
856 tls_free_open_rec(sk);
857 break;
858 case __SK_DROP:
859 default:
860 sk_msg_free_partial(sk, msg, send);
861 if (msg->apply_bytes < send)
862 msg->apply_bytes = 0;
863 else
864 msg->apply_bytes -= send;
865 if (msg->sg.size == 0)
866 tls_free_open_rec(sk);
867 *copied -= (send + delta);
868 err = -EACCES;
869 }
870
871 if (likely(!err)) {
872 bool reset_eval = !ctx->open_rec;
873
874 rec = ctx->open_rec;
875 if (rec) {
876 msg = &rec->msg_plaintext;
877 if (!msg->apply_bytes)
878 reset_eval = true;
879 }
880 if (reset_eval) {
881 psock->eval = __SK_NONE;
882 if (psock->sk_redir) {
883 sock_put(psock->sk_redir);
884 psock->sk_redir = NULL;
885 }
886 }
887 if (rec)
888 goto more_data;
889 }
890 out_err:
891 sk_psock_put(sk, psock);
892 return err;
893 }
894
tls_sw_push_pending_record(struct sock * sk,int flags)895 static int tls_sw_push_pending_record(struct sock *sk, int flags)
896 {
897 struct tls_context *tls_ctx = tls_get_ctx(sk);
898 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
899 struct tls_rec *rec = ctx->open_rec;
900 struct sk_msg *msg_pl;
901 size_t copied;
902
903 if (!rec)
904 return 0;
905
906 msg_pl = &rec->msg_plaintext;
907 copied = msg_pl->sg.size;
908 if (!copied)
909 return 0;
910
911 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
912 &copied, flags);
913 }
914
tls_sw_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)915 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
916 {
917 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
918 struct tls_context *tls_ctx = tls_get_ctx(sk);
919 struct tls_prot_info *prot = &tls_ctx->prot_info;
920 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
921 bool async_capable = ctx->async_capable;
922 unsigned char record_type = TLS_RECORD_TYPE_DATA;
923 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
924 bool eor = !(msg->msg_flags & MSG_MORE);
925 size_t try_to_copy;
926 ssize_t copied = 0;
927 struct sk_msg *msg_pl, *msg_en;
928 struct tls_rec *rec;
929 int required_size;
930 int num_async = 0;
931 bool full_record;
932 int record_room;
933 int num_zc = 0;
934 int orig_size;
935 int ret = 0;
936 int pending;
937
938 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
939 MSG_CMSG_COMPAT))
940 return -EOPNOTSUPP;
941
942 mutex_lock(&tls_ctx->tx_lock);
943 lock_sock(sk);
944
945 if (unlikely(msg->msg_controllen)) {
946 ret = tls_proccess_cmsg(sk, msg, &record_type);
947 if (ret) {
948 if (ret == -EINPROGRESS)
949 num_async++;
950 else if (ret != -EAGAIN)
951 goto send_end;
952 }
953 }
954
955 while (msg_data_left(msg)) {
956 if (sk->sk_err) {
957 ret = -sk->sk_err;
958 goto send_end;
959 }
960
961 if (ctx->open_rec)
962 rec = ctx->open_rec;
963 else
964 rec = ctx->open_rec = tls_get_rec(sk);
965 if (!rec) {
966 ret = -ENOMEM;
967 goto send_end;
968 }
969
970 msg_pl = &rec->msg_plaintext;
971 msg_en = &rec->msg_encrypted;
972
973 orig_size = msg_pl->sg.size;
974 full_record = false;
975 try_to_copy = msg_data_left(msg);
976 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
977 if (try_to_copy >= record_room) {
978 try_to_copy = record_room;
979 full_record = true;
980 }
981
982 required_size = msg_pl->sg.size + try_to_copy +
983 prot->overhead_size;
984
985 if (!sk_stream_memory_free(sk))
986 goto wait_for_sndbuf;
987
988 alloc_encrypted:
989 ret = tls_alloc_encrypted_msg(sk, required_size);
990 if (ret) {
991 if (ret != -ENOSPC)
992 goto wait_for_memory;
993
994 /* Adjust try_to_copy according to the amount that was
995 * actually allocated. The difference is due
996 * to max sg elements limit
997 */
998 try_to_copy -= required_size - msg_en->sg.size;
999 full_record = true;
1000 }
1001
1002 if (!is_kvec && (full_record || eor) && !async_capable) {
1003 u32 first = msg_pl->sg.end;
1004
1005 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1006 msg_pl, try_to_copy);
1007 if (ret)
1008 goto fallback_to_reg_send;
1009
1010 num_zc++;
1011 copied += try_to_copy;
1012
1013 sk_msg_sg_copy_set(msg_pl, first);
1014 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1015 record_type, &copied,
1016 msg->msg_flags);
1017 if (ret) {
1018 if (ret == -EINPROGRESS)
1019 num_async++;
1020 else if (ret == -ENOMEM)
1021 goto wait_for_memory;
1022 else if (ctx->open_rec && ret == -ENOSPC)
1023 goto rollback_iter;
1024 else if (ret != -EAGAIN)
1025 goto send_end;
1026 }
1027 continue;
1028 rollback_iter:
1029 copied -= try_to_copy;
1030 sk_msg_sg_copy_clear(msg_pl, first);
1031 iov_iter_revert(&msg->msg_iter,
1032 msg_pl->sg.size - orig_size);
1033 fallback_to_reg_send:
1034 sk_msg_trim(sk, msg_pl, orig_size);
1035 }
1036
1037 required_size = msg_pl->sg.size + try_to_copy;
1038
1039 ret = tls_clone_plaintext_msg(sk, required_size);
1040 if (ret) {
1041 if (ret != -ENOSPC)
1042 goto send_end;
1043
1044 /* Adjust try_to_copy according to the amount that was
1045 * actually allocated. The difference is due
1046 * to max sg elements limit
1047 */
1048 try_to_copy -= required_size - msg_pl->sg.size;
1049 full_record = true;
1050 sk_msg_trim(sk, msg_en,
1051 msg_pl->sg.size + prot->overhead_size);
1052 }
1053
1054 if (try_to_copy) {
1055 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1056 msg_pl, try_to_copy);
1057 if (ret < 0)
1058 goto trim_sgl;
1059 }
1060
1061 /* Open records defined only if successfully copied, otherwise
1062 * we would trim the sg but not reset the open record frags.
