1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
36
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/mutex.h>
43 #include <linux/netdevice.h>
44 #include <linux/rcupdate.h>
45
46 #include <net/net_namespace.h>
47 #include <net/tcp.h>
48 #include <net/strparser.h>
49 #include <crypto/aead.h>
50 #include <uapi/linux/tls.h>
51
52 struct tls_rec;
53
54 /* Maximum data size carried in a TLS record */
55 #define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14)
56
57 #define TLS_HEADER_SIZE 5
58 #define TLS_NONCE_OFFSET TLS_HEADER_SIZE
59
60 #define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type)
61
62 #define TLS_AAD_SPACE_SIZE 13
63
64 #define MAX_IV_SIZE 16
65 #define TLS_TAG_SIZE 16
66 #define TLS_MAX_REC_SEQ_SIZE 8
67 #define TLS_MAX_AAD_SIZE TLS_AAD_SPACE_SIZE
68
69 /* For CCM mode, the full 16-bytes of IV is made of '4' fields of given sizes.
70 *
71 * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
72 *
73 * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
74 * Hence b0 contains (3 - 1) = 2.
75 */
76 #define TLS_AES_CCM_IV_B0_BYTE 2
77 #define TLS_SM4_CCM_IV_B0_BYTE 2
78
79 enum {
80 TLS_BASE,
81 TLS_SW,
82 TLS_HW,
83 TLS_HW_RECORD,
84 TLS_NUM_CONFIG,
85 };
86
87 struct tx_work {
88 struct delayed_work work;
89 struct sock *sk;
90 };
91
92 struct tls_sw_context_tx {
93 struct crypto_aead *aead_send;
94 struct crypto_wait async_wait;
95 struct tx_work tx_work;
96 struct tls_rec *open_rec;
97 struct list_head tx_list;
98 atomic_t encrypt_pending;
99 /* protect crypto_wait with encrypt_pending */
100 spinlock_t encrypt_compl_lock;
101 int async_notify;
102 u8 async_capable:1;
103
104 #define BIT_TX_SCHEDULED 0
105 #define BIT_TX_CLOSING 1
106 unsigned long tx_bitmask;
107 };
108
109 struct tls_strparser {
110 struct sock *sk;
111
112 u32 mark : 8;
113 u32 stopped : 1;
114 u32 copy_mode : 1;
115 u32 mixed_decrypted : 1;
116 u32 msg_ready : 1;
117
118 struct strp_msg stm;
119
120 struct sk_buff *anchor;
121 struct work_struct work;
122 };
123
124 struct tls_sw_context_rx {
125 struct crypto_aead *aead_recv;
126 struct crypto_wait async_wait;
127 struct sk_buff_head rx_list; /* list of decrypted 'data' records */
128 void (*saved_data_ready)(struct sock *sk);
129
130 u8 reader_present;
131 u8 async_capable:1;
132 u8 zc_capable:1;
133 u8 reader_contended:1;
134
135 struct tls_strparser strp;
136
137 atomic_t decrypt_pending;
138 /* protect crypto_wait with decrypt_pending*/
139 spinlock_t decrypt_compl_lock;
140 struct sk_buff_head async_hold;
141 struct wait_queue_head wq;
142 };
143
144 struct tls_record_info {
145 struct list_head list;
146 u32 end_seq;
147 int len;
148 int num_frags;
149 skb_frag_t frags[MAX_SKB_FRAGS];
150 };
151
152 struct tls_offload_context_tx {
153 struct crypto_aead *aead_send;
154 spinlock_t lock; /* protects records list */
155 struct list_head records_list;
156 struct tls_record_info *open_record;
157 struct tls_record_info *retransmit_hint;
158 u64 hint_record_sn;
159 u64 unacked_record_sn;
160
161 struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
162 void (*sk_destruct)(struct sock *sk);
163 struct work_struct destruct_work;
164 struct tls_context *ctx;
165 u8 driver_state[] __aligned(8);
166 /* The TLS layer reserves room for driver specific state
167 * Currently the belief is that there is not enough
168 * driver specific state to justify another layer of indirection
169 */
170 #define TLS_DRIVER_STATE_SIZE_TX 16
171 };
172
173 #define TLS_OFFLOAD_CONTEXT_SIZE_TX \
174 (sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX)
175
176 enum tls_context_flags {
177 /* tls_device_down was called after the netdev went down, device state
178 * was released, and kTLS works in software, even though rx_conf is
179 * still TLS_HW (needed for transition).
