1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
36 
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/skmsg.h>
43 #include <linux/mutex.h>
44 #include <linux/netdevice.h>
45 #include <linux/rcupdate.h>
46 
47 #include <net/tcp.h>
48 #include <net/strparser.h>
49 #include <crypto/aead.h>
50 #include <uapi/linux/tls.h>
51 
52 
53 /* Maximum data size carried in a TLS record */
54 #define TLS_MAX_PAYLOAD_SIZE		((size_t)1 << 14)
55 
56 #define TLS_HEADER_SIZE			5
57 #define TLS_NONCE_OFFSET		TLS_HEADER_SIZE
58 
59 #define TLS_CRYPTO_INFO_READY(info)	((info)->cipher_type)
60 
61 #define TLS_RECORD_TYPE_DATA		0x17
62 
63 #define TLS_AAD_SPACE_SIZE		13
64 #define TLS_DEVICE_NAME_MAX		32
65 
66 #define MAX_IV_SIZE			16
67 #define TLS_MAX_REC_SEQ_SIZE		8
68 
69 /* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes.
70  *
71  * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
72  *
73  * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
74  * Hence b0 contains (3 - 1) = 2.
75  */
76 #define TLS_AES_CCM_IV_B0_BYTE		2
77 
78 /*
79  * This structure defines the routines for Inline TLS driver.
80  * The following routines are optional and filled with a
81  * null pointer if not defined.
82  *
83  * @name: Its the name of registered Inline tls device
84  * @dev_list: Inline tls device list
85  * int (*feature)(struct tls_device *device);
86  *     Called to return Inline TLS driver capability
87  *
88  * int (*hash)(struct tls_device *device, struct sock *sk);
89  *     This function sets Inline driver for listen and program
90  *     device specific functioanlity as required
91  *
92  * void (*unhash)(struct tls_device *device, struct sock *sk);
93  *     This function cleans listen state set by Inline TLS driver
94  *
95  * void (*release)(struct kref *kref);
96  *     Release the registered device and allocated resources
97  * @kref: Number of reference to tls_device
98  */
99 struct tls_device {
100 	char name[TLS_DEVICE_NAME_MAX];
101 	struct list_head dev_list;
102 	int  (*feature)(struct tls_device *device);
103 	int  (*hash)(struct tls_device *device, struct sock *sk);
104 	void (*unhash)(struct tls_device *device, struct sock *sk);
105 	void (*release)(struct kref *kref);
106 	struct kref kref;
107 };
108 
109 enum {
110 	TLS_BASE,
111 	TLS_SW,
112 	TLS_HW,
113 	TLS_HW_RECORD,
114 	TLS_NUM_CONFIG,
115 };
116 
117 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
118  * allocated or mapped for each TLS record. After encryption, the records are
119  * stores in a linked list.
120  */
121 struct tls_rec {
122 	struct list_head list;
123 	int tx_ready;
124 	int tx_flags;
125 	int inplace_crypto;
126 
127 	struct sk_msg msg_plaintext;
128 	struct sk_msg msg_encrypted;
129 
130 	/* AAD | msg_plaintext.sg.data | sg_tag */
131 	struct scatterlist sg_aead_in[2];
132 	/* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
133 	struct scatterlist sg_aead_out[2];
134 
135 	char content_type;
136 	struct scatterlist sg_content_type;
137 
138 	char aad_space[TLS_AAD_SPACE_SIZE];
139 	u8 iv_data[MAX_IV_SIZE];
140 	struct aead_request aead_req;
141 	u8 aead_req_ctx[];
142 };
143 
144 struct tls_msg {
145 	struct strp_msg rxm;
146 	u8 control;
147 };
148 
149 struct tx_work {
150 	struct delayed_work work;
151 	struct sock *sk;
152 };
153 
154 struct tls_sw_context_tx {
155 	struct crypto_aead *aead_send;
156 	struct crypto_wait async_wait;
157 	struct tx_work tx_work;
158 	struct tls_rec *open_rec;
159 	struct list_head tx_list;
160 	atomic_t encrypt_pending;
161 	int async_notify;
162 	int async_capable;
163 
164 #define BIT_TX_SCHEDULED	0
165 #define BIT_TX_CLOSING		1
166 	unsigned long tx_bitmask;
167 };
168 
169 struct tls_sw_context_rx {
170 	struct crypto_aead *aead_recv;
171 	struct crypto_wait async_wait;
172 	struct strparser strp;
173 	struct sk_buff_head rx_list;	/* list of decrypted 'data' records */
174 	void (*saved_data_ready)(struct sock *sk);
175 
176 	struct sk_buff *recv_pkt;
177 	u8 control;
178 	int async_capable;
179 	bool decrypted;
180 	atomic_t decrypt_pending;
181 	bool async_notify;
182 };
183 
184 struct tls_record_info {
185 	struct list_head list;
186 	u32 end_seq;
187 	int len;
188 	int num_frags;
189 	skb_frag_t frags[MAX_SKB_FRAGS];
190 };
191 
192 struct tls_offload_context_tx {
193 	struct crypto_aead *aead_send;
194 	spinlock_t lock;	/* protects records list */
195 	struct list_head records_list;
196 	struct tls_record_info *open_record;
197 	struct tls_record_info *retransmit_hint;
198 	u64 hint_record_sn;
199 	u64 unacked_record_sn;
200 
