1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
36
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/skmsg.h>
43 #include <linux/mutex.h>
44 #include <linux/netdevice.h>
45 #include <linux/rcupdate.h>
46
47 #include <net/tcp.h>
48 #include <net/strparser.h>
49 #include <crypto/aead.h>
50 #include <uapi/linux/tls.h>
51
52
53 /* Maximum data size carried in a TLS record */
54 #define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14)
55
56 #define TLS_HEADER_SIZE 5
57 #define TLS_NONCE_OFFSET TLS_HEADER_SIZE
58
59 #define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type)
60
61 #define TLS_RECORD_TYPE_DATA 0x17
62
63 #define TLS_AAD_SPACE_SIZE 13
64 #define TLS_DEVICE_NAME_MAX 32
65
66 #define MAX_IV_SIZE 16
67 #define TLS_MAX_REC_SEQ_SIZE 8
68
69 /* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes.
70 *
71 * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
72 *
73 * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
74 * Hence b0 contains (3 - 1) = 2.
75 */
76 #define TLS_AES_CCM_IV_B0_BYTE 2
77
78 /*
79 * This structure defines the routines for Inline TLS driver.
80 * The following routines are optional and filled with a
81 * null pointer if not defined.
82 *
83 * @name: Its the name of registered Inline tls device
84 * @dev_list: Inline tls device list
85 * int (*feature)(struct tls_device *device);
86 * Called to return Inline TLS driver capability
87 *
88 * int (*hash)(struct tls_device *device, struct sock *sk);
89 * This function sets Inline driver for listen and program
90 * device specific functioanlity as required
91 *
92 * void (*unhash)(struct tls_device *device, struct sock *sk);
93 * This function cleans listen state set by Inline TLS driver
94 *
95 * void (*release)(struct kref *kref);
96 * Release the registered device and allocated resources
97 * @kref: Number of reference to tls_device
98 */
99 struct tls_device {
100 char name[TLS_DEVICE_NAME_MAX];
101 struct list_head dev_list;
102 int (*feature)(struct tls_device *device);
103 int (*hash)(struct tls_device *device, struct sock *sk);
104 void (*unhash)(struct tls_device *device, struct sock *sk);
105 void (*release)(struct kref *kref);
106 struct kref kref;
107 };
108
109 enum {
110 TLS_BASE,
111 TLS_SW,
112 TLS_HW,
113 TLS_HW_RECORD,
114 TLS_NUM_CONFIG,
115 };
116
117 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
118 * allocated or mapped for each TLS record. After encryption, the records are
119 * stores in a linked list.
120 */
121 struct tls_rec {
122 struct list_head list;
123 int tx_ready;
124 int tx_flags;
125 int inplace_crypto;
126
127 struct sk_msg msg_plaintext;
128 struct sk_msg msg_encrypted;
129
130 /* AAD | msg_plaintext.sg.data | sg_tag */
131 struct scatterlist sg_aead_in[2];
132 /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
133 struct scatterlist sg_aead_out[2];
134
135 char content_type;
136 struct scatterlist sg_content_type;
137
138 char aad_space[TLS_AAD_SPACE_SIZE];
139 u8 iv_data[MAX_IV_SIZE];
140 struct aead_request aead_req;
141 u8 aead_req_ctx[];
142 };
143
144 struct tls_msg {
145 struct strp_msg rxm;
146 u8 control;
147 };
148
149 struct tx_work {
150 struct delayed_work work;
151 struct sock *sk;
152 };
153
154 struct tls_sw_context_tx {
155 struct crypto_aead *aead_send;
156 struct crypto_wait async_wait;
157 struct tx_work tx_work;
158 struct tls_rec *open_rec;
159 struct list_head tx_list;
160 atomic_t encrypt_pending;
161 int async_notify;
162 int async_capable;
163
164 #define BIT_TX_SCHEDULED 0
165 #define BIT_TX_CLOSING 1
166 unsigned long tx_bitmask;
167 };
168
169 struct tls_sw_context_rx {
170 struct crypto_aead *aead_recv;
171 struct crypto_wait async_wait;
172 struct strparser strp;
173 struct sk_buff_head rx_list; /* list of decrypted 'data' records */
174 void (*saved_data_ready)(struct sock *sk);
175
176 struct sk_buff *recv_pkt;
177 u8 control;
178 int async_capable;
179 bool decrypted;
180 atomic_t decrypt_pending;
181 bool async_notify;
182 };
183
184 struct tls_record_info {
185 struct list_head list;
186 u32 end_seq;
187 int len;
188 int num_frags;
189 skb_frag_t frags[MAX_SKB_FRAGS];
190 };
191
192 struct tls_offload_context_tx {
193 struct crypto_aead *aead_send;
194 spinlock_t lock; /* protects records list */
195 struct list_head records_list;
196 struct tls_record_info *open_record;
197 struct tls_record_info *retransmit_hint;