1063 */
1064 tls_ctx->pending_open_record_frags = true;
1065 copied += try_to_copy;
1066 if (full_record || eor) {
1067 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1068 record_type, &copied,
1069 msg->msg_flags);
1070 if (ret) {
1071 if (ret == -EINPROGRESS)
1072 num_async++;
1073 else if (ret == -ENOMEM)
1074 goto wait_for_memory;
1075 else if (ret != -EAGAIN) {
1076 if (ret == -ENOSPC)
1077 ret = 0;
1078 goto send_end;
1079 }
1080 }
1081 }
1082
1083 continue;
1084
1085 wait_for_sndbuf:
1086 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1087 wait_for_memory:
1088 ret = sk_stream_wait_memory(sk, &timeo);
1089 if (ret) {
1090 trim_sgl:
1091 if (ctx->open_rec)
1092 tls_trim_both_msgs(sk, orig_size);
1093 goto send_end;
1094 }
1095
1096 if (ctx->open_rec && msg_en->sg.size < required_size)
1097 goto alloc_encrypted;
1098 }
1099
1100 if (!num_async) {
1101 goto send_end;
1102 } else if (num_zc) {
1103 /* Wait for pending encryptions to get completed */
1104 spin_lock_bh(&ctx->encrypt_compl_lock);
1105 ctx->async_notify = true;
1106
1107 pending = atomic_read(&ctx->encrypt_pending);
1108 spin_unlock_bh(&ctx->encrypt_compl_lock);
1109 if (pending)
1110 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1111 else
1112 reinit_completion(&ctx->async_wait.completion);
1113
1114 /* There can be no concurrent accesses, since we have no
1115 * pending encrypt operations
1116 */
1117 WRITE_ONCE(ctx->async_notify, false);
1118
1119 if (ctx->async_wait.err) {
1120 ret = ctx->async_wait.err;
1121 copied = 0;
1122 }
1123 }
1124
1125 /* Transmit if any encryptions have completed */
1126 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1127 cancel_delayed_work(&ctx->tx_work.work);
1128 tls_tx_records(sk, msg->msg_flags);
1129 }
1130
1131 send_end:
1132 ret = sk_stream_error(sk, msg->msg_flags, ret);
1133
1134 release_sock(sk);
1135 mutex_unlock(&tls_ctx->tx_lock);
1136 return copied > 0 ? copied : ret;
1137 }
1138
tls_sw_do_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1139 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1140 int offset, size_t size, int flags)
1141 {
1142 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1143 struct tls_context *tls_ctx = tls_get_ctx(sk);
1144 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1145 struct tls_prot_info *prot = &tls_ctx->prot_info;
1146 unsigned char record_type = TLS_RECORD_TYPE_DATA;
1147 struct sk_msg *msg_pl;
1148 struct tls_rec *rec;
1149 int num_async = 0;
1150 ssize_t copied = 0;
1151 bool full_record;
1152 int record_room;
1153 int ret = 0;
1154 bool eor;
1155
1156 eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
1157 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1158
1159 /* Call the sk_stream functions to manage the sndbuf mem. */
1160 while (size > 0) {
1161 size_t copy, required_size;
1162
1163 if (sk->sk_err) {
1164 ret = -sk->sk_err;
1165 goto sendpage_end;
1166 }
1167
1168 if (ctx->open_rec)
1169 rec = ctx->open_rec;
1170 else
1171 rec = ctx->open_rec = tls_get_rec(sk);
1172 if (!rec) {
1173 ret = -ENOMEM;
1174 goto sendpage_end;
1175 }
1176
1177 msg_pl = &rec->msg_plaintext;
1178
1179 full_record = false;
1180 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1181 copy = size;
1182 if (copy >= record_room) {
1183 copy = record_room;
1184 full_record = true;
1185 }
1186
1187 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1188
1189 if (!sk_stream_memory_free(sk))
1190 goto wait_for_sndbuf;
1191 alloc_payload:
1192 ret = tls_alloc_encrypted_msg(sk, required_size);
1193 if (ret) {
1194 if (ret != -ENOSPC)
1195 goto wait_for_memory;
1196
1197 /* Adjust copy according to the amount that was
1198 * actually allocated. The difference is due
1199 * to max sg elements limit
1200 */
1201 copy -= required_size - msg_pl->sg.size;
1202 full_record = true;
1203 }
1204
1205 sk_msg_page_add(msg_pl, page, copy, offset);
1206 sk_mem_charge(sk, copy);
1207
1208 offset += copy;
1209 size -= copy;
1210 copied += copy;
1211
1212 tls_ctx->pending_open_record_frags = true;
1213 if (full_record || eor || sk_msg_full(msg_pl)) {
1214 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1215 record_type, &copied, flags);
1216 if (ret) {
1217 if (ret == -EINPROGRESS)
1218 num_async++;
1219 else if (ret == -ENOMEM)
1220 goto wait_for_memory;
1221 else if (ret != -EAGAIN) {
1222 if (ret == -ENOSPC)
1223 ret = 0;
1224 goto sendpage_end;
1225 }
1226 }
1227 }
1228 continue;
1229 wait_for_sndbuf:
1230 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1231 wait_for_memory:
1232 ret = sk_stream_wait_memory(sk, &timeo);
1233 if (ret) {
1234 if (ctx->open_rec)
1235 tls_trim_both_msgs(sk, msg_pl->sg.size);
1236 goto sendpage_end;
1237 }
1238
1239 if (ctx->open_rec)
1240 goto alloc_payload;
1241 }
1242
1243 if (num_async) {
1244 /* Transmit if any encryptions have completed */
1245 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1246 cancel_delayed_work(&ctx->tx_work.work);
1247 tls_tx_records(sk, flags);
1248 }
1249 }
1250 sendpage_end:
1251 ret = sk_stream_error(sk, flags, ret);
1252 return copied > 0 ? copied : ret;
1253 }
1254
tls_sw_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)1255 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1256 int offset, size_t size, int flags)
1257 {
1258 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1259 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1260 MSG_NO_SHARED_FRAGS))
1261 return -EOPNOTSUPP;
1262
1263 return tls_sw_do_sendpage(sk, page, offset, size, flags);
1264 }
1265
tls_sw_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1266 int tls_sw_sendpage(struct sock *sk, struct page *page,