201 	struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
202 	void (*sk_destruct)(struct sock *sk);
203 	u8 driver_state[] __aligned(8);
204 	/* The TLS layer reserves room for driver specific state
205 	 * Currently the belief is that there is not enough
206 	 * driver specific state to justify another layer of indirection
207 	 */
208 #define TLS_DRIVER_STATE_SIZE_TX	16
209 };
210 
211 #define TLS_OFFLOAD_CONTEXT_SIZE_TX                                            \
212 	(sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX)
213 
214 enum tls_context_flags {
215 	TLS_RX_SYNC_RUNNING = 0,
216 	/* Unlike RX where resync is driven entirely by the core in TX only
217 	 * the driver knows when things went out of sync, so we need the flag
218 	 * to be atomic.
219 	 */
220 	TLS_TX_SYNC_SCHED = 1,
221 };
222 
223 struct cipher_context {
224 	char *iv;
225 	char *rec_seq;
226 };
227 
228 union tls_crypto_context {
229 	struct tls_crypto_info info;
230 	union {
231 		struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
232 		struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
233 	};
234 };
235 
236 struct tls_prot_info {
237 	u16 version;
238 	u16 cipher_type;
239 	u16 prepend_size;
240 	u16 tag_size;
241 	u16 overhead_size;
242 	u16 iv_size;
243 	u16 salt_size;
244 	u16 rec_seq_size;
245 	u16 aad_size;
246 	u16 tail_size;
247 };
248 
249 struct tls_context {
250 	/* read-only cache line */
251 	struct tls_prot_info prot_info;
252 
253 	u8 tx_conf:3;
254 	u8 rx_conf:3;
255 
256 	int (*push_pending_record)(struct sock *sk, int flags);
257 	void (*sk_write_space)(struct sock *sk);
258 
259 	void *priv_ctx_tx;
260 	void *priv_ctx_rx;
261 
262 	struct net_device *netdev;
263 
264 	/* rw cache line */
265 	struct cipher_context tx;
266 	struct cipher_context rx;
267 
268 	struct scatterlist *partially_sent_record;
269 	u16 partially_sent_offset;
270 
271 	bool in_tcp_sendpages;
272 	bool pending_open_record_frags;
273 
274 	struct mutex tx_lock; /* protects partially_sent_* fields and
275 			       * per-type TX fields
276 			       */
277 	unsigned long flags;
278 
279 	/* cache cold stuff */
280 	struct proto *sk_proto;
281 
282 	void (*sk_destruct)(struct sock *sk);
283 
284 	union tls_crypto_context crypto_send;
285 	union tls_crypto_context crypto_recv;
286 
287 	struct list_head list;
288 	refcount_t refcount;
289 	struct rcu_head rcu;
290 };
291 
292 enum tls_offload_ctx_dir {
293 	TLS_OFFLOAD_CTX_DIR_RX,
294 	TLS_OFFLOAD_CTX_DIR_TX,
295 };
296 
297 struct tlsdev_ops {
298 	int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
299 			   enum tls_offload_ctx_dir direction,
300 			   struct tls_crypto_info *crypto_info,
301 			   u32 start_offload_tcp_sn);
302 	void (*tls_dev_del)(struct net_device *netdev,
303 			    struct tls_context *ctx,
304 			    enum tls_offload_ctx_dir direction);
305 	int (*tls_dev_resync)(struct net_device *netdev,
306 			      struct sock *sk, u32 seq, u8 *rcd_sn,
307 			      enum tls_offload_ctx_dir direction);
308 };
309 
310 enum tls_offload_sync_type {
311 	TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
312 	TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
313 };
314 
315 #define TLS_DEVICE_RESYNC_NH_START_IVAL		2
316 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL		128
317 
318 struct tls_offload_context_rx {
319 	/* sw must be the first member of tls_offload_context_rx */
320 	struct tls_sw_context_rx sw;
321 	enum tls_offload_sync_type resync_type;
322 	/* this member is set regardless of resync_type, to avoid branches */
323 	u8 resync_nh_reset:1;
324 	/* CORE_NEXT_HINT-only member, but use the hole here */
325 	u8 resync_nh_do_now:1;
326 	union {
327 		/* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
328 		struct {
329 			atomic64_t resync_req;
330 		};
331 		/* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
332 		struct {
333 			u32 decrypted_failed;
334 			u32 decrypted_tgt;
335 		} resync_nh;
336 	};
337 	u8 driver_state[] __aligned(8);
338 	/* The TLS layer reserves room for driver specific state
339 	 * Currently the belief is that there is not enough
340 	 * driver specific state to justify another layer of indirection
341 	 */
342 #define TLS_DRIVER_STATE_SIZE_RX	8
343 };
344 
345 #define TLS_OFFLOAD_CONTEXT_SIZE_RX					\
346 	(sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX)
347 
348 void tls_ctx_free(struct sock *sk, struct tls_context *ctx);
349 int wait_on_pending_writer(struct sock *sk, long *timeo);
350 int tls_sk_query(struct sock *sk, int optname, char __user *optval,