180 */
181 TLS_RX_DEV_DEGRADED = 0,
182 /* Unlike RX where resync is driven entirely by the core in TX only
183 * the driver knows when things went out of sync, so we need the flag
184 * to be atomic.
185 */
186 TLS_TX_SYNC_SCHED = 1,
187 /* tls_dev_del was called for the RX side, device state was released,
188 * but tls_ctx->netdev might still be kept, because TX-side driver
189 * resources might not be released yet. Used to prevent the second
190 * tls_dev_del call in tls_device_down if it happens simultaneously.
191 */
192 TLS_RX_DEV_CLOSED = 2,
193 };
194
195 struct cipher_context {
196 char *iv;
197 char *rec_seq;
198 };
199
200 union tls_crypto_context {
201 struct tls_crypto_info info;
202 union {
203 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
204 struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
205 struct tls12_crypto_info_chacha20_poly1305 chacha20_poly1305;
206 struct tls12_crypto_info_sm4_gcm sm4_gcm;
207 struct tls12_crypto_info_sm4_ccm sm4_ccm;
208 };
209 };
210
211 struct tls_prot_info {
212 u16 version;
213 u16 cipher_type;
214 u16 prepend_size;
215 u16 tag_size;
216 u16 overhead_size;
217 u16 iv_size;
218 u16 salt_size;
219 u16 rec_seq_size;
220 u16 aad_size;
221 u16 tail_size;
222 };
223
224 struct tls_context {
225 /* read-only cache line */
226 struct tls_prot_info prot_info;
227
228 u8 tx_conf:3;
229 u8 rx_conf:3;
230 u8 zerocopy_sendfile:1;
231 u8 rx_no_pad:1;
232
233 int (*push_pending_record)(struct sock *sk, int flags);
234 void (*sk_write_space)(struct sock *sk);
235
236 void *priv_ctx_tx;
237 void *priv_ctx_rx;
238
239 struct net_device __rcu *netdev;
240
241 /* rw cache line */
242 struct cipher_context tx;
243 struct cipher_context rx;
244
245 struct scatterlist *partially_sent_record;
246 u16 partially_sent_offset;
247
248 bool splicing_pages;
249 bool pending_open_record_frags;
250
251 struct mutex tx_lock; /* protects partially_sent_* fields and
252 * per-type TX fields
253 */
254 unsigned long flags;
255
256 /* cache cold stuff */
257 struct proto *sk_proto;
258 struct sock *sk;
259
260 void (*sk_destruct)(struct sock *sk);
261
262 union tls_crypto_context crypto_send;
263 union tls_crypto_context crypto_recv;
264
265 struct list_head list;
266 refcount_t refcount;
267 struct rcu_head rcu;
268 };
269
270 enum tls_offload_ctx_dir {
271 TLS_OFFLOAD_CTX_DIR_RX,
272 TLS_OFFLOAD_CTX_DIR_TX,
273 };
274
275 struct tlsdev_ops {
276 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
277 enum tls_offload_ctx_dir direction,
278 struct tls_crypto_info *crypto_info,
279 u32 start_offload_tcp_sn);
280 void (*tls_dev_del)(struct net_device *netdev,
281 struct tls_context *ctx,
282 enum tls_offload_ctx_dir direction);
283 int (*tls_dev_resync)(struct net_device *netdev,
284 struct sock *sk, u32 seq, u8 *rcd_sn,
285 enum tls_offload_ctx_dir direction);
286 };
287
288 enum tls_offload_sync_type {
289 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