1267 int offset, size_t size, int flags)
1268 {
1269 struct tls_context *tls_ctx = tls_get_ctx(sk);
1270 int ret;
1271
1272 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1273 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1274 return -EOPNOTSUPP;
1275
1276 mutex_lock(&tls_ctx->tx_lock);
1277 lock_sock(sk);
1278 ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1279 release_sock(sk);
1280 mutex_unlock(&tls_ctx->tx_lock);
1281 return ret;
1282 }
1283
tls_wait_data(struct sock * sk,struct sk_psock * psock,int flags,long timeo,int * err)1284 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1285 int flags, long timeo, int *err)
1286 {
1287 struct tls_context *tls_ctx = tls_get_ctx(sk);
1288 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1289 struct sk_buff *skb;
1290 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1291
1292 while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1293 if (sk->sk_err) {
1294 *err = sock_error(sk);
1295 return NULL;
1296 }
1297
1298 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1299 __strp_unpause(&ctx->strp);
1300 if (ctx->recv_pkt)
1301 return ctx->recv_pkt;
1302 }
1303
1304 if (sk->sk_shutdown & RCV_SHUTDOWN)
1305 return NULL;
1306
1307 if (sock_flag(sk, SOCK_DONE))
1308 return NULL;
1309
1310 if ((flags & MSG_DONTWAIT) || !timeo) {
1311 *err = -EAGAIN;
1312 return NULL;
1313 }
1314
1315 add_wait_queue(sk_sleep(sk), &wait);
1316 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1317 sk_wait_event(sk, &timeo,
1318 ctx->recv_pkt != skb ||
1319 !sk_psock_queue_empty(psock),
1320 &wait);
1321 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1322 remove_wait_queue(sk_sleep(sk), &wait);
1323
1324 /* Handle signals */
1325 if (signal_pending(current)) {
1326 *err = sock_intr_errno(timeo);
1327 return NULL;
1328 }
1329 }
1330
1331 return skb;
1332 }
1333
tls_setup_from_iter(struct sock * sk,struct iov_iter * from,int length,int * pages_used,unsigned int * size_used,struct scatterlist * to,int to_max_pages)1334 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1335 int length, int *pages_used,
1336 unsigned int *size_used,
1337 struct scatterlist *to,
1338 int to_max_pages)
1339 {
1340 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1341 struct page *pages[MAX_SKB_FRAGS];
1342 unsigned int size = *size_used;
1343 ssize_t copied, use;
1344 size_t offset;
1345
1346 while (length > 0) {
1347 i = 0;
1348 maxpages = to_max_pages - num_elem;
1349 if (maxpages == 0) {
1350 rc = -EFAULT;
1351 goto out;
1352 }
1353 copied = iov_iter_get_pages(from, pages,
1354 length,
1355 maxpages, &offset);
1356 if (copied <= 0) {
1357 rc = -EFAULT;
1358 goto out;
1359 }
1360
1361 iov_iter_advance(from, copied);
1362
1363 length -= copied;
1364 size += copied;
1365 while (copied) {
1366 use = min_t(int, copied, PAGE_SIZE - offset);
1367
1368 sg_set_page(&to[num_elem],
1369 pages[i], use, offset);
1370 sg_unmark_end(&to[num_elem]);
1371 /* We do not uncharge memory from this API */
1372
1373 offset = 0;
1374 copied -= use;
1375
1376 i++;
1377 num_elem++;
1378 }
1379 }
1380 /* Mark the end in the last sg entry if newly added */
1381 if (num_elem > *pages_used)
1382 sg_mark_end(&to[num_elem - 1]);
1383 out:
1384 if (rc)
1385 iov_iter_revert(from, size - *size_used);
1386 *size_used = size;
1387 *pages_used = num_elem;
1388
1389 return rc;
1390 }
1391
1392 /* This function decrypts the input skb into either out_iov or in out_sg
1393 * or in skb buffers itself. The input parameter 'zc' indicates if
1394 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1395 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1396 * NULL, then the decryption happens inside skb buffers itself, i.e.
1397 * zero-copy gets disabled and 'zc' is updated.
1398 */
1399
decrypt_internal(struct sock * sk,struct sk_buff * skb,struct iov_iter * out_iov,struct scatterlist * out_sg,int * chunk,bool * zc,bool async)1400 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1401 struct iov_iter *out_iov,
1402 struct scatterlist *out_sg,
1403 int *chunk, bool *zc, bool async)
1404 {
1405 struct tls_context *tls_ctx = tls_get_ctx(sk);
1406 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1407 struct tls_prot_info *prot = &tls_ctx->prot_info;
1408 struct strp_msg *rxm = strp_msg(skb);
1409 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1410 struct aead_request *aead_req;
1411 struct sk_buff *unused;
1412 u8 *aad, *iv, *mem = NULL;
1413 struct scatterlist *sgin = NULL;
1414 struct scatterlist *sgout = NULL;
1415 const int data_len = rxm->full_len - prot->overhead_size +
1416 prot->tail_size;
1417 int iv_offset = 0;
1418
1419 if (*zc && (out_iov || out_sg)) {
1420 if (out_iov)
1421 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1422 else
1423 n_sgout = sg_nents(out_sg);
1424 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1425 rxm->full_len - prot->prepend_size);
1426 } else {
1427 n_sgout = 0;
1428 *zc = false;
1429 n_sgin = skb_cow_data(skb, 0, &unused);
1430 }
1431
1432 if (n_sgin < 1)
1433 return -EBADMSG;
1434
1435 /* Increment to accommodate AAD */
1436 n_sgin = n_sgin + 1;
1437
1438 nsg = n_sgin + n_sgout;
1439
1440 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1441 mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1442 mem_size = mem_size + prot->aad_size;
1443 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1444
1445 /* Allocate a single block of memory which contains
1446 * aead_req || sgin[] || sgout[] || aad || iv.
1447 * This order achieves correct alignment for aead_req, sgin, sgout.