351 		int __user *optlen);
352 int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
353 		  unsigned int optlen);
354 
355 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
356 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx);
357 void tls_sw_strparser_done(struct tls_context *tls_ctx);
358 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
359 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
360 			   int offset, size_t size, int flags);
361 int tls_sw_sendpage(struct sock *sk, struct page *page,
362 		    int offset, size_t size, int flags);
363 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx);
364 void tls_sw_release_resources_tx(struct sock *sk);
365 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx);
366 void tls_sw_free_resources_rx(struct sock *sk);
367 void tls_sw_release_resources_rx(struct sock *sk);
368 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx);
369 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
370 		   int nonblock, int flags, int *addr_len);
371 bool tls_sw_stream_read(const struct sock *sk);
372 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
373 			   struct pipe_inode_info *pipe,
374 			   size_t len, unsigned int flags);
375 
376 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
377 int tls_device_sendpage(struct sock *sk, struct page *page,
378 			int offset, size_t size, int flags);
379 int tls_tx_records(struct sock *sk, int flags);
380 
381 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
382 				       u32 seq, u64 *p_record_sn);
383 
tls_record_is_start_marker(struct tls_record_info * rec)384 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
385 {
386 	return rec->len == 0;
387 }
388 
tls_record_start_seq(struct tls_record_info * rec)389 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
390 {
391 	return rec->end_seq - rec->len;
392 }
393 
394 int tls_push_sg(struct sock *sk, struct tls_context *ctx,
395 		struct scatterlist *sg, u16 first_offset,
396 		int flags);
397 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
398 			    int flags);
399 bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx);
400 
tls_msg(struct sk_buff * skb)401 static inline struct tls_msg *tls_msg(struct sk_buff *skb)
402 {
403 	return (struct tls_msg *)strp_msg(skb);
404 }
405 
tls_is_partially_sent_record(struct tls_context * ctx)406 static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
407 {
408 	return !!ctx->partially_sent_record;
409 }
410 
tls_is_pending_open_record(struct tls_context * tls_ctx)411 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
412 {
413 	return tls_ctx->pending_open_record_frags;
414 }
415 
is_tx_ready(struct tls_sw_context_tx * ctx)416 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
417 {
418 	struct tls_rec *rec;
419 
420 	rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
421 	if (!rec)
422 		return false;
423 
424 	return READ_ONCE(rec->tx_ready);
425 }
426 
tls_user_config(struct tls_context * ctx,bool tx)427 static inline u16 tls_user_config(struct tls_context *ctx, bool tx)
428 {
429 	u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
430 
431 	switch (config) {
432 	case TLS_BASE:
433 		return TLS_CONF_BASE;
434 	case TLS_SW:
435 		return TLS_CONF_SW;
436 	case TLS_HW:
437 		return TLS_CONF_HW;
438 	case TLS_HW_RECORD:
439 		return TLS_CONF_HW_RECORD;
440 	}
441 	return 0;
442 }
443 
444 struct sk_buff *
445 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
446 		      struct sk_buff *skb);
447 
tls_is_sk_tx_device_offloaded(struct sock * sk)448 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
449 {
450 #ifdef CONFIG_SOCK_VALIDATE_XMIT
451 	return sk_fullsock(sk) &&
452 	       (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
453 	       &tls_validate_xmit_skb);
454 #else
455 	return false;
456 #endif
457 }
458 
tls_err_abort(struct sock * sk,int err)459 static inline void tls_err_abort(struct sock *sk, int err)
460 {
461 	sk->sk_err = err;
462 	sk->sk_error_report(sk);
463 }
464 
tls_bigint_increment(unsigned char * seq,int len)465 static inline bool tls_bigint_increment(unsigned char *seq, int len)
466 {
467 	int i;
468 
469 	for (i = len - 1; i >= 0; i--) {
470 		++seq[i];
471 		if (seq[i] != 0)
472 			break;
473 	}
474 
475 	return (i == -1);
476 }
477 
tls_get_ctx(const struct sock * sk)478 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
479 {
480 	struct inet_connection_sock *icsk = inet_csk(sk);
481 
482 	/* Use RCU on icsk_ulp_data only for sock diag code,
483 	 * TLS data path doesn't need rcu_dereference().