198 u64 hint_record_sn;
199 u64 unacked_record_sn;
200
201 struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
202 void (*sk_destruct)(struct sock *sk);
203 u8 driver_state[] __aligned(8);
204 /* The TLS layer reserves room for driver specific state
205 * Currently the belief is that there is not enough
206 * driver specific state to justify another layer of indirection
207 */
208 #define TLS_DRIVER_STATE_SIZE_TX 16
209 };
210
211 #define TLS_OFFLOAD_CONTEXT_SIZE_TX \
212 (sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX)
213
214 enum tls_context_flags {
215 TLS_RX_SYNC_RUNNING = 0,
216 /* Unlike RX where resync is driven entirely by the core in TX only
217 * the driver knows when things went out of sync, so we need the flag
218 * to be atomic.
219 */
220 TLS_TX_SYNC_SCHED = 1,
221 };
222
223 struct cipher_context {
224 char *iv;
225 char *rec_seq;
226 };
227
228 union tls_crypto_context {
229 struct tls_crypto_info info;
230 union {
231 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
232 struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
233 };
234 };
235
236 struct tls_prot_info {
237 u16 version;
238 u16 cipher_type;
239 u16 prepend_size;
240 u16 tag_size;
241 u16 overhead_size;
242 u16 iv_size;
243 u16 salt_size;
244 u16 rec_seq_size;
245 u16 aad_size;
246 u16 tail_size;
247 };
248
249 struct tls_context {
250 /* read-only cache line */
251 struct tls_prot_info prot_info;
252
253 u8 tx_conf:3;
254 u8 rx_conf:3;
255
256 int (*push_pending_record)(struct sock *sk, int flags);
257 void (*sk_write_space)(struct sock *sk);
258
259 void *priv_ctx_tx;
260 void *priv_ctx_rx;
261
262 struct net_device *netdev;
263
264 /* rw cache line */
265 struct cipher_context tx;
266 struct cipher_context rx;
267
268 struct scatterlist *partially_sent_record;
269 u16 partially_sent_offset;
270
271 bool in_tcp_sendpages;
272 bool pending_open_record_frags;
273
274 struct mutex tx_lock; /* protects partially_sent_* fields and
275 * per-type TX fields
276 */
277 unsigned long flags;
278
279 /* cache cold stuff */
280 struct proto *sk_proto;
281
282 void (*sk_destruct)(struct sock *sk);
283
284 union tls_crypto_context crypto_send;
285 union tls_crypto_context crypto_recv;
286
287 struct list_head list;
288 refcount_t refcount;
289 struct rcu_head rcu;
290 };
291
292 enum tls_offload_ctx_dir {
293 TLS_OFFLOAD_CTX_DIR_RX,
294 TLS_OFFLOAD_CTX_DIR_TX,
295 };
296
297 struct tlsdev_ops {
298 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
299 enum tls_offload_ctx_dir direction,
300 struct tls_crypto_info *crypto_info,
301 u32 start_offload_tcp_sn);
302 void (*tls_dev_del)(struct net_device *netdev,
303 struct tls_context *ctx,
304 enum tls_offload_ctx_dir direction);
305 int (*tls_dev_resync)(struct net_device *netdev,
306 struct sock *sk, u32 seq, u8 *rcd_sn,
307 enum tls_offload_ctx_dir direction);
308 };
309
310 enum tls_offload_sync_type {
311 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
312 TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
313 };
314
315 #define TLS_DEVICE_RESYNC_NH_START_IVAL 2
316 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL 128
317
318 struct tls_offload_context_rx {
319 /* sw must be the first member of tls_offload_context_rx */
320 struct tls_sw_context_rx sw;
321 enum tls_offload_sync_type resync_type;
322 /* this member is set regardless of resync_type, to avoid branches */
323 u8 resync_nh_reset:1;
324 /* CORE_NEXT_HINT-only member, but use the hole here */
325 u8 resync_nh_do_now:1;
326 union {
327 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
328 struct {
329 atomic64_t resync_req;
330 };
331 /* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
332 struct {
333 u32 decrypted_failed;
334 u32 decrypted_tgt;
335 } resync_nh;
336 };
337 u8 driver_state[] __aligned(8);
338 /* The TLS layer reserves room for driver specific state
339 * Currently the belief is that there is not enough
340 * driver specific state to justify another layer of indirection
341 */
342 #define TLS_DRIVER_STATE_SIZE_RX 8
343 };
344
345 #define TLS_OFFLOAD_CONTEXT_SIZE_RX \
346 (sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX)
347
348 void tls_ctx_free(struct sock *sk, struct tls_context *ctx);
349 int wait_on_pending_writer(struct sock *sk, long *timeo);
350 int tls_sk_query(struct sock *sk, int optname, char __user *optval,
351 int __user *optlen);