1448 */
1449 mem = kmalloc(mem_size, sk->sk_allocation);
1450 if (!mem)
1451 return -ENOMEM;
1452
1453 /* Segment the allocated memory */
1454 aead_req = (struct aead_request *)mem;
1455 sgin = (struct scatterlist *)(mem + aead_size);
1456 sgout = sgin + n_sgin;
1457 aad = (u8 *)(sgout + n_sgout);
1458 iv = aad + prot->aad_size;
1459
1460 /* For CCM based ciphers, first byte of nonce+iv is always '2' */
1461 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1462 iv[0] = 2;
1463 iv_offset = 1;
1464 }
1465
1466 /* Prepare IV */
1467 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1468 iv + iv_offset + prot->salt_size,
1469 prot->iv_size);
1470 if (err < 0) {
1471 kfree(mem);
1472 return err;
1473 }
1474 if (prot->version == TLS_1_3_VERSION)
1475 memcpy(iv + iv_offset, tls_ctx->rx.iv,
1476 crypto_aead_ivsize(ctx->aead_recv));
1477 else
1478 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1479
1480 xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq);
1481
1482 /* Prepare AAD */
1483 tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1484 prot->tail_size,
1485 tls_ctx->rx.rec_seq, prot->rec_seq_size,
1486 ctx->control, prot->version);
1487
1488 /* Prepare sgin */
1489 sg_init_table(sgin, n_sgin);
1490 sg_set_buf(&sgin[0], aad, prot->aad_size);
1491 err = skb_to_sgvec(skb, &sgin[1],
1492 rxm->offset + prot->prepend_size,
1493 rxm->full_len - prot->prepend_size);
1494 if (err < 0) {
1495 kfree(mem);
1496 return err;
1497 }
1498
1499 if (n_sgout) {
1500 if (out_iov) {
1501 sg_init_table(sgout, n_sgout);
1502 sg_set_buf(&sgout[0], aad, prot->aad_size);
1503
1504 *chunk = 0;
1505 err = tls_setup_from_iter(sk, out_iov, data_len,
1506 &pages, chunk, &sgout[1],
1507 (n_sgout - 1));
1508 if (err < 0)
1509 goto fallback_to_reg_recv;
1510 } else if (out_sg) {
1511 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1512 } else {
1513 goto fallback_to_reg_recv;
1514 }
1515 } else {
1516 fallback_to_reg_recv:
1517 sgout = sgin;
1518 pages = 0;
1519 *chunk = data_len;
1520 *zc = false;
1521 }
1522
1523 /* Prepare and submit AEAD request */
1524 err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1525 data_len, aead_req, async);
1526 if (err == -EINPROGRESS)
1527 return err;
1528
1529 /* Release the pages in case iov was mapped to pages */
1530 for (; pages > 0; pages--)
1531 put_page(sg_page(&sgout[pages]));
1532
1533 kfree(mem);
1534 return err;
1535 }
1536
decrypt_skb_update(struct sock * sk,struct sk_buff * skb,struct iov_iter * dest,int * chunk,bool * zc,bool async)1537 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1538 struct iov_iter *dest, int *chunk, bool *zc,
1539 bool async)
1540 {
1541 struct tls_context *tls_ctx = tls_get_ctx(sk);
1542 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1543 struct tls_prot_info *prot = &tls_ctx->prot_info;
1544 struct strp_msg *rxm = strp_msg(skb);
1545 int pad, err = 0;
1546
1547 if (!ctx->decrypted) {
1548 if (tls_ctx->rx_conf == TLS_HW) {
1549 err = tls_device_decrypted(sk, tls_ctx, skb, rxm);
1550 if (err < 0)
1551 return err;
1552 }
1553
1554 /* Still not decrypted after tls_device */
1555 if (!ctx->decrypted) {
1556 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1557 async);
1558 if (err < 0) {
1559 if (err == -EINPROGRESS)
1560 tls_advance_record_sn(sk, prot,
1561 &tls_ctx->rx);
1562 else if (err == -EBADMSG)
1563 TLS_INC_STATS(sock_net(sk),
1564 LINUX_MIB_TLSDECRYPTERROR);
1565 return err;
1566 }
1567 } else {
1568 *zc = false;
1569 }
1570
1571 pad = padding_length(ctx, prot, skb);
1572 if (pad < 0)
1573 return pad;
1574
1575 rxm->full_len -= pad;
1576 rxm->offset += prot->prepend_size;
1577 rxm->full_len -= prot->overhead_size;
1578 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1579 ctx->decrypted = 1;
1580 ctx->saved_data_ready(sk);
1581 } else {
1582 *zc = false;
1583 }
1584
1585 return err;
1586 }
1587
decrypt_skb(struct sock * sk,struct sk_buff * skb,struct scatterlist * sgout)1588 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1589 struct scatterlist *sgout)
1590 {
1591 bool zc = true;
1592 int chunk;
1593
1594 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1595 }
1596
tls_sw_advance_skb(struct sock * sk,struct sk_buff * skb,unsigned int len)1597 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1598 unsigned int len)
1599 {
1600 struct tls_context *tls_ctx = tls_get_ctx(sk);
1601 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1602
1603 if (skb) {
1604 struct strp_msg *rxm = strp_msg(skb);
1605
1606 if (len < rxm->full_len) {
1607 rxm->offset += len;
1608 rxm->full_len -= len;
1609 return false;
1610 }
1611 consume_skb(skb);
1612 }
1613
1614 /* Finished with message */
1615 ctx->recv_pkt = NULL;
1616 __strp_unpause(&ctx->strp);
1617
1618 return true;
1619 }
1620
1621 /* This function traverses the rx_list in tls receive context to copies the
1622 * decrypted records into the buffer provided by caller zero copy is not
1623 * true. Further, the records are removed from the rx_list if it is not a peek
1624 * case and the record has been consumed completely.
1625 */
process_rx_list(struct tls_sw_context_rx * ctx,struct msghdr * msg,u8 * control,bool * cmsg,size_t skip,size_t len,bool zc,bool is_peek)1626 static int process_rx_list(struct tls_sw_context_rx *ctx,
1627 struct msghdr *msg,
1628 u8 *control,
1629 bool *cmsg,
1630 size_t skip,
1631 size_t len,
1632 bool zc,
1633 bool is_peek)
1634 {
1635 struct sk_buff *skb = skb_peek(&ctx->rx_list);
1636 u8 ctrl = *control;
1637 u8 msgc = *cmsg;
1638 struct tls_msg *tlm;
1639 ssize_t copied = 0;
1640
1641 /* Set the record type in 'control' if caller didn't pass it */
1642 if (!ctrl && skb) {
1643 tlm = tls_msg(skb);
1644 ctrl = tlm->control;
1645 }
1646
1647 while (skip && skb) {
1648 struct strp_msg *rxm = strp_msg(skb);
1649 tlm = tls_msg(skb);
1650
1651 /* Cannot process a record of different type */
1652 if (ctrl != tlm->control)
1653 return 0;
1654
1655 if (skip < rxm->full_len)
1656 break;
1657
1658 skip = skip - rxm->full_len;
1659 skb = skb_peek_next(skb, &ctx->rx_list);
1660 }
1661
1662 while (len && skb) {
1663 struct sk_buff *next_skb;
1664 struct strp_msg *rxm = strp_msg(skb);
1665 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1666
1667 tlm = tls_msg(skb);
1668
1669 /* Cannot process a record of different type */
1670 if (ctrl != tlm->control)
1671 return 0;
1672
1673 /* Set record type if not already done. For a non-data record,
1674 * do not proceed if record type could not be copied.