290 TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
291 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC = 2,
292 };
293
294 #define TLS_DEVICE_RESYNC_NH_START_IVAL 2
295 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL 128
296
297 #define TLS_DEVICE_RESYNC_ASYNC_LOGMAX 13
298 struct tls_offload_resync_async {
299 atomic64_t req;
300 u16 loglen;
301 u16 rcd_delta;
302 u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX];
303 };
304
305 struct tls_offload_context_rx {
306 /* sw must be the first member of tls_offload_context_rx */
307 struct tls_sw_context_rx sw;
308 enum tls_offload_sync_type resync_type;
309 /* this member is set regardless of resync_type, to avoid branches */
310 u8 resync_nh_reset:1;
311 /* CORE_NEXT_HINT-only member, but use the hole here */
312 u8 resync_nh_do_now:1;
313 union {
314 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
315 struct {
316 atomic64_t resync_req;
317 };
318 /* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
319 struct {
320 u32 decrypted_failed;
321 u32 decrypted_tgt;
322 } resync_nh;
323 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC */
324 struct {
325 struct tls_offload_resync_async *resync_async;
326 };
327 };
328 u8 driver_state[] __aligned(8);
329 /* The TLS layer reserves room for driver specific state
330 * Currently the belief is that there is not enough
331 * driver specific state to justify another layer of indirection
332 */
333 #define TLS_DRIVER_STATE_SIZE_RX 8
334 };
335
336 #define TLS_OFFLOAD_CONTEXT_SIZE_RX \
337 (sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX)
338
339 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
340 u32 seq, u64 *p_record_sn);
341
tls_record_is_start_marker(struct tls_record_info * rec)342 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
343 {
344 return rec->len == 0;
345 }
346
tls_record_start_seq(struct tls_record_info * rec)347 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
348 {
349 return rec->end_seq - rec->len;
350 }
351
352 struct sk_buff *
353 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
354 struct sk_buff *skb);
355 struct sk_buff *
356 tls_validate_xmit_skb_sw(struct sock *sk, struct net_device *dev,
357 struct sk_buff *skb);
358
tls_is_skb_tx_device_offloaded(const struct sk_buff * skb)359 static inline bool tls_is_skb_tx_device_offloaded(const struct sk_buff *skb)
360 {
361 #ifdef CONFIG_TLS_DEVICE
362 struct sock *sk = skb->sk;
363
364 return sk && sk_fullsock(sk) &&
365 (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
366 &tls_validate_xmit_skb);
367 #else
368 return false;
369 #endif
370 }
371
tls_get_ctx(const struct sock * sk)372 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
373 {
374 struct inet_connection_sock *icsk = inet_csk(sk);
375
376 /* Use RCU on icsk_ulp_data only for sock diag code,
377 * TLS data path doesn't need rcu_dereference().