352 int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
353 unsigned int optlen);
354
355 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
356 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx);
357 void tls_sw_strparser_done(struct tls_context *tls_ctx);
358 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
359 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
360 int offset, size_t size, int flags);
361 int tls_sw_sendpage(struct sock *sk, struct page *page,
362 int offset, size_t size, int flags);
363 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx);
364 void tls_sw_release_resources_tx(struct sock *sk);
365 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx);
366 void tls_sw_free_resources_rx(struct sock *sk);
367 void tls_sw_release_resources_rx(struct sock *sk);
368 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx);
369 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
370 int nonblock, int flags, int *addr_len);
371 bool tls_sw_stream_read(const struct sock *sk);
372 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
373 struct pipe_inode_info *pipe,
374 size_t len, unsigned int flags);
375
376 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
377 int tls_device_sendpage(struct sock *sk, struct page *page,
378 int offset, size_t size, int flags);
379 int tls_tx_records(struct sock *sk, int flags);
380
381 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
382 u32 seq, u64 *p_record_sn);
383
tls_record_is_start_marker(struct tls_record_info * rec)384 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
385 {
386 return rec->len == 0;
387 }
388
tls_record_start_seq(struct tls_record_info * rec)389 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
390 {
391 return rec->end_seq - rec->len;
392 }
393
394 int tls_push_sg(struct sock *sk, struct tls_context *ctx,
395 struct scatterlist *sg, u16 first_offset,
396 int flags);
397 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
398 int flags);
399 bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx);
400
tls_msg(struct sk_buff * skb)401 static inline struct tls_msg *tls_msg(struct sk_buff *skb)
402 {
403 return (struct tls_msg *)strp_msg(skb);
404 }
405
tls_is_partially_sent_record(struct tls_context * ctx)406 static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
407 {
408 return !!ctx->partially_sent_record;
409 }
410
tls_is_pending_open_record(struct tls_context * tls_ctx)411 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
412 {
413 return tls_ctx->pending_open_record_frags;
414 }
415
is_tx_ready(struct tls_sw_context_tx * ctx)416 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
417 {
418 struct tls_rec *rec;
419
420 rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
421 if (!rec)
422 return false;
423
424 return READ_ONCE(rec->tx_ready);
425 }
426
tls_user_config(struct tls_context * ctx,bool tx)427 static inline u16 tls_user_config(struct tls_context *ctx, bool tx)
428 {
429 u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
430
431 switch (config) {
432 case TLS_BASE:
433 return TLS_CONF_BASE;
434 case TLS_SW:
435 return TLS_CONF_SW;
436 case TLS_HW:
437 return TLS_CONF_HW;
438 case TLS_HW_RECORD:
439 return TLS_CONF_HW_RECORD;
440 }
441 return 0;
442 }
443
444 struct sk_buff *
445 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
446 struct sk_buff *skb);
447
tls_is_sk_tx_device_offloaded(struct sock * sk)448 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
449 {
450 #ifdef CONFIG_SOCK_VALIDATE_XMIT
451 return sk_fullsock(sk) &&
452 (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
453 &tls_validate_xmit_skb);
454 #else
455 return false;
456 #endif
457 }
458
tls_err_abort(struct sock * sk,int err)459 static inline void tls_err_abort(struct sock *sk, int err)
460 {
461 sk->sk_err = err;
462 sk->sk_error_report(sk);
463 }
464
tls_bigint_increment(unsigned char * seq,int len)465 static inline bool tls_bigint_increment(unsigned char *seq, int len)
466 {
467 int i;
468
469 for (i = len - 1; i >= 0; i--) {
470 ++seq[i];
471 if (seq[i] != 0)
472 break;
473 }
474
475 return (i == -1);
476 }
477
tls_get_ctx(const struct sock * sk)478 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
479 {
480 struct inet_connection_sock *icsk = inet_csk(sk);
481
482 /* Use RCU on icsk_ulp_data only for sock diag code,
483 * TLS data path doesn't need rcu_dereference().