1675 */
1676 if (!msgc) {
1677 int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1678 sizeof(ctrl), &ctrl);
1679 msgc = true;
1680 if (ctrl != TLS_RECORD_TYPE_DATA) {
1681 if (cerr || msg->msg_flags & MSG_CTRUNC)
1682 return -EIO;
1683
1684 *cmsg = msgc;
1685 }
1686 }
1687
1688 if (!zc || (rxm->full_len - skip) > len) {
1689 int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1690 msg, chunk);
1691 if (err < 0)
1692 return err;
1693 }
1694
1695 len = len - chunk;
1696 copied = copied + chunk;
1697
1698 /* Consume the data from record if it is non-peek case*/
1699 if (!is_peek) {
1700 rxm->offset = rxm->offset + chunk;
1701 rxm->full_len = rxm->full_len - chunk;
1702
1703 /* Return if there is unconsumed data in the record */
1704 if (rxm->full_len - skip)
1705 break;
1706 }
1707
1708 /* The remaining skip-bytes must lie in 1st record in rx_list.
1709 * So from the 2nd record, 'skip' should be 0.
1710 */
1711 skip = 0;
1712
1713 if (msg)
1714 msg->msg_flags |= MSG_EOR;
1715
1716 next_skb = skb_peek_next(skb, &ctx->rx_list);
1717
1718 if (!is_peek) {
1719 skb_unlink(skb, &ctx->rx_list);
1720 consume_skb(skb);
1721 }
1722
1723 skb = next_skb;
1724 }
1725
1726 *control = ctrl;
1727 return copied;
1728 }
1729
tls_sw_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)1730 int tls_sw_recvmsg(struct sock *sk,
1731 struct msghdr *msg,
1732 size_t len,
1733 int nonblock,
1734 int flags,
1735 int *addr_len)
1736 {
1737 struct tls_context *tls_ctx = tls_get_ctx(sk);
1738 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1739 struct tls_prot_info *prot = &tls_ctx->prot_info;
1740 struct sk_psock *psock;
1741 unsigned char control = 0;
1742 ssize_t decrypted = 0;
1743 struct strp_msg *rxm;
1744 struct tls_msg *tlm;
1745 struct sk_buff *skb;
1746 ssize_t copied = 0;
1747 bool cmsg = false;
1748 int target, err = 0;
1749 long timeo;
1750 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1751 bool is_peek = flags & MSG_PEEK;
1752 bool bpf_strp_enabled;
1753 int num_async = 0;
1754 int pending;
1755
1756 flags |= nonblock;
1757
1758 if (unlikely(flags & MSG_ERRQUEUE))
1759 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1760
1761 psock = sk_psock_get(sk);
1762 lock_sock(sk);
1763 bpf_strp_enabled = sk_psock_strp_enabled(psock);
1764
1765 /* Process pending decrypted records. It must be non-zero-copy */
1766 err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1767 is_peek);
1768 if (err < 0) {
1769 tls_err_abort(sk, err);
1770 goto end;
1771 } else {
1772 copied = err;
1773 }
1774
1775 if (len <= copied)
1776 goto recv_end;
1777
1778 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1779 len = len - copied;
1780 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1781
1782 while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1783 bool retain_skb = false;
1784 bool zc = false;
1785 int to_decrypt;
1786 int chunk = 0;
1787 bool async_capable;
1788 bool async = false;
1789
1790 skb = tls_wait_data(sk, psock, flags, timeo, &err);
1791 if (!skb) {
1792 if (psock) {
1793 int ret = __tcp_bpf_recvmsg(sk, psock,
1794 msg, len, flags);
1795
1796 if (ret > 0) {
1797 decrypted += ret;
1798 len -= ret;
1799 continue;
1800 }
1801 }
1802 goto recv_end;
1803 } else {
1804 tlm = tls_msg(skb);
1805 if (prot->version == TLS_1_3_VERSION)
1806 tlm->control = 0;
1807 else
1808 tlm->control = ctx->control;
1809 }
1810
1811 rxm = strp_msg(skb);
1812
1813 to_decrypt = rxm->full_len - prot->overhead_size;
1814
1815 if (to_decrypt <= len && !is_kvec && !is_peek &&
1816 ctx->control == TLS_RECORD_TYPE_DATA &&
1817 prot->version != TLS_1_3_VERSION &&
1818 !bpf_strp_enabled)
1819 zc = true;
1820
1821 /* Do not use async mode if record is non-data */
1822 if (ctx->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1823 async_capable = ctx->async_capable;
1824 else
1825 async_capable = false;
1826
1827 err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1828 &chunk, &zc, async_capable);
1829 if (err < 0 && err != -EINPROGRESS) {
1830 tls_err_abort(sk, EBADMSG);
1831 goto recv_end;
1832 }
1833
1834 if (err == -EINPROGRESS) {
1835 async = true;
1836 num_async++;
1837 } else if (prot->version == TLS_1_3_VERSION) {
1838 tlm->control = ctx->control;
1839 }
1840
1841 /* If the type of records being processed is not known yet,
1842 * set it to record type just dequeued. If it is already known,
1843 * but does not match the record type just dequeued, go to end.
1844 * We always get record type here since for tls1.2, record type
1845 * is known just after record is dequeued from stream parser.
1846 * For tls1.3, we disable async.