484 	 */
485 	return (__force void *)icsk->icsk_ulp_data;
486 }
487 
tls_advance_record_sn(struct sock * sk,struct tls_prot_info * prot,struct cipher_context * ctx)488 static inline void tls_advance_record_sn(struct sock *sk,
489 					 struct tls_prot_info *prot,
490 					 struct cipher_context *ctx)
491 {
492 	if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
493 		tls_err_abort(sk, EBADMSG);
494 
495 	if (prot->version != TLS_1_3_VERSION)
496 		tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
497 				     prot->iv_size);
498 }
499 
tls_fill_prepend(struct tls_context * ctx,char * buf,size_t plaintext_len,unsigned char record_type,int version)500 static inline void tls_fill_prepend(struct tls_context *ctx,
501 			     char *buf,
502 			     size_t plaintext_len,
503 			     unsigned char record_type,
504 			     int version)
505 {
506 	struct tls_prot_info *prot = &ctx->prot_info;
507 	size_t pkt_len, iv_size = prot->iv_size;
508 
509 	pkt_len = plaintext_len + prot->tag_size;
510 	if (version != TLS_1_3_VERSION) {
511 		pkt_len += iv_size;
512 
513 		memcpy(buf + TLS_NONCE_OFFSET,
514 		       ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size);
515 	}
516 
517 	/* we cover nonce explicit here as well, so buf should be of
518 	 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
519 	 */
520 	buf[0] = version == TLS_1_3_VERSION ?
521 		   TLS_RECORD_TYPE_DATA : record_type;
522 	/* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
523 	buf[1] = TLS_1_2_VERSION_MINOR;
524 	buf[2] = TLS_1_2_VERSION_MAJOR;
525 	/* we can use IV for nonce explicit according to spec */
526 	buf[3] = pkt_len >> 8;
527 	buf[4] = pkt_len & 0xFF;
528 }
529 
tls_make_aad(char * buf,size_t size,char * record_sequence,int record_sequence_size,unsigned char record_type,int version)530 static inline void tls_make_aad(char *buf,
531 				size_t size,
532 				char *record_sequence,
533 				int record_sequence_size,
534 				unsigned char record_type,
535 				int version)
536 {
537 	if (version != TLS_1_3_VERSION) {
538 		memcpy(buf, record_sequence, record_sequence_size);
539 		buf += 8;
540 	} else {
541 		size += TLS_CIPHER_AES_GCM_128_TAG_SIZE;
542 	}
543 
544 	buf[0] = version == TLS_1_3_VERSION ?