484 */
485 return (__force void *)icsk->icsk_ulp_data;
486 }
487
tls_advance_record_sn(struct sock * sk,struct tls_prot_info * prot,struct cipher_context * ctx)488 static inline void tls_advance_record_sn(struct sock *sk,
489 struct tls_prot_info *prot,
490 struct cipher_context *ctx)
491 {
492 if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
493 tls_err_abort(sk, EBADMSG);
494
495 if (prot->version != TLS_1_3_VERSION)
496 tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
497 prot->iv_size);
498 }
499
tls_fill_prepend(struct tls_context * ctx,char * buf,size_t plaintext_len,unsigned char record_type,int version)500 static inline void tls_fill_prepend(struct tls_context *ctx,
501 char *buf,
502 size_t plaintext_len,
503 unsigned char record_type,
504 int version)
505 {
506 struct tls_prot_info *prot = &ctx->prot_info;
507 size_t pkt_len, iv_size = prot->iv_size;
508
509 pkt_len = plaintext_len + prot->tag_size;
510 if (version != TLS_1_3_VERSION) {
511 pkt_len += iv_size;
512
513 memcpy(buf + TLS_NONCE_OFFSET,
514 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size);
515 }
516
517 /* we cover nonce explicit here as well, so buf should be of
518 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
519 */
520 buf[0] = version == TLS_1_3_VERSION ?
521 TLS_RECORD_TYPE_DATA : record_type;
522 /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
523 buf[1] = TLS_1_2_VERSION_MINOR;
524 buf[2] = TLS_1_2_VERSION_MAJOR;
525 /* we can use IV for nonce explicit according to spec */
526 buf[3] = pkt_len >> 8;
527 buf[4] = pkt_len & 0xFF;
528 }
529
tls_make_aad(char * buf,size_t size,char * record_sequence,int record_sequence_size,unsigned char record_type,int version)530 static inline void tls_make_aad(char *buf,
531 size_t size,
532 char *record_sequence,
533 int record_sequence_size,
534 unsigned char record_type,
535 int version)
536 {
537 if (version != TLS_1_3_VERSION) {
538 memcpy(buf, record_sequence, record_sequence_size);
539 buf += 8;
540 } else {
541 size += TLS_CIPHER_AES_GCM_128_TAG_SIZE;
542 }
543
544 buf[0] = version == TLS_1_3_VERSION ?
545 TLS_RECORD_TYPE_DATA : record_type;
546 buf[1] = TLS_1_2_VERSION_MAJOR;
547 buf[2] = TLS_1_2_VERSION_MINOR;
548 buf[3] = size >> 8;
549 buf[4] = size & 0xFF;
550 }
551
xor_iv_with_seq(int version,char * iv,char * seq)552 static inline void xor_iv_with_seq(int version, char *iv, char *seq)
553 {
554 int i;
555
556 if (version == TLS_1_3_VERSION) {
557 for (i = 0; i < 8; i++)
558 iv[i + 4] ^= seq[i];
559 }
560 }
561
562
tls_sw_ctx_rx(const struct tls_context * tls_ctx)563 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
564 const struct tls_context *tls_ctx)
565 {
566 return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
567 }
568
tls_sw_ctx_tx(const struct tls_context * tls_ctx)569 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
570 const struct tls_context *tls_ctx)
571 {
572 return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
573 }
574
575 static inline struct tls_offload_context_tx *
tls_offload_ctx_tx(const struct tls_context * tls_ctx)576 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
577 {
578 return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
579 }
580
tls_sw_has_ctx_tx(const struct sock * sk)581 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
582 {
583 struct tls_context *ctx = tls_get_ctx(sk);
584
585 if (!ctx)
586 return false;
587 return !!tls_sw_ctx_tx(ctx);
588 }
589
590 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx);
591 void tls_device_write_space(struct sock *sk, struct tls_context *ctx);
592
593 static inline struct tls_offload_context_rx *
tls_offload_ctx_rx(const struct tls_context * tls_ctx)594 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
595 {
596 return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
597 }
598
599 #if IS_ENABLED(CONFIG_TLS_DEVICE)
__tls_driver_ctx(struct tls_context * tls_ctx,enum tls_offload_ctx_dir direction)600 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
601 enum tls_offload_ctx_dir direction)