1847 */
1848
1849 if (!control)
1850 control = tlm->control;
1851 else if (control != tlm->control)
1852 goto recv_end;
1853
1854 if (!cmsg) {
1855 int cerr;
1856
1857 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1858 sizeof(control), &control);
1859 cmsg = true;
1860 if (control != TLS_RECORD_TYPE_DATA) {
1861 if (cerr || msg->msg_flags & MSG_CTRUNC) {
1862 err = -EIO;
1863 goto recv_end;
1864 }
1865 }
1866 }
1867
1868 if (async)
1869 goto pick_next_record;
1870
1871 if (!zc) {
1872 if (bpf_strp_enabled) {
1873 err = sk_psock_tls_strp_read(psock, skb);
1874 if (err != __SK_PASS) {
1875 rxm->offset = rxm->offset + rxm->full_len;
1876 rxm->full_len = 0;
1877 if (err == __SK_DROP)
1878 consume_skb(skb);
1879 ctx->recv_pkt = NULL;
1880 __strp_unpause(&ctx->strp);
1881 continue;
1882 }
1883 }
1884
1885 if (rxm->full_len > len) {
1886 retain_skb = true;
1887 chunk = len;
1888 } else {
1889 chunk = rxm->full_len;
1890 }
1891
1892 err = skb_copy_datagram_msg(skb, rxm->offset,
1893 msg, chunk);
1894 if (err < 0)
1895 goto recv_end;
1896
1897 if (!is_peek) {
1898 rxm->offset = rxm->offset + chunk;
1899 rxm->full_len = rxm->full_len - chunk;
1900 }
1901 }
1902
1903 pick_next_record:
1904 if (chunk > len)
1905 chunk = len;
1906
1907 decrypted += chunk;
1908 len -= chunk;
1909
1910 /* For async or peek case, queue the current skb */
1911 if (async || is_peek || retain_skb) {
1912 skb_queue_tail(&ctx->rx_list, skb);
1913 skb = NULL;
1914 }
1915
1916 if (tls_sw_advance_skb(sk, skb, chunk)) {
1917 /* Return full control message to
1918 * userspace before trying to parse
1919 * another message type
1920 */
1921 msg->msg_flags |= MSG_EOR;
1922 if (control != TLS_RECORD_TYPE_DATA)
1923 goto recv_end;
1924 } else {
1925 break;
1926 }
1927 }
1928
1929 recv_end:
1930 if (num_async) {
1931 /* Wait for all previously submitted records to be decrypted */
1932 spin_lock_bh(&ctx->decrypt_compl_lock);
1933 ctx->async_notify = true;
1934 pending = atomic_read(&ctx->decrypt_pending);
1935 spin_unlock_bh(&ctx->decrypt_compl_lock);
1936 if (pending) {
1937 err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1938 if (err) {
1939 /* one of async decrypt failed */
1940 tls_err_abort(sk, err);
1941 copied = 0;
1942 decrypted = 0;
1943 goto end;
1944 }
1945 } else {
1946 reinit_completion(&ctx->async_wait.completion);
1947 }
1948
1949 /* There can be no concurrent accesses, since we have no
1950 * pending decrypt operations
1951 */
1952 WRITE_ONCE(ctx->async_notify, false);
1953
1954 /* Drain records from the rx_list & copy if required */
1955 if (is_peek || is_kvec)
1956 err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1957 decrypted, false, is_peek);
1958 else
1959 err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1960 decrypted, true, is_peek);
1961 if (err < 0) {
1962 tls_err_abort(sk, err);
1963 copied = 0;
1964 goto end;
1965 }
1966 }
1967
1968 copied += decrypted;
1969
1970 end:
1971 release_sock(sk);
1972 if (psock)
1973 sk_psock_put(sk, psock);
1974 return copied ? : err;
1975 }
1976
tls_sw_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1977 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
1978 struct pipe_inode_info *pipe,
1979 size_t len, unsigned int flags)
1980 {
1981 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1982 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1983 struct strp_msg *rxm = NULL;
1984 struct sock *sk = sock->sk;
1985 struct sk_buff *skb;
1986 ssize_t copied = 0;
1987 int err = 0;
1988 long timeo;
1989 int chunk;
1990 bool zc = false;
1991
1992 lock_sock(sk);
1993
1994 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1995
1996 skb = tls_wait_data(sk, NULL, flags, timeo, &err);
1997 if (!skb)
1998 goto splice_read_end;
1999
2000 if (!ctx->decrypted) {
2001 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
2002
2003 /* splice does not support reading control messages */
2004 if (ctx->control != TLS_RECORD_TYPE_DATA) {
2005 err = -EINVAL;
2006 goto splice_read_end;
2007 }
2008
2009 if (err < 0) {
2010 tls_err_abort(sk, EBADMSG);
2011 goto splice_read_end;
2012 }
2013 ctx->decrypted = 1;
2014 }
2015 rxm = strp_msg(skb);
2016
2017 chunk = min_t(unsigned int, rxm->full_len, len);
2018 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2019 if (copied < 0)
2020 goto splice_read_end;
2021
2022 if (likely(!(flags & MSG_PEEK)))
2023 tls_sw_advance_skb(sk, skb, copied);
2024
2025 splice_read_end:
2026 release_sock(sk);
2027 return copied ? : err;
2028 }
2029
tls_sw_stream_read(const struct sock * sk)2030 bool tls_sw_stream_read(const struct sock *sk)
2031 {
2032 struct tls_context *tls_ctx = tls_get_ctx(sk);
2033 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2034 bool ingress_empty = true;
2035 struct sk_psock *psock;
2036
2037 rcu_read_lock();
2038 psock = sk_psock(sk);
2039 if (psock)
2040 ingress_empty = list_empty(&psock->ingress_msg);
2041 rcu_read_unlock();
2042
2043 return !ingress_empty || ctx->recv_pkt ||
2044 !skb_queue_empty(&ctx->rx_list);
2045 }
2046
tls_read_size(struct strparser * strp,struct sk_buff * skb)2047 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2048 {
2049 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2050 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2051 struct tls_prot_info *prot = &tls_ctx->prot_info;
2052 char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2053 struct strp_msg *rxm = strp_msg(skb);
2054 size_t cipher_overhead;
2055 size_t data_len = 0;
2056 int ret;
2057
2058 /* Verify that we have a full TLS header, or wait for more data */
2059 if (rxm->offset + prot->prepend_size > skb->len)
2060 return 0;
2061
2062 /* Sanity-check size of on-stack buffer. */
2063 if (WARN_ON(prot->prepend_size > sizeof(header))) {
2064 ret = -EINVAL;
2065 goto read_failure;
2066 }
2067
2068 /* Linearize header to local buffer */
2069 ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2070
2071 if (ret < 0)
2072 goto read_failure;
2073
2074 ctx->control = header[0];
2075
2076 data_len = ((header[4] & 0xFF) | (header[3] << 8));
2077
2078 cipher_overhead = prot->tag_size;
2079 if (prot->version != TLS_1_3_VERSION)
2080 cipher_overhead += prot->iv_size;
2081
2082 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2083 prot->tail_size) {
2084 ret = -EMSGSIZE;
2085 goto read_failure;
2086 }
2087 if (data_len < cipher_overhead) {
2088 ret = -EBADMSG;
2089 goto read_failure;
2090 }
2091
2092 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2093 if (header[1] != TLS_1_2_VERSION_MINOR ||
2094 header[2] != TLS_1_2_VERSION_MAJOR) {