378 */
379 return (__force void *)icsk->icsk_ulp_data;
380 }
381
tls_sw_ctx_rx(const struct tls_context * tls_ctx)382 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
383 const struct tls_context *tls_ctx)
384 {
385 return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
386 }
387
tls_sw_ctx_tx(const struct tls_context * tls_ctx)388 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
389 const struct tls_context *tls_ctx)
390 {
391 return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
392 }
393
394 static inline struct tls_offload_context_tx *
tls_offload_ctx_tx(const struct tls_context * tls_ctx)395 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
396 {
397 return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
398 }
399
tls_sw_has_ctx_tx(const struct sock * sk)400 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
401 {
402 struct tls_context *ctx = tls_get_ctx(sk);
403
404 if (!ctx)
405 return false;
406 return !!tls_sw_ctx_tx(ctx);
407 }
408
tls_sw_has_ctx_rx(const struct sock * sk)409 static inline bool tls_sw_has_ctx_rx(const struct sock *sk)
410 {
411 struct tls_context *ctx = tls_get_ctx(sk);
412
413 if (!ctx)
414 return false;
415 return !!tls_sw_ctx_rx(ctx);
416 }
417
418 static inline struct tls_offload_context_rx *
tls_offload_ctx_rx(const struct tls_context * tls_ctx)419 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
420 {
421 return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
422 }
423
__tls_driver_ctx(struct tls_context * tls_ctx,enum tls_offload_ctx_dir direction)424 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
425 enum tls_offload_ctx_dir direction)
426 {
427 if (direction == TLS_OFFLOAD_CTX_DIR_TX)
428 return tls_offload_ctx_tx(tls_ctx)->driver_state;
429 else
430 return tls_offload_ctx_rx(tls_ctx)->driver_state;
431 }
432
433 static inline void *
tls_driver_ctx(const struct sock * sk,enum tls_offload_ctx_dir direction)434 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
435 {
436 return __tls_driver_ctx(tls_get_ctx(sk), direction);
437 }
438
439 #define RESYNC_REQ BIT(0)
440 #define RESYNC_REQ_ASYNC BIT(1)
441 /* The TLS context is valid until sk_destruct is called */
tls_offload_rx_resync_request(struct sock * sk,__be32 seq)442 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
443 {
444 struct tls_context *tls_ctx = tls_get_ctx(sk);
445 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
446
447 atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ);
448 }
449
450 /* Log all TLS record header TCP sequences in [seq, seq+len] */
451 static inline void
tls_offload_rx_resync_async_request_start(struct sock * sk,__be32 seq,u16 len)452 tls_offload_rx_resync_async_request_start(struct sock *sk, __be32 seq, u16 len)
453 {
454 struct tls_context *tls_ctx = tls_get_ctx(sk);
455 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
456
457 atomic64_set(&rx_ctx->resync_async->req, ((u64)ntohl(seq) << 32) |
458 ((u64)len << 16) | RESYNC_REQ | RESYNC_REQ_ASYNC);
459 rx_ctx->resync_async->loglen = 0;
460 rx_ctx->resync_async->rcd_delta = 0;
461 }
462
463 static inline void
tls_offload_rx_resync_async_request_end(struct sock * sk,__be32 seq)464 tls_offload_rx_resync_async_request_end(struct sock *sk, __be32 seq)
465 {
466 struct tls_context *tls_ctx = tls_get_ctx(sk);
467 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
468
469 atomic64_set(&rx_ctx->resync_async->req,
470 ((u64)ntohl(seq) << 32) | RESYNC_REQ);
471 }
472
473 static inline void
tls_offload_rx_resync_set_type(struct sock * sk,enum tls_offload_sync_type type)474 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
475 {
476 struct tls_context *tls_ctx = tls_get_ctx(sk);
477
478 tls_offload_ctx_rx(tls_ctx)->resync_type = type;
479 }
480
481 /* Driver's seq tracking has to be disabled until resync succeeded */
tls_offload_tx_resync_pending(struct sock * sk)482 static inline bool tls_offload_tx_resync_pending(struct sock *sk)
483 {
484 struct tls_context *tls_ctx = tls_get_ctx(sk);
485 bool ret;
486
487 ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
488 smp_mb__after_atomic();
489 return ret;
490 }
491
492 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
493
494 #ifdef CONFIG_TLS_DEVICE
495 void tls_device_sk_destruct(struct sock *sk);
496 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq);
497
tls_is_sk_rx_device_offloaded(struct sock * sk)498 static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk)
499 {
500 if (!sk_fullsock(sk) ||
501 smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct)
502 return false;
503 return tls_get_ctx(sk)->rx_conf == TLS_HW;
504 }
505 #endif
506 #endif /* _TLS_OFFLOAD_H */
507