602 {
603 if (direction == TLS_OFFLOAD_CTX_DIR_TX)
604 return tls_offload_ctx_tx(tls_ctx)->driver_state;
605 else
606 return tls_offload_ctx_rx(tls_ctx)->driver_state;
607 }
608
609 static inline void *
tls_driver_ctx(const struct sock * sk,enum tls_offload_ctx_dir direction)610 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
611 {
612 return __tls_driver_ctx(tls_get_ctx(sk), direction);
613 }
614 #endif
615
616 /* The TLS context is valid until sk_destruct is called */
tls_offload_rx_resync_request(struct sock * sk,__be32 seq)617 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
618 {
619 struct tls_context *tls_ctx = tls_get_ctx(sk);
620 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
621
622 atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | 1);
623 }
624
625 static inline void
tls_offload_rx_resync_set_type(struct sock * sk,enum tls_offload_sync_type type)626 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
627 {
628 struct tls_context *tls_ctx = tls_get_ctx(sk);
629
630 tls_offload_ctx_rx(tls_ctx)->resync_type = type;
631 }
632
tls_offload_tx_resync_request(struct sock * sk)633 static inline void tls_offload_tx_resync_request(struct sock *sk)
634 {
635 struct tls_context *tls_ctx = tls_get_ctx(sk);
636
637 WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
638 }
639
640 /* Driver's seq tracking has to be disabled until resync succeeded */
tls_offload_tx_resync_pending(struct sock * sk)641 static inline bool tls_offload_tx_resync_pending(struct sock *sk)
642 {
643 struct tls_context *tls_ctx = tls_get_ctx(sk);
644 bool ret;
645
646 ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
647 smp_mb__after_atomic();
648 return ret;
649 }
650
651 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
652 unsigned char *record_type);
653 void tls_register_device(struct tls_device *device);
654 void tls_unregister_device(struct tls_device *device);
655 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
656 struct scatterlist *sgout);
657 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
658
659 struct sk_buff *tls_validate_xmit_skb(struct sock *sk,
660 struct net_device *dev,
661 struct sk_buff *skb);
662
663 int tls_sw_fallback_init(struct sock *sk,
664 struct tls_offload_context_tx *offload_ctx,
665 struct tls_crypto_info *crypto_info);
666
667 #ifdef CONFIG_TLS_DEVICE
668 void tls_device_init(void);
669 void tls_device_cleanup(void);
670 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
671 void tls_device_free_resources_tx(struct sock *sk);
672 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
673 void tls_device_offload_cleanup_rx(struct sock *sk);
674 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq);
675 int tls_device_decrypted(struct sock *sk, struct sk_buff *skb);
676 #else
tls_device_init(void)677 static inline void tls_device_init(void) {}
tls_device_cleanup(void)678 static inline void tls_device_cleanup(void) {}
679
680 static inline int
tls_set_device_offload(struct sock * sk,struct tls_context * ctx)681 tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
682 {
683 return -EOPNOTSUPP;
684 }
685
tls_device_free_resources_tx(struct sock * sk)686 static inline void tls_device_free_resources_tx(struct sock *sk) {}
687
688 static inline int
tls_set_device_offload_rx(struct sock * sk,struct tls_context * ctx)689 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
690 {
691 return -EOPNOTSUPP;
692 }
693
tls_device_offload_cleanup_rx(struct sock * sk)694 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {}
695 static inline void
tls_device_rx_resync_new_rec(struct sock * sk,u32 rcd_len,u32 seq)696 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {}
697
tls_device_decrypted(struct sock * sk,struct sk_buff * skb)698 static inline int tls_device_decrypted(struct sock *sk, struct sk_buff *skb)
699 {
700 return 0;
701 }
702 #endif
703 #endif /* _TLS_OFFLOAD_H */
704