2095 ret = -EINVAL;
2096 goto read_failure;
2097 }
2098
2099 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2100 TCP_SKB_CB(skb)->seq + rxm->offset);
2101 return data_len + TLS_HEADER_SIZE;
2102
2103 read_failure:
2104 tls_err_abort(strp->sk, ret);
2105
2106 return ret;
2107 }
2108
tls_queue(struct strparser * strp,struct sk_buff * skb)2109 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2110 {
2111 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2112 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2113
2114 ctx->decrypted = 0;
2115
2116 ctx->recv_pkt = skb;
2117 strp_pause(strp);
2118
2119 ctx->saved_data_ready(strp->sk);
2120 }
2121
tls_data_ready(struct sock * sk)2122 static void tls_data_ready(struct sock *sk)
2123 {
2124 struct tls_context *tls_ctx = tls_get_ctx(sk);
2125 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2126 struct sk_psock *psock;
2127
2128 strp_data_ready(&ctx->strp);
2129
2130 psock = sk_psock_get(sk);
2131 if (psock) {
2132 if (!list_empty(&psock->ingress_msg))
2133 ctx->saved_data_ready(sk);
2134 sk_psock_put(sk, psock);
2135 }
2136 }
2137
tls_sw_cancel_work_tx(struct tls_context * tls_ctx)2138 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2139 {
2140 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2141
2142 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2143 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2144 cancel_delayed_work_sync(&ctx->tx_work.work);
2145 }
2146
tls_sw_release_resources_tx(struct sock * sk)2147 void tls_sw_release_resources_tx(struct sock *sk)
2148 {
2149 struct tls_context *tls_ctx = tls_get_ctx(sk);
2150 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2151 struct tls_rec *rec, *tmp;
2152 int pending;
2153
2154 /* Wait for any pending async encryptions to complete */
2155 spin_lock_bh(&ctx->encrypt_compl_lock);
2156 ctx->async_notify = true;
2157 pending = atomic_read(&ctx->encrypt_pending);
2158 spin_unlock_bh(&ctx->encrypt_compl_lock);
2159
2160 if (pending)
2161 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2162
2163 tls_tx_records(sk, -1);
2164
2165 /* Free up un-sent records in tx_list. First, free
2166 * the partially sent record if any at head of tx_list.
2167 */
2168 if (tls_ctx->partially_sent_record) {
2169 tls_free_partial_record(sk, tls_ctx);
2170 rec = list_first_entry(&ctx->tx_list,
2171 struct tls_rec, list);
2172 list_del(&rec->list);
2173 sk_msg_free(sk, &rec->msg_plaintext);
2174 kfree(rec);
2175 }
2176
2177 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2178 list_del(&rec->list);
2179 sk_msg_free(sk, &rec->msg_encrypted);
2180 sk_msg_free(sk, &rec->msg_plaintext);
2181 kfree(rec);
2182 }
2183
2184 crypto_free_aead(ctx->aead_send);
2185 tls_free_open_rec(sk);
2186 }
2187
tls_sw_free_ctx_tx(struct tls_context * tls_ctx)2188 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2189 {
2190 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2191
2192 kfree(ctx);
2193 }
2194
tls_sw_release_resources_rx(struct sock * sk)2195 void tls_sw_release_resources_rx(struct sock *sk)
2196 {
2197 struct tls_context *tls_ctx = tls_get_ctx(sk);
2198 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2199
2200 kfree(tls_ctx->rx.rec_seq);
2201 kfree(tls_ctx->rx.iv);
2202
2203 if (ctx->aead_recv) {
2204 kfree_skb(ctx->recv_pkt);
2205 ctx->recv_pkt = NULL;
2206 skb_queue_purge(&ctx->rx_list);
2207 crypto_free_aead(ctx->aead_recv);
2208 strp_stop(&ctx->strp);
2209 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2210 * we still want to strp_stop(), but sk->sk_data_ready was
2211 * never swapped.
2212 */
2213 if (ctx->saved_data_ready) {
2214 write_lock_bh(&sk->sk_callback_lock);
2215 sk->sk_data_ready = ctx->saved_data_ready;
2216 write_unlock_bh(&sk->sk_callback_lock);
2217 }
2218 }
2219 }
2220
tls_sw_strparser_done(struct tls_context * tls_ctx)2221 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2222 {
2223 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2224
2225 strp_done(&ctx->strp);
2226 }
2227
tls_sw_free_ctx_rx(struct tls_context * tls_ctx)2228 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2229 {
2230 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2231
2232 kfree(ctx);
2233 }
2234
tls_sw_free_resources_rx(struct sock * sk)2235 void tls_sw_free_resources_rx(struct sock *sk)
2236 {
2237 struct tls_context *tls_ctx = tls_get_ctx(sk);
2238
2239 tls_sw_release_resources_rx(sk);
2240 tls_sw_free_ctx_rx(tls_ctx);
2241 }
2242
2243 /* The work handler to transmitt the encrypted records in tx_list */
tx_work_handler(struct work_struct * work)2244 static void tx_work_handler(struct work_struct *work)
2245 {
2246 struct delayed_work *delayed_work = to_delayed_work(work);
2247 struct tx_work *tx_work = container_of(delayed_work,
2248 struct tx_work, work);
2249 struct sock *sk = tx_work->sk;
2250 struct tls_context *tls_ctx = tls_get_ctx(sk);
2251 struct tls_sw_context_tx *ctx;
2252
2253 if (unlikely(!tls_ctx))
2254 return;
2255
2256 ctx = tls_sw_ctx_tx(tls_ctx);
2257 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2258 return;
2259
2260 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2261 return;
2262 mutex_lock(&tls_ctx->tx_lock);
2263 lock_sock(sk);
2264 tls_tx_records(sk, -1);
2265 release_sock(sk);
2266 mutex_unlock(&tls_ctx->tx_lock);
2267 }
2268
tls_sw_write_space(struct sock * sk,struct tls_context * ctx)2269 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2270 {
2271 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2272
2273 /* Schedule the transmission if tx list is ready */
2274 if (is_tx_ready(tx_ctx) &&
2275 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2276 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2277 }
2278
tls_sw_strparser_arm(struct sock * sk,struct tls_context * tls_ctx)2279 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2280 {
2281 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2282
2283 write_lock_bh(&sk->sk_callback_lock);
2284 rx_ctx->saved_data_ready = sk->sk_data_ready;
2285 sk->sk_data_ready = tls_data_ready;
2286 write_unlock_bh(&sk->sk_callback_lock);
2287
2288 strp_check_rcv(&rx_ctx->strp);
2289 }
2290
tls_set_sw_offload(struct sock * sk,struct tls_context * ctx,int tx)2291 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2292 {
2293 struct tls_context *tls_ctx = tls_get_ctx(sk);
2294 struct tls_prot_info *prot = &tls_ctx->prot_info;
2295 struct tls_crypto_info *crypto_info;