545 		  TLS_RECORD_TYPE_DATA : record_type;
546 	buf[1] = TLS_1_2_VERSION_MAJOR;
547 	buf[2] = TLS_1_2_VERSION_MINOR;
548 	buf[3] = size >> 8;
549 	buf[4] = size & 0xFF;
550 }
551 
xor_iv_with_seq(int version,char * iv,char * seq)552 static inline void xor_iv_with_seq(int version, char *iv, char *seq)
553 {
554 	int i;
555 
556 	if (version == TLS_1_3_VERSION) {
557 		for (i = 0; i < 8; i++)
558 			iv[i + 4] ^= seq[i];
559 	}
560 }
561 
562 
tls_sw_ctx_rx(const struct tls_context * tls_ctx)563 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
564 		const struct tls_context *tls_ctx)
565 {
566 	return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
567 }
568 
tls_sw_ctx_tx(const struct tls_context * tls_ctx)569 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
570 		const struct tls_context *tls_ctx)
571 {
572 	return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
573 }
574 
575 static inline struct tls_offload_context_tx *
tls_offload_ctx_tx(const struct tls_context * tls_ctx)576 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
577 {
578 	return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
579 }
580 
tls_sw_has_ctx_tx(const struct sock * sk)581 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
582 {
583 	struct tls_context *ctx = tls_get_ctx(sk);
584 
585 	if (!ctx)
586 		return false;
587 	return !!tls_sw_ctx_tx(ctx);
588 }
589 
590 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx);
591 void tls_device_write_space(struct sock *sk, struct tls_context *ctx);
592 
593 static inline struct tls_offload_context_rx *
tls_offload_ctx_rx(const struct tls_context * tls_ctx)594 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
595 {
596 	return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
597 }
598 
599 #if IS_ENABLED(CONFIG_TLS_DEVICE)
__tls_driver_ctx(struct tls_context * tls_ctx,enum tls_offload_ctx_dir direction)600 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
601 				     enum tls_offload_ctx_dir direction)
602 {
603 	if (direction == TLS_OFFLOAD_CTX_DIR_TX)
604 		return tls_offload_ctx_tx(tls_ctx)->driver_state;
605 	else
606 		return tls_offload_ctx_rx(tls_ctx)->driver_state;
607 }
608 
609 static inline void *
tls_driver_ctx(const struct sock * sk,enum tls_offload_ctx_dir direction)610 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
611 {
612 	return __tls_driver_ctx(tls_get_ctx(sk), direction);
613 }
614 #endif
615 
616 /* The TLS context is valid until sk_destruct is called */
tls_offload_rx_resync_request(struct sock * sk,__be32 seq)617 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
618 {
619 	struct tls_context *tls_ctx = tls_get_ctx(sk);
620 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
621 
622 	atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | 1);
623 }
624 
625 static inline void
tls_offload_rx_resync_set_type(struct sock * sk,enum tls_offload_sync_type type)626 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
627 {
628 	struct tls_context *tls_ctx = tls_get_ctx(sk);
629 
630 	tls_offload_ctx_rx(tls_ctx)->resync_type = type;
631 }
632 
tls_offload_tx_resync_request(struct sock * sk)633 static inline void tls_offload_tx_resync_request(struct sock *sk)
634 {
635 	struct tls_context *tls_ctx = tls_get_ctx(sk);
636 
637 	WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
638 }
639 
640 /* Driver's seq tracking has to be disabled until resync succeeded */
tls_offload_tx_resync_pending(struct sock * sk)641 static inline bool tls_offload_tx_resync_pending(struct sock *sk)
642 {
643 	struct tls_context *tls_ctx = tls_get_ctx(sk);
644 	bool ret;
645 
646 	ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
647 	smp_mb__after_atomic();
648 	return ret;
649 }
650 
651 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
652 		      unsigned char *record_type);
653 void tls_register_device(struct tls_device *device);
654 void tls_unregister_device(struct tls_device *device);
655 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
656 		struct scatterlist *sgout);
657 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
658 
659 struct sk_buff *tls_validate_xmit_skb(struct sock *sk,
660 				      struct net_device *dev,
661 				      struct sk_buff *skb);
662 
663 int tls_sw_fallback_init(struct sock *sk,
664 			 struct tls_offload_context_tx *offload_ctx,
665 			 struct tls_crypto_info *crypto_info);
666 
667 #ifdef CONFIG_TLS_DEVICE
668 void tls_device_init(void);
669 void tls_device_cleanup(void);
670 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
671 void tls_device_free_resources_tx(struct sock *sk);
672 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
673 void tls_device_offload_cleanup_rx(struct sock *sk);
674 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq);
675 int tls_device_decrypted(struct sock *sk, struct sk_buff *skb);
676 #else
tls_device_init(void)677 static inline void tls_device_init(void) {}
tls_device_cleanup(void)678 static inline void tls_device_cleanup(void) {}
679 
680 static inline int
tls_set_device_offload(struct sock * sk,struct tls_context * ctx)681 tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
682 {
683 	return -EOPNOTSUPP;
684 }
685 
tls_device_free_resources_tx(struct sock * sk)686 static inline void tls_device_free_resources_tx(struct sock *sk) {}
687 
688 static inline int
tls_set_device_offload_rx(struct sock * sk,struct tls_context * ctx)689 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
690 {
691 	return -EOPNOTSUPP;
692 }
693 
tls_device_offload_cleanup_rx(struct sock * sk)694 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {}
695 static inline void
tls_device_rx_resync_new_rec(struct sock * sk,u32 rcd_len,u32 seq)696 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {}
697 
tls_device_decrypted(struct sock * sk,struct sk_buff * skb)698 static inline int tls_device_decrypted(struct sock *sk, struct sk_buff *skb)
699 {
700 	return 0;
701 }
702 #endif
703 #endif /* _TLS_OFFLOAD_H */
704