2296 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2297 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2298 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2299 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2300 struct tls_sw_context_rx *sw_ctx_rx = NULL;
2301 struct cipher_context *cctx;
2302 struct crypto_aead **aead;
2303 struct strp_callbacks cb;
2304 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2305 struct crypto_tfm *tfm;
2306 char *iv, *rec_seq, *key, *salt, *cipher_name;
2307 size_t keysize;
2308 int rc = 0;
2309
2310 if (!ctx) {
2311 rc = -EINVAL;
2312 goto out;
2313 }
2314
2315 if (tx) {
2316 if (!ctx->priv_ctx_tx) {
2317 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2318 if (!sw_ctx_tx) {
2319 rc = -ENOMEM;
2320 goto out;
2321 }
2322 ctx->priv_ctx_tx = sw_ctx_tx;
2323 } else {
2324 sw_ctx_tx =
2325 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2326 }
2327 } else {
2328 if (!ctx->priv_ctx_rx) {
2329 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2330 if (!sw_ctx_rx) {
2331 rc = -ENOMEM;
2332 goto out;
2333 }
2334 ctx->priv_ctx_rx = sw_ctx_rx;
2335 } else {
2336 sw_ctx_rx =
2337 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2338 }
2339 }
2340
2341 if (tx) {
2342 crypto_init_wait(&sw_ctx_tx->async_wait);
2343 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2344 crypto_info = &ctx->crypto_send.info;
2345 cctx = &ctx->tx;
2346 aead = &sw_ctx_tx->aead_send;
2347 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2348 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2349 sw_ctx_tx->tx_work.sk = sk;
2350 } else {
2351 crypto_init_wait(&sw_ctx_rx->async_wait);
2352 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2353 crypto_info = &ctx->crypto_recv.info;
2354 cctx = &ctx->rx;
2355 skb_queue_head_init(&sw_ctx_rx->rx_list);
2356 aead = &sw_ctx_rx->aead_recv;
2357 }
2358
2359 switch (crypto_info->cipher_type) {
2360 case TLS_CIPHER_AES_GCM_128: {
2361 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2362 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2363 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2364 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2365 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2366 rec_seq =
2367 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2368 gcm_128_info =
2369 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2370 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2371 key = gcm_128_info->key;
2372 salt = gcm_128_info->salt;
2373 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2374 cipher_name = "gcm(aes)";
2375 break;
2376 }
2377 case TLS_CIPHER_AES_GCM_256: {
2378 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2379 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2380 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2381 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2382 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2383 rec_seq =
2384 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2385 gcm_256_info =
2386 (struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2387 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2388 key = gcm_256_info->key;
2389 salt = gcm_256_info->salt;
2390 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2391 cipher_name = "gcm(aes)";
2392 break;
2393 }
2394 case TLS_CIPHER_AES_CCM_128: {
2395 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2396 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2397 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2398 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2399 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2400 rec_seq =
2401 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2402 ccm_128_info =
2403 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2404 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2405 key = ccm_128_info->key;
2406 salt = ccm_128_info->salt;
2407 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2408 cipher_name = "ccm(aes)";
2409 break;
2410 }
2411 default:
2412 rc = -EINVAL;
2413 goto free_priv;
2414 }
2415
2416 /* Sanity-check the sizes for stack allocations. */
2417 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2418 rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
2419 rc = -EINVAL;
2420 goto free_priv;
2421 }
2422
2423 if (crypto_info->version == TLS_1_3_VERSION) {
2424 nonce_size = 0;
2425 prot->aad_size = TLS_HEADER_SIZE;
2426 prot->tail_size = 1;
2427 } else {
2428 prot->aad_size = TLS_AAD_SPACE_SIZE;
2429 prot->tail_size = 0;
2430 }
2431
2432 prot->version = crypto_info->version;
2433 prot->cipher_type = crypto_info->cipher_type;
2434 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2435 prot->tag_size = tag_size;
2436 prot->overhead_size = prot->prepend_size +
2437 prot->tag_size + prot->tail_size;
2438 prot->iv_size = iv_size;
2439 prot->salt_size = salt_size;
2440 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2441 if (!cctx->iv) {
2442 rc = -ENOMEM;
2443 goto free_priv;
2444 }
2445 /* Note: 128 & 256 bit salt are the same size */
2446 prot->rec_seq_size = rec_seq_size;
2447 memcpy(cctx->iv, salt, salt_size);
2448 memcpy(cctx->iv + salt_size, iv, iv_size);
2449 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2450 if (!cctx->rec_seq) {
2451 rc = -ENOMEM;
2452 goto free_iv;
2453 }
2454
2455 if (!*aead) {
2456 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2457 if (IS_ERR(*aead)) {
2458 rc = PTR_ERR(*aead);
2459 *aead = NULL;
2460 goto free_rec_seq;
2461 }
2462 }
2463
2464 ctx->push_pending_record = tls_sw_push_pending_record;
2465
2466 rc = crypto_aead_setkey(*aead, key, keysize);
2467
2468 if (rc)
2469 goto free_aead;
2470
2471 rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2472 if (rc)
2473 goto free_aead;
2474
2475 if (sw_ctx_rx) {
2476 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2477
2478 if (crypto_info->version == TLS_1_3_VERSION)
2479 sw_ctx_rx->async_capable = 0;
2480 else
2481 sw_ctx_rx->async_capable =
2482 !!(tfm->__crt_alg->cra_flags &
2483 CRYPTO_ALG_ASYNC);
2484
2485 /* Set up strparser */
2486 memset(&cb, 0, sizeof(cb));
2487 cb.rcv_msg = tls_queue;
2488 cb.parse_msg = tls_read_size;
2489
2490 strp_init(&sw_ctx_rx->strp, sk, &cb);
2491 }
2492
2493 goto out;
2494
2495 free_aead:
2496 crypto_free_aead(*aead);
2497 *aead = NULL;
2498 free_rec_seq:
2499 kfree(cctx->rec_seq);
2500 cctx->rec_seq = NULL;
2501 free_iv:
2502 kfree(cctx->iv);
2503 cctx->iv = NULL;
2504 free_priv:
2505 if (tx) {
2506 kfree(ctx->priv_ctx_tx);
2507 ctx->priv_ctx_tx = NULL;
2508 } else {
2509 kfree(ctx->priv_ctx_rx);
2510 ctx->priv_ctx_rx = NULL;
2511 }
2512 out:
2513 return rc;
2514 }
2515